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ABSTRACT
Socially assistive robotics (SAR) aims to develop robots that
help people through interactions that are inherently social,
such as tutoring and coaching. For these interactions to be
effective, socially assistive robots must be able to recognize
and use nonverbal social cues like eye gaze and gesture. In
this paper, we present a preliminary model for nonverbal
robot behavior in a tutoring application. Using empirical
data from teachers and students in human-human tutoring
interactions, the model can be both predictive (recognizing
the context of new nonverbal behaviors) and generative (cre-
ating new robot nonverbal behaviors based on a desired con-
text) using the same underlying data representation.

Categories and Subject Descriptors
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1. INTRODUCTION
Socially assistive robotics (SAR) focuses on building robots

that help people through interactions that are inherently so-
cial [5]. Application areas for SAR include tutoring [8, 9],
autism therapy [13], and elder care [16]. Social robots aug-
ment traditional human-human interactions in these areas
by providing additional interactions that are impractical,
time-consuming, or impossible to achieve with a person.

For example, a social robot can act as a peer tutor, helping
students practice skills or solidify knowledge through one-
on-one interactions outside of the classroom. By presenting
itself as a peer, the robot can encourage students to practice
previously-learned knowledge by re-teaching it to the robot.
In this way, the robot provides educational support beyond
what a classroom teacher has time for, and with potentially
more consistent quality than a human peer.
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Figure 1: Screenshots from human-human teaching
interaction videos. The student (top) displays gaze
to the referent, while the teacher (bottom) displays
gaze to the partner and a deictic gesture to the map.

For social robots to be effective communicators, they must
understand the context of their human partner’s communi-
cation, that is, the communicative goal or perspective. In
the tutoring robot example, for instance, the robot must be
able to recognize whether its partner is referring to a lo-
cation in the environment, asking a question, or explaining
some knowledge. Similarly, social robots must be able to
convey the context of their own communication effectively.

The cues to understanding such context can come from
speech, but often come from nonverbal behaviors like eye
gaze [3] and gesture [10]. Gestures, for instance, reflect ideas
that are not necessarily conveyed in speech [6], and teachers
frequently use gestures to ground their spoken utterances
to the objects of instruction [1, 12]. Eye gaze is critical for
joint attention—simultaneous attention toward a particular
object or location—which is fundamental for learning [15].
Therefore, the effectiveness of the tutoring robot, or any so-
cially assistive robot, depends on its ability to recognize and
utilize the nonverbal context clues that people use naturally.

In this work, we take a data-driven approach, using empir-
ical data from human-human interactions to build a model
of nonverbal robot behaviors. By training on previously-
observed human behavior, we take advantage of the fre-
quency and ease with which people use nonverbal behaviors
to design more communicative robot behaviors.
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Figure 2: The model performs both context predic-
tion (blue) and behavior generation (green).

Other work uses a similar data-driven approach for non-
verbal behavior modeling. Researchers have generated robot
behavior, such as gaze aversions [2] and narrative gestures
[7], by analyzing videos of people conversing or telling sto-
ries. For virtual agents, empirical observation has driven
gesture formation for iconic gestures [4] and narrative per-
formance [11, 14].

However, much of this previous work focuses exclusively
on the speaker’s behaviors. In contrast, our work considers
the behaviors of both interaction partners simultaneously.
Tutoring is an activity with bi-directional communication—
the teacher makes a statement, the student asks a question,
the teacher replies, the student confirms—and peoples’ non-
verbal behavior is influenced by the behavior of their part-
ner. For instance, joint reference is a common social behav-
ior that involves one person deictically referring to an object
or location, then repeatedly glancing between that referent
and the partner’s face to confirm that their partner under-
stands the reference. With a view of both partners’ behav-
iors, joint reference can emerge naturally from our model.

Our work also hinges on the idea that a model for nonver-
bal behavior should be simultaneously predictive and gen-
erative. In other words, the model should be able to both
predict (or classify) the context of a newly observed set of
nonverbal behaviors, and generate a set of nonverbal behav-
iors given a context of communication (Figure 2), without
needing to collect and train on different sets of data. Some
other work has this capability (such as [4]), but we elevate
this to a central requirement for our system.

In this paper, we introduce the context and features that
comprise our model and describe our preliminary data col-
lection of real-world human-human teaching interactions.
We then describe our model in terms of these features, de-
tailing how it can both predict new contexts and generate
new behaviors. We evaluate the model and show that it is
effective at both of these tasks. We conclude with ideas for
extensions of this model.

2. HUMAN-HUMAN INTERACTION
To create a model of nonverbal behavior, we first collected

examples of nonverbal behavior during tutoring (Figure 1).
We recruited two pairs of participants (mean age 22), ran-
domly assigning one as teacher and the other as student, and
recorded their interaction as the teacher taught the student
how to play a board game called TransAmerica.

In TransAmerica, players must place game pieces repre-
senting railroad tracks along a grid overlaid on a map of the
United States. Players score points for successfully building

a track network that connects the cities specified in their
randomly-selected hand of cards. We chose this game specif-
ically because teaching the game involves spatial references,
which encourage deictic gestures and demonstrations in ad-
dition to statements of facts and rules.

Neither student nor teacher had played the board game
previously. Before the recorded interaction, the teacher was
given a lesson on the game from an experimenter for approx-
imately five minutes. The teacher was also provided with a
rule sheet that described all of the rules of the game.

We audio- and video- recorded both teacher and student
during this interaction, which lasted approximately five min-
utes per dyad. We then manually coded these recordings for
five predictors: the teacher’s gaze, the teacher’s gestures, the
teacher’s deictic references, the student’s gaze, and the stu-
dent’s gestures (Table 1). The student’s deictic reference
was infrequent, so we did not code for that predictor. We
also coded the context of each utterance.

Values for gaze follow previous work [7], and represent
possible gaze locations: to the partner, to the referent of
current speech (regardless of who is speaking), to one’s own
gesture, or to some other location in the environment.

Values for gesture include those from established catego-
rizations as well as additional values specific to physically-
based teaching tasks. Iconic, metaphoric, deictic, and beat
gestures are defined as in the literature [10]. Demonstra-
tions involve physical movements that mimic the topic of
speech. Functional movements are not intended for commu-
nication, but are used to accomplish game-related tasks such
as dealing cards. Actions outside of these categories, such
as brushing hair behind an ear, were categorized as other.

The deixis category encodes gesture types—pointing to a
single target, sweeping over a range of targets, and holding—
as well as gesture locations—the game map, cards, playing
pieces, and box. Though every deixis value must have an as-
sociated gesture, not every gesture must have a deixis value.
Deixis values can occur with any gesture, especially demon-
strations and functional gestures.

The nine contexts each represent a particular kind of com-
munication, and contexts are determined based on both
speech and nonverbal behaviors. Contexts are mutually ex-
clusive, though two sets of identical nonverbal behaviors may
be classified as different contexts, for instance based on dif-
ferent speech during those behaviors.

The rules context indicates communication about the rules
of the game. Fact contexts involve communication about
facts that don’t include game rules, such as “The name of
the game is TransAmerica.” An expository context indicates
communication that elaborates on previous statements with-
out providing new rules or facts. Question and reply con-
texts involve asking questions or providing direct answers,
respectively. Deixis indicates communication that refers to
physical locations or nearby objects. Confirmation contexts
involve confirmation-seeking questions or statements such
as “do you understand?” Backchannel contexts are utter-
ances that indicate a listener’s attention. Filler are non-
meaningful communications that stand in for silence, often
at the beginning of a new phrase.

We developed the list of contexts before examining the
human-human interaction data, so that we would not be
swayed by individual preferences for certain contexts. Inter-
estingly, we did not note a single instance of confirmation
context in the interactions we annotated, despite their ex-



Name Values

Gaze (A) partner, referent, own gesture, other
Gesture (E) iconic, metaphoric, deictic, beat,

demonstration, functional, other
Deixis (D) point {map, own cards, partner cards, box},

sweep {map, box},
hold {cards, game piece, box}

Context (C) backchannel, deixis, expository, fact,
filler, question, reply, rules

Table 1: Model parameters and their values.

pected appearance in a teaching task. It is possible that a
more experienced teacher might employ confirmation seek-
ing behaviors, even though our current participants did not.

3. NONVERBAL BEHAVIOR MODEL
A model of nonverbal behavior should be able to classify

the context given new observations of nonverbal behavior,
as well as generate appropriate behaviors to suit a desired
context (Figure 2).

We discretized the human-human interaction recordings
into one-second segments. Each segment provides one ob-
servation o ∈ O, which is described by a tuple of predictors
o = {aT , eT , dT , aS , eS} where aT , aS ∈ A are the type of
eye gaze exhibited by the teacher and student, respectively,
eT , eS ∈ E are the types of gestures exhibited by the teacher
and student, respectively, and dT ∈ D is the deictic refer-
ent of the teacher’s gesture in that segment. We chose one-
second segments after observing the interactions, though the
level of data granularity is flexible and may be adjusted for
different applications.

Sometimes it is useful to take history into account, as well.
An observation with history,

oh = {aTt , eTt , dTt , aSt , eSt , aTt−1 , eTt−1 , dTt−1 , aSt−1 , eSt−1}

is defined by predictor values at current time t and predictor
values from the previous time step t − 1, if available. The
set of observations including history is Oh.

Using this formulation, we can represent each observation
as a point in high-dimensional space.

3.1 Predicting Context
Given a set of observations of nonverbal behavior, our sys-

tem can predict the context of the communication. To do so,
observations from the human-human interactions were used
to train a prediction algorithm using k-nearest neighbors. In
this algorithm, predictors are attributes and context is the
class label. We can denote this as label (oh) = c for obser-
vation oh and context c. Note that label is not a function,
since identical observations can have different contexts.

To classify the context of a new observation, the algorithm
performs operation

nclosest : (Oh, onew, k)→ K (1)

which takes a set of observations Oh, a new observation onew,
and a positive integer k and returns a set K = {oh1 , . . . , ohk}
containing the k closest observations to onew.

Because the predictor values are categorical, rather than
continuous, our KNN algorithm uses the Hamming distance
to identify nearest neighbors. For each existing observation
oold = {x1, . . . , xn}, the algorithm calculates the distance D

between oold and the new observation onew = {y1, . . . , yn},

D =

n∑
i=1

h(xi, yi), h(a, b) =

{
0 if a = b
1 if a 6= b

(2)

Once it has evaluated the k nearest neighbors, the model
assigns onew a context based on a majority vote of the con-
texts of the observations in K. Ties are resolved by selecting
randomly. Since there may be several different behaviors ap-
plicable in the same context, we extend the context assign-
ment to onew such that the probability of context assignment
is proportional to the number of observations with that con-
text in K. In other words, the probability of assigning onew a

context c is p(c) = count(label(oh)=c)
k

for each oh ∈ K, where
count(x) is a function that returns the number of instances
of x in the data.

We empirically determined that k = 2 was the most accu-
rate value for our data, though k may vary by application.
Our model examines the two most similar examples of pre-
vious behavior to judge a new behavior’s context.

3.2 Generating Behavior
Given a context, the model can also select appropriate

nonverbal behaviors. It does so by finding the largest cluster
of examples for the context, then selecting the nonverbal
behaviors that are most common in that cluster.

Mathematically, given a desired context cdes ∈ C, the
model searches over all observations o ∈ O for

{{aT , eT , dT , aS , eS} | count (label(o) = cdes) >
count (label(o) = ci) , cdes 6= ci}

(3)
Since this can yield multiple qualifying sets of behavior, the
model can weight its behavior choice based on the frequency
of observations containing that behavior for the desired con-
text. This allows behavior variability in proportion to ob-
served examples.

In effect, the model is replicating the most common be-
haviors it has observed for a given context. This follows
the idea that people learn to communicate by mimicking
observed behavior in given situations.

This behavior generation algorithm is amnesic because it
does not account for history. To account for behavior from
the previous time step, we use the history-aware representa-
tion of an observation, oh. The process for generating new
context (equation 3) remains the same, except that every
step now uses oh instead of o.

4. MODEL EVALUATION
Given a new observation containing the five predictors,

how accurate is the model at identifying the correct con-
text? We performed a 10-fold cross validation: combining
all observations from both dyads, this validation segmented
the data into 10 groups, trained the model on nine of those
groups, and calculated the accuracy of context predictions
using data from the remaining, untrained group (Figure 3a).
On average, cross-validation accuracy was 45.9%. This value
is significantly better than chance, which is 11.1% for nine
classifications. It is also better than simply predicting the
most common classification—rules—which only leads to an
accuracy of 37.5% using the cross-validated model. Table 2
shows a confusion matrix for the cross-validated model.

Given a context, how well does the model generate gaze
and gesture behaviors? To test this, we compared the rec-
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Figure 3: Results of model evaluation. The dashed
line indicates chance.

10 13 23 1 11 2 2 21
4 14 16 0 6 4 0 15
6 13 59 3 29 8 3 28
1 0 4 0 1 2 0 1
1 13 36 2 32 1 3 22
5 6 7 2 8 26 0 5
1 2 4 0 1 1 2 4
7 19 47 3 25 6 3 72

Table 2: A confusion matrix for context prediction
with the cross-validated model. Variable order is
listed in Table 1.

orded human behavior for each observation in our data set
against the most likely behavior generated by the algorithm
for that observation’s context (Figure 3b). When using the
amnesiac generation method (that is, behavior generation
that ignores any history), our system matches actual human
gaze behavior 52.0% of the time, and human gesture behav-
ior 36.0% of the time. This is an improvement over ran-
domly selecting behavior values, which would yield 25.0%
accuracy for gaze and 14.3% accuracy for gesture. Tak-
ing a single time-step of history into account significantly
improves performance. The historically mindful generation
method yields 78.8% accuracy for gaze behaviors and 72.0%
accuracy for gestures.

5. DISCUSSION & FUTURE WORK
The next step in evaluating the model is to generate real

robot behaviors and to measure how those behaviors are
received in a human-robot interaction. We plan to use the
generative portion of the model to create robot behaviors for
a tutoring task similar to the one in this experiment. We
will measure participants’ acceptance and information recall
when interacting with a robot using the current model versus
a robot using a heuristic model or one that exhibits limited
nonverbal behavior.

Given annotated data, our model is adaptable to new
users and new tasks. However, data annotation remains
a challenge. Manual annotations take time, and automatic
annotations are not yet robust enough to correctly identify
all of the features used by the model, particularly the con-
text. However, automatic gaze and gesture detectors may
ease some of the burden of manual annotation.

As a data-driven model, the effectiveness of the system
depends on the quality of the data provided. This paper
uses a small data corpus (two dyadic interactions), which
we plan to increase for future evaluations. Even with this

small corpus, however, the model can successfully predict
and generate reasonable nonverbal behavior. While many
nonverbal behaviors are consistent across people, atypical
social behavior might necessitate a re-seeding of the model
with new observations of that behavior.

We developed the model for a subset of the nonverbal
behaviors that people use to communicate. Extending the
model to include other features, such as head pose, might
yield even greater accuracy and expressiveness.
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