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Abstract—Current state-of-the-art robotic systems deployed in
industry work in isolation from humans and do not allow for
collaboration. Developing a robot that can work side-by-side with
a human presents the advantage of allowing both the robot and
the human worker to focus on the task each is best suited for,
while assisting one another as needed. For the robot to provide
assistive behavior to a human co-worker, it needs to learn what
actions it should perform at each time step depending upon the
state of the task. Such assistive actions are not intended to simply
contribute to the completion of a particular task by instructing
the robot to work on subtasks in isolation from the human
worker; rather they are meant to help the worker complete
the task more efficiently. As such, employing standard policy
search or task and motion planning techniques is not sufficient
to discover the supportive types of actions my system seeks to
offer based on accurate estimations of the current task state.
To this end, my research focuses on investigating policy search
within hierarchical tasks that allow for two main abilities, namely
helping the human co-worker more effectively complete a task
and taking communicative actions that reduce state estimation
uncertainty by asking the worker direct questions. The policy
dictates what action the robot should take at each time step, based
on inputs from a motion capture system providing observations
about the configuration of the person’s hands relative to the
objects needed for accomplishing the task, as well as the person’s
answers to any questions posed by the robot.

I. INTRODUCTION

Robotics research today aims to push the limits of robot
autonomous capabilities. Whether it be robots that help people
in their homes, public spaces, hospitals, or assembly-line
settings, their ability to perform assistive behaviors is of
paramount importance. Given that most systems currently
deployed in industry are not equipped to work side-by-side
with humans, a big challenge is developing robots capable of
offering assistance to human workers for a variety of tasks.

Assistive behaviors help workers more efficiently complete
a task (e.g. a person would assemble a chair frame faster if
the robot could stabilize the frame). Standard task and motion
planning techniques based on configuration spaces that employ
a divide-and-conquer approach cannot identify such assistive
behaviors. This is because the necessary actions are not distinct
components of the task given to the system a priori but need to
be discovered based on each subtask performed. Developing
new policy search algorithms is thus necessary. The focus of
the presented research topic is to find policies that dictate
what action the robot should perform to both provide assistive
behavior and reduce its uncertainty about current task state.

978-1-4673-8370-7/16/$31.00 © 2016 |IEEE

Brian Scassellati
Yale University, Department of Computer Science
brian.scassellati@yale.edu

II. BACKGROUND AND RELATED WORK

The current work employs a reinforcement learning (RL)
framework, allowing the specification of a reward function for
learning. RL problems are framed based on Markov Decision
Processes (MDPs), which describe the environment where an
agent can act. The aim is to learn a policy that chooses
actions such that it locally optimizes the delayed cumulative
reward signal, defined based on the objective of the task. Typ-
ically, this is achieved by parameterizing the policy indirectly
through estimating state or action values (value-approximation
methods) or through directly parameterized policies (direct
policy search methods). While reviews encompassing these
methods [1], [2] already highlight the challenges faced by
typical robotics tasks that work with continuous state and/or
action spaces, the problem at hand requires the adaptation of
such standard techniques and poses greater challenges still.

To tackle the problem presented, I use hierarchical RL [3],
[4], dividing the task into subtasks for which I apply different
types of policy search. At the low level, the policies handle
continuous state spaces and strive to find actions that help im-
plement the assistive behaviors. At the high level the policies
handle uncertainty due to states not fully observable (extending
the MDP to the partially observable variant POMDP) and
strive to find actions that either decide what kind of supportive
behavior to provide or reduce state estimation uncertainty.

In the human-robot interaction field, work that focuses
on human-robot teaming includes research in the area of
search and rescue [5], team coordination behaviors and action
planning for human-robot teaming [6], and dynamic sharing
of responsibilities between a robot and a human operator [7].
Going beyond the important aspects investigated in related
work, my research focuses on including two capabilities into
the action policy: (1) the ability to model supportive behaviors
that do not necessarily directly contribute to task completion
but help the human worker more efficiently complete the
task at hand, and (2) allow the robot to deliberately act
so as to reduce uncertainty about state estimation by taking
communicative actions (asking the user direct questions).

III. APPROACH

In this work I use a typical RL MDP formulation. An
MDP is a tuple (S, 4, P, R,~y), where S represents the state
space the agent operates in, A represents the action space the
agent acts within, P is a probabilistic transition function such
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that P(s,a,s’) = P(st11|st = s and a; = a) denotes the
probability that action @ in state s; results in a transition to
state s;41, R represents the reward function that specifies the
expected reward for transitioning from one state to another via
a particular action, 7411 = R(s¢, at, s¢41), and «y constitutes a
reward discount factor with +y € [0, 1]. The POMDP extension
involves maintaining a probability distribution over the set of
possible states based on observations the agent receives from
the environment with every action it takes.

To provide assistance to the human worker while handling
state estimation uncertainty, I use a hybrid policy search
algorithm that combines techniques well-suited for continuous
state and action spaces with value-function based techniques
that work well for discrete, lower-dimensional spaces. The
scenario of focus is human-robot teaming, where a person is
constructing a piece of furniture. The system is provided with
a hierarchical task tree [8] encapsulating information about
subtasks, primitive actions, and ordering constraints.

The input to the algorithm is data acquired from a motion
capture system providing the coordinates of the person’s hands
in the work area, as well as those of all objects relevant to
the task (the different components needed to build the chair).
These objects are provided to the system beforehand, together
with the hierarchical task tree. The tree is used to learn policies
at different levels of the task. For the low-level tree nodes, the
policies are learned based on this continuous state space and
map the states to particular actions that can be executed within
the context of that sub-state. This is included in the first goal
of the work (providing supportive behaviors) and focuses on
the actual implementation of these actions (e.g. within subtask
a, help person by stabilizing a piece of wood when needed).

For the high-level tree nodes, policies are learned based on a
transformation from the continuous state space provided by the
motion capture system data to discrete states representing the
state of the human-robot interaction at a high level (e.g. person
performing subtask a while robot performing subtask b). These
policies map the high-level states to actions that represent
high-level goals for the robot. Such goals include actions
meant to help the human worker with a particular subtask, and
actions that direct the robot to work on a different subtask
(both of which are included in the first goal of the work),
as well as clarification actions meant to disambiguate state
information (included in the second goal, that of reducing state
estimation uncertainty via communicative actions). Examples
of the former are “help with subtask a;,” ..., “help with subtask
an,” where n is the total number of subtasks, while examples
of the latter include directly asking the user questions (e.g.
“Are you currently performing subtask a;?”).

IV. PAST, CURRENT AND FUTURE WORK

The initial phase of finding policies that accomplish the
two goals mentioned above consisted of investigating how to
assess different agents’ skill level at performing various tasks.
To this end, I was part of a project that investigated how to
autonomously predict the amount of time different agents take
to complete actions part of common assembly tasks [9]. The

project focused on building a model to estimate such durations
based on the composition of a skill experience curve (modeling
changes in duration due to the agent gaining familiarity with a
task via repetition), an agent’s estimated tool proficiency, and
an agent’s estimated motor skill proficiency.

I am currently working on a policy search approach that
makes use of this method of predicting an agent’s action-
completion duration in order to choose appropriate actions
corresponding to the robot’s high-level goals, as described
above. Here, the approach employs a POMDP that main-
tains a probability distribution over the set of possible states
by looking at the observations the robot receives from the
environment when it performs an action. When the robot’s
belief in the true state is too uncertain, it takes information
gathering (communicative) actions to improve the current state
estimate. When this is not needed, the predicted duration is
used to choose what subtask the person might need help with
(e.g. durations with high estimated values would need the
most amount of help). This component tackles the problem of
endowing the robot with the capability of choosing between
actions relevant for the two goals presented in this work.

Future work encompasses tackling policy search for low-
level nodes of the task tree, looking at how to actually
implement actions meant to provide support (i.e. how the robot
could actually help with a particular subtask once it knows it
needs to). At the low-level, the approach uses an MDP with
a continuous state space, based on the input from a motion
capture system. The policies resulted from solving MDPs that
tackle continuous state and action spaces at the low level and
from solving POMDPs that handle discrete state and action
spaces at the high level are tied together by the use of the
hierarchical structure of the task tree.
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