
Online Development of Assistive Robot Behaviors for
Collaborative Manipulation and Human-Robot Teamwork

Bradley Hayes and Brian Scassellati
Yale University

Computer Science Department
New Haven, CT 06511

Abstract

Collaborative robots that operate in the same immediate en-
vironment as human workers have the potential to improve
their co-workers’ efficiency and quality of work. In this pa-
per we present a taxonomy of assistive behavior types along-
side methods that enable a robot to learn assistive behaviors
from interactions with a human collaborator during live ac-
tivity completion. We begin with a brief survey of the state of
the art in human-robot collaboration. We proceed to focus on
the challenges and issues surrounding the online development
of assistive robot behaviors. Finally, we describe approaches
for learning when and how to apply these behaviors, as well
as for integrating them into a full end-to-end system utiliz-
ing techniques derived from the learning from demonstration,
policy iteration, and task network communities.

Introduction
Human-robot teaming has the potential to extend robotics
well beyond their current, limited roles in factory automa-
tion. Much of modern robotics remains inapplicable in many
domains where tasks are either too complex, beyond modern
hardware limitations, too sensitive for non-human comple-
tion, or too flexible for static automation practices. In these
situations human-robot teaming can be leveraged to improve
the efficiency, quality-of-life, and safety of human workers.
As a community, we desire to create collaborative robots that
can provide assistance when useful, remove dull or unde-
sirable responsibilities when possible, and assist with dan-
gerous tasks when feasible. In particular, this paper focuses
on collaboration between a lead worker and robotic assis-
tant, complementing prior work that develops collaborative
robots as peers (Gombolay et al. 2013; Knepper et al. 2013;
Nikolaidis and Shah 2013).

We specifically look into the process of building a system
capable of producing an effective robot assistant that learns
from demonstration. To be effective, this assistant must be
capable of learning to anticipate the parts or tool-related
needs of the lead worker, while maintaining the flexibility
to adapt to different worker preferences while maintaining
value from prior training. In constructing such a system, we
address challenges in state estimation, policy optimization,

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Collaborative Workbench platform, designed
for shared workspace human-robot teaming exercises.

influencing human task execution, and implicit social com-
munication. Through this system, we aim to cover various
types of supported assistive behaviors, ranging from sim-
ple stabilization operations to the joint manipulation of un-
wieldy objects. The work presented within represents an on-
going research effort and is organized as a survey of chal-
lenges and proposed solutions within this shared workspace
human-robot teaming domain. Evaluations of the system
presented within this work are designed to be carried out
on the Collaborative Workbench (figure 1), an instrumented
workbench with two mounted Kuka YouBot lightweight
manufacturing arms and tablet-based controller interface.

Background
Our work spans many active fields of robotics research,
including Learning from Demonstration, Markov Decision
Processes, and Reinforcement Learning. In this section, we
define common terms and highlight relevant related work
from the community.

Learning from Demonstration
Learning from Demonstration (LfD) is a natural method
for allowing novice operators to impart knowledge into a
robot system (Chen and Zelinsky 2003). LfD is particularly

Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop

44

useful due to its vast applicability, as demonstrations can
be effectively provided via teleoperation (Ng et al. 2006;
Sweeney and Grupen 2007), kinesthetic teaching (Akgun et
al. 2012), or guided by human speech (Rybski et al. 2007)
to achieve task or skill proficiency. LfD research has also
been conducted to enable robots to learn from demonstra-
tions performed by other robots (Konidaris et al. 2011), ap-
plying observations of other robotic agents to improve one’s
own performance.

A key benefit of LfD is that it enables novice users to
easily program robot behaviors. Some modern systems even
incorporate mechanisms allowing a user to shape and re-
fine a robot’s policy that had been generated from prior task
demonstrations (Dillmann et al. 2000; Ogawara et al. 2002).

Especially relevant for inexperienced skill trainers, many
LfD techniques are robust to the inconsistencies and subop-
timality usually encountered from a human trainer. By at-
tempting to learn from the perceived intention of a demon-
stration rather than its actual action sequence (Friedrich and
Dillmann 1995), a learner is capable of extracting help-
ful knowledge from imperfect training data (Atkeson and
Schaal 1997). Recent work has also provided novel means
of segmenting observed action sequences to autonomously
extract portable, goal-directed skills (Konidaris et al. 2010;
Pastor et al. 2009).

Markov Decision Processes

Markov Decision Processes (MDPs) provide a convenient
and efficient representation with which to create flexible,
arbitrarily complex options: closed-loop policies describ-
ing action sequences (Stolle and Precup 2002; Sutton et al.
1999). The temporal abstraction and generality of represen-
tation make MDPs a popular method of internally represent-
ing knowledge about actionable skills and tasks.

MDPs are represented by the 4-tuple (S,A,R, P), which
defines an environment-centric directed multigraph, with
environmental knowledge encoded in vertices representing
possible states (s 2 S). Directed edges between vertices
(transitions) are labeled with an action (a 2 A). R(s0|s, a)
is the reward achieved by transitioning to state s0 from state
s by way of action a. P (s0|s, a) is a transition probability
function that indicates the probability of arriving in state s0

when executing action a in state s.
In the MDP framework, agents acquire a policy ⇡ that

informs action selection, producing a state-action mapping
function. In Semi-Markov Decision Processes (SMDPs)
(Sutton et al. 1999), these actions can encapsulate arbi-
trary levels of complexity, typically in the form of a tempo-
rally abstracted, parameterized motor primitive. The gener-
ality and extensibility of this approach contributes to policy-
based learning being a widely used method of skill repre-
sentation (Kaelbling, Littman, and Moore 1996). With an
environmental reward function, solving for an optimal ac-
tion policy can often be accomplished autonomously and is
only limited by the complexity of the problem’s state repre-
sentation.

Partially Observable Markov Decision Processes
Partially Observable Markov Decision Processes (POMDPs)
(Monahan 1982) are popular representations of MDPs that
can be applied to real-world situations even when situa-
tional awareness is not perfect. In contrast to the 4-tuple
(S,A,R, P) describing an MDP, POMDPs are represented
by the 6-tuple (S,A,R, P,O,⌦). O represents a set of ob-
servations, members of which can be output from states in
S. ⌦ describes the conditional probability of an observation
given a state and action. Importantly, the precise state of the
system within a POMDP is not known and must be reasoned
about probabilistically given a series of observations.

In the context of an assistive robot collaborator, the prob-
lem of determining the intention of a human co-worker can
be modeled as a POMDP built from a previously known task
network. We utilize a POMDP since our assistive robot is
able to exert a level of control over state transitions in ad-
dition to possessing the ability to test hypotheses regarding
the current state of the task.

Application Domain: Assistive Behaviors
In this work we predominantly consider scenarios in which a
human is performing a construction or assembly task while
sharing a workspace with an assistive robot. Our contribu-
tion centers on the development of a means of learning dif-
ferent types of assistive behaviors and when to apply them.
To maximize relevance to the broader robotics community,
we apply these behaviors within the context of an existing,
popular task representation, namely MDPs.

We classify assistive behaviors as generally belonging to
one of five identified high-level categories. While this is
by no means an exhaustive list of assistive action types,
the close proximity, shared workspace environment we uti-
lize makes these classifications particularly relevant. The re-
mainder of the paper focuses on robot actions in the areas of:
materials stabilization, materials retrieval, collaborative ob-
ject manipulation, enhancing awareness, and task progres-
sion guidance.

Materials Stabilization This behavior class involves hav-
ing the robot hold an object maintaining a particular pose.
The inherent goal of such an action is to position and ori-
ent an object such that the primary worker can more easily
perform the target task. Examples of this include holding
fabrics together to allow a human to sew them more easily,
orienting a wire and PCB in such a way that they may be
soldered together, or maintaining the position of a piece of
furniture so a component may be pressed into place.

Materials Retrieval The retrieval class of behaviors in-
volves changing the available workspace resources such that
a worker needs to exert less effort or cognitive load to find
necessary parts or tools. Actions in this class can range from
non-intrusive methods such as pointing, to minimally intru-
sive actions such as placing objects conveniently nearby, to
directly interactive handover actions.

Collaborative Object Manipulation For particularly un-
wieldy materials or in instances where precision is espe-
cially important, a robot assistant may render help in the

45

form of moving objects in tandem with another worker.
Two particularly salient use cases for these behaviors are
the placement and orientation of heavy or large objects and
the guidance of tools to effect other materials. In the case
of the latter, one can imagine situations that may arise in
complex tasks where motion constraints on particular tools
will greatly reduce the difficulty of a subtask. A concrete
example of this may be an assistive robot enforcing a planar
constraint while a human manipulates a jointly held sanding
tool or enforcing a depth constraint when etching a fragile
surface with a dremel tool.

Enhancing Awareness There are behaviors that do not di-
rectly manipulate the environment, yet may also be of excep-
tional assistance to a worker. One example of an awareness-
enhancing behavior would be a robot manipulating a cam-
era to provide an alternative, more helpful perspective to a
worker. Other, less complicated actions in this category may
include using a flashlight to illuminate areas inside a part
being worked on, or directing a laser pointer to indicate rel-
evant through-hole paths on a PCB that is being wired.

Task Progression Guidance An assistive robot may also
perform actions that inherently guide the progression of a
task towards a particular action sequence. Unlike the other
four classifications of assistive behavior, influencing the or-
dering of subtask completion involves reducing the cost (in
terms of time or effort) of a collaborator pursuing certain ac-
tions over others. One minimal example where this behavior
can be applied is a drilling task, where it may be more ef-
ficient for a worker to place all of the screws in pilot holes
before drilling them all, rather than placing and drilling them
one at a time. An assistive robot can manipulate the course
of action by performing materials retrieval actions giving the
worker screws rather than the drill, or even by moving the
drill further from the active work area until the screws are
placed.

Approach
In this section, we describe techniques for integrating as-
sistive actions with complex tasks. We begin by outlining
a method for associating assistive behaviors with task com-
pletion status and active goals of the lead worker. Once an
association can be made between these assistive behaviors
and the task at hand, we describe a means of learning as-
sistive behaviors from demonstration. We proceed to de-
scribe an approach allowing for the refinement of these be-
haviors, while allowing for the potential of personalization
on the level of individual workers. Finally, we briefly dis-
cuss implementation strategies for the aforementioned ac-
tion classes.

Merging Task State with Assistive Behaviors
Mutually compatible, shared task comprehension is a criti-
cal element to the success of any human-robot team (Niko-
laidis and Shah 2013). In our work, we represent tasks as di-
rected graphs, encoding both environment states and the ac-
tions that transition the world between these states. Differing
from the standard SMDP formulation where vertices repre-
sent environment states and edges are labeled with action

Figure 2: SMDP (top) and its corresponding dual (middle)
with associated assistive behavior SMDP (bottom). In the
SMDP graph, environment states are encoded in vertices and
edges are labeled with their corresponding actions. In the
dual graph, skills are represented as vertices and edges are
labeled with environmental constraints that prevent agents
from accessing its destination vertex. In this example, the
assistive behavior SMDP can be acted upon by a partner to
faciliate action C.

choices, we build our task network from its dual. By repre-
senting agent actions as vertices and labeling edges with the
required prerequisite environment state feature vector(s) for
transition, an action-centric task representation is achieved.
From the perspective of a robot collaborator, this provides
a model of the activities and goals that a human principal
worker is desiring to accomplish.

When trying to model the underlying structure in com-
plex task networks, traditional MDP graphs’ environment-
centric representations do not immediately convey features
that facilitate discerning ordering constraints or isolating
action-oriented goals. To mitigate these issues, we augment
the environment-space SMDP graph via a transformation
function to produce a constraint network on action order-
ings from its dual, resulting in a graph constructed around
known skill primitives rather than environment states. We re-
fer to this graph as the SMDP-dual (figure 2-middle), where
vertices represent actions and eligible transitions are deter-
mined by prerequisite environmental states.

By converting the task graph into an action-centric rep-
resentation, a robot teammate now has a behavioral model
of its collaborator within which it can associate assistive be-
haviors. The active state of the task can then be inferred by

46

existing techniques (Hawkins et al. 2013) based on state-
related observations relating to part positioning, tool use,
and workspace utilization. If each vertex of this graph is in-
tuitively considered to represent a subtask goal for the hu-
man (e.g., “drill holes in part 3”), an assistive robot can use
this context to decide how best to render help. In this pa-
per, we describe a process for learning, applying, and refin-
ing these assistive behaviors in the context of such a task
graph. This is accomplished by learning a distinct SMDP
for assistive actions that can be performed at a given stage in
the target task, which can then parameterize dynamic motor
primitives (Schaal 2006) belonging to the classes of action
described previously.

Learning Assistive Behaviors
We consider two main challenges in the context of learning
assistive behaviors: how does a robot acquire these skills,
and how can a robot account for individual user preferences
in execution style or timing? We address the first challenge
with a skill training algorithm based on the state of the art
in Learning from Demonstration. To handle issues related to
the second challenge, we incorporate a reinforcement learn-
ing signal into the behavior selection mechanism.

Skill Acquisition Learning initial models of the desired
behaviors can be incredibly challenging without explicit in-
struction. To quickly achieve a moderately successful policy
of assistive behaviors, we leverage the human’s presence to
provide explicit training to the robot for each desired assis-
tive skill. For our application, this means using kinesthetic
teaching (Akgun et al. 2012) to learn a corresponding SMDP
or parameterization for each assistive behavior, mapping it
to the current task state in the POMDP (figure 2-bottom) de-
scribing the task being completed by the lead worker.

During the skill training phase, feature selection becomes
an important consideration for action reproduction. At the
time of training, it may be unclear which objects are rel-
evant to the assistive behavior being taught. Further, once
one is confident of the relevant scene entities, it may not be
straightforward which features relevant to that entity should
be recorded: distance to an object may be important in some
situations, whereas the relative orientation of the robot’s
gripper to the entity may be important in others. To solve
this ambiguity, we provide the trainer a mechanism by which
they may select the relevant features of the skill manually
from a curated list of possibilities. In future work, we are
interested in leveraging feature-specific statistical regulari-
ties across training demonstrations to progress this feature
selection process without user intervention.

Skill Refinement Once an agent has initial models of the
skills to be executed, users will invariably find the need to re-
fine them to adapt to changes in work conditions or changing
personal preferences. In our work, we treat this as a super-
vised learning problem in the immediate term, and a rein-
forcement learning problem in the longer term.

In the short term, an agent that sub-optimally performs
an assistive behavior requires immediate correction. In the
absence of a predetermined, real-time computable objective
function, these adjustments cannot be made in a convenient

or effective manner. As such, we again leverage the pres-
ence of a human trainer to provide corrective feedback, al-
lowing the user to kinesthetically correct the position or re-
demonstrate the desired trajectory of the robot, providing
a distinct training example as compared to what may have
been initially trained.

More specifically, if a user engages in a corrective be-
havior for a given action, we modify the behavior’s un-
derlying SMDP by adding new training data. At each step
through the corrected demonstration, new states, actions,
and transitions are added to the SMDP. To accommodate
separate sources of reward, we modify the reward function
R(s0|s, a) such that instead of returning a scalar value, it
returns a set of (label, scalar) tuples representing ‘layers’
of reward. This allows for flexibility in considering which
sources of reward to integrate into a decision or policy. For
example, in the refinement scenario each state-action tran-
sition is given an explicit ‘trainer’ reward to only be as-
sociated with the worker that demonstrated it. Unless oth-
erwise stated, we consider the reward of a state transition
R(s0|s, a) =

P
label Rlabel(s0|s, a).

Over longer timespans, we are able to use objective task
execution-level data to measure the effectiveness of assis-
tive behaviors. This is accomplished by measuring subtask
completion durations as well as overall task completion du-
rations. As we describe in the next section, once an assis-
tive behavior is known and it is associated with a subtask
in the lead worker’s POMDP, the system is faced with the
challenge of selecting the best or most relevant method of
executing it from its training samples.

Performing Assistive Behaviors
Perhaps one of the most difficult challenges facing an as-
sistive robot is determining when and how best to perform
assistive behaviors. This requires a knowledge of the lead
worker’s intentions, goals, and preferences. At any given
task state, a robot assistant must be capable of either in-
fluencing or detecting the next desired task state. This al-
lows for the robot to facilitate the transition between the two,
which typically involves modifying the environment in such
a way as to make it easier for the lead worker to execute
some manner of motor primitive.

Choosing Actions In our assistive behavior framework,
we utilize a set of user-taught, parameterized, assistive
behavior motor primitives that are associated with state-
action transitions in the overall task POMDP. As previ-
ously mentioned, we not only learn these individual mo-
tor primitives, but also orderings for their execution at any
task state through a separate “assistive behavior” SMDP
(see figure 2-bottom) we refer to as M . Thus, M =
(MS ,MA,MR,MP), where MS represents the states of M ,
MA represents the action set of M , MR the transition reward
function of M , and MP the transition probabilites in M . The
set of actions MA is comprised entirely of the aforemen-
tioned user-taught skills. We use previously gathered task
completion timespan information to inform the reward func-
tion MR, which is in turn used to select the best possible
policy through M via a standard policy iteration method.

47

Policy Optimization Throughout task execution, we are
concerned with optimizing two tightly related policies. At a
high level, we wish to optimize the lead worker’s POMDP
traversal policy, while at a lower level we wish to optimize
the assistive behavior policy called at each task step. For
each individual subtask s in the POMDP-dual, we seek to
find a policy ⇡ for the set of associated assistive motor prim-
itives in the SMDP M that minimizes time spent in s (refer-
enced hereafter as M⇡).

After each successful subtask execution, the sequence of
assistive primitives has its transition rewards adjusted in-
versely proportional to the amount of time spent in s. More
formally, for each transition between assistive primitives
covered during execution the reward function is updated as:

Rduration(s
0|s, a) = ↵Rduration(s

0|s, a) + (1� ↵)(�d(s))

where d(s) represents the duration spent in s and ↵ 2 [0, 1]
is a learning factor.

We seek to simultaneously optimize over observed
task-level policies (T⇡ 2 T⇧) and assistive behavior
policies (M⇡ 2 M⇧) given a task POMDP T =
(TS , TA, TR, TP , TO, T⌦). To do this, we choose a policy
for each state-associated assistive SMDP, creating an over-
all assistive policy A⇡ = {M1

⇡ ,M
2
⇡ , ...,M

|TS |
⇡ } that dictates

how best to help for each possible state in TS . Given a tran-
sition duration estimator d(s0, s|s, s0 2 TS , A⇡) that returns
the expected transition time from s ! s0 in T under as-
sistive behavior policy A⇧, we choose a policy set A⇡ that
maximizes:

X

T⇡2T⇧

X

s2TS

X

s02TS

TP (s
0, s|A⇡, T⇡) ⇤ P (T⇡) ⇤ �d(s0, s|A⇧)

This function optimizes for choosing the best assistive
action sequences given the system’s experience with prior
observations of the task being completed. It accomplishes
this by minimizing the time spent in states likely to be
reached, given knowledge of past task completions (T⇡ 2
T⇧) weighted by the likelihood of the lead worker choosing
that policy (P (T⇡)).

Personalization of Behaviors Within each action of MA,
the acting agent must select an instantiation to perform. For
an action a, this is done by choosing a policy for its SMDP
with the best expected outcome as measured by its reward
function conditioned upon the current lead worker. In other
words, instead of choosing a policy determined by the values
from R(s0|s, a), we instead look at R(s0|s, a, leader id).

User personalization should be considered at the individ-
ual demonstration level of granularity in addition to longer-
term objective measures. When determining the rewards to
associate with selecting each potential instantiation (policy)
of a trained skill, an artificial incentive (reward layer) is
added to those behaviors trained by the current lead worker.
This is based on a loose optimality assumption that behav-
iors trained by an individual are those considered most help-
ful for that individual. In spite of this, the strength of this per-
sonalization incentive should be tempered by multiplying it
with a decay function as the number of training examples for

a given skill increases. We incorporate this to trend towards
more objectively optimal solutions (which may originate
from any worker/set of workers), discounting the value of
an individual’s personal solutions as confidence in the over-
all proficiency of the skill increases. In our ongoing work,
we intend to test user response to variants of this action pa-
rameterization bias.

Rejected Actions It is also possible for the lead worker
to outright reject a particular assistive behavior due to per-
sonal preference. Some examples of this include ignoring
the assistant when it attempts to perform a tool retrieval han-
dover, taking away a material that the assistant was stabiliz-
ing, pushing the assistant’s arm away when it attempts to
perform collaborative object manipulations, or dismissing
an assistant positioning a flashlight to offer greater work-
piece visibility. Just as it is possible to use subtask and task
duration to evaluate the impact of particular assistive actions
on the overall task progress, similar logic can be applied to
determine if a behavior is being rejected.

By associating expected durations with transitions within
an individual motor primitive’s SMDP, a measure of whether
reasonable progress is occurring can be made. If the progres-
sion time between states within an assistive motor primitive
exceeds the bounds for reasonable progress, the system can
assert with increasing confidence that its behavior is not de-
sired. Once recognized, the rejection of this skill a 2 MA

may be reflected in M by adding a rejection reward layer
to the transitions that include executing a from the current
environment state.

Executing Behaviors Despite kinesthetically learning an
SMDP for each assistive motor primitive, most assistive be-
haviors we mention are likely best represented as dynamic
motor primitives (Schaal 2006), merely informed by the
training data in order to determine a valid parameterization.
In the case of materials stabilization actions, the training
data is used to extract meaningful object pose and relative
position requirements. A linear program can then be used
to find a kinematic solution for the robot such that these
learned feature constraints are honored. In the case of ma-
terials retrieval, the salient parameters to be learned are ob-
ject selection (e.g., a glass of water), grasping orientation
(e.g., pick up from the side), and object orientation con-
straints in transit (e.g., a glass of water should be upright).
A standard motion planner (Sucan, Moll, and Kavraki 2012;
Zucker et al. 2013) can then be employed to solve for a valid
trajectory subject to the learned constraints.

Collaborative manipulation behaviors are the most com-
plex type of assistive action to execute, as they require con-
stant adjustment due to dynamic input from an uncontrolled
entity. We view this as a special case of materials stabiliza-
tion that changes over time. Training data can be used to
extract axial or planar constraints by attempting to fit the
demonstrated object trajectories to a line or plane. If such
constraints are found, they are simply added to the linear
program that would be used for stabilization tasks. Modern
solvers allow for real-time solutions both to this program
and its solutions’ corresponding inverse kinematic poses
giving the responsiveness required to react to the perturba-

48

tions caused by the manipulation partner.

Conclusion
We have presented an overview of ongoing work concerned
with building a system to enable an assistive robot collabo-
rator. We discuss various classifications of assistive actions
for shared workspace interaction, as well as approaches to
learning assistive skills from demonstration, accepting re-
finement through experience in live task execution, and op-
timizing these behaviors over time. In future work, we antic-
ipate completing human-robot interaction studies evaluating
individual components of the proposed system to better un-
derstand the expectations humans have of an assistive robot
collaborator.

Acknowledgments
This work is supported by Office of Naval Research grant
#N00014-12-1-0822 and NSF grants 1139078 and 1117801.

References
Akgun, B.; Cakmak, M.; Jiang, K.; and Thomaz, A. L. 2012.
Keyframe-based learning from demonstration. International
Journal of Social Robotics.
Atkeson, C., and Schaal, S. 1997. Robot learning from
demonstration. In International Conference on Machine
Learning, 11–73.
Chen, J., and Zelinsky, A. 2003. Programing by demonstra-
tion: Coping with suboptimal teaching actions. The Interna-
tional Journal of Robotics Research 22(5):299–319.
Dillmann, R.; Rogalla, O.; Ehrenmann, M.; Zollner, R.; and
Bordegoni, M. 2000. Learning robot behaviour and skills
based on human demonstration and advice: the machine
learning paradigm. In Robotics Research International Sym-
posium, volume 9, 229–238.
Friedrich, H., and Dillmann, R. 1995. Robot programming
based on a single demonstration and user intentions. In
3rd European workshop on learning robots at ECML, vol-
ume 95. Citeseer.
Gombolay, M. C.; Wilcox, R. J.; Diaz, A.; Yu, F.; and Shah,
J. A. 2013. Towards successful coordination of human and
robotic work using automated scheduling tools: An initial
pilot study. In Proc. Robotics: Science and Systems (RSS)
Human-Robot Collaboration Workshop (HRC).
Hawkins, K. P.; Bansal, S.; Vo, N.; and Bobick, A. F. 2013.
Modeling structured activity to support human-robot collab-
oration in the presence of task and sensor uncertainty. In
Intelligent Robots and Systems (IROS), Workshop on Cogni-
tive Robotics Systems.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial In-
telligence Research 4.
Knepper, R. A.; Layton, T.; Romanishin, J.; and Rus, D.
2013. Ikeabot: An autonomous multi-robot coordinated
furniture assembly system. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, 855–862.
IEEE.

Konidaris, G.; Kuindersma, S.; Barto, A.; and Grupen, R.
2010. Constructing skill trees for reinforcement learning
agents from demonstration trajectories. Advances in neural
information processing systems 23:1162–1170.
Konidaris, G.; Kuindersma, S.; Grupen, R. A.; and Barto,
A. G. 2011. Autonomous skill acquisition on a mobile ma-
nipulator. In Twenty-Fifth Conference on Artificial Intelli-
gence, 1468–1473.
Monahan, G. E. 1982. State of the arta survey of partially
observable markov decision processes: Theory, models, and
algorithms. Management Science 28(1):1–16.
Ng, A. Y.; Coates, A.; Diel, M.; Ganapathi, V.; Schulte, J.;
Tse, B.; Berger, E.; and Liang, E. 2006. Autonomous in-
verted helicopter flight via reinforcement learning. In Ex-
perimental Robotics IX. Springer. 363–372.
Nikolaidis, S., and Shah, J. 2013. Human-robot cross-
training: computational formulation, modeling and evalu-
ation of a human team training strategy. In Proceedings
of the 8th ACM/IEEE international conference on Human-
robot interaction, 33–40. IEEE Press.
Ogawara, K.; Takamatsu, J.; Kimura, H.; and Ikeuchi, K.
2002. Generation of a task model by integrating multiple
observations of human demonstrations. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, volume 2, 1545–1550. IEEE.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning from
demonstration. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 763–768. IEEE.
Rybski, P.; Yoon, K.; Stolarz, J.; and Veloso, M. 2007. Inter-
active robot task training through dialog and demonstration.
In Human-Robot Interaction (HRI) 2007, 49–56. IEEE.
Schaal, S. 2006. Dynamic movement primitives-a frame-
work for motor control in humans and humanoid robotics. In
Adaptive Motion of Animals and Machines. Springer. 261–
280.
Stolle, M., and Precup, D. 2002. Learning options in re-
inforcement learning. In Abstraction, Reformulation, and
Approximation. Springer. 212–223.
Sucan, I. A.; Moll, M.; and Kavraki, E. 2012. The open
motion planning library. Robotics & Automation Magazine,
IEEE 19(4):72–82.
Sutton, R.; Precup, D.; Singh, S.; et al. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181–
211.
Sweeney, J., and Grupen, R. 2007. A model of shared grasp
affordances from demonstration. In Humanoid Robots, 2007
7th IEEE-RAS International Conference on, 27–35. IEEE.
Zucker, M.; Ratliff, N.; Dragan, A. D.; Pivtoraiko, M.; Klin-
gensmith, M.; Dellin, C. M.; Bagnell, J. A.; and Srinivasa,
S. S. 2013. Chomp: Covariant hamiltonian optimization
for motion planning. The International Journal of Robotics
Research 32(9-10):1164–1193.

49

