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In a social context, people constantly read
each other’s actions as clues to attention and
motivation.  If an anthropomorphic robot can
evoke similar treatment, interaction with a
human can be very smooth and intuitive. But
this will only hold true if the robot can struc-
ture its actions so that meaning assigned to
them by a naïve observer is in fact veridical.
This places far-reaching constraints on the
robot’s design, particularly on the organiza-
tion of its visual-motor system.

Human eye movements have a high com-
municative value. A person’s gaze direction
and eye movement (staring versusglancing,
making and breaking eye contact) can convey
important information during social interac-
tions. Modeling an anthropomorphic robot’s
eye movements after humans makes its
behavior easily understood as analogous to
human behavior in similar circumstances
(see Figure 1). 

There are other advantages to following a
biological model.  Researchers can use exist-
ing data and proposed models for the human
visual system organization. Another advan-
tage is integrating action, perception, atten-
tion and other cognitive capabilities, which
makes the system more flexible and reliable.
Adding additional perceptual capabilities
and additional constraints between behav-
ioral and perceptual modules can increase
the behavioral relevance while limiting the

computational requirements.2 For example,
combining the tracking mechanism with a
visual attention system helps identifying
objects that are behaviorally relevant and
worth tracking.

Physical form

Currently, our most sophisticated robot
in terms of visual-motor behavior is
Kismet. This robot is an active vision head
augmented with expressive facial features
(see Figure 2). We designed Kismet to
receive and send human-like social cues to
a caregiver, who can regulate its environ-
ment and shape its experiences as a parent
would for a child.3 Kismet has three

degrees of freedom to control gaze direc-
tion, three degrees of freedom for its neck,
and fifteen degrees of freedom in other
expressive facial components (such as ears
and eyelids). To perceive its caregiver
Kismet uses a microphone, worn by the
caregiver, and four color CCD cameras.
The positions of the neck and eyes are
important both for expressive postures and
for directing the cameras towards behav-
iorally relevant stimuli.

The cameras in Kismet’s eyes have high
acuity but a narrow field of view. Between
the eyes, we fixed two unobtrusive central
cameras, each with a wider field of view but
correspondingly lower acuity. The reason
for using different cameras is that typical
visual tasks require both high acuity (for
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recognition tasks and for controlling pre-
cise visually guided motor movements) and
a wide field of view (for search tasks, for
tracking multiple objects, compensating for
involuntary ego-motion, and so on). Bio-
logical systems commonly sample part of
the visual field at a high enough resolution
to support the first task set, and sample the
rest of the field at an adequate level to sup-
port the second set. We see this in animals
with foveate vision, such as humans, where
the photoreceptor density is highest at the
center and falls off dramatically toward 
the periphery. Vision researchers mimic this
by using specially designed imaging hard-
ware, space-variant image sampling,4 or by
using multiple cameras with different fields
of view.

Another of our robots, Cog, follows the
human sensing arrangement more closely
than does Kismet (see “Humanoid Robots:
A New Kind of Tool,” by Bryan Adams and
his colleagues in this issue). 

The designs of our robots are constantly
evolving. We add new and reorganize old
degrees of freedom, replace or rearrange sen-
sors, and introduce new sensory modalities.
The descriptions herein are snapshots of the
robots’ current state.

System architecture

We have designed our hardware and soft-
ware control architectures to meet the chal-

lenge of real-time visual-signal processing
(approaching 30 Hz) with minimal latencies.
We’ve implemented Kismet’s vision system
on a network of nine 400-MHz commercial
PCs running the QNX real-time operating
system (see Figure 3). Kismet’s motivational
and behavioral systems run on four Motorola

68332 processors. We also networked
machines running Windows NT and Linux
for speech generation and recognition,
respectively. Even more so than Kismet’s
physical form, the control network is rapidly
evolving as new behaviors and sensory
modalities come online.
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Figure 1. Kismet, a robot capable of conveying intentionality through facial expressions and behavior.1 Here, the
robot’s physical state expresses attention to and interest in the human beside it. Another person—for example, the
photographer—would expect to have to attract the robot’s attention before being able to influence its behavior.
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Figure 2: Kismet’s expressive features include eyelids, eyebrows, ears, jaw, lips, neck, and eye orientation. The schematic on the right shows the degrees of freedom relevant to
visual perception (omitting the eyelids!). The eyes can pan independently along the horizontal, but tilt together along the vertical. The neck can turn the whole head horizontally
and vertically, and can also crane forward. Two cameras with narrow fields of view rotate with the eyes. Two central cameras with wide fields of view rotate with the neck. The eye
orientation does not affect these cameras.



Pre-attentive visual
perception

Human infants and adults naturally find
certain perceptual features interesting. Fea-
tures, such as color, motion, and face-like
shapes are very likely to attract our atten-
tion.5We have implemented various percep-
tual feature detectors that are particularly rel-
evant to interacting with people and objects.
These include low-level feature detectors
attuned to quickly moving objects, highly
saturated color, and colors representative of
skin tones. Figure 4 shows examples of fea-
tures we have used. The robot also detects
looming objects pre-attentively to facilitate a
fast reflexive withdrawal.
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Figure 5. Manipulating the robot’s attention. Images on the top row are from Kismet’s upper wide camera. Images on the bottom summarize the contemporaneous state of the
robot’s attention system. Brightness in the lower image corresponds to salience; rectangles correspond to regions of interest. The thickest rectangles correspond to the robot’s locus
of attention. The robot’s motivation here is such that stimuli associated with faces and stimuli associated with toys are equally weighted. In the first pair of images, the robot is
attending to a face and engaging in mutual regard. By shaking the colored block, its salience increases enough to cause a switch in the robot’s attention. The third pair shows that
the head tracks the toy as it moves, giving feedback to the human as to the robot’s attention. The eyes are also continually tracking the target more tightly than the neck does. In
the fourth pair, the robot’s attention switches back to the human’s face and tracks it as it moves.

Figure 4. A combination of low-level perceptual stimuli with high-level behavioral and motivational states determines the robot’s attention. High-level behavior and motivational
influences modulate the low-level features’ relative weightings.6 A sufficiently salient stimulus in any modality can preempt attention, similar to the human response to sudden
motion. All else being equal, the robot considers larger objects more salient than smaller ones. The design keeps the robot responsive to unexpected events, while avoiding making
it a slave to every whim of its environment. People intuitively provide the right cues to direct the robot’s attention (shake object, move closer, wave hand, and so on).
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Figure 3. Kismet’s system architecture. The motivational and behavioral systems run on four Motorola 68332 micro-
processors running L, a multithreaded Lisp developed in our lab. Nine networked PCs running QNX perform the vision
processing and eye–neck control.



Visual attention

We have implemented Jeremy Wolfe’s
model of visual search and attention.7 Our
implementation is similar to other models
based in part on Wolfe’s work,8 but addi-
tionally operates in conjunction with moti-
vational and behavioral models, with mov-
ing cameras, and addresses the issue of
habituation.

The attention process acts in two parts.
The robot produces a single attention map
through a weighted combination of vari-
ous low-level feature detectors (such as
color, motion, and shape). This combina-
tion allows the robot to select regions that
are visually salient and to direct its com-
putational and behavioral resources toward
those regions. The attention system also
integrates influences from the robot’s inter-
nal motivational and behavioral systems to
bias the selection process. For example, if
the robot’s current goal is to interact with
people, the attention system is biased
toward objects that have colors character-
istic of skin-tone. The attention system also
has mechanisms for habituating to stimuli,
thus providing the robot with a primitive
attention span. Figure 5 shows an example
of the attention system in use, choosing
stimuli in a complex scene that are poten-
tially behaviorally relevant. The attention
system runs all the time, even when it is
not controlling gaze direction, since it
determines the perceptual input to which
the motivational and behavioral systems
respond. 

Post-attentive processing

Once the attention system has selected
regions within the visual field that are
potentially behaviorally relevant, we can
apply more intensive computation to these
regions. Searching for eyes is one such
task. Locating eyes is important to us for
engaging in eye contact, and as a reference
point for interpreting facial movements
and expressions. We currently search for
eyes after the robot directs its “foveal”
cameras to a candidate region, giving a 
relatively high-resolution image of the
area (Figure 6). Another calculation cur-
rently done post-attentively is target dis-
tance. The robot estimates this distance
using a stereo match between the two cen-
tral cameras.

Eye movement primitives

We modeled Kismet’s visual-motor con-
trol after the human ocular-motor system.
Humans have foveate vision. The fovea (the
center of the retina) has a much higher pho-
toreceptor density than the periphery. This
means that to see an object clearly, humans
must move their eyes so that the image of the
object falls on the fovea. Human eye move-
ment is not smooth. It comprises many quick
jumps, called saccades, which rapidly re-ori-
ent the eye to project a different part of the
visual scene onto the fovea. After a saccade,
there is typically a fixation period during
which the eyes are relatively stable (but not
stationary—they continue to engage in cor-
rective micro-saccades and other small
movements). If the eyes fixate on a moving
object, they can follow it with an involuntary
continuous tracking movement called
smooth pursuit (only possible when a mov-
ing object is present). Fixation periods typi-
cally end after some hundreds of millisec-
onds, after which a new saccade will occur.9

The eyes normally move in lockstep, mak-
ing equal, conjunctive movements. For a
close object, the eyes need to turn toward
each other somewhat to correctly image the

object on the two eyes’ foveae. These dis-
junctive movements are called vergence, and
rely on depth perception (see Figure 7).

Because the eyes are located on the
head, they need to compensate for any
head movements that occur during fixa-
tion. The vestibulo-ocular reflex uses iner-
tial feedback from the vestibular system to
keep the eyes’ orientation stable as they
move. This is a very fast response, but is
prone to error accumulation over time. The
opto-kinetic response is a slower compen-
sation mechanism that uses a measure of
the image’s visual slip across the retina to

JULY/AUGUST 2000 5

Figure 6. The robot searches for the eyes within a
restricted part of its field of view.
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Figure 7. Humans exhibit four characteristic types of eye motion. Saccadic movements are high-speed ballistic motions
that center a target in the field of view. Smooth-pursuit movements track a moving object at low velocities. The
vestibulo-ocular and opto-kinetic reflexes act to maintain the gaze angle as the head and body move through the
world. Vergence movements serve to center an object in both eyes’ field of view as the object moves in depth.



correct for drift. These two mechanisms
work together to give humans stable gaze
as the head moves.

We implemented an approximation to the
human ocular-motor system for Kismet.
Kismet’s eyes periodically saccade to new
targets chosen by the attention system, track-
ing them smoothly if they move and the robot
wishes to engage them. 

Vergence eye movements are more chal-
lenging, because disjunctive-eye-movement
errors can give the eyes the disturbing
appearance of moving independently. Con-
junctive-movement errors have a much
smaller impact on an observer, because the
eyes clearly move in lockstep. We have
developed a vestibular-ocular reflex analogue
using a 3-axis inertial sensor, and a crude
approximation of the opto-kinetic reflex
combined with our smooth-pursuit imple-
mentation.

Communicative motor acts

Eye movements have communicative
value. In addition to indicating the robot’s
locus of attention, they convey its degree of

engagement, communicating how strongly
the robot’s behavior is organized around
what it’s looking at. The robot’s eyes flicking
from place to place without resting indicates
a low engagement level, appropriate to a
visual search behavior. Prolonged fixation
with smooth pursuit and head orientation
towards the target conveys a much greater
level of engagement, suggesting that the
robot’s behavior is very strongly focused on
that target. 

Eye movements are the most obvious and
direct motor actions that support visual per-
ception, however postural shifts and fixed
action patterns involving the entire robot also
have an important role. Kismet has several
coordinated motor actions designed to deal
with its perceptual limitations (see Figure 8).
For example, if a person is visible but too dis-
tant for Kismet to view their face at adequate
resolution, it engages in a calling behavior to
summon the person closer. People who come
too close to the robot also cause difficulties
for the cameras with narrow fields of view,
because only a small part of a face might be
visible. In this circumstance, a withdrawal
response results, where Kismet draws back
physically from the person. This behavior

aids the cameras somewhat by increasing the
distance between Kismet and the human. But
the behavior can have a secondary and
greater effect through social amplification—
for a human close to Kismet a withdrawal
response is a strong social cue to back away,
because it is analogous to the human
response to personal-space invasions.

We can use similar behavioral patterns to
support the visual perception of objects. If
an object is too close, Kismet can lean away
from it; if it is too far away, Kismet can crane
its neck toward it. Again, in a social context,
such actions have power beyond their imme-
diate physical consequences. A human, read-
ing intent into the robot’s actions, may
amplify those actions. For example, they
might interpret neck-craning toward a toy as
interest in that toy, resulting in the human
bringing the toy closer to the robot. 

Another limitation of the visual system
is how quickly it can track moving objects.
If objects or people move at excessive
speeds, Kismet has difficulty tracking them
continuously. To discourage excessive bois-
terousness in the movement of people and
the objects they manipulate, Kismet shows
irritation when its tracker approaches
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Figure 8. Regulating interaction. The robot attracts people too distant to be seen clearly. If they come too close, it signals discomfort and withdraws. The withdrawal moves the robot
back physically, but is more effective in signaling to the human to back off. Toys or people that move too rapidly cause irritation. 



its limits. These limits are either physical 
(the maximum rate at which the eyes and
neck move), or computational (the maxi-
mum displacement per frame from the 
cameras with which the robot searches for
a target).

These regulatory mechanisms play roles
in more complex social interactions, such as
conversational turn-taking. Here, gaze-direc-
tion control is important for regulating con-
versation rate.10Generally, people are likely
to glance aside when they begin their turn,
and make eye contact when they are prepared
to relinquish their turn and await a response.
People blink most frequently when they end
an utterance. These and other cues let Kismet
influence the conversation flow to the advan-
tage of its auditory-processing. Here, we see
the visual-motor system serve a nominally
unrelated sensory modality, just as that sys-
tem in turn may recruit behaviors only indi-
rectly connected to vision (such as ear wig-
gling to call someone closer).

These mechanisms also help protect the
robot. Objects that suddenly appear close to
the robot trigger a looming reflex, causing
the robot to quickly withdraw and appear
startled. If the event is repeated, the
response quickly habituates and the robot
simply appears annoyed, because its best
strategy for ending these repetitions is to
clearly signal their undesirability. Similarly,
rapidly moving objects close to the robot
are threatening and therefore trigger an
escape response.

These mechanisms help elicit natural and
intuitive responses from people. But even
without them, it is often clear when
Kismet’s perception is failing, and what cor-
rective action would help, because the
robot’s behavior reflects its perception in a
familiar way. Inferences that we make based
on  our human preconceptions are actually
likely to work.

M otor control for a social robot poses
challenges beyond stability and accuracy.
Human observers will perceive motor
actions as semantically rich, regardless of
whether the robot intends the imputed mean-
ing. Such perception, which constrains the
robot’s physical appearance and movement,

can facilitate natural interactions between
robot and human. It allows the robot to be
readable—to make its behavioral intent and
motivational state transparent at an intuitive
level to those with whom it interacts. It
allows the robot to regulate its interactions to
suit its perceptual and motor capabilities in
an intuitive way—one with which humans
naturally cooperate. And it gives the robot
leverage over the world far beyond its phys-
ical competence. If properly designed, the
robot’s visual behaviors can match human
expectations and allow both robot and
human to participate in natural and intuitive
social interactions.  
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