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Abstract— Using eye-tracking, we examine the scanning patterns 
of 2 year old and 4 year old toddlers with and without autism 
spectrum disorder as they view static images of faces.  We use 
several measures, such as the entropy of scanning patterns, in 
order to characterize the differences in attention towards faces by 
these children.  We find a differential pattern of both fine 
attention (towards specific regions of the face) as well as gross 
attention (looking at the faces at all) which seem to suggest 
different developmental trajectories for the two groups of 
children.  We discuss the implications of these trends and, 
additionally, discuss current methods in eye-tracking and the 
development of simple, effective, and robust measures and 
methodology for evaluating scanning patterns. 
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I.  INTRODUCTION 
Autism is a pervasive developmental disorder marked by 

social and communicative deficits as well as stereotyped and 
repetitive behaviors [1].  While communicative deficits and 
repetitive behaviors are found in many developmental 
disorders, the seriousness and specificity of social deficits are a 
particular hallmark of autism.  How these social deficits arise, 
and how early deficits impact the development of a child with 
autism is a crucial and difficult question.  In this paper we 
investigate how children with autism examine the most social 
form known to us: the human face. 

It has long been known that individuals with autism exhibit 
deficits and abnormalities in recognizing or making complex 
judgments about faces (e.g. [2,3]), though most of these studies 
are conducted in adults or higher functioning adolescents with 
autism.  For example, Klin et al. [4] showed that adolescents 
with autism, during a free-viewing of dynamic naturalistic 
social scenes, tended to focus more upon the mouth, body, and 
objects in the scene, when compared to matched controls.  
Similarly, Pelphrey et al. [5] found that the scanning patterns of 
individuals with autism seemed more erratic and tended 
towards less informative regions of a static face, as compared 
to typical controls. 

Our work asks: how do the face scanning strategies of 
children with autism change in early childhood?  In other 
words, this work seeks to uncover trends that can characterize 
the developmental progression of the disorder.  To accomplish 
this, we build an analytical methodology for eye-tracking using 
measures and tools requiring little computational muscle, yet 
which are still quite powerful and penetrative. 
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Some of the tools that we will use are simple measures 
taken from information theory.  Specifically, we employ 
entropy measures and Markov chains in order to cut complex 
gaze trajectories into elementary statistics.  These methods can 
directly remark on the randomness or stereotypical nature of 
scanning patterns.  Similarly, it is our hope that by applying our 
techniques to the scanning of faces, we can also comment on 
biases in autism towards different areas of the face which 
deviate from typical development.  In our discussion, we will 
address both social and developmental aspects of our findings. 

II. SUBJECTS AND EXPERIMENTAL METHODS 

A. Subjects 
51 children participated in this study, divided between two 

diagnostic categories and two age groups.  The younger age 
group consisted of 12 toddlers with autism spectrum disorder 
(ASD) (mean age 25.6(5.6) months) and 13 typically 
developing (TD) toddlers (mean age 25.1(6.0) months).  The 
older age group consisted of 13 children with ASD (mean age 
43.6(5.4) months) and 13 TD children (mean age 45.0(4.3) 
months).  Diagnosis of ASD was obtained at the time of testing 
through standardized assessment instruments [6,7] and expert 
clinical observations.  For further details and a discussion 
regarding the stability of early diagnosis, see [8]. 

B. Experimental Protocol and Data Reduction 
Children were presented with 6 color images of faces [9] 

(Fig. 1a) centered at a distance of 75 cm from the centerline of 
the children’s eyes.  Experiments for Age Group 1 (the younger 
group) were conducted on a 20” widescreen LCD monitor, 
such that the stimulus (including grey background) measured 
12.8º wide by 17.6º tall.  Experiments for Age Group 2 (the 
older group) were conducted on a 24” widescreen monitor, 
such that that the stimulus measured 15º wide by 21º tall.  We 
will later return to these differences. 

   
Figure 1.  Stimulus image (left) and regions-of-interests (ROIs, right).  The 
abbreviations for regions are: I(invalid data), BG (background), S(background 
of stimulus), H(hair), F(face), LE(left eye), RE(right eye), N(nose), 
M(mouth), B(body). 

Stimuli were presented until the child had examined the 
image for a total of 10 seconds (as determined on-line by a 



trained experimenter) as part of a Visual Paired Comparison 
protocol (VPC) [10].  However, in this study we only examined 
the first 10 seconds of eye-tracking data (whether or not the 
child was fully attentive) in order to collect comparable 
information regarding inattention to stimuli.  We also did not 
examine the recognition phase of the VPC. 

Quality measures included checks on the consistency of 
eye-tracking calibration and a requirement that the 10 seconds 
of looking be acquired before a cutoff of 20 seconds.  Only 
children who passed quality tests for at least half of the stimuli 
presentations were retained in this study.  The 51 subjects of 
this study represent those children who met all data quality 
criteria.  Results in this paper are presented at the subject level, 
with each subject’s measures averaged over valid trails.   

Gaze patterns were recorded with a SensoMotoric 
Instruments IView X RED table-mounted dark-pupil eye-
tracker operating at 60Hz.  The tracking error reported by the 
manufacturer was less than 0.5º.  Post processing was 
conducted through custom software written in Matlab and Perl 
and included standard automated recalibration.   

III. DATA ANALYSIS 
Face stimuli were broken into seven basic regions: the left 

eye, right eye, mouth, facial areas (face skin areas including the 
nose), outer features (hair and body), background, and non-
stimulus (including blinks and periods where the child looked 
away from the eye-tracker) (Fig. 1b).  These regions can be 
grouped in various ways in order to examine specific scanning 
interactions.  However, even for our relatively small number of 
regions there were over a hundred possible groupings.  For 
comparing two non-overlapping groups there were almost two 
thousand possible comparisons! 

In order to manage the combinatorial explosion of 
comparisons we conducted a progressive regional analysis of 
the children’s scanning patterns.  This progressive analysis 
started at the highest level, including all possible regions, and 
gradually zoomed in on more information-dense facial regions.  
Three levels of analysis were employed.  The top level (Level 
3) began with an examination of the gross characteristics of 
attention, comparing scanning away from the main stimulus 
(non-stimulus regions: invalid data, stimulus background, 
screen background) with attention towards the stimulus 
(stimulus regions: eyes, mouth, skin areas, nose, hair, body). 
This analysis was followed by a mid-level of analysis which 
tapped information extraction from faces (Level 2), comparing 
the scanning of information-poor regions of the face (non-key 
regions: skin areas, nose, hair, body) with information-rich 
features (key regions: eyes, mouth).  The final, and lowest, 
level of analysis focused on the canonical face processing 
circuit (Level 1) between the eyes (eye regions: left eye, right 
eye) and the mouth region. 

A. Static Time Analysis 
Measures for static analysis included the time spent in each 

region.  Note that by “static” we do not mean to imply that the 
behavior of the scanning patterns, or their distributions, are 
time invariant, but rather that the statistics used do not carry 
information regarding transitions or dynamic behavior. 

B. Dynamic Time Analysis 
Measures for dynamic analysis included the number of 

transitions between outer (less informative) and inner (more 
informative) regions.  We also considered the entropy H (in 
base 2, i.e. in “bits” of information) of transition ratios in the 
three-stage functional circuit spanned by the outer area and the 
two subregions of the inner region: 

)(log)()( 2 i
Rr

i rprpRH
i

∑
∈

−=                            (1) 

where R is set of transitions under consideration and p(ri) is the 
ratio (probability) of looking at a particular transition ri 
belonging to R [11].  We did not examine the two-stage outer-
inner circuit because in this case entropy provides the same 
information as a ratio.  Typically, entropy is associated with 
randomness.  However, in this context, entropy reflects a more 
even distribution of transitions between different regions.  It is 
thus more closely aligned with a preference for exploration. 

We also conducted a Markov chain entropy analysis of the 
scanning patterns of the three-stage outer-inner-subregions 
circuit.  For each trial, we computed an approximate Markov 
matrix for that trial through sampling.  We then characterized 
the entropy of the matrix.  Given a kth order Markov matrix M 
with transition probabilities mXi where 
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and where X is a kth order history of past states [11], e.g. X = 
{Xn = eyes, Xn-1 = mouth, … , Xk-1 = mouth} we can compute 
the entropy H(X) as: 
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and the entropy of matrix M, H(M), as: 
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with X the set of all possible histories.  We do not model self 
transitions because they dominate in a frame by frame analysis, 
confounding switching rates with timing.  Technically, the 
model we consider is a semi-Markov chain ignoring dwell.  For 
brevity, we refer to these semi-Markov models as Markov.  
Similarly, the entropy above is the conditional entropy 
(dependent on history), which we simply refer to as entropy. 

Note also that it is not possible to move between non-
adjacent regions without crossing the interim area.  For 
example, if we wish to scan between the eyes and the mouth, 
we must pass through the face.  We have considered both raw 
unadulterated streams as well as streams with transitions lasting 
50 ms or less removed.  Transition counts and transition ratio 
entropies are transient-removed since they are easier to 
interpret when saccade effects are mitigated.  Markov matrix 
results are raw since we can directly model transitional 
behavior by increasing model order.  The process of transient 
removal did not alter our general pattern of results. 

The information contained by transition rates, entropy of 
transition ratios, and entropy of the Markov matrix are 
complementary.  Transition rates give an overview of how 
often movement is occurring between regions.  The entropy of 
transition ratios marks how skewed the distribution of 



transitions are.  The Markov matrix is a fine level frame-to-
frame predictive model of scanning.  Note that the transition 
ratio entropy does not account for directional asymmetries 
whereas the Markov entropy does.  For example, a clockwise 
pattern left-eye, right-eye, mouth back to left-eye might have a 
high transition ratio entropy, since transitions occur at equal 
frequency, but a 1st order Markov entropy would show that the 
pattern is essentially deterministic (zero entropy).   

IV. RESULTS 
In the interests of space, we have summarized the results of 

static analyses in Table 1 (time), the results of dynamic 
transition analyses in Tables 2 (counts) and 3 (entropy), and the 
results of Markov model analyses in Table 4.  The reported 
results are based on multiple analyses of variance (MANOVA) 
with between-subject factors age and diagnosis.  

TABLE I 
Static Analysis: Time Spent in Region (ms)  

Region age group 1 age group 2 
 ASD TD ASD TD 

NonStim 3828 (600) 4612 (666) 5539 (535) 2429 (220)
Stim 6172 (600) 5388 (666) 4461 (535) 7571 (220) 

NonKey 2150 (264) 1803 (269) 1628 (233) 2575 (240) 
Key 4022 (466) 3586 (473) 2834 (406) 4995 (294) 

Mouth 618 (150) 1151 (328) 535 (110) 1589 (303) 
Eyes 3404 (483) 2434 (539) 2299 (348) 3406 (315) 

 
TABLE II 

Dynamic Analysis: Number of Transitions (count) 
Transition Regions age group 1 age group 2 

 ASD TD ASD TD 
NonStim – Stim 5.14 (.54) 5.60 (.62) 6.84 (.64) 5.81 (.93) 

NonStim – NonKey 2.22 (.36) 2.08 (.40) 3.11 (.32) 2.34 (.39) 
NonStim – Key 2.92 (.35) 3.52 (.46) 3.73 (.50) 3.47 (.57) 
NonKey – Key 4.36 (.59) 3.80 (.56) 3.20 (.47) 5.79 (.52) 
NonKey – Eyes  3.40 (.50) 2.43 (.52) 2.42 (.46) 4.05 (.42) 

NonKey – Mouth  .96 (.29) 1.37 (.43) .78 (.21) 1.74 (.37) 
Eyes – Mouth  .88 (.18) .76 (.17) .89 (.31) 1.91 (.35) 
L.Eye – R.Eye 1.46 (.38) 1.46 (.43) 1.28 (.38) 1.55 (.32) 

 
TABLE III 

Dynamic Analysis: Entropy of 3-stage Level Circuit (bits) 
Transition age group 1 age group 2 

 ASD TD ASD TD 
Level 3 1.39 (.05) 1.42 (.04) 1.50 (.02) 1.39 (.05) 
Level 2 1.04 (.16) 1.06 (.12) 1.06 (.13)  1.29 (.08) 
Level 1 .88 (.14) .76 (.16) .68 (.19) 1.22 (.07) 

 
TABLE IV 

Dynamic Analysis: Markov Chain Entropy (bits) 
Level Order age group 1 age group 2 

  ASD TD ASD TD 
3 0 1.480 (.013) 1.437 (.032) 1.522 (.010) 1.428 (.025)
3 1 0.721 (.032) 0.651 (.041) 0.810 (.022) 0.607 (.052) 
3 2 0.578 (.034) 0.546 (.041) 0.678 (.028) 0.523 (.043) 
2 0 1.314 (.029) 1.246 (.052) 1.292 (.028) 1.367 (.022)
2 1 0.414 (.041) 0.374 (.050) 0.424 (.030) 0.519 (.031) 
2 2 0.247 (.041) 0.216 (.036) 0.244 (.030) 0.367 (.032) 
1 0 1.272 (.041) 1.185 (.074) 1.265 (.065) 1.391 (.025)
1 1 0.166 (.043) 0.094 (.029) 0.167 (.029) 0.257 (.030) 
1 2 0.064 (.017) 0.026 (.012) 0.045 (.015) 0.116 (.018) 

A.  Level 3 (Top Level): Attention and Motivation 
Here we consider the functional circuit consisting of non-

stimulus regions and stimulus regions.  The stimulus region is 
further broken apart into key and non-key stimulus features. 

 A 2 (age) x 2 (diagnosis) analysis of looking time at the 
non-stimulus area indicated a significant effect of diagnosis 
(F(1,50)=4.8, p<.05) and an age x diagnosis interaction, 
(F=13.4, p<.001) (see Fig. 2a).  Older TD children looked more 
at the stimulus than the younger group, (F=9.7, p<.01), but in 
ASD the pattern was reversed, with older children looking less 
at the stimulus than younger ones (F=4.6, p<.05).   
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Figure 2.  Measures from Level 3 circuit: (a) total average stimulus looking 
time (b) Markov matrix entropy of stimulus - non-key - key circuit.  Error bars 
are standard error. 

 

There were no significant effects of age and diagnosis on 
the number of transitions between non-stimulus and stimulus, 
which was surprising, given the discrepancy noted for times 
(see Table 2).  However, there was an effect for diagnosis on 
the entropy of the Markov matrix for all orders (0th: 
F=9.7,p<0.01; 1st: F=12.3, p<0.001; and 2nd: F=6.3, p<0.01) 
(see Fig. 2b for the characteristic effect for 2nd order Markov, 
Table 4 for others), with the entropy of TD children universally 
lower than the entropy of ASD children.  This suggests that 
there is less “exploration” of the non-stimulus – stimulus circuit 
by TD children, i.e. ASD children are making proportionally 
more transitions to and from non-stimulus states.  It is 
important to note the difference between transition count and 
entropy calculations: the former is a raw tabulation which can 
be highly variable depending on the child; the latter is a relative 
measure which takes the context of the scanning circuit into 
account. 

B. Level 2 (Mid-Level): Face Saliency 
Here we consider the circuit spanning non-key and key 

features of the body of the stimulus.  The key areas are further 
broken down into the eyes and mouth. 

Analysis of looking times at the key features indicated a 
significant effect of diagnosis (F=4.3, p<.05) (Fig. 3a), and a 
significant age x diagnosis interaction, (F=9.8, p<.01).  For the 
non-key area, there was only a significant age x diagnosis 
interaction, (F=6.6, p<.05).  A planned comparison revealed 
that this effect was driven partially by a significant increase in 
looking at both regions for TD (non-key features: F=4.3, p<.05; 
key features: F=.6.4, p<.05).  These results taken together 
suggest that the amount devoted to key and non-key regions at 
age group 1 by both ASD and TD children is quite similar; 
similarly, ASD behaviors do not change for these regions 

a b 



between the two time points.  However, there is a significant 
increase in looking at the face, and, in particular, at critical 
areas of the face, in TD children. 
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Figure 3.  Measures from Level 2 circuit: (a) total average key features 
looking time (b) average number of non-key – key transitions per trial (c) 
average number of non-key – eyes transitions (b) Markov matrix entropy of 
key - mouth - eyes circuit.   

 

We also compared the number of transitions between non-
key areas and the mouth and eyes areas (Fig. 3b).  TD children 
transitioned between non-key areas and the mouth significantly 
more frequently than ASD children (F=4.1, p<.05) (see Table 
2). Analysis of the number of transitions between non-key areas 
and the eyes revealed only a significant age x diagnosis 
interaction (F=9.7,p<.01) (Fig. 3c), suggesting an increase in 
frequency of shifts between non-key and eye areas in older TD 
children (F=7.3, p<.05), but not in the ASD children.   

For our Markov transitions, there was a main effect of both 
age and age x diagnosis on entropy for order two models 
(respectively F=4.5, p<.05; F=4.8, p<.05) with TD children 
having a greater entropy in age group 2 as compared to age 
group 1 (F=9.7, p<.01) (Fig. 3d) and no change in ASD.  
Again, this is consistent with the notion that TD children 
explore critical areas in a less deterministic fashion as they get 
older.  By contrast, exploration measures in ASD do not differ 
between two years and four years of age. 

C. Level 1 (Ground Level): Canonical Scanning 
Here we consider the circuit spanning the mouth and eyes.  

The eyes can be divided into the left eye and the right eye. 

A 2 (age) x 2 (diagnosis) analysis of looking time at the 
mouth area indicated a main effect of diagnosis (F=10.5, 
p<.01), with TD children looking at the mouth more than their 
ASD peers (Fig. 4a).  An analogous analysis on the eye region 
indicated a significant age x diagnosis interaction (F=5.8, 
p<.05).  This interaction was due to TD children, in age 2, 
looking at the eyes for longer periods than at age 1 (Fig. 4b).  

There was no significant difference in looking time at the eyes 
between the two ASD groups. 

For transitions, there was a significant effect of age on the 
number of transitions between the eyes and the mouth (F=4.9, 
p<.05) as interaction (F=6.0, p<.05) (Fig. 4c).  Again, there was 
a significant increase in the number of transitions from age 1 to 
2 in TD children (F=9.9, p<.01), but not in the ASD groups.  
Additionally, there was an interaction of age x diagnosis on 
transition entropy for the full circuit of mouth-left-eye-right-eye 
(F=7.3, p<.01) caused by an increase in entropy for TD 
children at age 2 as compared to age 1. 
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Figure 4.  Measures from Level 1 circuit: (a) total average mouth looking 
time (b) eyes looking time (c) number of eyes-mouth transitions (b) Markov 
matrix entropy of mouth - left eye - right eye circuit.   

 

For Markov analysis (Fig. 4d), we found a significant effect 
of age on entropy for both the 1st order and 2nd order chain 
(F=6.27, p<.05; F=5.3, p<.05, respectively) as well as 
significant interaction effects (F=6.1, p<.05; F=12.3, p<.001).  
There were no differences between older and younger ASD 
children for either 1st or 2nd order chains.  However, there was a 
significant increase in entropy for both 1st order and 2nd order 
chains in TD controls (F=15.6, p<.001; F=17.3, p<.001). 

These results, taken together, suggest a functional 
aberration from typical development in canonical facial feature 
scanning in children with ASD.  At a time when typical 
children seem to be gravitating towards focusing on core 
features such as the mouth and eyes, children with ASD are 
found to be unchanging in their strategies from age group 1 to 
age group 2.   

V. DISCUSSION 
We return to our original question: how do the face 

scanning strategies of children with autism change in early 
childhood?  In order to answer this question, we first look at 
how TD children change from two years of age to four years of 
age.  At the top level, older TD children pay more attention to 
faces than younger TD children.  This increasing attention 
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trickles down to the next level, where increases in looking 
times at both key and non-key features are found.  Again, at the 
bottom level, increases in looking times towards the eyes are 
found.  All things being equal, we would expect to find a 
similar pattern in the number of transitions.  This is exactly 
what we find: as TD children become older they begin to 
transition more often between non-key features and the eyes 
and the eyes and the mouth.   By contrast, the number of 
transitions between non-stimulus and stimulus regions does not 
change, though the total time in stimulus regions increases.  
This pattern suggests that older TD children scan as frequently 
between the face and extraneous non-face regions as younger 
TD children, but that when they look at the face, they stay for 
longer and when they look away from the face, they stay for 
less, suggesting the development of either an increasing 
salience for faces, and, in particular, the eyes, or an increased 
ability to ignore distraction and irrelevant scene details.  

Entropy results are not as dependent on the total number of 
transitions as they are on the balance of scanning between 
regions.  At the bottom level, we find increasing exploration 
between eyes and mouth as TD children grow older, suggesting 
increased monitoring of the canonical face scanning circuit.  
Similarly, at the mid-level, we find a trend towards increased 
exploration of all areas of faces.  Combined with the top-level 
finding of no changes in stimulus to non-stimulus scanning, the 
results suggest that increases in exploratory behavior in TD 
become more pronounced when zooming into the more inner 
circuits of face scanning.  Thus, in TD children we see a very 
stable pattern of results, with attention ramping towards areas 
typically considered informative from a social and 
communicative point of view as the children age. 

By contrast, at the top level, older ASD children look more 
at non-stimulus regions and less at stimulus regions than 
younger ASD children, suggesting a decreasing saliency for 
faces.  This contrasts with ASD results for more inner regions, 
where no changes with age in looking times for key, non-key, 
mouth, or eyes were found.  This implies that the trend of 
decreasing attention towards faces at the top level is not driven 
by any particular specific face region.  Similarly no changes in 
age were found for transitions and entropy measures in ASD.  
This suggests that a possible answer to the question, “how do 
scanning strategies change in autism?” is: they don’t.  They 
don’t increase looking at key features or the eyes and they don’t 
increase their exploration of critical regions of the face.  

The compounding influence of atypical exposure is a factor 
which may contribute to the differences we observe.  It is 
useful to consider the effects found in the laboratory within the 
ecological scope of the affected child [12].  Given that we have 
found, at every level of our cascaded analysis, behaviors in 
autism deviating significantly from the typical trajectory, it is 
an open question as to how these deviations might shape the 
atypical social and cognitive environment.  We note that 
decreased looking at particularly relevant facial features would 
imply a decreased experience for those features in that child’s 
life.  It is possible that this decreased experience depresses the 
typical development of configural or holistic face processing, 
leading to reduced stimulation in certain higher-level cortical 
social-affective circuitry, which in turn leads to decreased 
social motivation, which leads back to reduced experience.   

In grounding these cascading effects, it is useful to consider 
the level one (ground level) circuit of the eyes and mouth for 
the younger age group.  At this age, we find no differences 
between ASD and TD children in total number of transitions 
between regions or in entropy.  However, we do find that TD 
children look more at the mouth than ASD children.  One 
possible explanation for this effect is that TD children are 
making as frequent transitions between regions as ASD 
children, but when they encounter the mouth, they stay for a 
longer period of time.  This mouth salience hypothesis could be 
driven in part by differences observed in preferences for 
elementary features.  For example, typical children at two years 
of age might attend to the mouth in static images, having built 
up an expectation for novel motion from this area.  By contrast, 
in ASD, a preference for high areas of contrast combined with 
decreased sensitivity for motion [13] might bias the child in 
ASD towards looking predominantly at unique high contrast 
areas (e.g. the boundary between the sclera and the face or 
pupil) and less towards the mouth.   

It is also possible that trial-level effects are confounding our 
interpretation of our summary statistics, which are assumed to 
be valid at a micro-level of analysis.  For example, it is possible 
that both ASD children and TD children attend to the initial 
area they look upon for a long period of time, and then saccade 
away to another area.  It may be the case that ASD children are 
more likely to initially focus upon the eyes, and that TD 
children are more variable in their choice of initial fixation.  In 
this case, the increased variation of TD children could be 
viewed as noise.  Interestingly, this “noise” would increase the 
chances that interesting holistic aspects of faces could be 
uncovered.  This interpretation and the perceptual interpretation 
are not mutually exclusive.    

We should note that the trend of older TD children looking 
longer at the mouth than ASD children is a result which might 
be considered unexpected given prior results in dynamic scenes 
by Klin et al. [4].  There are several possibilities which might 
account for this difference, however.  First, the switch from a 
static face scene to a dynamic social interaction scene is a huge 
leap in cognitive load, social affective circuitry, and basic 
perceptual saliency.  Second, the individuals in Klin et al.’s 
study were higher functioning individuals with autism; the 
individuals in this study were more impaired, having a non-
verbal mental age developmental quotient of 80 and a verbal 
mental age developmental quotient of 61 [7].  Third, it is 
possible that the developmental effects driving mouth-looking 
simply haven’t come into fruition at the ages examined in this 
work.  For example, if the learning of language interacts with 
looking at the mouth in autism (for example in aiding phoneme 
recognition), then it is possible that individuals who are 
delayed in the use of language would develop compensatory 
mechanisms at a much later than four years of age. 

Methodologically, it has been our goal to use measures that 
apply the least amount of data manipulation to the eye-tracking 
stream as possible.  There are several reasons for this.  First, 
nothing is as comparable, or as easy, as doing nothing to your 
data.  Second, the differential loss from complex eye-tracking 
measures is something that has been little examined; however, 
our experience is that commonly used eye-tracking tools, such 
as fixation analysis, routinely allow one to shape one’s data in 



an arbitrary and invisible manner [14,15].  Nonetheless, the 
comparison of our results to standard fixation measures is a 
necessary avenue to be explored. 

There have been several simple methods proposed that use 
variations on entropy as a measure in eye-tracking.  For 
example, Kruizinga et al. [16] employ an entropy measure on a 
single row of the transition matrix to calculate the entropy of 
specific ROIs.  Althoff and Cohen [17] combine the entropy of 
matrix cells with row and column entropy totals, normalized by 
the column entropy total, to obtain a measure they term S1 and 
S2.  Our method proceeds similarly and is quite simple, as it 
simply reflects the entropy rate of a discrete Markov chain 
[11].  We have seen that this measure is sufficient to generate 
natural results that are quite interpretable.  As it is derived from 
fundamental information theory, there is also a rich basis for 
expanding its application. 

Our measures work, in part, because we have broken down 
our investigation into several easy-to-digest pieces.  For 
example, our 2nd-order Markov entropy measure can span a 
single region which is being saccaded over since it has a 
history of two prior states.  As there are at most three regions 
under consideration at any point in our analysis, this measure is 
particularly appropriate.  This leads us to an important point: 
the measures employed for analysis should be matched with the 
appropriate simplifying solutions. 

Several limitations of this study need to be noted.  For one, 
the design of our trials is cross-sectional and thus we cannot be 
sure that the age groups are completely comparable.  Similarly, 
selection criteria for valid trials were chosen quite arbitrarily 
and we have not measured any aspects of drop-out.   

We also did not include a mental-age matched sample for 
our ASD population (e.g. a developmentally delayed group).  
Thus, the results we have found could be attributed to 
differences in cognitive functioning, though the interactions 
found would be more difficult to explain in this manner.   

It is important to note that many trends apparent in the 
graphs, such as decreased looking times at eyes in older 
children with ASD, were not significant.  It is possible that 
with a larger sample size these trends could become more 
prominent, changing the interpretation of our results.  

The use of two different screen sizes for the older and 
younger populations is also a potential confound.  We note, 
however, that within age group comparisons do not suffer from 
this deficit and that TD and ASD individuals typically do not 
behave in the same direction (i.e. both up or both down at time 
2 from time 1).  Also, our preliminary analysis has indicated no 
significant effect of the monitor size on scanning patterns. 

Finally, our measures are fairly new and we have only 
begun to examine their limitations, interpretations, and 
interrelationships.  However, we are reassured in part by the 
simple nature of many of our measures.  Future work will 
consider technical issues such as the effect of data loss and 
sampling as well as methodological issues such as the 
applicability of our measures to other questions and domains.  

VI. CONCLUSION 
We have presented a series of results which have shown 

some interesting facets regarding the scanning patterns of 
children with autism.  We have also discussed some new 
avenues for obtaining measures from eye-tracking data, and 
offered some recommendations for a simple experimental 
methodology for analysis.    
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