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This article reviews the state of the art in social eye gaze for human-robot interaction (HRI). It
establishes three categories of gaze research in HRI, defined by differences in goals and methods: a
human-centered approach, which focuses on people’s responses to gaze; a design-centered approach,
which addresses the features of robot gaze behavior and appearance that improve interaction; and a
technology-centered approach, which is concentrated on the computational tools for implementing
social eye gaze in robots. This paper begins with background information about gaze research in
HRI and ends with a set of open questions.
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1. Introduction

The field of Human-Robot Interaction (HRI) strives to enable easy, intuitive interactions between
people and robots. Such interactions require natural communication. Although verbal communi-
cation tends to be primary in human-human interactions, nonverbal behaviors, such as eye gaze
(Argyle, 1972) and gestures (McNeill, 1992), can convey mental state, augment verbal communica-
tion, and reinforce what is being said (Goldin-Meadow, 1999). Eye gaze is a particularly important
nonverbal signal—compared with pointing, body posture, and other behaviors—because evidence
from psychology suggests that eyes are a cognitively special stimulus, with unique “hard-wired”
pathways in the brain dedicated to their interpretation (Emery, 2000).

The earliest research into communicative gaze was led by the virtual agent community in the
1990s (Cassell, Torres, & Prevost, 1998; Thorisson, 1994, for example). Virtual agents were imbued
with eye gaze as a means of capturing attention, maintaining engagement, and increasing conversa-
tional fluidity with human users (Cassell, 2000). Roboticists began introducing meaningful eye gaze
into their systems in the late 1990s, in robots such as Cog (Scassellati, 1996), Kismet (Breazeal &
Scassellati, 1999b), and Infanoid (Kozima & Ito, 1998).

Modern-day approaches to incorporating eye gaze into human-robot interactions vary widely;
research investigating the effects of social eye gaze on human-robot interactions spans the fields of
robotics, virtual agents, artificial intelligence, and psychology. Some researchers use robots as stim-
uli to understand the limits of human perception. Others try to understand the effects of robot gaze
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by manipulating features of robot appearance and behavior and measuring their influence on human
responses. Still others focus on the underlying technologies required for establishing convincing
social eye gaze.

In this review, we present the current state of research on social eye gaze in human-robot inter-
action. To address the large variety of research included in this topic, we divide the corpus of work
on gaze in HRI into three broad categories of research. The categories are distinguished both by
their goals and by their methods. These categories are as follows:

Human-focused: This research aims to understand the characteristics of human behavior during
interactions with robots. The focus is on the features and limits of human behavior and per-
ception, with the robot serving as a stimulus to provoke a measurable response. This research
generally involves well-controlled, laboratory-based studies.

Design-focused: This research investigates how design choices about a robot, such as its appear-
ance or behavior, can impact interactions with humans. Design-focused papers tend to ma-
nipulate one feature of robot gaze behavior at a time (such as the length of fixation) to reveal
people’s response to that feature and include both laboratory-based and field-based evalua-
tions.

Technology-focused: This research aims to build computational tools for generating robot eye gaze
in human-robot interactions. Though the technologies may be evaluated with human users,
this work generally focuses on mathematical or technical contributions, rather than the effects
of the system on the interaction.

These categories represent one way to segment the research around eye gaze in HRI, but they do
not represent mutually exclusive areas. A single study may contribute in multiple categories, such as
an evaluation of a data-driven model of conversation through a laboratory-based human study. In this
review, we divide research literature by primary category, the area in which the paper’s contribution
is primarily focused.

The focus of this review is social eye gaze, that is, any gaze that can be interpreted as commu-
nicative by an observer. Biological evidence suggests that the human eye has evolved to be especially
capable of such social communication. Though other vertebrate species can recognize eye gaze and
attention cues, humans have the unique ability, even beyond non-human primates, to infer others’
intentions from eye gaze (Emery, 2000). The unique morphology of the human eye—with a large,
white sclera that clearly signals gaze position—enables this social signal (Kobayashi & Kohshima,
2001).

Social eye gaze includes eye movements that are intentionally expressive, such as gaze aversions
that are designed to communicate thoughtfulness. Social eye gaze also includes eye movements that
serve a purpose that is not explicitly communicative, such as orienting a robot’s field of view on
an object of interest, as long as these movements are part of an interaction where they might be
perceived by other people. Social eye gaze does not include eye movements that are not typi-
cally perceived by others during social interactions, such as gaze actions that happen in isolation,
viewpoint-stabilization actions like the vestibulo-ocular reflex, or visual processing routines that do
not involve changing the camera’s point of focus.

Throughout this review, we refer to various types of eye gaze using established terminology:

e Mutual gaze is often referred to colloquially as “eye contact”; it is eye gaze that is directed
from one agent to another’s eyes or face, and vice versa. Face-directed gaze without reci-
procity is not mutual gaze.
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e Referential gaze or deictic gaze is gaze directed at an object or location in space. Such gaze
sometimes occurs in conjunction with verbal references to an object, though it need not ac-
company speech.

e Joint attention involves sharing attentional focus on a common object (Moore & Dunham,
2014). It can have several phases, beginning with mutual gaze to establish attention, proceed-
ing to referential gaze to draw attention to the object of interest, and cycling back to mutual
gaze to ensure that the experience is shared.

e Gaze aversions are shifts of gaze away from the main direction of gaze, which is typically a
partner’s face. Gaze aversions can occur in any direction, though some evidence suggests the
purpose of the aversion influences the direction of the shift (Andrist, Tan, Gleicher, & Mutlu,
2014).

The type of eye gazes a robot will use in a human-robot interaction will depend on the context
and goals of the interaction. Eye gaze can reveal a social robot’s mental states, including its knowl-
edge and goals (Fong, Nourbakhsh, & Dautenhahn, 2003). Gaze can be used by socially assistive
robots to demonstrate their engagement with and attention to a user (Tapus, Matari¢, & Scassellati,
2007). Robot eye gaze can increase the fluidity of conversation (Mavridis, 2015) or direct a user’s
attention to relevant information in a tutoring setting (Johnson, Rickel, & Lester, 2000). However, a
tutoring robot may want to express attention to and engagement with a user by performing frequent
mutual gaze, while a collaborative assembly-line robot may prioritize task-focused gaze that enables
joint attention and object reference.

The remainder of this review is organized around the three research categories established ear-
lier: human-focused, design-focused, and technology-focused. First, Section 2 provides background
about concepts and terminology that are common throughout the diverse studies described in this
article. The review of current research begins in Section 3 with an introduction to gaze in human-
human interactions, focusing on findings that are relevant to eye gaze for human-robot interac-
tions. This section introduces insights from psychology that influence the development of gaze for
robotics. Section 4 discusses human-focused research on gaze in HRI, including human capabili-
ties and limitations when interacting with robots that use gaze communication. Section 5 describes
design-focused research, specifically how a robot’s physical appearance and behavior can be ma-
nipulated to elicit effective eye gaze communication within human-robot interactions. Section 6
presents technology-focused research, covering the various systems and frameworks for developing
robot eye gaze. The paper concludes in Section 7 with questions for future research that will expand
the understanding of eye gaze in HRI.

2. Background

This section describes some common themes found throughout the research on social eye gaze for
HRI. In identifying the commonalities, this section also highlights the diversity in this body of work;
many different approaches, domains, metrics, and technologies make up the state of the art in social
eye gaze for HRI.

2.1 Robot appearance

Eye gaze research in HRI is conducted using robots with a wide range of variability in appear-
ance and capability. These platforms range from simple cartoon-like robots to extremely lifelike
humanoids and virtual agents.

The differences in gaze capabilities are related to the high cost of implementing eye movements
in robots. Each movement along an axis, also known as a degree of freedom, must be produced by
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Figure 1. Robots and virtual agents with a range of appearances and capabilities
are used for gaze research in HRI. This spectrum roughly sketches the range of
behavioral realism with examples drawn from research cited in this review: Waka-
maru (Szafir & Mutlu, 2012), Nao (Aldebaran, 2015), Keepon (author photograph),
KASPAR (courtesy of the Adaptive Systems Research Group, University of Hert-
fordshire, UK), Kismet (Breazeal & Scassellati, 1999a), FACE (Zaraki, Mazzei,
Giuliani, & De Rossi, 2014), LightHead (Delaunay, 2015), Ivy (Andrist, Mutlu, &
Gleicher, 2013), and an NPC (Normoyle et al., 2013).

some motor or other actuator. Adding capabilities means adding actuators, some of which must be
quite small (to fit into the robot’s head) and powerful (to perform rapid movements like saccades).
These requirements drive up a robot’s cost, complexity, and fragility. Most designers of social robots
attempt to minimize these costs by choosing not to implement some biological capabilities.

Fig. 1 illustrates the spectrum of biologically realistic behaviors in robot eye gaze. This spectrum
is a rough indicator of the range of human-likeness in eyes, in terms of behavioral capability. The
extreme right end of the realism spectrum contains humans. Moving leftward on the spectrum
indicates descending levels of behavioral realism, with fewer human-like capabilities such as pupil
dilation, ocular torsion, and saccades.

Just below humans on the spectrum are virtual agents, which have the potential for extremely
high levels of behavioral realism. By nature of being animated, virtual agents can mimic human eye
capabilities with greater precision than physical robots, though computationally encoding biologi-
cally realistic gaze behavior is an active area of research (Ruhland et al., 2015). While some virtual
agents are implemented with complex, biologically faithful models of muscle movement that control
eye motion, others use motion generators that are less consistent with the underlying biology (Ruh-
land et al., 2015), so there is a range of possible realism within the virtual agent literature. In Fig.
1, the virtual agent referred to as “NPC” uses a biologically-based model to animate its saccades,

28



Admoni & Scassellati, Eye Gaze in HRI

blinks, and gaze shifts (Normoyle et al., 2013). In contrast, the virtual agent called Ivy uses timings
of gaze aversions drawn from video-coded observations of human conversation (Andrist, Mutlu, &
Gleicher, 2013).

On the spectrum between virtual agents and embodied robots are retro-projected (or back-
projected) robot faces. This modern technology projects an image onto the rear of a translucent
molded mask. From the front, the image appears to be drawn directly onto the mask, providing
the illusion of an embodied robot with greater animation flexibility. Due to the fixed shape of the
mask, there are constraints on the dimensions of images that can be projected (Delaunay, Greeff,
& Belpaeme, 2009), but researchers have implemented biologically-inspired gaze movements on
retro-projected robot heads to elicit the perception of joint attention (Delaunay, Greeff, & Belpaeme,
2010) and gaze direction (Al Moubayed & Skantze, 2012).

Moving down the spectrum of behavioral realism, different capabilities are lost. Even the most
realistic physical robots, for example, do not implement pupil dilation, though this behavior is an
indicator of mental state (such as cognitive effort) in humans (Hyond, Tommola, & Alaja, 1995).
The behaviorally realistic robot pictured in Fig. 1, FACE, uses a human-like gaze model based on
motion capture data from human examples to control the speed and magnitude of eye movements
(Zaraki, Mazzei, Giuliani, & De Rossi, 2014).

Less behaviorally realistic robots retain gaze capabilities but have simpler appearances and gaze
control models. Kismet has an independent pan and joint tilt degrees of freedom for each eye,
two degrees of freedom for each eyebrow, and independent eyelids, enabling expressive behavior
like winking (Breazeal, Hoffman, & Lockerd, 2004). Still less behaviorally realistic robots, such
as KASPAR (Dautenhahn et al., 2009), have eyes that do not move independently of each other,
eliminating the capability to perform lower-level components of biological gaze, such as vergence.

At the extreme low end of the realism spectrum are robots with fixed eyes. These robots, such
as Keepon (Kozima, Michalowski, & Nakagawa, 2009), Nao (Aldebaran, 2015), and the Wakamaru
robot (Szafir & Mutlu, 2012), are incapable of eye movements separate from head orientation, such
as what people perform when orienting to a lateral visual target (Freedman & Sparks, 2000). Instead,
these robots rely on head turns to indicate gaze direction. While this mechanism can be commu-
nicative on a gross level, there is evidence that head pose is an inadequate indicator of human gaze
direction in human-robot interactions (Kennedy, Baxter, & Belpaeme, 2015b).

The variability in appearance and capability of robot eyes is important to note when discussing
research on robot eye gaze. Because studies are conducted with different robots, their results may not
directly transfer from one robot to another. Each study described in this review should be considered
in the context of the robot or virtual agent it employs.

2.2 Embodiment and virtual agents

Much of the work on social eye gaze emerged from the virtual agents community in the 1990s (Cas-
sell, Torres, & Prevost, 1998; Thorisson, 1994). This work led the way for embodied gaze research
in robotics, and the virtual agent community continues to make advances in the understanding and
design of social gaze for intelligent agents (Ruhland et al., 2015). For this reason, virtual agents
are presented alongside physically embodied robot systems in this paper. However, there are some
notable differences between the two fields.

Virtual agents can provide fine control over the appearance and timing of gaze behaviors, such
as subtle eyelid, eyebrow, and eye ball movements. These types of fine movements are difficult to
achieve with physical motors on embodied robots. Though some hyper-realistic humanoid robots—
such as Geminoid (Sakamoto, Kanda, Ono, Ishiguro, & Hagita, 2007) and FACE (Zaraki, Mazzei,
Giuliani, & De Rossi, 2014)—strive to achieve human-like face actuation, most do not achieve the
level of facial expressiveness available in animated characters. Therefore, virtual agents provide a
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platform with which to study the effects of well-controlled, subtly expressive motions of social eye
gaze.

There is disagreement, however, on whether physically embodied systems are better for interac-
tions than animated agents or even video representations of the physical systems. Some researchers
have found that physically co-present embodied systems improve interactions over virtual systems
(Li, 2015). Children spend more time looking at a robot tutor that is physically embodied than at a
virtual representation of that robot (Kennedy, Baxter, & Belpaeme, 2015a), and adults retain lessons
about a cognitive puzzle better when they had been tutored by a physically embodied robot than by
a video representation of that robot (Leyzbeg, Spaulding, Toneva, & Scassellati, 2012). People also
fulfill unusual requests from a robot more frequently when that robot is physically embodied than
when it is telepresent (Bainbridge, Hart, Kim, & Scassellati, 2011), though the anthropomorphism
of the embodiment may influence their willingness to do so (Bartneck, Bleeker, Bun, Fens, & Riet,
2010). Physically embodied agents are rated more positively (Powers, Kiesler, Fussell, & Torrey,
2007; Wainer, Feil-Seifer, Shell, & Matari¢, 2007) and attributed greater social presence (Lee, Jung,
Kim, & Kim, 2006) than their virtual or telepresent counterparts.

However, not all research has supported the benefit of physical embodiment over virtual pres-
ence. In a tutoring interaction involving sorting, children fail to show differences in learning from
embodied and virtual robots (Kennedy, Baxter, & Belpaeme, 2015a). In an interaction with a health-
care robot, people remembered less information provided by a physically co-located robot than in-
formation provided by a virtual representation of that robot (Powers, Kiesler, Fussell, & Torrey,
2007).

Research on embodiment to date has not specifically focused on the effect of embodied social
gaze (see Section 7.3 for how this question might be addressed). Whether or not embodiment affects
an interaction, research on both virtual agents and physically embodied robots is important for un-
derstanding social gaze for intelligent agents, and both the virtual agents and robotics communities
have made important contributions to our understanding of eye gaze in human-agent interaction.

2.3 Study locations and controls

Human-robot interactions can be evaluated both inside and outside of the laboratory. Laboratory-
based and field-based studies have complementary benefits and limitations, and both are important
for investigating eye gaze in HRI. Based on the location of the study, researchers can control the
environment and potential confounding variables to a greater or lesser degree. The trade-off for
increased control is a decrease in the generalizability of the research findings to real-world settings.

Laboratories provide well-controlled environments in which to perform highly repeatable, con-
sistent experiments. The laboratory can be outfitted with sensors to capture a variety of experimental
data, including cameras for video (Bohus & Horvitz, 2010), skeleton tracking systems to detect body
positions (Sorostinean, Ferland, Dang, & Tapus, 2014), and eye trackers for precise gaze analysis
(Yu, Schermerhorn, & Scheutz, 2012). Laboratory-based studies are particularly well-suited to re-
search that systematically manipulates a variable to understand its effect on an interaction, due to
the capability of excluding potential confounding factors by rigidly controlling the environment.

Human-focused research is often performed in the laboratory, so that the conditions eliciting the
measured human response are well-defined. For the same reason, many design-based studies are also
conducted in a laboratory. However, laboratory-based studies are limited in their ecological validity,
because the controlled and restricted environment does not necessarily represent how people and
robots will operate in the real world. Thus, some design-based and technology-based studies choose
to measure a robot’s effect on interactions in the field.

Field-based studies involve placing robots in naturalistic environments, such as shopping malls
(Satake et al., 2010), museums (Yamazaki, Yamazaki, Burdelski, Kuno, & Fukushima, 2010), and
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building atriums (Knight & Simmons, 2013). Interactions tend to be more free-form, because the
circumstances of the interactions cannot be precisely predicted or controlled. Data collection is often
more limited than in laboratory-based studies and tends to be more observational than empirical.
However, these types of studies can more accurately reveal people’s interactions with robots “in the
wild.”

There is a spectrum of study types between these two extremes. For example, laboratories
can be augmented with furniture to manufacture a more realistic setting (Pandey, Ali, & Alami,
2013). Naturalistic scenarios can be temporarily constructed with somewhat controlled conditions,
for instance by evaluating a robot during a public demonstration (Bennewitz, Faber, Joho, Schreiber,
& Behnke, 2005), where sensors can be arranged for additional data collection. In this paper, we
include studies across this spectrum of study types, from carefully-controlled laboratory research to
long-term deployments in everyday human environments (Simmons et al., 2011).

2.4 Evaluation metrics

When evaluating the effects of gaze on human-robot interactions, both objective and subjective
metrics can provide useful information. Which evaluation metric is used depends on the interaction
task and the research goals. This section provides an overview of the many objective and subjective
measures used in research on gaze in HRI, with some specific examples of each.

2.4.1 Objective Measures Objective metrics often measure a user’s observable behavior. These
metrics range in scale from millisecond-level measurements to broad observations of long-term
behavior. High-level categories of objective metrics include measures of human behavior (e.g., eye
movements) and performance (e.g., task completion time).

Precise measurements can reveal low-level (and not necessarily conscious) responses to robot
gaze. For example, measuring millisecond-level response times to a robot’s directional gaze (Ad-
moni, Bank, Tan, & Toneva, 2011) or recording tiny eye saccades with an eye tracker (Yu, Scher-
merhorn, & Scheutz, 2012) can reveal underlying differences between people’s responses to robots
and humans.

Larger-scale measurements can quantify a robot’s effect on longer-term human behavior. For
example, how well a robot’s referential gaze facilitates understanding of object references can be
measured by how long it takes a user to select the correct object (Admoni, Datsikas, & Scassellati,
2014; Boucher et al., 2012; Breazeal, Kidd, Thomaz, Hoffman, & Berlin, 2005). The effectiveness
of a robot tutor’s gaze behaviors can be revealed by the amount of information a user is able to recall
from the interaction (Andrist, Pejsa, Mutlu, & Gleicher, 2012a; Szafir & Mutlu, 2012). Information
recall can also act as a proxy for attention: if participants pay more attention, they can recall more
information, so measuring recall reveals how much attention different robot gaze behaviors elicit
from people (Huang & Mutlu, 2012; Mutlu, Forlizzi, & Hodgins, 2006).

Some objective measures involve post-hoc interpretation of human behavior, often accomplished
through video coding. This process entails careful analysis of a recorded interaction to evaluate
users’ responses to a robot’s gaze behaviors, in terms pre-defined items like engagement behaviors
(Karreman, Ludden, Dijk, & Evers, 2015), the conversational function of utterances (Andrist, Mutlu,
& Gleicher, 2013), and use of body language (Huang & Mutlu, 2014). Because these post-hoc
interpretations may be subject to the coder’s perceptions and biases, these interpretations are often
coded by two or more individuals, with correlations confirmed by statistics, such as Cohen’s k-
coefficient (Cohen, 1960).

Objective evaluations can be applied to the robot systems themselves. For example, the success
of a robot gaze system can be measured by whether a robot can predict the correct speaker (Trafton
& Bugajska, 2008; Vertegaal, Slagter, Veer, & Nijholt, 2001) or influence human users into certain
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conversational roles (Mutlu, Yamaoka, Kanda, Ishiguro, & Hagita, 2009).

2.4.2  Subjective Measures Subjective measures can provide insight into user experiences that may
not be outwardly observable. Subjective measurements typically involve collecting user perceptions
and opinions through surveys and interviews.

The most common type of subjective measure for studies investigating social eye gaze in HRI
is a survey or questionnaire, often provided to users at the end of an experiment (Andrist, Mutlu, &
Gleicher, 2013; Choi, Kim, & Kwak, 2013; Huang & Mutlu, 2014; Sidner, Kidd, Lee, & Lesh, 2004;
Trafton & Bugajska, 2008, among many others). Survey questions are often formulated as Likert
scales, through which participants reveal their perceptions and opinions by indicating their strength
of agreement or disagreement with selected statements. For example, to evaluate how well gaze
behaviors make a robot seem like a positive interaction partner, these scales measure characteristics
like intelligence, animacy, and likeability (Bartneck, Kulié¢, Croft, & Zoghbi, 2009). Subjective
measures can also include direct evaluations of a robot’s behavior. For example, to evaluate how
well a robot can expresses emotions by changing its eye and facial expressions, a user might be
asked to identify what emotion the robot is conveying for various expressions (Li & Mao, 2012b).

Interviews are another tool for eliciting subjective feedback from users. Interviews can reveal,
for example, children’s subjective impressions of a robot tutor (Saerbeck, Schut, Bartneck, & Janse,
2010). Interviews can also be used to elicit anecdotal evidence that supports or explains the study’s
findings (Huang & Mutlu, 2016; Mutlu, Yamaoka, Kanda, Ishiguro, & Hagita, 2009).

Manipulation checks are a particular kind of measure that identifies whether an experimental
manipulation was effective or not. In HRI, a manipulation check often ascertains whether partici-
pants consciously experienced the manipulation, which may be important for evaluating the validity
of results. It can be given as a single item on a questionnaire (Huang & Mutlu, 2016; Mutlu, Shiwa,
Kanda, Ishiguro, & Hagita, 2009) or as part of an interview (Admoni, Dragan, Srinivasa, & Scas-
sellati, 2014; Zheng, Moon, Croft, & Meng, 2015). For example, in a study investigating how the
duration of a robot’s gaze toward people affects their participation in a conversation, participants
were explicitly asked how much the robot gazed at them and at their partner as a way of judging
whether they actually perceived different durations of robot gaze (Mutlu, Shiwa, Kanda, Ishiguro,
& Hagita, 2009).

Objective and subjective measures provide complementary approaches for evaluating the effects
of robot gaze in human-robot interactions. The field of HRI uses a diverse set of measures, and
understanding the role of these different types of metrics is important for interpreting the research
in the field.

3. Gaze in Human-Human Interactions

Gaze is important to human-human interactions, because it is closely tied to what people are think-
ing and doing (Kleinke, 1986). People use their observations of others’ eye gaze to guide every-
thing from conversation (Kleinke, 1986) to speech (Argyle & Cook, 1976) and attention (Frischen,
Bayliss, & Tipper, 2007). In this section, we draw out specific research findings from psychology
that have a direct impact on the design of social eye gaze for human robot interaction. The described
findings are then applied to research appearing in later sections of this review. The studies in this
section are aligned into three general topics:

e How people use eye gaze for conversation and speech (relevant to Sections 5.1 and 5.2)

e How people use eye gaze when they refer to and manipulate objects (relevant to Section 5.3
and 5.4)

e The psychophysics of eye gaze and how to measure gaze effects (relevant to Section 4.2)
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3.1 Gaze for conversation and speech

Most of the early research on eye gaze has focused on the role of gaze in conversation (Argyle,
1972; Argyle & Cook, 1976; Argyle & Ingham, 1972; Cook, 1977; Kendon, 1967; Kleinke, 1986).
During conversations, eye gaze can be used to convey information, regulate social intimacy, manage
turn-taking, and convey social or emotional states (Kleinke, 1986).

People generally look at what they are attending to, and so gaze in conversation predicts the
target of conversational attention (Cook, 1977). When someone is listening, the person they are
looking at is likely the person being listened to (88% of the time) (Vertegaal, Slagter, Veer, & Nijholt,
2001). Similarly, when someone is speaking, they are often looking at the target of their speech (77%
of the time) (Vertegaal, Slagter, Veer, & Nijholt, 2001), though listener-directed gaze can occur
significantly less frequently than speaker-directed gaze (Cook, 1977). In general, gaze is directed
at conversational partners approximately 60-80% of the time (Argyle & Ingham, 1972; Cappella &
Pelachaud, 2002; Vertegaal, Slagter, Veer, & Nijholt, 2001).

Eye gaze signals when speakers want to maintain or relinquish the floor, indicates cognitive ef-
fort, and balances attention with intimacy (Andrist, Tan, Gleicher, & Mutlu, 2014; Kendon, 1967,
Kleinke, 1986). Early researchers observed that during an exchange of speaking turn, the speaker
usually looks at the listener at the end of their utterance and the listener generally looks away as
they begin their speaking turn (Kendon, 1967). More modern researchers have been able to use
technology such as video cameras to extract very specific timings for the gaze cues that are part of
conversation (Andrist, Mutlu, & Gleicher, 2013; Oertel, Wtodarczak, Edlund, Wagner, & Gustafson,
2012). They have found, for example, that speakers establish mutual gaze approximately 2.4 sec-
onds before relinquishing the floor (Andrist, Mutlu, & Gleicher, 2013). Intimacy modulating gaze
aversions tend to be short (between 1 and 2 seconds), while gaze aversions that signal cognitive ef-
fort (such as looking away while beginning a response to a question) are longer, at about 3.5 seconds
(Andrist, Mutlu, & Gleicher, 2013).

Gaze between partners is dynamic and follows the task at hand. For example, the “reference-
action sequence”—in which an instructor refers to an object and then a worker acts on that object—
can be divided into five cyclically repeating phases, each with their own distinct gaze behaviors:
pre-reference, reference, post-reference, action, and post-action (Andrist, Collier, Gleicher, Mutlu,
& Shaffer, 2015). A worker’s gaze tends to follow the instructor’s gaze in the early and late phases,
while the instructor’s gaze tends to follow the worker’s behaviors during the middle phases (post-
reference and action) as the worker performs the task (Andrist, Collier, Gleicher, Mutlu, & Shaffer,
2015).

In addition to managing interpersonal interactions, gaze also relates directly to speech syntax.
People often look away from their partner when beginning the theme of the sentence (which indicates
what the sentence is about) and look toward their partner when beginning the rheme of the sentence
(which provides information or exposition about the theme) (Cassell, Torres, & Prevost, 1998).

The conversation topic also influences gaze. When guiding a tour, people look between the ex-
hibit and their audience, among other nonverbal behaviors, and these behaviors elicit engagement
responses from the audience (Yamazaki, Yamazaki, Burdelski, Kuno, & Fukushima, 2010). Peo-
ple show less mutual gaze when their conversation involves high levels of intimate self-disclosure
(Kang, Gratch, & Sidner, 2012). Two partners’ nonverbal behaviors, including their eye gazes, can
be used to extract the context of an utterance during an interaction, such as conveying a fact or
answering a question (Admoni & Scassellati, 2014) (Fig. 2).

Gaze durations during conversation are also affected by people’s personalities. Extroverts spend
more time looking at their partner than introverts (Andrist, Mutlu, & Tapus, 2015). People are
also more likely to speak when their conversational partner looks at them more often (Vertegaal
& Ding, 2002). However, the amount of mutual gaze between conversational partners depends on
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Figure 2. The gaze dynamics of student (left) and teacher can reveal the context of
an interaction. Here, the teacher is conveying a spatial reference, performing face-
directed gaze at the student while the student observes the deictic gesture (Admoni
& Scassellati, 2014).

the interpersonal dynamics between the partners, not only on each partner’s individual traits (Broz,
Lehmann, Nehaniv, & Dautenhahn, 2012; Cappella & Pelachaud, 2002).

3.2 Gaze for object reference and manipulation

Eye gaze plays an important role in communicating about the environment. When people refer to
objects around them, they look at those objects ahead of naming or manipulating them (Griffin &
Bock, 2000; Hanna & Brennan, 2007; Yu, Schermerhorn, & Scheutz, 2012). People are very good
at identifying the target of their partner’s referential gaze and use this information to predict what
their partner is going to say (Boucher et al., 2012; Staudte & Crocker, 2011).

When referring to objects or locations around them, people’s gaze is closely tied to the content of
their speech (Hanna & Brennan, 2007). Objects are typically fixated one second or less before they
are named (Griffin & Bock, 2000; Yu, Schermerhorn, & Scheutz, 2012), though this may be slightly
longer when speakers must search for the object (Andrist, Collier, Gleicher, Mutlu, & Shaffer, 2015).

Teams of people use eye gaze as a subtle, non-intrusive channel of communication (Shah &
Breazeal, 2010). When partners refer to objects or locations in the environment, people use their
partner’s eye gaze to predict their partner’s next verbal object reference and can more quickly re-
spond to that reference (Boucher et al., 2012). In contrast, when access to a partner’s eye gaze is
restricted, people are slower at responding to their partner’s referential communication (Boucher et
al., 2012). If there is ambiguity in the object reference, gaze is a strong and flexible cue for eliminat-
ing uncertainty about referential expressions (Hanna & Brennan, 2007; Staudte & Crocker, 2011).
Infants as young as 14 months show greater interest to objects that an adult looks at than objects the
adult cannot see (Brooks & Meltzoff, 2002), suggesting that gaze sensitivity is developed early.

When people are manipulating objects, their eye gaze is similarly tied to their task and intended
action. Eye gaze typically reaches the object of interest before any movement of the hands has
started (Land & Hayhoe, 2001). Though people fixate the same object while they act on it, eyes
often shift to the next object in the task sequence before the action is completed on the current
object (Land & Hayhoe, 2001). These shifts of gaze to a new object often correspond to the start
of a significant kinematic event on the current object; for example, gaze directed at an object to
be grasped will shift away from that object just as the hand closes around it (Johansson, Westling,
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Béckstrom, & Flanagan, 2001). Objects not related to the task at hand are rarely fixated (Hayhoe &
Ballard, 2005).

Gaze is also used to signal availability for interaction. When they must pass objects back and
forth, object handovers between people rely on a receiver signaling readiness to receive an object
by gazing at their partner (Strabala, Lee, Dragan, Forlizzi, & Srinivasa, 2012; Strabala et al., 2013).
Interestingly, the giver in this interaction is not required to return the receiver’s mutual gaze in order
for the handover to occur successfully. Caregivers in a nursing home demonstrate their availability to
their patients through broadly distributed gaze, and people naturally wait for caregivers to establish
mutual gaze before requesting assistance (Yamazaki et al., 2007).

3.3 The psychophysics of eye gaze

Psychophysics—the branch of psychology that explores how physical stimuli influence mental
processes—has explored the effects of eye gaze on a cognitive level. A well-developed series of
studies suggest that directional eye gaze is processed differently in the brain than other directional
stimuli, indicating that eyes may be a unique type of stimulus (Downing, Dodds, & Bray, 2004;
Driver et al., 1999; Friesen, Ristic, & Kingstone, 2004; Kingstone, Tipper, Ristic, & Ngan, 2004;
Ristic et al., 2005).

People are very highly tuned to others’ gaze direction. Three-month-olds already shift their
attention in the direction of an adult’s gaze (Hood, Willen, & Driver, 1998). In adults, seeing some-
one’s eyes directed laterally—even in a photograph—evokes rapid, reflexive attention shifts in the
direction of the gaze (Hood, Willen, & Driver, 1998; Langton & Bruce, 1999).

A series of psychophysics experiments has tested this reflexive attention shift and found that it
is resistant to conscious control. In these experiments, participants are shown a picture of a face
gazing to one side. Even when are told that they should look in the opposite direction of the gaze,
their attention is still drawn to the direction of the gaze in the first 500 milliseconds, an effect called
counterpredictive cueing (Downing, Dodds, & Bray, 2004; Driver et al., 1999; Friesen, Ristic, &
Kingstone, 2004).

Counterpredictive cueing experiments provide evidence that faces are special stimuli that are
processed in unique cognitive pathways, because the counterpredictive cueing effect is not seen
in response to non-gaze directional cues such as arrows (Friesen, Ristic, & Kingstone, 2004) or
tongues (Downing, Dodds, & Bray, 2004). A single image can even be manipulated to elicit the
counterpredictive cueing effect or not, depending on whether the image is presented as a face or
a car (Ristic et al., 2005). Functional MRI studies show that a single image activates different
brain pathways depending on whether it is presented as eyes or as a non-social directional image
(Kingstone, Tipper, Ristic, & Ngan, 2004), further strengthening the idea that eyes are processed
differently than other cues.

This effect might be explained in part by people’s strong tendency to have a theory of mind for
another person, that is, a belief that the person has knowledge, goals, and intentions of their own.
Functional MRI studies reveal a significant overlap in the brain areas that process theory of mind and
those that process directional eye gaze (Calder et al., 2002). In fact, observing someone signaling the
presence of an object with referential gaze elicits the same neural response as observing someone
physically reaching to grasp that object (Pierno et al., 2006), indicating that people use gaze as a
powerful indicator of others’ intentions.

4. Human-Focused Research

The studies described in this section focus on learning about the characteristics and limits of human
perception through human interactions with robots. These studies generally take place in well-
controlled laboratory environments, where the limitations and features of human perception can be
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closely examined. Understanding how people perceive and respond to robot gaze—including what
is effective and what is not—is the first step in developing gaze behaviors for robots.

4.1 Human response to robot social gaze

Before people can make use of a robot’s social eye gaze, they must first perceive it. In multi-party
conversations, people notice a robot’s gaze when it looks at or near them, but not when it gazes at
someone else nearby (Imai, Kanda, Ono, Ishiguro, & Mase, 2002). This suggests that the perception
of robot gaze is egocentric—gaze is most frequently perceived when the robot is gazing directly at
the viewer and is less frequently perceived when the robot is gazing at someone else. People have
stronger feelings of “being looked at” when a robot gazes at them using short, frequent glances
rather than longer, less frequent stares (Admoni, Hayes, Feil-Seifer, Ullman, & Scassellati, 2013).

People are also sensitive to robot eye gaze when that gaze is directed at objects or locations in the
environment. For example, in object selection games, people can use referential gaze cues from a
virtual agent (Bailly, Raidt, & Elisei, 2010) or a robot (Mutlu, Yamaoka, Kanda, Ishiguro, & Hagita,
2009) to make predictions about which objects to select, even when they are not consciously aware
of those cues. Even ten-month old infants show sensitivity to robot gaze direction, following the
line of sight of a non-humanoid robot head that demonstrates environmentally contingent behavior
(Movellan & Watson, 2002). For back-projected robot heads, people can generally predict the target
location of the robot’s gaze, but their performance is worse with the robot head than with human
eye gaze (Al Moubayed & Skantze, 2012; Delaunay, Greeff, & Belpaeme, 2010). Accuracy with the
robot head suffers when the head is viewed from the side (Al Moubayed & Skantze, 2012; Delaunay,
Greeff, & Belpaeme, 2010), when gaze involves just head orientation and not eye movement (Al
Moubayed & Skantze, 2012), and when the projection is on a 3D sphere instead of a face-like mask
shape (Delaunay, Greeff, & Belpaeme, 2010).

Such object-directed referential gaze has specific gaze timings that appear natural to people.
Using an immersive virtual environment, researchers were able to empirically measure the timing
of referential gaze during an interaction between a person and a virtual agent (Pfeiffer-Lessmann,
Pfeiffer, & Wachsmuth, 2012). They found that the mean time a referential gaze dwelled on a
referenced object was about 1.9 seconds, and that participants expected a responding gaze to be
directed from their partner to the target object within about 2.5 seconds of their reference. These
timing values can inform the production of gaze in future agent systems.

While people can successfully interpret robot eye gaze for object references, having a robot
display mutual gaze also improves people’s subjective and social evaluations of that robot. Mutual
gaze from a stuffed animal companion robot leads to favorable evaluations of the robot (Yonezawa,
Yamazoe, Utsumi, & Abe, 2007). When a robot is learning from human demonstration, displaying
mutual gaze leads people to view the robot as more intentional than displaying random gaze; people
spend more time teaching the robot, pay more attention to it, and speak more with it (Ito, Hayakawa,
& Terada, 2004). However, social gaze produced by a robot is not necessarily required for people
to attribute object ownership to that robot (Kanngiesser et al., 2015). In a cross-cultural study of
children from China, Japan, and the UK, having a robot display independent motion and having a
human perform social gaze toward the robot was enough for attributions of ownership to the robot,
even absent any robot gaze cues.

People’s preconceived expectations for an agent’s gaze influence how they respond to that gaze.
In what they describe as a “non-verbal Turing test,” researchers manipulated the amount of gaze
following displayed by a virtual agent and asked participants to evaluate whether the agent was being
controlled by a human partner or by a computer program (Pfeiffer, Timmermans, Bente, Vogeley, &
Schilbach, 2011). They found that ascriptions of humanness varied by whether the human partner
was introduced as naive to the task, as cooperative, or as competitive, suggesting that interpretations
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Figure 3. Comparing robot gaze to human gaze using eye tracking can reveal dif-
ferences between people’s responses to the two stimuli. People spend more time
looking at a robot partner’s face than a human partner’s face when naming an object
(Yu, Schermerhorn, & Scheutz, 2012).

of gaze behavior “humanness” depend on the intent ascribed to the agent.

For robots that act as therapy assistants to children with autism spectrum disorder (ASD), gaze
can be a particularly important cue because of the social gaze deficit that is often part of this disorder
(Scassellati, Admoni, & Matarié, 2012). Some children with ASD show spontaneous social gaze
behaviors in response to robots, including increased eye gaze and shared attention during robot
interactions as compared to human interactions (Tapus et al., 2012). These findings lend support to
the use of robots as therapy tools. However, there is large variability in responses, and other children
do not demonstrate the same increase in gaze behavior (Tapus et al., 2012). Because gaze trajectories
sometimes differ between people with ASD and those without, computationally recognizing and
modeling people’s gaze might be a way to diagnose and evaluate ASD (Chawarska & Shic, 2009;
Scassellati, 2007; Shic, Scassellati, Lin, & Chawarska, 2007).

4.2 Differences in human response to robot and human gaze

It is tempting to assume that perfectly matching robot gaze behaviors to human gaze behaviors will
elicit identical responses from people, but this is not always the case. Several studies suggest that
gaze from robots is interpreted differently than gaze from humans.

In general, it is difficult to compare robot gaze to human gaze directly, because while robot
gaze can be infinitely controlled, human gaze tends to have small, unpredictable variations. Sev-
eral studies throughout this section directly compared robot gaze to human gaze through careful
laboratory-based experiments. For example, one study made this comparison using a trained ac-
tor who performed identical behaviors to a pre-programmed robot (Fig. 3). While viewers’ gaze
patterns were overall similar between the human and robot conditions, fine-grained analysis reveals
differences in people’s responses to robot gaze and human gaze. For instance, people spend sig-
nificantly more time looking at a robot partner’s face than at a human partner’s face when naming
an object, indicating an apparent concern for ensuring that the robot is attending to the object in
question (Yu, Schermerhorn, & Scheutz, 2012).

Other fine-grained analysis reveals that robot gaze is not afforded the same special cognitive
status as human gaze. Recall from Section 3.3 that people show a tendency to unavoidably shift
their attention in the direction of another person’s averted eye gaze, referred to as the reflexive cueing
effect. This effect suggests that gaze is processed in a different neural pathway than other directional
symbols like arrows. A test of reflexive cueing using both highly anthropomorphic and highly
stylized robots showed that robots failed to elicit reflexive cueing in people, suggesting that robots
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are cognitively processed more like arrows than like faces (Admoni, Bank, Tan, & Toneva, 2011;
Admoni & Scassellati, 2012). In 12-month-old infants, eyetracking reveals anticipatory eye gaze
shifts in response to human referential gaze but not to robot referential gaze (Okumura, Kanakogi,
Kanda, Ishiguro, & Itakura, 2013a).

For infants, the interpretation of robot gaze seems to depend on whether that robot appears
to be a social agent. When infants are shown videos of robots and humans looking at objects,
they can follow the robot gaze as well as the human gaze. However, the infants look longer at,
and show enhanced processing of, objects gazed at by the human but not objects gazed at by the
robot (Okumura, Kanakogi, Kanda, Ishiguro, & Itakura, 2013b). Only after infants observe a robot
engage in a socially communicative exchange with an adult do they follow a robot’s directional gaze
(Meltzoff, Brooks, Shon, & Rao, 2010). Similarly, infants only imitate a robot’s intended action
when it first establishes mutual gaze with an adult (Itakura et al., 2008). This suggests that, even
to infants, robot gaze is not automatically as meaningful as human gaze, but it can be afforded
meaningful status through social engagement.

The examples in this section provide some evidence for differences in human responses to robot
versus human gaze, but more investigation is warranted (see Section 7.2). For example, while Yu
et al.’s (2012) study tried to carefully control the human actor’s behavior to make it identical to the
robot’s behavior, there may still have been minute differences in the human performance. Addi-
tionally, differences in appearance between the robot and human actor might have played a role in
eliciting different gaze responses from people. Admoni et al.’s (2011) study employed two particu-
lar robots with specific appearances, and the characteristics of these appearances may have affected
why robots did not elicit reflexive cueing. In the studies with infants, the robots exhibited few an-
imacy cues in the non-social condition, which might have influenced whether infants saw them as
intelligent agents. Possibly, some cue tangential to social communication, and not the eye gaze
itself, led infants to respond differently to robots in these studies.

4.3 Human-focused research summary

Studies focused on human perception of robot gaze have established that people can successfully
identify the target of a robot’s gaze, whether it is looking at them or at other objects in the world.
Human-focused studies have attempted to tease apart specific timings and gaze patterns that make
robot gaze most effective, though more research in this area could establish specific timings or
patterns of gaze that convey attention and object references most effectively.

Though simply orienting a robot’s gaze toward a particular location seems to be generally effec-
tive in conveying the intended target, perceptions of the robot’s animacy appear to modulate gaze
effectiveness. People respond more favorably to robots that display socially contingent gaze, for
example by establishing mutual gaze with their partners. Infants’ interpretation of robot gaze de-
pends on whether they see the robot established as a social agent. And at very low levels of analysis
(e.g., millisecond-level saccades), there seem to be different patterns of behavior toward gaze from
robots and gaze from other humans. Additional research can further explore this magnifying effect
of animacy on gaze (Section 7.2).

5. Design-Focused Research

Researchers who take the design-focused approach develop the appearances and behaviors of robots
to address certain goals, such as demonstrating engagement or participating in joint attention. In this
section, we describe how manipulations of robot gaze behavior can affect human-robot interaction
both positively and negatively.

Gaze can serve many purposes, and the goal of eye gaze communication is often dictated by the
task at hand. For example, a robot engaged in conversation might display user-focused mutual gaze,
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while a tour guide robot performing a presentation might want to direct gaze to an exhibit using
referential gaze. For this reason, we group the articles in this section by the task, or context, of the
interaction: conversation, narration, collaboration, manipulation, and expression.

5.1 Conversation

Conversation involves an alternation of speaking and listening. For example, robots for tutoring
or entertainment must be able to maintain an engaging, natural conversational exchange with hu-
man partners. The main challenges of conversation are managing attention and turn-taking between
partners, selecting the correct gaze for the conversational content, and adopting the correct conver-
sational roles.

Before beginning an interaction, a robot needs to gain the attention of its listeners. If the robot
fails to successfully engage its intended partner, the listener can be unaware or uncertain about the
robot’s intent to communicate, even though they may be interested in that communication. Robots
can use mutual gaze to improve the success of initiating conversation (Satake et al., 2010). Even a
very simple illusion of gaze improves user attention. Simply having a virtual face on the flat-screen
monitor of an embodied but non-anthropomorphic robot increases the number of users who stop
when greeted by the robot (Bruce, 2002). Having the robot’s head “look at” a person by turning
toward the person’s location has a similar effect on engagement, even without a virtual face, though
the combination of face and tracking lead to the greatest user engagement (Bruce, 2002). Robots
can also use gaze to acknowledge new arrivals to the conversation (Simmons et al., 2011).

Once the conversation has begun, conversational fluidity is managed as much by the absence of
mutual gaze as by its presence. Gaze aversions can be used to demonstrate cognitive effort, modu-
late intimacy, and mediate turn taking (Andrist, Mutlu, & Gleicher, 2013). Using empirical timings
for gaze aversions collected from lab-based observations of human-human conversation, researchers
designed gaze aversion behaviors for virtual conversational partners. Virtual agents using gaze aver-
sions for these conversational functions are more successful at regulating the conversational flow
and elicit greater disclosure from people than agents that do not perform gaze aversions or perform
gaze aversions at inappropriate times (Andrist, Mutlu, & Gleicher, 2013).

This gaze aversion model, when applied to embodied robots, yields a similar effect even though
the robot (a Nao) uses head turns to signal gaze direction instead of articulated eyes (Andrist, Tan,
Gleicher, & Mutlu, 2014). In some cases, though, averting gaze may not be the most effective
way of mediating turn-taking. In an interaction that involved handing off speaking turns between a
person and a Nao, flashing the eye LEDs to yield the speaking turn led to the fastest responses from
people, while using gaze aversions actually led to slower responses than using no turn-taking cue at
all (Van Schendel & Cuijpers, 2015).

People are also sensitive to the dynamic interplay between their own gaze and a robot’s gaze.
Robot gaze that is responsive to the user—that is, joint attention and mutual gaze that occur in
response to human behavior—increases the self-reported “feeling of being looked at” over gaze
that is independent of a user’s behavior (Yoshikawa & Shinozawa, 2006; Yoshikawa, Shinozawa,
Ishiguro, Hagita, & Miyamoto, 2006).

The content of conversation influences what kind of gaze works best. In conversations about
emotionally neutral topics, robots that make eye contact are seen as more sociable and intelligent
than robots that avoid it, but this effect is reversed when the topic of conversation is embarrassing,
with eye contact avoiding robots rated more highly (Choi, Kim, & Kwak, 2013). In persuasive
conversation, natural gaze behaviors improve a robot’s persuasiveness (Ham, Cuijpers, & Cabibi-
han, 2015), even more than using expressive vocalizations (Chidambaram, Chiang, & Mutlu, 2012).
Gaze also seems to mitigate the effects of other nonverbal behaviors on persuasiveness: When per-
formed with eye gaze, persuasive gestures improve a robot’s overall persuasiveness, but when per-

39



Admoni & Scassellati, Eye Gaze in HRI

formed without eye gaze, persuasive gestures actually have the opposite effect, hindering a robot’s
persuasiveness (Ham, Cuijpers, & Cabibihan, 2015).

In multi-party conversations, robot eye gaze can influence how and when the robot or other peo-
ple take on conversational roles. Several studies have found that a robot can use gaze behaviors to
manipulate certain members of a group into taking conversational roles such as onlooker, active par-
ticipant, or listener (Kirchner, Alempijevic, & Dissanayake, 2011; Mutlu, Kanda, Forlizzi, Hodgins,
& Ishiguro, 2012; Mutlu, Shiwa, Kanda, Ishiguro, & Hagita, 2009). A robot can even use its gaze
to take on those roles itself (Matsusaka, Fujie, & Kobayashi, 2001; Matsusaka et al., 1999). Robot
gaze behaviors are successful at influencing people to conform to the intended roles as much as 97%
of the time (Mutlu, Kanda, Forlizzi, Hodgins, & Ishiguro, 2012). A virtual agent’s gaze can also
influence which participant in a multi-party conversation takes the conversational floor next, with up
to 86% effectiveness in releasing the floor to the intended speaker (Bohus & Horvitz, 2010).

Seeing an agent perform sensible eye gaze during conversation improves people’s perceptions
of that agent. When a robot is a listener in a multi-party conversation, seeing the robot track the
conversation with its gaze elicits higher evaluations of that robot’s comprehension and naturalness
than seeing the robot perform random gaze turns between speakers (Kousidis & Schlangen, 2015).
A robot that displays gaze focused on its human conversational partner but occasionally responds to
motion in the background is evaluated as more natural, human-like, and attentive than a robot that
exclusively focuses on the partner or that distributes its gaze randomly (Sorostinean, Ferland, Dang,
& Tapus, 2014). Virtual avatars that use turn taking gaze during conversations are evaluated as more
natural and more pleasant, and their conversation is rated as more engaging, than avatars that use
random gaze or no gaze in their communication (Garau, Slater, Bee, & Sasse, 2001). In an immersive
virtual reality setting, researchers confirmed that people have more positive subjective evaluations
of an agent when it performs conversationally-driven gaze than when it performs random gaze, but
that the effect depends on the agent’s appearance. More realistic avatars benefit from appropriate
conversational gaze, but low-realism avatars, such as stick figures, are adversely affected by human-
like gaze behavior (Garau et al., 2003).

5.2 Narration

Unlike conversation, narration primarily involves a single speaker. There may be a single listener
or an audience with multiple listeners. Contexts that involve narration include lecturing (as with
robot tutors providing information about a topic), storytelling (as with entertainment robots), and
presenting (as with robot tour guides that describe museum exhibits). Challenges in narration involve
ensuring information recall and directing attention to external information sources, such as exhibits
in a museum.

The type of robot gaze performed during narration can influence how much information is re-
membered by listeners. Longer participant-directed gaze from a storytelling robot leads to better
recall of story content (Mutlu, Forlizzi, & Hodgins, 2006). In contrast, virtual agent tutors that
display more gaze toward the subject matter than toward their listener generate better retention of
information (Andrist, Pejsa, Mutlu, & Gleicher, 2012a). In general, however, socially communica-
tive gaze is better for ensuring information recall than no gaze or gaze that is incongruous with
communicative goals (Huang & Mutlu, 2013). Gaze behaviors can also be combined with other so-
cially supportive behaviors, such as natural gestures and empathetic facial expressions, to improve
student performance in language learning from a robotic tutor (Saerbeck, Schut, Bartneck, & Janse,
2010).

For robot tutors, acquiring, monitoring, and maintaining user engagement are particularly im-
portant, because reduced engagement means reduced learning. Animated pedagogical agents can
use gaze to maintain student engagement during tutoring (Johnson, Rickel, & Lester, 2000). When
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diminishing attention is detected, robots (Szafir & Mutlu, 2012) and virtual tutors (D’Mello, Olney,
Williams, & Hays, 2012) can use verbal and nonverbal cues, including gaze, to restore the listener’s
attention. Reorienting student attention in response to diminished engagement increases informa-
tion recall (Szafir & Mutlu, 2012), specifically on questions that require deep reasoning (D’Mello,
Olney, Williams, & Hays, 2012).

Listener-directed robot gaze during tutoring and storytelling is correlated with positive percep-
tions of a robot. Subjective ratings of likability and other positive attributes are higher for robots
that display more affiliative gaze (that is, gaze directed at the listener) than referential gaze (An-
drist, Pejsa, Mutlu, & Gleicher, 2012a). Robots exhibiting gaze that correlates to the content of their
communication are seen as more natural and competent (Huang & Mutlu, 2013), and longer gazes
toward a listener yield greater feelings of likeability (Karreman, Sepulveda Bradford, Dijk, Lohse,
& Evers, 2013). Mutual gaze, when presented with other social behaviors like head nods and posture
mimicking, greatly improves people’s perceptions of rapport with a virtual agent (Wang & Gratch,
2010). Joint attention from a robot toward the topic of discussion is seen as more human-like than
only mutual gaze (Karreman, Sepulveda Bradford, Dijk, Lohse, & Evers, 2013).

However, there are cases in which listener-directed gaze negatively impacts people’s perceptions
of a robot or virtual agent. High levels of mutual gaze without other social behaviors can decrease
rapport with a human user to the same levels as a virtual agent specifically designed to show boredom
(Wang & Gratch, 2010). Additionally, the benefit of listener-directed gaze may be influenced by
gender; when listening to a storytelling robot, men evaluate the robot more positively when it looks
at them more frequently than at their partner, while women show the opposite effect (Mutlu, Forlizzi,
& Hodgins, 2006).

Some presentations, such as guided tours, involve narration about material that is situated ex-
ternally to the agent. Tour guide robots might present a new technology to a user (Sidner, Kidd,
Lee, & Lesh, 2004), provide route directions (Ono, Imai, & Ishiguro, 2001; Satake et al., 2010),
or give location tours of indoor spaces (Knight & Simmons, 2013). A primary challenge for this
kind of narration is to direct attention toward objects of interest in the environment, which can be
accomplished using deictic gaze, either alone or in combination with other nonverbal behaviors like
gestures (Ono, Imai, & Ishiguro, 2001).

A tour guide’s deictic gaze has a positive effect on listener engagement and attention. When a
robot uses deictic gaze in addition to spoken object references, people are more engaged, spending
more time interacting with the robot and displaying more coordinated gaze behaviors than when
the robot simply speaks without supportive gaze (Sidner, Kidd, Lee, & Lesh, 2004). When a robot
displays deictic gaze that reflects the subject of its speech, people display more nodding and mutual
gaze, signaling increased engagement, than they do when the robot’s deictic gaze occurs at ran-
dom points in its speech (Kuno et al., 2007; Yamazaki, Yamazaki, Burdelski, Kuno, & Fukushima,
2010). When listening to a robot tour guide, listener gaze directed away from the robot is often
congruent with the robot’s topic of discussion (Knight & Simmons, 2013), indicating that robots
can successfully guide listener attention to desired locations.

Tour guides can affect a listener’s experience by whether they look at the listener or at the
display. A robot that orients its body (including its eyes) toward an exhibit can more easily engage
its listeners than a robot that orients its eyes toward the audience, but people lose interest in the robot
and its narrative more often when the robot looks at the exhibit and not at its audience (Karreman,
Ludden, Dijk, & Evers, 2015). Robots can influence people’s experience of a tour by how often they
direct gaze to each listener. When a robot “favors” a person by gazing at them longer than others in
the group, that person reports greater feelings of likability toward the robot (Karreman, Septilveda
Bradford, Dijk, Lohse, & Evers, 2013).
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5.3 Collaboration

Collaboration requires communication of goals, knowledge, and intentions. For example, a robot
that helps a user construct furniture needs to express its current goals and intended action to fluidly
collaborate with a human partner. Gaze can be used to reveal these mental states to a partner in
unobtrusive ways. Collaboration often involves the physical environment, so in addition to gaze
that reveals mental states, such interactions also require gaze that references objects and physical
locations.

Revealing mental states through nonverbal communication (including eye gaze) makes cooper-
ative task performance faster, with errors detected more quickly and handled more effectively than
purely task-based nonverbal communication (Breazeal, Kidd, Thomaz, Hoffman, & Berlin, 2005).
Indicating engagement and providing feedback through subtle gaze behaviors improves performance
of a human-robot team (Jung et al., 2013). Users also report understanding the robot better during
their collaboration when it makes its mental models explicit (Breazeal, Kidd, Thomaz, Hoffman,
& Berlin, 2005). Expressive eye gaze is one behavior (among many drawn from animation princi-
ples) that can make intentions and desires more explicit, for instance, by looking at a door handle
when wanting to open a door (Takayama, Dooley, & Ju, 2011). Even when users are unaware of the
intended communication, robots can “leak” their intentions through eye gaze, influencing human
behavior in measurable ways (Mutlu, Yamaoka, Kanda, Ishiguro, & Hagita, 2009).

One part of collaboration involves referencing objects in the environment. Joint attention from
a companion robot effectively draws a user’s attention to where the robot is looking (Yonezawa,
Yamazoe, Utsumi, & Abe, 2007). Eye gaze can also act as a reinforcement of pointing gestures
(Sauppé & Mutlu, 2014). A robot can use eye gaze to support its speech in a cooperative object
selection task, in which a human user needs to select an object referenced by the robot as quickly as
possible (Admoni, Datsikas, & Scassellati, 2014; Boucher et al., 2012). People can recognize and
respond to predictive eye gaze that indicates spatial references, completing the task faster than if
they had been relying on the robot’s speech alone.

Errors in robot gaze hinder speech understanding, because people expect the robot’s gaze to
indicate what the robot intends to verbally reference (Admoni, Datsikas, & Scassellati, 2014; Huang
& Mutlu, 2012; Staudte & Crocker, 2009, 2011). For tasks that involve a light cognitive load (for
instance, selecting the object referred to by the robot as quickly as possible), people recover quickly
from errors in robot eye gaze and show no difference between incongruent gaze and having no
gaze cues at all (Admoni, Datsikas, & Scassellati, 2014; Huang & Mutlu, 2012). However, in more
cognitively demanding tasks (such as deciding whether a statement about the referenced object’s
visual features is true or false by comparing features of the referenced object to other visible objects),
incongruencies in a robot’s eye gaze and speech lead to diminished performance even over having
no gaze at all (Staudte & Crocker, 2009, 2011).

To improve collaboration, users can teach skills to robots by performing demonstrations of those
skills (Argall, Chernova, Veloso, & Browning, 2009). Robots can use gaze to establish joint attention
when learning from such demonstrations and solicit feedback when uncertainty is high (Lockerd &
Breazeal, 2004). When a robot student responds to joint attention by following the human teacher’s
gaze, it better conveys the robot’s internal states and knowledge, which leads to more efficient teach-
ing: fewer errors, faster recovery from errors, and less repetition of learned information (Huang &
Thomaz, 2011). People also rate the robot as more natural and competent at its task when it engages
in joint attention (Huang & Thomaz, 2011). People are sensitive to the robot’s mental state when
they are teaching it and will adjust their behavior (in terms of pauses, speed, and magnitude of mo-
tions) to account for the robot’s visual attention (Pitsch, Vollmer, & Miihlig, 2013). When there are
multiple robots to be taught, people are sensitive to each robot’s gaze behavior; they look longer and
are more engaged in teaching robots that actively seek mutual gaze than robots that passively follow
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the human’s attention when it shifts to the other robots (Xu, Zhang, & Yu, 2013).

5.4 Manipulation

One of the primary benefits of robots as physically embodied systems is their capability to physically
manipulate objects in their environments. Many robot manipulators are still isolated in factories or
other carefully controlled settings, but manipulation robots are increasingly required to operate in
environments inhabited by people (Kemp, Edsinger, & Torres-Jara, 2007). For example, robot care-
givers or office assistants must be able to pick up, carry, and hand over objects to assist their users.
Object handovers particularly benefit from social robot gaze, because this type of manipulation de-
pends on coordination with a partner.

While people are generally capable of performing successful handovers without much thought,
the process of handing an object to another individual employs a series of subtle but important
nonverbal cues, including eye gaze (Fig. 4). A decision tree built on empirical data of human-
human handovers reveals that joint attention (attending to the same location or object) is important
for coordinating a handover between two people, but that mutual gaze (where both people make eye
contact with each other) is not (Strabala, Lee, Dragan, Forlizzi, & Srinivasa, 2012; Strabala et al.,
2013). Robot-to-human handovers are improved when a robot monitors its partner’s eye gaze for
attention and engagement, only releasing the object when the user’s focus of attention has turned to
that object (Grigore, Eder, Pipe, Melhuish, & Leonards, 2013). In multi-party scenarios, robots can
also use eye gaze to nonverbally select a member of the crowd to whom to hand an object (Kirchner,
Alempijevic, & Dissanayake, 2011).

Gaze improves the efficiency of handovers. During a handover, people begin reaching for an
object earlier when a robot continuously looks at the projected position in space where the handover
will occur than when it looks away from that location (Moon et al., 2014). People reach for the
object even earlier when the robot continually gazes at their faces than when it looks at the handover
location (Zheng, Moon, Croft, & Meng, 2015). Gazes that transition between the user’s face and
handover location do not improve how quickly reaching begins, though people report that these
gazes communicate the handover timing more effectively than continuous gazes (Zheng, Moon,
Croft, & Meng, 2015).

Occasionally, a robot will need to direct a person’s object manipulation, for example, when re-
questing that a person move an object within the robot’s reach. Social behaviors including gaze cues
can help inform people about where and how the robot would like such assistance; for example, the
robot can look at the location to which it wants the object moved (Pandey, Ali, & Alami, 2013). This
kind of social and referential gaze may be ignored during handovers, unless the receiver has good
reason to interpret the robot’s eye gaze as intentional (Admoni, Dragan, Srinivasa, & Scassellati,
2014). By introducing a social action—a delay in releasing the object—into the handover, robots
can increase the amount of time spent looking at their gaze and user’s compliance with gaze-based
spatial references (Admoni, Dragan, Srinivasa, & Scassellati, 2014).

5.5 Expression

Robots may benefit from the ability to express personality or emotion. For example, robots engaged
in long-term interactions should have engaging personalities that keep the interactions from becom-
ing stale; entertainment and companion robots may wish to express emotions that engage their users.
Eye gaze is one way to express personality and emotion, though the challenge lies in generating the
right kind of gaze to influence this subjective judgment.

Gaze behavior—in terms of where and for how long the robot gazes—can be used to express rec-
ognizable personalities and emotions. High levels of mutual gaze express feelings of trust (Normoyle
et al., 2013) and extroversion (Andrist, Mutlu, & Tapus, 2015). Conversely, gaze aversions express
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Figure 4. Gaze is an important part of successful handovers. Where a robot looks
during a handover can influence how quickly people begin reaching for the object
(Moon et al., 2014).

feelings of distrust (Normoyle et al., 2013) and introversion (Andrist, Mutlu, & Tapus, 2015). In
animated agents, eye movement can be used to express recognizable emotions, such as joy, sad-
ness, anger, fear, disgust, and surprise (Li & Mao, 2012b). Systematically manipulating features
of gaze (such as amount of gaze, duration of gaze, and the points of fixation during gaze aversion)
yields consistent impressions of dominance and friendliness in a robot (Fukayama, Ohno, Mukawa,
Sawaki, & Hagita, 2002).

Robot expressiveness is important because it influences how people respond to the robot. Match-
ing the robot’s behavior with a user’s personality (as evaluated by a personality survey) leads to
greater motivation to engage in a repetitive task and improves subjective perceptions of a robot
during collaboration (Andrist, Mutlu, & Tapus, 2015). When people perceive a robot favorably,
they show no difference in proxemic behaviors when the robot increases its amount of mutual gaze.
However, for people who dislike the robot, an increase in the robot’s mutual gaze causes them to
physically distance themselves from the robot (Mumm & Mutlu, 2011). Interestingly, this effect of
interpersonal dynamics does not extend to psychological distancing during conversation, as mea-
sured by people’s willingness to answer a series of revealing questions (Mumm & Mutlu, 2011).

5.6 Design-focused research summary

Design-focused studies have established that robot gaze can be used to improve human-robot inter-
actions in a variety of domains. Robots can use a combination of mutual gaze and gaze aversions to
regulate pace and participation in conversations, though the right amount and direction of gaze de-
pends on the content of the conversation. Robot gaze can be used for deictic references; combining
verbal and gaze-based deictic references leads to faster task performance than conveying informa-
tion through speech alone. Robots can use their eye gaze to convey mental states, and doing so
improves cooperation and learning. Gaze can also express personality and emotion that can improve
rapport with users.

One unifying theme across these studies is that socially and contextually contingent gaze is
more effective than gaze behaviors that are uncorrelated with the interaction. People respond more
positively to robots, better remember discussion topics, and complete tasks more quickly when
the robot’s gaze is tied to what is being said or done. For example, people evaluate robots more
highly when their gaze tracks the speakers in a conversation. Gaze directed at human partners also
seems to have a positive effect on information recall and on how efficiently those partners complete
cooperative tasks like handovers.
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6. Technology-Focused Research

There are many approaches to achieving communicative social gaze from robots and virtual agents.
One approach, which is grounded in the science of human cognition, models the underlying neu-
rological or psychological processes of eye gaze (Section 6.1). The premise of this biologically
inspired approach is that mimicking biology is an effective way to generate gaze that appears natu-
ral. Another approach is driven by behavioral data, basing gaze behaviors off of empirical measure-
ments of gaze features—such as the timings, frequencies, and locations of gaze aversions—which
are recorded during observations of human interactions (Section 6.2). This data-driven approach
uses somewhat higher-level observations than the biologically inspired approach but still aims to
replicate observed human behavior. A third approach is to construct heuristic systems that are not
grounded in biological or empirical observations but (as with rules drawn from animation principles)
still appear to generate expressive gaze (Section 6.3). Some systems cut across multiple approaches,
such as a gaze model that uses observations of human behavior to derive heuristics, but in this
section, we report studies based on their primary approach.

6.1 Biologically inspired systems

Biologically inspired gaze models attempt to replicate the underlying cognitive or neurobiological
mechanisms that control gaze behavior in people. The systems in this category adhere to what we
understand of the brain’s function, though they operate at varying levels of detail. Some systems
replicate the neuron-level receptive fields in the visual cortex to perform visual attention (Itti &
Koch, 2001). Others employ a developmental approach to learning joint attention and other gaze
behaviors; developmental robotics mimics human cognitive growth by attempting to replicate the
process of human ontogenetic development (Lungarella & Metta, 2003). There is some evidence that
biologically inspired models have higher accuracies than other gaze models in predicting human-like
gaze fixations (Borji & Itti, 2013).

Many biologically inspired gaze models focus on directing attention to areas of interest in a vi-
sual scene by replicating the neurological response to those visual stimuli. These models generally
have a similar structure: They compute the saliencies of several features in parallel, then combine
these saliencies into a single saliency map (Frintrop, Rome, & Christensen, 2010). Both low-level
scene features (e.g., color, intensity, and orientation) and high-level contextual features (e.g., ob-
ject or scene recognition) are used to create saliency maps (Itti & Koch, 2001). Neurobiological
models of gaze behavior that use bottom-up saliency maps can successfully track salient targets and
perform visual search in demanding scenes (Itti & Koch, 2000), leading to realistic visual attention
behavior in virtual avatars (Itti, Dhavale, & Pighin, 2004, 2006). Adding high-level contextual or
motivational information to the low-level saliency cues enables robots to naturally direct their visual
attention based on the current task and environment (Breazeal & Scassellati, 1999a). Behavior can
be influenced by both visual and auditory saliency maps, as in an implementation of attention for the
iCub robot (Ruesch et al., 2008). Other models of overt visual attention produce head and eye turns
using dynamical neural networks that respond to visual saliency (Vijayakumar, Conradt, Shibata, &
Schaal, 2001).

Cognitive models attempt to replicate high-level human cognition, so they operate at a level of
abstraction above neuronal responses. Visual attention can be incorporated into cognitive models,
such as ACT-R, to address how people’s cognitive systems respond to environmental input (Ander-
son, Matessa, & Lebiere, 1997). For example, a computational cognitive architecture called ACT-
R/E (ACT-R with Embodiment) performs conversational tracking by switching its visual attention
to the speaker in a multi-party conversation (Trafton & Bugajska, 2008). By tightly integrating gaze
behaviors with the underlying cognitive model controlling reasoning, dialogue management, and
goals, the Rickel Gaze Model can generate real-time gaze shifts that reveal a virtual agent’s internal
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processes (Lee, Marsella, Traum, Gratch, & Lance, 2007).

Developmental models are also inspired by biology, though they attempt to replicate the higher-
level cognitive process of learning rather than the underlying neuronal structure. For example, a
computer vision model on a developmental robot uses saliency maps of the environment along with
a probabilistic algorithm that estimates a teacher’s gaze vectors to perform shared attention and gaze
imitation; shared attention and imitation are foundational skills that bootstrap cognitive learning
(Hoffman, Grimes, Shon, & Rao, 2006). A robot can develop the ability to perform joint attention
through demonstrations of attention to salient objects, much in the same way that infants acquire
this capability by interacting with their adult caregivers (Doniec, Sun, & Scassellati, 2006; Koz-
ima & Yano, 2001; Nagai, Hosoda, Morita, & Asada, 2003; Triesch, Teuscher, Dedk, & Carlson,
2006). These basic joint attention behaviors serve as the basis for learning more complex social
communication skills in a humanoid robot (Scassellati, 1999).

6.2 Data-driven systems

The data-driven approach to generating robot eye gaze takes advantage of people’s natural expres-
siveness by using quantified observations of human behavior to develop and train gaze systems.
Though these systems use empirical behavioral data, they generally do not consider the underlying
biological or cognitive mechanisms. The process of building data-driven systems generally follows
three steps: First, observations of people using eye gaze in a desired scenario (such as in conver-
sation) are collected. Second, a model of gaze behavior is developed from the gaze data in these
observations, which are acquired either by manual coding or through automated feature extraction.
Third, the behavior model is evaluated in a human-robot or human-agent interaction.

Data-driven researchers have recorded and analyzed human gaze behavior in a wide variety of
scenarios. Conversational gaze has been recorded for pairs of previously unacquainted people dis-
cussing movie preferences (Andrist, Mutlu, & Gleicher, 2013), free dialogue between two people
with various existing relationships (including hierarchical work relationships and romantic relation-
ships) (Ishi, Liu, Ishiguro, & Hagita, 2010), and in four-person conversations about controversial
topics such as “should euthanasia be legitimized” (Otsuka, Takemae, & Yamato, 2005). Obser-
vations of gaze in tutoring scenarios have been collected for student-teacher pairs covering topics
as varied as paper making (Huang & Mutlu, 2014), board games (Admoni & Scassellati, 2014),
and preparing canapés (Rich & Ponsler, 2010). Gaze data during object manipulation have been
collected for individuals constructing Lego objects (Sakita, Ogawara, Murakami, Kawamura, &
Ikeuchi, 2004).

Once the observational data are collected, they are annotated and processed to build a model
of eye gaze within the specified interaction. Some models are built to generate robot behavior
by extracting the features of gaze behaviors that achieve certain communicative functions. For
example, researchers have extracted statistical information on timings and directions of gazes in
dyadic conversations that achieve certain conversational functions, such as mediating turn-taking
and regulating intimacy (Andrist, Mutlu, & Gleicher, 2013; Pelachaud & Bilvi, 2003). Others have
identified the direction and timing of gaze during head tilts and nods in conversation (Liu, Ishi,
Ishiguro, & Hagita, 2012) or during a physical construction task in which assistance may be required
(Sakita, Ogawara, Murakami, Kawamura, & Ikeuchi, 2004). Models of gaze for narration can also
incorporate other communicative behaviors, like gesture and speech (Huang & Mutlu, 2014).

After these models are developed, researchers must test their performance. For models that
identify gaze behaviors to achieve certain communicative effects, researchers can incorporate these
models into robot behavior generation systems and evaluate them in human-robot interactions. Data-
driven gaze aversions in conversation lead to more disclosure from humans, better turn-taking reg-
ulation, and more positive subjective perceptions for virtual agents (Andrist, Mutlu, & Gleicher,
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2013) and robots (Andrist, Tan, Gleicher, & Mutlu, 2014). Gaze during head tilts and nods that is
generated according to a data-driven model increases the naturalness of a conversational robot (Liu,
Ishi, Ishiguro, & Hagita, 2012). Robots that use a data-driven model to generate gazes and gestures
during narration perform as well as robots that use hand-scripted behaviors (Huang & Mutlu, 2014).

In addition to models that generate gaze behavior, models built on gaze data can also provide in-
formation about interactions themselves, which can later be incorporated into other generative mod-
els. For example, a probabilistic model for multi-party conversation trained on gaze patterns during
human-human interactions can identify the roles of participants in a conversation (Otsuka, Take-
mae, & Yamato, 2005). A computational model trained on physical task tutoring data (constructing
canapés or teaching about tangrams) can recognize gaze-based connection events that facilitate en-
gagement between student and teacher (Holroyd, Rich, Sidner, & Ponsler, 2011; Rich & Ponsler,
2010). In a different tutoring interaction, a model of eye gaze and gesture trained with the k-nearest
neighbor algorithm can predict what type of information the speaker is trying to communicate based
on observations of nonverbal behaviors including gaze (Admoni & Scassellati, 2014). Because these
models do not generate gaze behaviors directly, they are not evaluated through human-robot inter-
actions. Instead, these models are evaluated by comparing their accuracy to ground-truth data that
is annotated by humans.

6.3 Heuristic systems

A third approach to developing gaze technology employs heuristics that lead to appropriate look-
ing behavior, regardless of actual biological function or human behavior. These heuristics allow
researchers to directly design gaze behaviors, using understanding of psychology or knowledge of
multimodal behavior, without being tied to underlying biological realities or requiring a large corpus
of observational data.

One heuristic for generating gaze behaviors is to link a robot’s gaze to its speech. By representing
each “communicative act” as comprised of a meaning (the information to transmit) and a signal (the
nonverbal expression of that meaning), gaze can be closely integrated into the content of a robot’s
speech (Poggi, Pelachaud, & De Rosis, 2000). A tool that automatically extracts syntactic and
semantic information from a typed sentence can use that information to generate appropriate gaze
behavior for a conversational virtual agent (Cassell, Vilhjdlmsson, & Bickmore, 2004).

Gaze generation based on speech may not even require semantic understanding of that speech.
Some social contexts can be extracted exclusively from the timing and structure of speech; using
this information, a robot can automatically generate natural gaze behaviors that support the intended
context without needing to understand what is being said (Murphy, Gonzales, & Srinivasan, 2011;
Srinivasan & Murphy, 2011). Even loose coordination between a robot’s head motions and the sen-
tence structure of its intended speech leads to reasonable, socially acceptable gazes in tele-operated
or Wizard of Oz settings (Srinivasan, 2014).

Another heuristic for generating gaze behavior is to respond directly to a user’s gaze. For exam-
ple, one human-aware manipulation planner for robot-to-human handovers takes into account where
people are looking to inform where the handover should take place, and then communicates the
robot’s intention to perform the handover by having the robot look at the object to be given (Sisbot
& Alami, 2012). A robot behavior system for collaboration is responsive to fine-grained, real-time
human eye movements collected with a head-mounted eye tracker (Xu, Zhang, & Yu, 2013). A
virtual agent for conversation monitors a user’s gaze to assess their level of interest and responds
with pre-specified gaze behaviors to elicit and maintain the user’s engagement (Peters, Pelachaud,
Bevacqua, Mancini, & Poggi, 2005). Gandalf, an embodied conversational agent that teaches people
about the solar system, detects users’ gaze acts and generates its own gaze in response to support
its lesson (Thérisson, 1997,7). Systems that detect and respond to eye gaze can be used to shape
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behaviors, for instance to promote social skills like joint attention to children with ASD (Bekele et
al., 2013; De Silva, Tadano, Saito, Lambacher, & Higashi, 2009).

Such responsive systems can also account for multimodal inputs that include auditory or gesture
information in addition to gaze. Combining auditory cues like sound source localization with visual
cues like face detection, one robot performs mutual gaze and joint attention with viewers while
presenting a museum exhibit (Bennewitz, Faber, Joho, Schreiber, & Behnke, 2005). Another robot
can take human gaze direction, deictic gestures, and mood into account to attend to and interact with
multiple people simultaneously (Spexard, Hanheide, & Sagerer, 2007).

A major source of heuristics for gaze behaviors is the psychology literature. Models built with
heuristics drawn from psychology do not attempt to precisely replicate known cognitive functions.
Moreover, unlike data-driven models, which observe human behavior in the precise task to be per-
formed by a robot, heuristics drawn from psychology are not specific to a single scenario. For
example, using approximate timings of face-directed and averted gaze from the psychology liter-
ature, as well as from informal observations, gaze behavior systems can support real-time conver-
sation with virtual agents (Colburn, Cohen, & Drucker, 2000), as well as expressions of emotion
and responses to environmental distractions (Gu & Badler, 2006). The Automated Visual Attend-
ing system uses rules drawn from psychology to generate attention behaviors in a virtual agent, in
which goal-oriented intentional behaviors compete with involuntary attentional responses to stimuli
(Khullar & Badler, 2001). A parametric computational model for animating gaze shifts of virtual
agents that uses features informed by neurophysiology is successful at performing gaze shifts to
peripheral targets (Andrist, Pejsa, Mutlu, & Gleicher, 2012b). Using a psychologically-based emo-
tional model called the Geneva Emotion Wheel, a virtual agent expresses primary and secondary
emotions by drawing pre-defined movement parameters for each emotional expression (Li & Mao,
2012a, 2012b). In multi-party interactions, visual attention on a very realistic humanoid robot is
driven by a context-dependent social gaze generation system that accounts for multimodal features,
such as proxemics, field of view, and verbal and nonverbal cues from the environment (Zaraki,
Mazzei, Giuliani, & De Rossi, 2014).

6.4 Tech-focused research summary

Approaches to generating social gaze in robots extend from biologically-based models to empirical
models to heuristic systems that capture high-level rules of gaze behaviors. All of these approaches
have been successful at generating gaze that improves interactions, but each of these approaches
has drawbacks as well. Which approach to use for a technology-focused contribution depends on
how important it is for gaze to be grounded in realistic behaviors versus how important it is to have
design control over the behaviors.

Biological models typically focus on the parts of the neural system psychologists understand
well, such as the visual attention system. Cognitive architectures attempt to produce more complex
gaze behavior, but the behavior emerges from the structure of the system and cannot be precisely
designed. Empirical systems require a data-collection phase that can be time consuming, but they
result in gaze behaviors that perform as well or better than hand-tuned systems. The benefit of having
gaze behaviors grounded in empirical data has to be weighed against the cost of collecting and
annotating these data. Heuristic systems allow designers to more fully specify how gaze behaviors
appear, but these designed behaviors may not correspond to the way gaze is actually used in human
interactions.

7. Open Research Questions

This section presents open research questions about social eye gaze for human-robot interaction and
discusses how each might be investigated. The first question asks how important it is for a robot
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to have physical gaze capabilities, such as independently movable eyes and dilating pupils (Section
7.1). The second question addresses the impact of social agency observed throughout studies of
gaze in HRI, particularly in differences between low-level and high-level responses to robot gaze
(Section 7.2). The third question explores how physical embodiment affects the interpretation of a
robot’s eye gaze (Section 7.3). The final question addresses how gaze can be situated as an element
of multimodal communication that includes other verbal and nonverbal behaviors (Section 7.4).

7.1 What is the role of physical capability in eye gaze for HRI?

As discussed in Section 2.1, research on gaze in HRI is conducted on robots with a range of physical
capabilities. These capabilities, which replicate the subtle effects of human gaze—such as pupil
dilation, saccades, and expressive secondary features like eyebrows—can provide additional social
cues during interaction, but they are difficult to implement on physical systems.

The role of these capabilities has not yet been fully characterized. For example, many of the
robots currently used for HRI research (such as the Nao) have fixed eyes and must move their
entire head to indicate gaze shifts (Fig. 1). Robots like Keepon take this restriction a step further,
requiring entire body shifts to indicate gaze direction. But head movements might be insufficient
to communicate more subtle or rapid gazes. There is evidence that simply estimating a person’s
head pose from an RGB-D image is not enough to reliably ascertain their gaze direction (Kennedy,
Baxter, & Belpaeme, 2015b), likely because people orient to lateral visual targets with saccades as
well as head turns (Freedman & Sparks, 2000). It is not clear what information is lost when robots
do not have the same capability of independent eye motion. However, implementing independently
articulated eyes is costly (Section 2.1), so the value of robot eye gaze capabilities has to be clear
before these capabilities are widely adopted.

Mapping gaze behavior from virtual agents, which have nearly unlimited capabilities, to physical
robots, which are constrained by hardware, is not trivial (Ruhland et al., 2015). Understanding the
effect of each capability will allow researchers to avoid over-generalizing their findings from virtual
agents to embodied robot interactions. It will also enable robot designers to selectively implement
hardware capabilities for specific effects, minimizing robot costs and complexity.

Identifying the importance of physical gaze capability for HRI is primarily a design-focused
research question, because it addresses how modifying the physical appearance and behavior of
a robot can affect interactions with people. Human-focused research may also contribute to this
question, because characterizing the role of robot gaze might involve insights into characteristics
and limits of human perception. Technology-focused research that aims to implement various gaze
capabilities (for instance, saccades or eye blinks) would enable researchers to further investigate
biologically realistic eye gaze in HRI.

7.2 What is the difference between micro-scale and macro-scale responses to robot gaze?

People’s behavior can be measured at different levels. Micro-scale behaviors, such as eye saccades
and reflexes, occur rapidly (within hundreds of milliseconds) and often over small distances (such
as tiny shifts of gaze). Macro-scale behaviors are measured over larger times and distances, for
instance, measurements of large gaze shifts for object references or observations of eye gaze over
an entire interaction.

As described in Section 4, people’s responses to robot gaze differ from their responses to human
gaze in some ways when measured on a micro time scale. For instance, robot directional gaze
does not cue the same reflexive response as human directional gaze in the first 500 milliseconds
of exposure (Admoni, Bank, Tan, & Toneva, 2011). In the moments just before naming an object,
people spend more time ensuring joint attention by looking at their partner’s face than at the object if
their partner is a robot, but more time looking at the object than at their partner’s face if their partner
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is another human (Yu, Schermerhorn, & Scheutz, 2012).

Conversely, there is much evidence that robot gaze has macro-scale behavioral effects that follow
expected patterns from human-human interactions. For instance, robot gaze modeled after human
behavior can successfully convey object references (Admoni, Datsikas, & Scassellati, 2014) and
manage conversational turn-taking (Andrist, Tan, Gleicher, & Mutlu, 2014).

Researchers do not yet understand why these differences between micro- and macro-scale re-
sponses emerge. The differences may be artifacts of the experiments, they may arise from people’s
expectations of the robot, or they may have some other cause. Investigating the source of these
differences is a human-focused research contribution that would enable researchers to develop robot
gaze that has a specific, targeted effect on human behavior.

One explanation is that environmental cues affect how people respond to robot eye gaze. Micro-
scale experiments are often well controlled because of the precision required to measure small
changes of behavior. As described in section Section 2.3, these kinds of studies have the disad-
vantage of reduced ecological validity. It may be that these artificial settings affect people’s natural
responses to robots by reducing how much importance is attributed to their eye gaze.

Another possibility is that there exists a difference in automatic versus conscious processing
of robots. People may not automatically attribute importance to robot eye gaze (as measured on
a micro level, where responses tend to be reflexive), but context and their own expectations lead
them to treat robot gaze as a meaningful stimulus when it is consciously processed (which can be
seen in macro-scale measurements). Most studies in this review operate on the macro level and find
that robot eye gaze has an effect on human behavior. In contrast, the studies described in Section
4.2 focus on either micro-scale measurements or on investigations of infant behavior, both of which
involve human responses performed rapidly and with little high-level cognitive control. On these
levels, people seem to respond to robot gaze as though it has no a priori social significance.

This automatic processing may be manipulable. In reflexive cueing experiments (Section 4), for
example, a single stimulus presented as a social image (a face) can cue reflexive attention shifts,
while the same image presented as a non-social image (a car) fails to cue these reflexive responses
(Ristic et al., 2005), just as robots failed to cue these reflexive responses in an HRI study (Admoni,
Bank, Tan, & Toneva, 2011). Does top-down context influence how people process a robot’s eye
gaze? Specifically, could people’s response to a robot’s eye gaze be changed just by whether the
experimenter indicated that the robot was a social agent?

Presently, the quantity of research on the macro-scale effects of robot gaze vastly outweighs the
quantity of research on gaze’s micro-scale effects. One reason is that measuring micro-scale effects
requires carefully controlled environments and precise sensors, while macro-scale effects can be
measured in more naturalistic settings with common tools like video cameras. Further investiga-
tions into the differences between micro-scale and macro-scale effects of robot gaze is warranted.
Understanding the disparity between these effects would involve human-focused research that in-
vestigates human cognitive processing, which could lead to both insights into human cognition and
contributions about how to design effective robots for social interaction.

7.3 Under what conditions is embodiment important for the success of a robot’s gaze behavior?

Gaze in HRI has been explored using both virtual agents and physically embodied robots (Section
2.1). By virtue of being animated, virtual agents provide hypothetically unlimited realism in their
gaze behaviors, which can be achieved, for example, by implementing complex biological models
of gaze (Ruhland et al., 2015). However, as described in Section 2.2, interactions with physically
embodied robots may result in different human performance than interactions with virtual robots or
videos of robots.

Physically embodied robots have been shown to increase cognitive learning gains (Leyzbeg,
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Spaulding, Toneva, & Scassellati, 2012) and compliance with robot instructions (Bainbridge, Hart,
Kim, & Scassellati, 2011), though this effect does not hold in all studies (Kennedy, Baxter, & Bel-
paeme, 2015a; Powers, Kiesler, Fussell, & Torrey, 2007). Robots with physically embodied, 3D
eyes, like the iCub (Metta, Sandini, Vernon, Natale, & Nori, 2008) or FACE (Zaraki, Mazzei, Giu-
liani, & De Rossi, 2014), may also offer a better view of the robot’s gaze direction, allowing people
to infer the robot’s gaze target from a range of viewing angles. However, performing social gaze
through embodied eyes must be balanced with the need to capture stable images for computer vision
algorithms. This often leads to a functional split, where robots acquire their vision from cameras
that are separate from their expressive eyes.

Though researchers have investigated the effects of physical embodiment in cognitive tasks,
there is little research on whether embodiment influences the effect of eye gaze, specifically, in
human-robot interactions. We do not yet know under what conditions, if any, physical robot em-
bodiment influences the processing of robot eye gaze. Because of this, we do not yet have evidence
that research findings about eye gaze from virtual agents can be generalized to embodied robot
interactions, and vice versa.

Questions regarding physical embodiment for gaze in HRI include: Is there a difference in the
emotional expressivity of virtual and physical eyes? Do people feel attention from virtual eyes as
they do from physically embodied eyes? Can embodied eyes communicate a robot’s internal states
through subtle cues as effectively as virtual eyes? Answers to these questions would make a design-
focused contribution to eye gaze in HRI and may reveal human-focused insights about cognitive
processing of embodied gaze.

Robots with physical embodiment but animated eyes, such as Baxter, the IROMEC robot (Fer-
rari, Robins, & Dautenhahn, 2009), and Chester (Vdzquez, Steinfeld, Hudson, & Forlizzi, 2014),
present an interesting middle ground of physical embodiment with which to evaluate these open
questions (Fig. 5). Differences in gaze effects between robots with virtual eyes and those with 3D
eyes may help identify the specific effects of physical eyes, as opposed to physical bodies, when
examining eye gaze in human-robot interactions.

One concern about virtual eyes is that flat, two-dimensional displays sometimes create a pow-
erful illusion, commonly called the “Mona Lisa effect,” that the eyes on the display are following
the viewer regardless of viewing angle (Al Moubayed, Edlund, & Beskow, 2012; Delaunay, Gre-
eff, & Belpaeme, 2010). Because gaze direction is an important indicator of attention and spatial
references, the Mona Lisa effect limits the ability for such systems to communicate. One approach
to dispel this effect is to back-project a virtual face onto a contoured three-dimensional surface
(Al Moubayed, Beskow, Skantze, & Granstrém, 2012; Delaunay, Greeff, & Belpaeme, 2009; Ku-
ratate, Matsusaka, Pierce, & Cheng, 2011). Back-projected technology provides the flexibility of
animated eyes with the appearance of a more embodied system, as described in Section 2.1.

7.4 How can eye gaze be integrated with other social behaviors?

Eye gaze is generally not produced in a vacuum. Instead, gaze often supports and augments other
social behaviors (e.g., speech and gestures). Mental states (e.g., goals or cognitive effort) can also
influence gaze. This multimodal behavior weaves a rich tapestry of social communication, and it is
important to characterize what part eye gaze plays in the whole. Many of the studies described in this
review isolated gaze behaviors in a controlled way in order to understand the specific characteristics
of gaze in a particular situation. Broader-scale investigations into the role of eye gaze as a com-
ponent of multimodal behavior will produce design- and technology-focused contributions toward
more robust behavior models capable of acting across contexts, particularly outside the controlled
laboratory environment.

Since speech is such a dominant modality in human interactions, it is difficult to separate gaze
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(a) Baxter (b) IROMEC robot (Ferrari, Robins, (c) Chester (Vazquez, Steinfeld,
& Dautenhahn, 2009) Hudson, & Forlizzi, 2014)

Figure 5. Robots with physical bodies but animated eyes provide an interesting edge
case when exploring the effects of embodiment on eye gaze in HRI (Section 7.3).

from speech in natural human-robot interactions. Researchers have shown that eye gaze improves
speech-based interactions like conversations (Section 5.1) and narration (Section 5.2) by disam-
biguating object references, guiding attention, maintaining engagement, mediating turn-taking, man-
aging partners, and many other functions. Further investigating how eye gaze and speech are linked,
and how gaze can improve natural language processing and production in robots, would create better
holistic systems for human-robot interactions.

Similarly, gaze and gestures are complementary nonverbal behaviors that often support each
other in human interactions (McNeill, 1992). Here, gestures can be considered to be the set of non-
verbal behaviors that include arm motions, body postures, proxemics, facial expressions, and other
actions produced with the body that communicate social information. Some researchers have inves-
tigated gaze and gestures in the same context (Huang & Mutlu, 2013; Mutlu, Forlizzi, & Hodgins,
2006; Sauppé & Mutlu, 2014), but further research to characterize how gaze and gestures interact
would enable richer nonverbal models of robot communication.

Gaze behavior does not just influence other communication modalities; it is also modulated itself
by cognitive processes like attention, memory, and mental effort. For example, psychologists know
that pupils will dilate with increased cognitive effort (Beatty & Lucero-Wagoner, 2000), and that
blinking is correlated with the beginning and end of information processing (Siegle, Ichikawa, &
Steinhauer, 2008). Expressive robots could take advantage of these fine-grained gaze behaviors to
convey mental states—for example, when they are thinking, when they are waiting for a response,
or when they are experiencing difficulty—in a natural and human-like way. One use case for such
expressiveness is for systems that learn from demonstration (Argall, Chernova, Veloso, & Browning,
2009). Robots that provide gaze feedback about their mental states to human tutors lead to more
efficient teaching (Section 5.3). Taking advantage of gaze as a subtle but communicative behavior
would improve learning from demonstration and other human-robot interactions.
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