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Abstract

We present a novel, sophisticated intention-based control system for a mobile robot built from an

extremely inexpensive webcam and radio-controlled toy vehicle. The system visually observes

humans participating in various playground games and infers their goals and intentions through

analyzing their spatiotemporal activity in relation to itself and each other, and then builds a coherent

narrative out of the succession of these intentional states. Starting from zero information about the

room, the rules of the games, or even which vehicle it controls, it learns rich relationships between

players, their goals and intentions, probing uncertain situations with its own behavior. The robot is

able to watch people playing various playground games, learn the roles and rules that apply to spe-

cific games, and participate in the play. The narratives it constructs capture essential information

about the observed social roles and types of activity. After watching play for a short while, the

system is able to participate appropriately in the games. We demonstrate how the system acts appro-

priately in scenarios such as chasing, follow-the-leader, and variants of tag.
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1. Introduction

Humans have a powerful ability to make sense of the world using very rudimentary sen-

sory cues. We can watch children from down the street, and know instantly whether they

are playing amicably or if we need to prepare to deal with torn jeans and tears. We can sit in

the nosebleed bleachers and enjoy a football game, even though the players are nothing

more than small colored blobs. We can navigate the house by a four-watt nightlight and

(usually) pilot automobiles through traffic in the dark and the fog. We usually can make do

with even less. Two-thirds of a century ago, Heider and Simmel found that animated boxes

on a flat white screen are enough to trigger this inference process (Heider & Simmel, 1944).
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We easily spin stories about sterile geometric shapes, assigning them intentions, personali-

ties, and goals. Given the chance, we happily take control of these nondescript avatars to

play out our own intentions and desires, whether in the context of psychological research

(Gigerenzer & Todd, 1999) or simply in relaxing video games.

Making sense of very low-context motion data is an important cognitive task that we

perform every day, an irrepressible instinct that develops quickly in children, around

the age of 9 months (Rochat, Striano, & Morgan, 2004). This low-level processing skill

is quickly followed by the development of other social skills (Csibra, Gergely, Biro,

Koos, & Brockbank, 1999), such as the attribution of agency and intentionality. It

depends on very little information from the world—so little, in fact, that we can have

some hope at designing computational processes that can manipulate the manageable

quantity of data to accomplish similar results. What’s more, this can be accomplished

quickly enough to serve as a control system for a robot, enabling us to explore the

relationship between watching a game and participating. When taking an active part,

the system can probe uncertainties in its learning, collapsing ambiguity by performing

experiments, and explore how motor control relates to social interaction (Wolpert,

Doya, & Kawato, 2003).

Our work also draws from and contributes to investigations of the fundamental cognitive

processing modules underpinning perception and interpretation of motion. These modules

appear responsible for our rapid and irresistible computation of physics-based causality

(Choi & Scholl, 2006), as well as facile, subconscious individuation of objects in motion

independently of any association with specific contextual features (Leslie, Xu, Tremoulet,

& Scholl, 1998; Mitroff & Scholl, 2004; Scholl, 2004). Furthermore, different processing

modules appear to attend to different levels of detail in a scene, including global, low-

context motion such as that used by our system (Loucks & Baldwin, 2008).

The specific analysis undertaken by our system, hypothesizing vectors of attraction and

repulsion between agents and objects in the world in order to explain the causal relation-

ships we note in an interaction, relates to the dynamics-based model of causal representation

proposed by Wolff (2007) and on Talmy’s theory of force dynamics (Talmy, 1988). As

Talmy notes, the application of force has a great impact (no pun intended) on our under-

standing of the semantics of interaction and on our ideas about causality, intention, and

influence. Humans can explain many events and interactions by invoking a folk-physics

notion of force vectors acting upon objects and agents. This holds not only for obviously

physical systems (we talk easily of how wind direction affects the motion of a sailboat), but

for social interactions as well (the presence of a policeman can be interpreted—and in fact is

described by the same vocabulary—as a force opposing our desire to jaywalk). Our system

explicitly generates these systems of forces in order to make sense of the events it witnesses.

This work represents the latest step in our efforts to model a computationally tractable

piece of human social cognition and decision making. Within the constraints of its concep-

tual framework, our robot comprises a complete functional entity, from perception to

learning to social interaction to mobility. Earlier versions of this system—lacking the ability

to participate bodily in the observed games—are fully described in Crick, Doniec, and

Scassellati (2007) and Crick and Scassellati (2008).
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2. System description

The system involves a number of interconnected pieces, depicted in Fig. 1. Each compo-

nent is described below in turn.

2.1. Vision

The system employs a simple but robust method of tracking the players as they move

through the play space. Using an inexpensive USB webcam mounted on a stand in such a

way as to provide a complete image of the floor of the room, the system uses naive back-

ground subtraction and color matching to track the brightly colored vehicles. Before play

begins, the camera captures a 640 · 480 pixel array of the unoccupied room for reference.

During a game, 15 times a second, the system examines the raster of RGB values from the

webcam and looks for the maximum red, green, and blue values that differ substantially

from the background and from the other two color channels of the same pixel. These

maximum color values are taken to be the positions within the visual field of the three

vehicles—one painted red, one blue, and one green (by design). Obviously, this is not a

general-purpose or sophisticated visual tracking algorithm, but it is sufficient to generate the

low-context percepts that are all our cognitive model requires.

Note that the camera is not overhead. The information coming to the robot is a trapezoid

with perspective foreshortening. It would be possible to perform a matrix transformation to

convert pixel positions to Cartesian geospatial ones, but our system does not go to the

computational expense of doing so. The image may be distorted, but only in a linear way,

and the vector calculations described below work the same, whether in a perspective frame

or not.

2.2. Motor control

In order not only to observe but to participate in activities, we provided our system with a

robotic avatar in the form of a $20 toy remote-controlled car (Fig. 2). By opening up the

Fig. 1. System components and information flow.
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plastic radio controller and wiring in transistors to replace the physical rocker switches that

control the car’s driving and steering, and connecting these wires to controllable voltage

pins on a computer’s serial ports, we turned the system into a high-speed (7 m/s) robot. See

Fig. 3 for wiring details.

The controller is quick and reactive. The system maintains the position history over the

previous 1
5 second—three position reports, including the current one. With this information,

it computes an average velocity vector and compares it with the intended vector given by

the own-goal system described further below. Depending on the current direction of drive

Fig. 2. The robot-controlled toy truck.

Fig. 3. Circuit diagram for computer-controlled toy car.
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and the angle of difference between the actual and intended vectors, a set of commands is

sent to the robot as shown in Fig. 4.

2.3. Reactive collision avoidance

The room’s walls obviously have an effect on the motions of the players, since their actions

are constrained by the physical dimensions of the space. We chose to deal with wall avoid-

ance in a simple fashion. If the robot approaches too near the edge of the play area, a reactive

behavior emerges that is independent of the goal state: if the robot is located within a certain

number of pixels of the edge of the play area, an emergency goal vector pointing straight out

from the wall or corner supercedes whatever the robot had been trying to do beforehand. This

danger area ranged from 30 pixels wide at the bottom of the image (closest to the camera) to

18 near the top. Interestingly, several study participants noted the robot’s ability to avoid

running into walls, claiming that the robot was a much better driver than they were!

2.4. Self-other identification

The system does not immediately know what salient object in its visual field ‘‘belongs’’

to itself. The playing area contains three different-colored toy cars, but it controls only one.

Using a technique described in Gold and Scassellati (2005) for robotic self-recognition, the

system sends out a few random motor commands and detects which of the perceived objects

responds in a correlated fashion. The system sends a brief pulse (200 ms) of the command

for ‘‘forward,’’ followed by a similar command for ‘‘back,’’ repeating as necessary. At the

Fig. 4. Robot directional control. The goal vector is compared to the computed vector of motion.
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same time, the system inspects the visual field for the positions of the three salient colorful

objects, looking for one moving predictably forward and back in time with the commands

(finding and computing the necessary motion vectors are a byproduct of the analysis

described in the next section). In this way, the system identifies itself for the duration of the

exercise. Although the process would theoretically continue for as long as necessary, we

found that throughout our experiments it never took more than one forward and reverse

command for reliable identification.

Notably, this is precisely the same procedure invariably used by the human participants,

who were each handed a remote controller without being told which of the three cars to

drive. Invariably, the participant worked the controls forward and backward, watching the

playing area to note which car acted as directed. The system has access to no privileged

information about what it sees, no more than an undergraduate test subject walking into the

lab space for the first time.

2.5. Motion vector analysis

Having determined which vehicle it is driving, the system begins to observe the behavior

of the others to begin working out the rules of the game. For each of the other two partici-

pants in the game, the system calculates the ‘‘influence’’ of the remaining players (including

itself) on the first person’s perceived two-dimensional motion, expressed as constants in a

pair of differential equations:

Vxn
i
¼

cxjðxn
j � xn

i Þ
dn
ij

þ cxkðxn
k � xn

i Þ
dn
ik

þ � � � ð1Þ

(and similarly for the y dimension). It obtains the (noisy) velocities in the x and y direction,

as well as the positions of the other vehicles, directly from the visual data:

Vxn
i
¼ xnþ1

i � xn
i

tnþ1 � tn
ð2Þ

(again, also for the y dimension). Here, Vxn
i

represents the x component of agent i’s velocity

at time n. xn
i , xn

j , and xn
k are the x coordinates of agents i, j, and k, respectively, at time n.

Likewise, dn
ij and dn

ik are the Euclidean distances between i and j or i and k at time n.

This results in an underconstrained set of equations; thus, to solve for the constants we

collect all of the data points falling within a short window of time and find a least-squares

best fit. The visual system runs at 15 Hz; we found that a window of 220 ms (about three

position reports) worked best—coincidentally near the accepted average human reaction

time (Laming, 1968).

2.6. Belief state calculation

Each constant determined by the process described above represents in some fashion the

influence of one particular player on the motion of another at a particular point in time.
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Some of these may be spurious relationships, while others capture something essential about

the motivations and intentions of the agents involved.

To determine the long-term relationships that do represent essential motivational infor-

mation, we next assemble these basic building blocks—the time-stamped pairwise constants

that describe instantaneous attraction and repulsion between each agent and object in the

room—into a probabilistic finite state automaton, each state representing a set of intentions

that extend over time. At any particular point in time, any particular agent may be attracted

or repelled or remain neutral with respect to each other object and agent in the room; this is

characterized by the pairwise constants found in the previous step. The system assumes that

the actors in the room remain in a particular intentional state as long as the pattern of

hypothesized attractions, repulsions, and neutralities remains constant, discounting noise. A

particular state, then, might be that Red is attracted by Blue and neutral toward Green, Blue

is repelled by Red and neutral toward Green, and Green is repelled by red and neutral

toward Blue. This state might occur, for instance, in the game of tag when Red is ‘‘it’’ and

has decided to chase Blue.

The system maintains an evolving set of beliefs about the intentions of the people it

observes, modeled as a probability distribution over all of these possible states. As new data

come in, the current belief distribution is adjusted, and the system assumes that the most

likely alternative reflects the current state of the game.

BelnðSÞ ¼
Beln�1ðSÞð1þ k

P
c2S sðcnÞÞ

Z
ð3Þ

Here, the belief in any particular state S at time n is the belief in that state at time n ) 1,

modified by the current observation. cn is the value at time n of one of the pairwise relation-

ship constants derived from the data in the previous step; the function s is a sign function

that returns 1 if the constant’s sign and the intention represented by the current state agree,

)1 if they disagree, and 0 if the state is neutral toward the pairwise relationship represented

by the constant. k is a ‘‘learning rate’’ constant that affects the tradeoff between the

system’s sensitivity to error and its decision-making speed. The magnitude of this factor

ranges between 0.04 and 0.12, depending on whether the system is simply observing or is

actively participating and trying out hypotheses (see the following section). Finally, Z is a

normalizing constant obtained by summing the updated belief values across all states.

2.7. Own goal determination

As the system begins to observe its human partners, it develops a belief distribution over

their possible intentional states. Because it controls a robot of its own, the system is then

able to probe the likeliest candidate states. It chooses the belief state it has rated most likely

and acts in such a way to confirm or reject the hypothesis. It adjusts its beliefs accordingly

and more decisively than if it was not participating.

For example, say that the system had the highest degree of belief in the following state:

Green was chasing Red and ignoring Blue, while Red was fleeing from both Green and
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Blue. To probe this state of affairs, the system would drive Blue toward Red. If Red contin-

ued to move away from Blue and Green did not react, the system’s degree of belief in this

state would further increase; if the other players reacted in some other way, the belief would

subside, eventually to be replaced by another belief state judged more likely.

The ability to participate in and change the course of the game is a powerful tool for effi-

cient learning. Machine learning theory is full of algorithms that perform much better when

they are allowed to pose queries, rather than simply passively receiving examples (Angluin,

1988). Our system possess an analogous ability, able to query its environment and settling

ambiguities in its beliefs by manipulating its own intentions and behaviors. At the same

time, it watches for the effects on others’ behaviors of the social forces brought into play by

its actions. We show the effectiveness of such participation below.

2.8. Narrative construction

The process described in the preceding sections converts instaneous velocity vectors

derived from somewhat noisy video into sustained beliefs about the intentional situation that

pertains during a particular phase of an interaction. As the action progresses, so too do the

system’s beliefs evolve, and as those beliefs change, the sequence of states becomes a narra-

tive describing the scenario in progress. This narrative can be analyzed statistically to iden-

tify the action in progress, differentiate it from other possible activities, and also provide the

system with clues to use in unsupervised feature detection. It can collect statistics about

which states commonly follow which others (a prerequisite for developing the ability to rec-

ognize distinct activities). And it identifies points in time where important events take place,

which will allow the system to notice information about the events themselves.

For this particular set of scenarios involving playground-like games, we set the system to

look for game rules by observing the relative positions of the participants during the crucial

moments of a belief state change, and to search for correlations between the observed dis-

tances and the particular state change. Distance is only one feature that could be considered,

of course, but it is a common-enough criterion in the world of playground games to be a rea-

sonable choice for the system to focus on. If the correlations it observes between a particular

state transition and a set of relative distances are strong enough, it will preemptively adjust

its own behavior according to the transition it has learned, thus playing the game and not

only learning it.

3. Experiments

We tested the system in a 20 · 20-foot lab space with an open floor. We ran trials on

three separate occasions, with two human subjects driving the red and green remote-

controlled cars and the system controlling the blue one. We also ran one additional control

trial with three human drivers and no robot-controlled car (Table 1). The subjects them-

selves were in the room with the vehicles, but seated against the wall behind the camera’s

field of view. Each set of trials involved different people as drivers. Data from the first
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experiment were collected during each trial; the final experiment involving modified tag

was conducted only during the last trial.

3.1. Chasing and following

The first game we tested was simple. Each player had only one unchanging goal. The dri-

ver of the red car was asked to stay as far away from the others as possible, while the green

car gave chase. In each trial, the behavior of the system was consistent. Within less than a

second, the system determined the intentional states of Green and Red with respect to each

other. It then proceeded to generate and test hypotheses regarding their intentions toward

itself, by approaching each of the two cars. Within a few seconds more, it was able to deter-

mine that Red was fleeing from both, and Green was indifferent to Blue. Since the inten-

tional state never changed, no positional information was ever recorded or analyzed.

The fact that the robot can participate in the game provides it with significant added

power to probe the players’ intentional states. For comparison, we also ran versions of the

game that involved three human drivers, relegating the robot system to the role of passive

observer. Still, the system applied the same algorithms to hypothesize the intentions of the

players, and eventually converged on a stable, correct belief state. But it took nearly four

times as long, on average: 29.3 s as opposed to 7.5.

The second game, Follow the Leader, increased the complexity somewhat. The driver of

the red car was instructed to drive wherever he or she wished, and the green car was to fol-

low but remain a foot or two away—stopping when the red car stopped, reversing if it got

too close. Success in this game came when the system understood this: It should approach

the red car from across the room, but avoid it close in. In this game, the system was only

successful in four runs of the game out of six. In both of the other two trials, it formed the

belief that the game was Chase, just as in the previous experiment, and never noticed the

change from following to ignoring or avoiding.

3.2. Tag

Having confirmed that the system was able to understand and participate in simple

games, we asked our subjects to play the somewhat more sophisticated game of tag. In pre-

vious research that involved the system merely watching people play, rather than attempting

to participate, we enjoyed a great deal of success (Crick et al., 2007; Crick & Scassellati,

2008). However, several factors conspired against us. The radio-controlled cars are not

Table 1

Results from chase and follow

No. of Games Average Time (s) r

Chase 6 7.5 1.41

Follow 4 33.5 4.66

Chase (observe) 3 29.3 10.69
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nearly as agile as actual humans, and our subject drivers had significant difficulties control-

ling the vehicles well enough to conduct the game. In addition, one of the three participants

in the game—the robot—had no idea how it should be played, and the two human players

were unable to demonstrate gameplay adequately by themselves. We asked a pair of stu-

dents unconnected to our tests to watch the videos of the tag attempts, and neither of them

was able to identify the game being played either.

Since freeform tag was too difficult for all involved, we developed rules for a tag-like

game in order to test the system’s ability to understand turn-taking and role shifts within the

context of a game. In the modified game, only one person was supposed to move at a time.

The player designated as ‘‘it’’ picked a victim, moved toward it, tagged, and retreated. Then

the new ‘‘it’’ repeated the process. In other words, we maintained the rules of tag, but

slowed down the gameplay and simplified the task of determining what each participant was

attempting to do at any particular time, by introducing turn-taking. Fig. 5 depicts a set of

stills from one of these modified tag games. A frame-by-frame description of the game is

depicted in Table 2.

At each time point, the table includes a human-constructed verbal description of the

action of the game, as well as the textual description produced by the system itself. This

comes from the robot’s own actions (which it knows absolutely and need form no beliefs

about), and its belief in the intentional states of the players during a particular narrative

episode. We can evaluate the system’s success in ascribing intentions by comparing these

human descriptions with the intentional states posited by the robot. Furthermore, we can

identify points at which the system establishes rules that coincide with human understand-

ing of the game. At the start, the robot watches the other two players each tag one another,

without participating. Then, not knowing what its own role in the game is, it begins to

move toward and away from the other players, observing their reactions. Because both of

the human players are currently ignoring the robot, these actions are inconclusive. How-

ever, by second 42, the system has accumulated enough data to know that intentional shifts

are signaled by close proximity. In the fifth frame, it recognizes the tag and reverses its

own direction at the same time. By the seventh frame, it is testing to see whether

approaching the red car will cause it to reverse course. By the end of this sequence, the

system still has not determined that there is only one player (‘‘it’’) with the chasing role,

but it is well along the way—it understands tagging and the ebb and flow of pursuit and

evasion.

4. Conclusion

Biological beings excel at making snap decisions and acting in a complex world using

noisy sensors providing information both incomplete and incorrect. In order to survive,

humans must engage and profit from not only their physical environment, but a yet-more-

complex social milieu erected on top. One of our most powerful and flexible cognitive tools

for managing this is our irrepressible drive to tell stories to ourselves and to each other. This

is true even or perhaps especially when we have only sparse information to go on. And
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beyond the telling, we take great delight in participating. We play games, we act, and the

stories we love most are the ones in which we are the central characters.

We have developed a system that takes advantage of the very fact that it receives

only rudimentary sensory impressions and uses them to weave a story in which it can

take part. The relative positions of moving objects are more than enough data for a

human observer to begin making sense of the interaction by imagining their intentions

and goals. By applying force dynamics to hypothesize about such human intentions,

Fig. 5. Succession of images from modified tag. See text and Table 2 for details.
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and by acting on those hypotheses to explore and verify its beliefs about the world, our

system attempts to do the same.

The system has to figure out for itself how its motor controls correspond to action in the

world. It theorizes about and tries to learn the intricate rules to games it knows nothing

about. The verisimilitude of the data thus collected enables us to draw stronger conclusions

with respect to real human interaction and interpretation, in contrast to data derived from

simulation or computer-mediated play. And it does it in the real world, in real time, at

human speed, using few shortcuts.
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