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Abstract— Previous research has suggested that developmental
learning can make the learning of advanced sensorimotor and
cognitive skills possible. In this paper, we demonstrate that
developmental learning based on skill progression is also more
efficient than traditional divide-and-conquer methods. Using a
model based on the skills of reaching and pointing to visual
targets, we demonstrate an implementation for a humanoid robot
that is more efficient at learning joint attention skills than other
published methods. This efficiency results from (1) a structured
set of learning tasks that progresses from low-dimensional to
high-dimensional problems and (2) a greater exploitation of the
learning environment that does not follow from the completely
task-based decomposition that divide-and-conquer provides.

I. INTRODUCTION

The word “development” has been used in computer science
with many different meanings. It can mean maturation of
sensory and motor capacities such as improvement of visual
acuity and increase of muscle strength. It is often used as a
substitute for learning of specific skills such as reaching or
walking. In this paper, we reserve the word “development”
to mean the acquisition of a progression of skills. Although
there is a great deal of variability among individual infants,
typically skills in different domains are mastered in an orderly
fashion. Infants usually learn to sit and crawl before they start
to walk. Single words are uttered before syntax and grammar
are mastered.

It has been suggested that following a developmental pro-
gression of skills might enable a robot to achieve the intel-
ligence or capabilities of an infant [1][2]. Most applications
of developmental learning in robotics focus on the learning
of individual skills. Metta et al. proposed a method to learn
visually-guided reaching by assuming that each arm con-
figuration can be decomposed into a few motor primitives
such that the total number of degrees of freedom to be
controlled are drastically reduced [3]. Schaal et al. introduced a
procedure to use imitation to jumpstart the learning of complex
movements such as a tennis swing [4][5]. Rosenstein and
Barto demonstrated that learning to use tools can be facilitated
with a structured form of reinforcement learning [6]. (Other
learning examples include [7],[8] and [9].) All of these studies
have shown that diverse, sophisticated skills can be learned by
exploiting recent findings from neurophysiology, psychology
and machine learning. However, the benefits of incremental
skill learning have not been sufficiently studied.

Incremental development of skills allows for a structured
decomposition of a complex system. Constraints based on
limited perceptual or cognitive capabilities of an infant aid in
the acquisition of complex skills simply by allowing learning
to occur first in lower-dimensional spaces. As infants master
basic skills, the already acquired skills become useful tools to
reduce the complexity of learning more complex skills. While
the efficiency of such a learning process is never questioned
within developmental psychology, computational models of
development have yet to truly demonstrate this efficacy.

While developmental learning at first glance seems to
closely resemble traditional divide-and-conquer approaches
that are well known in engineering, the subtleties of a de-
velopmental process provide benefits that exceed those of
divide-and-conquer strategies. In divide-and-conquer, a com-
plex problem is broken into a set of simpler sub-problems.
Once solutions to the sub-problems have been constructed,
these complete components are connected together (typically
in a sequential chain) to produce a solution to the larger
problem. Developmental learning differs from this process in
that (1) skills need not be learned or applied sequentially and
(2) the decomposition of subproblems can be modified at each
stage through interaction with the environment, resulting in a
set of components that on face value will not produce the
desired complex behavior but in fact will achieve that result
through interaction with the appropriate environment. (We will
return to this point in Section III.)

Empirical studies on how efficiency can be achieved through
a developmental structure are lacking. Current work focuses
primarily on uncovering useful mechanisms, such as motor
synergies and imitation, for skill learning. Breazeal has studied
the use of appropriate facial expressions to facilitate the
learning of social skills [10]. In this work, appropriate facial
expressions are considered to be innate skills and do not
require learning. In one rare example, Metta and Fitzpatrick
show that by exploiting existing motor skills, the concept of
object affordance can be learned [11]. They, however, also
have not provided data on how the developmental method
improves efficiency.

In this paper, we provide an extended example of how
developmental learning can be more powerful and efficient
than traditional divide-and-conquer methods by exploiting
already acquired skills. The following section describes a



developmental model for learning joint attention behaviors,
which allow an individual to attend to the same object as
another individual. We demonstrate how this developmental
approach allows for a faster, more efficient, and more accurate
behavior than those produced by the best divide-and-conquer
methods available. We then conclude with a discussion of
where the advantages seen in developmental learning originate.

II. AN EXTENDED EXAMPLE:
LEARNING JOINT ATTENTION

In this section, we demonstrate the implementation of a
system for joint attention which gives a humanoid robot called
Nico the ability to attend to the same object of interest as
a human caregiver. The system is constructed from a set of
basic skill behaviors that include reaching to a visual target
and pointing to a visual target. We describe first the existing
systems that have achieved reasonable results on joint attention
tasks.

A. Related Work

Reaching can be defined as the arm movement that enables
the hand or the end-effector to touch a desirable object.
Pointing is the gesture signaling ones interest in an object.
Joint attention is the process of recognizing and attending to
the object another person is looking at. While reaching can be
seen as a sensorimotor skill, pointing and joint attention are
considered to be important social skills. A typical infant starts
to reach for objects at the age of about four to five months [12].
Only at around nine months is imperative pointing exhibited,
which is not very different from a simple reach and is often
seen as an infant’s attempt to reach for an object that is too
far away from it [13]. At about six months, some infants can
identify which side of the room a caregiver is looking at.
However, they in general are not able to localize the correct
object of attention until at least six months later [14]. The
temporal order of the appearance of reaching, pointing and
joint attention means that an infant has already practiced reach-
ing for several months before it exhibits imperative pointing
and another several months have passed before reliable joint
attention is achieved. This suggests that it is possible that the
acquisition of a reaching skill may benefit the generation of a
pointing gesture, which may further facilitate the learning of
joint attention.

[15] describes a procedure by which the humanoid robot
Cog autonomously learns pointing gestures. The procedure
consists of two steps. In the first step, a mapping from the
image coordinates to the pan/tilt encoder coordinates of the
eye motors is learned. In the second step, the mapping from
the motor coordinates to the arm gestures is learned. In order
to simplify the second mapping, four specific arm positions
are selected as motor primitives and other arm positions are
represented as linear combinations of these four primitives.
The major drawback of this approach is that it requires an
artificial definition of pointing. For the sake of simplicity,
pointing is defined as the arm position that makes the arm end-
effector cover the center of the camera image when the object

of interest is foveated. A more intuitive definition of pointing
is the arm position which aligns the whole arm or at least
the lower arm to the desired object. However, this definition
requires the visual detection of the position and orientation
of the whole or at least part of the arm if pointing is to be
learned from scratch. This computer vision problem is by no
means easy to solve.

Nagai et al. have demonstrated a system for joint attention
learning by watching for the changes of the caregiver’s head
pose [16]. Whenever the caregiver moves her head, the robot
moves its head in response to look at one of the salient objects
within its field of view. The robot then assumes that the
caregiver is looking at the same object and records the position
of this object and the current head pose of the caregiver as
one training sample. Initially, object selection is random and
if there are multiple objects in the robot’s field of view, the
robot may select a different object from the one the caregiver
is looking at. Over time, object selection is gradually taken
over by a neural network which uses head pose change of
the caregiver as input. This model succeeds in learning joint
attention because the negative samples in the training set tend
to cancel each other out. Unfortunately, the convergence of the
model requires such a large number of training samples that
the effectiveness of the model can only be demonstrated by
simulation. The neural network needs more than 2·105 learning
steps to accomplish an acceptable success rate of about 80%
with three objects in the robot’s field of view. The success rate
drops substantially when the number of objects increases.

Triesch et al. have proposed a theoretical model for the
learning of the joint attention skill [17]. The model assumes
that both the infant and the caregiver are located in an idealized
grid world, where interesting objects can only exist at a
limited number of positions. In their model, the infant acquires
the gaze following skill through reinforcement learning. The
performance of this model heavily depends on the probability
of the caregiver looking at the right positions, i.e. the positions
occupied by interesting objects. Similar to Nagai’s model, the
performance of Triesch’s model also deteriorates quickly with
the total number of objects in the grid world and a large
number of training samples is required for convergence.

We believe that the disadvantages of the two aforementioned
models arise from (1) treating the robot/infant as a purely
observational agent and (2) removing the learning of joint
attention from the rich context of development. During the
time infants acquire joint attention, skills such as reaching
and pointing are already available. Instead of being passive,
infants actively explore their environments with whatever skills
available to them. In addition, infants seem to be able detect
and sometimes expect contingent responses of their caregivers
from an early age[18], [19]. We propose that active pointing
and the concept of contingency can vastly accelerate the
learning of joint attention skill. To validate this hypothesis,
we simulate an active infant with a robot that is programmed
to point to objects within its field of view and then capture
the response of its caregiver after an appropriate time delay.
In this way, the number of false samples in the training set



(a) Rest position. (b) Starting position for reaching. (c) Reaching.

(d) Elbow reaches singularity. (e) Pointing. (f) Oscillations.

Fig. 1. Pointing to a visual target. a-c: The robot first moves its arm to the starting position and then attempts to reach a specific object (the lion on the far
left). d: The elbow joints have reached their limits during reaching and are no longer used for trajectory generation afterwards. e: The robot’s arm forms a
straight line from the shoulder toward the object. f: The iterative nature of our reaching model results in some small oscillations of the end effector at the
end of the reaching movement. They are interpreted by the experiment subjects as an attempt of the robot to direct their attention to one of the objects on
the table.

can be substantially reduced.

B. Learning to Reach

We previously implemented a fast method for learning
iterative reaching through motor babbling [20][21]. In this
method, the robot randomly moves its arm and records the
position of the end-effector and the corresponding joint angles
each time. These data are used to train a neural network to
represent a forward kinematic model of the arm. The forward
model takes a joint configuration as input and produces the
corresponding end effector position. When the robot reaches
for an object it computes a local Jacobian matrix J at the cur-
rent joint configuration ∆θ using the learned forward model.
We then derive the pseudo-inverse J# of J and calculate the
joint displacement ∆θ to move the end effector closer to the
target by multiplying J# with the normalized distance vector
∆x = xobj − xee, where xobj is the object position and xee

the end-effector position. This method can be easily extended
to handle the joints in the neck and generates very natural
looking curved reaching trajectories [22].

C. From Reaching to Pointing

The aforementioned reaching model can be extended to
produce imperative pointing. It has been proposed that early
imperative pointing results from the infant being unaware of
how far it can reach; by trying to reach for an object but
ultimately failing to achieve this goal because the object is
too far away, the infant unconsciously produces a pointing
gesture [23]. In this case, the end effector has been moved as
close to the object as possible.

When an object is out of reach, it means that in order to get
as close as possible the elbow has to be fully stretched. The
reaching model described above allows this to happen, but in
the reaching mode the arm movement will be stopped when the
elbow is fully stretched. We extended the reaching model such
that after the elbow is stretched, the columns corresponding
to the two elbow joints in the local Jacobian matrix J are
deleted before J# is calculated. The iterative arm movement
is continued by simply using only the shoulder joints.

Since the iterative method used in our approach based on
learning forward model tries to minimize the distance between
the end-effector and the object, the arm will gradually move
into a straight line pointing directly at the object. (The robot
is in fact pointing from the shoulder on towards the object
although it has never been provided with the vector pointing
from the eye cameras to the shoulder. In a naive solution,
this information would be necessary in order to achieve an
accurate pointing gesture.) Without any stopping mechanism,
the discrete steps used in arm control cause some oscillations
around this perfect line of pointing. This behavior looks very
similar to the imperative pointing of an infant. Figure 1 shows
several snapshots of a pointing gesture that is used in our
experiments for joint attention learning.

It is important to note that this pointing behavior is obtained
purely by cutting out the elbow joints after it reaches singular-
ity. The development of imperative pointing happens along the
way as the robot learns how to reach, but the robot is initially
unaware of the fact that by executing a reaching movement to
an object that is too far away, the arm configuration eventually
looks like a pointing gesture.



Objects are put at predetermined
positions on the table.

Samples are used to determine the
optimal social delay (SD) by looking for
minimal head movement after pointing.

Nico looks down at the objects
to memorize their positions.

Nico looks back up at the caregiver
and starts to record video images.

Nico points its arm to a randomly
selected object on the table and

waits for 2 seconds before retracting
his arm to the rest position.

Head pose information is
extracted from the videos.

Training samples are extracted in the
form of (head pose, object position).

Nico stops recording video images. The
whole process is repeated many times.

Data Collection Phase Learning Phase

SD

Time

Head Movement

The following function for attention
focus estimation is updated:

F: head pose object position�

(a) Outline of our system for joint attention learning. After the gaze estimation function F has been
learned, the system is evaluated by estimating the caregiver’s attention focus using the trained neural
network and issuing motor commands to make the robot point to the closest object.

(b) When the robot points to one of the
objects lying in front of it, the caregiver will
very likely look at what the robot is point-
ing to. Thus, the autonomously built training
sample set contains few false samples.

(c) Output of the Watson head pose tracker
[24]. The subject is looking at an object to her
right.

Fig. 2. Outline of our system for joint attention learning, joint attention scenario, and output of the head pose tracker used.

D. From Pointing to Gaze Estimation

Once the skill of pointing has been acquired it is used
to actively learn joint attention. The robot points to draw
the caregiver’s attention toward an object and records the
caregiver’s head pose in the process. Contrary to the approach
in [16], we actively select which object to attend to and thus
have far fewer negative samples. We still might pick up false
samples when two objects are so close to each other that the
caregiver cannot distinguish which one the robot is pointing
to. But in this case the error is small and slows the learning
process only marginally.

An outline of the experiment can be seen in Figure 2(a).
The robot is presented with multiple objects lying in front of
it (six small stuffed animals are used in this experiment). The
robot first engages the caregiver by looking at him/her. The
robot then looks down at one of the objects on the table and
records its position. It then looks back at the caregiver and
starts to move its arm to point toward the object. Since we
wish to record the caregiver’s face at this point and cannot
use visual feedback for pointing, the pointing gestures have
been prerecorded for all possible object positions used in our
experiment. The robot waits for five seconds and then retracts
its arm while still recording the user. Each of these events
(arm starts moving, arm movement stops, arm is retracted) is
marked in the video. These marks are used to help determine
when the caregiver is looking at the object.

Videos of the caregiver are recorded in stereo at ten frames
per second. The video is then processed by a head pose

tracking library [24]. Output of this tracker for one of our test
subjects can be seen in Figure 2(c). Through our experiences
with Watson we have discovered that due to the lighting
condition in our lab and the image quality of the cameras we
use, the output of Watson does not always precisely describe
the head pose of the experiment subjects. But it is consistent
enough to make our learning module that associates head pose
information to object position work.

For each pointing trial, it is necessary to extract a single
head orientation that best characterizes the user looking at the
object. In order to collapse the stream of head poses into a
single value we use the social delay approach described in
[25]. It has hypothesized that in many social interactions, the
response time of an individual can be modelled by a Gaussian
distribution. To estimate the parameters of this Gaussian distri-
bution, we have analyzed our data to determine the dynamics
of joint attention. Figure 3 shows the amount of movement of
the caregiver’s head pose during one training example. There
are two peaks, namely one where the caregiver moves his head
to look at the object and one where the caregiver moves his
head back to look at the robot. To gather a heuristic for the
social delay we measure the local minimum of the motion
signal after the robot has stopped moving its arm. Because
the noise of the movement signal is high, smoothing the signal
with a box filter lowers the standard deviation. The result is
shown in Figure 3. In our experiments, the mean value of the
social delay (the difference of the time the robot’s arm stops
moving and the time corresponding to the local minimum of
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Fig. 3. Example of observed head movement during pointing. The lighter
(red) curve is the observed head movement. The darker curve has been
smoothed out with a box filter. The first peak occurs when the user shifts
his gaze to look at the object the robot is pointing to. The second peak occurs
when the user looks back at the robot.

the observed head movement) is about 2.25s with a standard
deviation of 0.7s.

Once the correct head pose corresponding to a certain object
position has been extracted the data can be used as a training
sample for the joint attention learning.

E. Evaluating the Developmental Method

In the last step of the experiment, we train and evaluate a
joint attention neural network which converts a measured head
pose of the caregiver into a motor command to fixate the distal
object of attention. The robot begins a trial by looking at the
caregiver. The arrangement of the objects in front of the robot
stays unchanged. When the caregiver looks down at any object
on the table, the perceptual system computes the head pose and
provides that value as the input to the trained joint attention
model. The model produces an estimated motor command to
fixate the object of attention. The actual motor command is
determined by selecting the object that is closest to the position
estimated by the joint attention model. The robot fixates that
object and then points toward the object to emphasize its
attention towards it. The robot succeeds in establishing joint
attention if the caregiver (when asked) indicates that the robot
is attending to the same object.

Two groups of test subjects were used. The first group
included two of the authors, who were obviously aware of
the details of the implementation. The second group consisted
of six individuals who were unfamiliar with this work. Each
subject sat in front of the robot and were told that they were
to observe the robot as if it were a small child and that the
robot would be pointing to objects in front of them. The
subjects were asked to keep their body still and to initially
look straight at the robot. (This step was necessary for the head
pose recognition software in our system to work.) They were
instructed to look at an object whenever they think the robot
is pointing to it. Since we were using head pose estimation,
we asked our subjects to move their head rather than their
eyes whenever possible, although this instruction seemed to
be unnecessary.

The same coordinate system was used to measure the object
positions on the table and the head pose of the test subjects.
It is based on the position of the eye cameras when the robot
has moved its head into the posture for video acquisition. The
origin is at the focal point of the left camera. The X-axis
points to the focal point of the right camera. The Y-axis and
Z-axis point straight down and toward the experiment subjects
respectively. The approximate X and Z coordinates (in mm)
of the objects on table in the coordinate system described
above are as follows - LL: [324, 640]T , M: [−236, 640]T , RR:
[−236, 640]T , L: [194, 460]T , R: [−126, 460]T , B: [54, 280]T .
The Y components of the object positions are all of the
same value because the table is parallel to the X-Z plane of
the coordinate system we use. The average distance of two
neighboring objects is about 250mm.

The head pose a subject maintains at the beginning of an
experiment is used by the head pose recognition system as the
reference pose. It is described as [0, 0,−1]T , which is a vector
parallel to the table and pointing toward the robot. For the
second author of this paper, we have collected 100 head poses
Pi,i=1,2,...,100 from ten video sequences and paired them with
the associated object positions Oi,i=1,2,...,100. Figure 4(a) plots
these head poses by using the first two components of Pi. (The
third components are redundant since Pi is a normalized unit
vector.) The shading of each marker indicates which object
position it is associated with. Additionally we collected 100
head poses from five different test subjects from group two.
Each of them provides 20 data points.

We use a simple Radial Basis Function Network (RBFN)
to learn the association between Pi and Oi. The two free
parameters for training a RBFN - the spread of the Gaussians
in the hidden layer and the error threshold as stopping criterion
- are determined by a simultaneous optimization procedure.
The learning performance of the RBFN is first tested on
the data collected on the same test subject shown in 4(a).
The complete data set is repeatedly split into a training set
(80 samples) and a test set (20 samples). Each training set
produces a RBFN whose performance is then checked with
the samples in the test set. The RBFN projects each head pose
vector into a position on the table. The closest object to this
position determines the class label of the sample. By using the
optimal learning parameters, a RBFN achieves on average a
90.24% recognition rate with a standard deviation of 4.99%.

We also investigated whether the model learned with the
data of one person is useful for determining the gaze direction
of other people. A RBFN was trained with the complete 100
sample set shown in 4(a). When the head poses in the same
sample set are projected into object positions on the table with
this RBFN, a better recognition rate of 93.94% is achieved.
Figure 4(b) shows these projected positions. The same coding
system is used to show the correct object association of each
projected position. If a head pose is incorrectly classified by
the RBFN, its projected position is plotted with a diamond
marker instead of a round one. The positions of toys on
the table are plotted with crosshairs. The axes of 4(a) are
arranged in such a way that toy positions in it are topologically
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(a) Head pose data of the second author (100
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(b) Projected object position data of the second
author. The RBFN used for this projection is
trained with data gathered on the same subject.
Out of one hundred samples, only six are mis-
classified.
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(c) Projected object position data of the other ex-
periment subjects. The RBFN trained on the main
test subject is tested on the hundred data samples
gathered on five other test subjects. Although the
number of misclassifications is larger, the result is
still impressive considering the variations among
the five different test subjects.

Fig. 4. Head pose data for the second author (a) and head poses projected by a trained RBFN into object positions on the table (b & c). The object position
each head pose is associated with is indicated with the gray level of the marker. For b & c diamond markers represent misclassifications and the positions of
the original six toys on the table are presented with crosshairs.
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Fig. 5. Quantitative comparison between different joint attention models.
The system presented in the paper is designated “Nico” after the name of our
humanoid robot.

consistent with those perceived by test subjects. When the
same network is used on the head poses on the second
data set, which consists of mixed data from different test
subjects, a recognition rate of 73.74% is achieved. 4(c) shows
these projected positions. This lower recognition rate is partly
caused by test subjects maintaining different distances to the
robot and variations in their initial head poses towards the
robot. Also, although the test subjects are instructed to use
head pose change to indicate where they are looking at, some
did use more eye movements than the others. (Note that a
mapping that assigns a random class label to a head pose will
only lead to a recognition rate of only 16.66%.)

Both the individual components of this system and the
overall success of the joint attention behavior outperform
other published work in this area. With similar accuracy, our
developmental method for learning to point succeeded using
only 120 learning samples compared to 2000 samples used in
[15]. The developmental joint attention method required only
220 samples total (including samples for learning pointing)
compared to 10,000 samples in Triesch’s method [17] and
200,000 samples in Nagai’s approach [16] (see Figure 5).

III. DISCUSSION

Why did the developmental method work so well? Similar to
a pure engineering divide-and-conquer approach, we have split
the main problem into simpler modules and assembled those
together. However, rather than following a purely task-driven
decomposition, the developmental model allows us to exploit
the nature of the environment and the capabilities afforded
by the more basic skills to modify the learning problem.
In this example, we first developed a pointing skill which
allowed us to designate objects of interest in the environment,
effectively changing the problem from one of recovering
the underlying statistical distribution of gaze locations that
Triesh and Nagai’s methods both exploit into a method for
self-generating appropriately labeled training data. While this
change does require the construction of the basic skills of
reaching and pointing (which neither alternate model requires),
this change in the nature of the learning problem results in
two orders of magnitude fewer training examples. While the
amount of training is only one measurement of the efficiency
of the system, if you consider that the methods of Nagai
and Triesch both require hand-labeled training examples, it
is obvious that this difference results in an overall decrease in
the amount of human intervention and effort required.

It is important to see that this advantage does not simply
derive from splitting the problem into two or a simple as-
sumption about the environment. Instead we use the fact, that
by first learning one skill we can use this skill to influence
our environment and thus facilitate the development of another
skill. In fact we can even sometimes directly develop one skill
from another as in the case of developing a pointing skill from
the reaching skill, which is the third key issue exploited in
developmental learning.

The solutions presented here outperform monolithic ap-
proaches to the same problems both in quality (our pointing is
view independent) and quantity (both our examples needed far



fewer samples then monolithic solutions). Both our solution
and that of Nagai are real world models whereas Triesch’s
model assumes a discrete world. While both Nagai’s and
Triesch’s solutions require a certain amount of off-line work,
e.g. manual labeling of the samples, our system works on-line.
In addition, our model can be applied across subjects (learned
on one subject and tested on the other) with a recognition rate
of 73.4%. Nagai’s solution has not been cross-subject tested
and Triesch’s solution does not distinguish between subjects
(agents).

It is unlikely that this magnitude of a change in efficiency
can be achieved on any arbitrary task. It is also unclear
how to properly identify which tasks can benefit from a
developmental methodology. However, we have demonstrated
that the overall increase in efficiency may be sufficient to
warrant some exploration.
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