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Abstract

Knowledge of the time delay between a robotic action and
the reaction in the environment can be used to perform self-
recognition and possibly identify other social agents in the
environment as well. We describe a self-recognition sys-
tem that uses timing information to identify self-generated
motion and describe how this method might be extended to
identify nonmoving parts of the robot. In addition, we show
that our means of self-recognition can be applied to mirror
self-recognition. Finally, we describe our plans to use con-
tingency to identify other agents in the environment, using a
method similar to that employed for self-recognition.

Introduction
The ability to act upon the world provides a strong advan-
tage in learning about it. Paul Fitzpatrick, for instance, has
recently shown that a robot can learn a great deal of infor-
mation about an object by reaching out and giving it a push
(2003). In that work, the robot had to first find its own end-
effector in the visual field, and it did this by moving its hand
back and forth for a moment; the resulting motion identified
which object in the scene was the robot.

In that study, this hand-waving behavior was a hard-coded
action, performed before each trial to get a fix on the robot’s
hand; it was not a focus of the research itself. Nevertheless,
temporal correlations such as this one may be of fundamen-
tal importance in learning about the self and others. While
other recent robotics research on learning about the self has
focused on the temporally invariant visual properties of the
body (Yoshikawa et al. 2004b), a more general heuristic
might be that the physical self is defined in two ways: that
which can be immediately controlled, and that which can ex-
perience sensations. We shall focus on the former property
here, though another group is making progress on the latter
(Yoshikawa, Hosoda, and Asada 2004a).

When a robot acts and senses a response, the promptness
of that response should indicate what kind of entity made it.
If the response is nearly immediate, it is most likely sensing
its own effectors, or (in the case of head movement) a per-
ceptual change resulting from its action. If the response is
delayed, or if it continues for a bit after the agent has stopped
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acting, the agent may be sensing a result in the environment
of its action – for example, a ball the robot has dropped will
continue to fall. If the response is delayed still further, the
entity is likely to be a social agent. Humans can be shown to
apply this heuristic subconsciously: when watching a movie
of one circle rolling up to another, the delay between contact
and the second circle rolling away dictates whether the sec-
ond circle is seen as self-propelled (Michotte 1963). Thus,
using the time delay between action and reaction is not a
method specific to self-recognition, but a general means of
structuring knowledge about a dynamic world.

The Yale Social Robotics Lab has begun work on a robotic
time-delay-based system for recognizing and learning about
the self and others. This work is being developed on Nico,
an infant-like humanoid robot. Nico learns through exper-
imentation to expect motion in its visual field within a cer-
tain time window after initiating an arm motor movement.
Because we hope to understand how self-recognition could
work in the absence of a priori knowledge of the body, the
method does not make use of a kinematic model – though
Nico may later learn such a model through experimentation.
This absence of a kinematic model has the advantage that
Nico can recognize self-generated motion in an unfamiliar
context. For instance, when a mirror is placed in front of
Nico, Nico can recognize the reflection of its self-generated
motion in the mirror as easily as it can find its real end-
effector.

Our research is novel in that it is able to recognize mov-
ing parts belonging to the robot in the visual field even in
the presence of distractors. Similar systems have either
assumed the absence of distractors (Chella, Frixione, and
Gaglio 2003), made cause-and-effect predictions in a sim-
pler sensory domain (Provost, Beeson, and Kuipers 2001),
or assumed that the robot’s form was static against a chang-
ing background (Yoshikawa et al. 2004b). Each of these
systems is powerful in its own domain; however, none has
solved the general problem of learning to recognize the
robot’s own moving parts in a real-world environment with
distractors.

Below, we summarize our results so far and planned ex-
tensions in the domain of self-recognition, as well as our
plans to employ a similar system for social agent recogni-
tion.



Figure 1: Line drawing of the robot’s current mechanical
design.

The Robot Platform
Our robot, Nico, is an upper-torso humanoid designed to re-
semble a one-year-old infant in both physical appearance
and cognitive abilities. Still in development, it will serve
as a robotic test-bed for theories of human social learning.
Fig. 1 shows an outline of the current physical design.

Nico’s active vision head accomodates two miniature
CCD cameras for each eye, providing both wide and nar-
row fields of view, thus approximating foveate stereo vision
in humans. For the evaluation purposes of this paper, we
used the wide field of view cameras, although our approach
is independent of the particular camera or lens characteris-
tics. Overall, the head-neck assembly (shown in Fig. 2) has
seven degrees of freedom (DOFs). Both eyes are equally
affected by all head and neck movement, except for an addi-
tional degree of yaw that can be independently specified for
each eye, implementing eye vergence.

Nico’s six DOF arm is driven by miniature DC motors
and can be maneuvered through the entirety of the robot’s
field of view and beyond. For our experiments, all arm joint
movement was constrained to a set of angles that forced the
arm to remain in the field of view at all times.

All vision processing and motor control is accomplished
by a cluster of 16 processors running the QNX Neutrino
RTOS connected by a 100Mbit switch. Communication and
data transfer between nodes proceeds through a port-based
interface, essentially implementing concurrency-safe shared
memory between processors. Four frame grabbers acquire
320×240 pixel frames at 30Hz from the cameras. Subse-
quent vision processing takes place at 15Hz.

Figure 2: The robot’s head-neck assembly, housing a four
camera vision system (center, left) and providing a total of 7
degrees of freedom.

Scene data captured by the cameras passes several stages
of visual and attentive processing before it can act as input to
the motion delay learning module. Fig. 3 gives an overview.

First, the intrinsic and extrinsic camera parameters are
used to undistort the camera image to yield a straight view of
the scene. The calibration process needs to be executed only
once after the cameras are fixed to their mounts and involves
moving and tilting a checkerboard pattern around in front of
the robot. Afterwards, a look-up table is used to undistort
the incoming video stream on-the-fly.

A motion module performs image differencing on sub-
sequent frames of the undistorted image stream to deter-
mine areas of motion. Incoming images are stored in a
ring of three buffers: one for the current imageI0, one
for the previous imageI1, and one for receiving new in-
put. The module calculates a thresholded absolute value of
the difference between the grayscale values in each image
(Iraw = T (|I0 − I1|)). It thus computes a raw monochro-
matic motion saliency map, with brighter pixels correspond-
ing to more perceived motion.

The saliency map is passed to a module implementing a
model of pre-attentive vision (PAV) in humans. It identifies
regions of interest from saliency maps computed by a range
of vision processors including color, face, skin and motion
detectors. PAV computes an overall saliency map from the
weighted sum of the individual maps, with weights being
determined by the robot’s current attentive configuration. In
our experiments, the motion module was the sole contributor
to the final saliency map. PAV tags the pixels of each indi-
vidual region of interest with a unique identifier and places
them within a bounding box. This process is repeated for
each frame.

The final stage of processing consists of a memory mod-
ule implementing simple object permanence. It associates
bounded regions of motion across subsequent frames by
comparing their shape and location. If two regions are suffi-
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Figure 3: Visual and attentive processing preceding the delay learning stage. A separate processing flow is associated with each
eye.

ciently similar, they are considered as corresponding to the
same moving object and given the same object identifier.

The ultimate output of vision and attention processing
thus consists of a set of moving objects, defined by bound-
ing boxes with associated information such as extents and
centroid. Each possesses a numerical identifier that can be
used to keep track of the object as the motion proceeds.

Self-Recognition

In the visual domain, Nico learns to recognize self-generated
motion by making random arm movements when left alone.
For each arm movement, an event clock is initialized to 0
when the motor command is sent. When visual feedback
is received in the form of a new motion bounding box, that
time is recorded ast1. (The times are recorded with QNX’s
realtime clock, which provides temporal resolution on the
order of nanoseconds.) This behavior eventually produces
a range of acceptable onset times of self-generated motion,
[t1min, t1max].

Though perfect perception would allow us to use this
range directly, in practice it is possible to generate values
of t1 that are either too small, in the case of camera noise
detected as motion, or too large, in the case of subtle wrist
movements that do not generate sufficient motion to be de-
tected at a reasonable time. For this reason, Nico keeps only
the middle 95% of thet1 values generated. This means that
the aforementioned subtle movements may not be labeled
accurately at test time – but this tradeoff is necessary to keep
the time window meaningful with the introduction of dis-
tractors.

Fig. 4 shows how the learned bounds on the characteris-
tic time delay evolve as training data is acquired. The time
window defined by the bounds gradually expands, changing
only minimally after around 20 delay measurements. We
found that after approximately 2 minutes of training, fur-
ther changes in the learned delay bounds were negligible.
Note, however, that the perceptual loop does not function as
quickly as that of a human; the averaget1 hovers around 600
milliseconds. Nor is the detection of motion nearly as con-
sistent, as the range oft1 values produced is almost 400ms.
These facts suggest the need for caution in applying our in-
tuitions about human perception to the problem of robotic
self-recognition.

Figure 4: Evolution of the learned bounds on the self-
recognition time window.

Once thet1 window is established, it can be used to iden-
tify self-generated motion. Motion bounding boxes that
first appear within the specified time window are labeled
as “self”, with the corresponding pixels indicated in bright
green in the image output. An example of a successfully
labeled image is shown in Fig. 5.

Currently, the system performs moderately well in the
presence of distractors. To evaluate recognition accuracy in
the presence of human-induced motion in the visual scene,
we instructed an independent subject to immediately shake
her hand in front of Nico in response to Nico’s movement
(Fig. 6). Out of 44 trials of this, some part of the subject’s
hand was mislabeled as self-motion only 15 times, yielding
a 34% false-positive rate even under these strenuous circum-
stances. These results are probably not quite as good as pre-
viously reported for this method (Michel et al. 2004) on ac-
count of the use of an independent subject, who eliminated
experimenter bias in the timing of the wave.

Much of the error and variability in thet1 window can be
attributed to the inherent noisiness of the motion data. Be-
cause optical flow methods are slow, we used simple thresh-
olded image-differencing to obtain the locations of pixels
where motion occurred. This means that motion was gen-
erally detected only at the edges of Nico’s arm, where the
differences between frames were greatest. If Nico’s black
arm passed in front of a dark shadow, some motion might
be thresholded away entirely. Thus, the motion boxes are



(a) First person view of the test condition with
the distractor. Only the robot’s motion is la-
beled as ‘self’.

(b) Motion module output under the same
conditions. Both the human hand and the
robot arm are moving, but only the robot’s
motion satisfies the learned time delay (robot
arm highlighted green, hand remains white).

Figure 6: Simple self-other discrimination. A human distractor attempts to cause the classifier to falsely mark his motion as
resulting from the robot’s arm movement.

Figure 5: Output from the self-motion classifier, overlaid
onto the visual input from one eye. All salient pixels from a
moving object identified as ‘self’ are highlighted.

a somewhat unstable foundation for self-identification. An
underlying object model with which the various motion
patches could be associated would greatly increase the re-
liability of the method.

Extensions to Self-Recognition
Now that we have a way of creating bounding boxes around
self-generated motion, we can begin to extract properties
about the self. The most obvious is color; by recording the
pixel values within the general outlines provided by the mo-
tion module, we can generate a color histogram for the self.
Region-growing should then provide a more stable referent
for the arm than the motion bounding boxes, allowing us to
refine thet1 window further.

A stable referent for the arm will also allow us to learn its
kinematics. Another member of our lab has implemented a

system that learns a forward kinematic model, given a salient
end-effector that the system can track (Sun and Scassellati
2004). Ideally, we would like that end-effector’s appearance
to be learned, rather than given a priori.

The condition that the arm begin its motion from within
the field of view is somewhat restrictive, since Nico’s periph-
eral vision is not as good as that of a human. This require-
ment could be relaxed if the robot learned to look first to its
arm’s natural rest pose, which it could do by finding a neck
position for which the arm’s time delayt1 is minimized.

Introducing the neck motors brings up the question of how
the robot would distinguish viewpoint changes caused by
head turns from genuine self-motion. A fully satisfactory so-
lution would require pulling the time delay method out of the
low-level visual domain, and into an object model space that
is left unchanged by viewpoint rotations. Changes in such
a space that are contingent on the robot’s motor commands
could then be accurately labeled as “self.” It is an interesting
question as to how much a priori knowledge would actually
be necessary to build such a space. Meanwhile, the question
can be skirted by assuming a priori knowledge of which mo-
tors are viewpoint-changing; the human ocular system takes
a similar approach in masking motion generated by saccades
(Hubel 1995).

Finally, an ability to grow the self-label to nonmoving
parts would allow Nico to recognize its whole image in
the mirror. Currently, Nico would not be able to pass the
“mirror test” performed on chimpanzees (Gallup, Anderson,
and Shillito 2002) and infants (Rochat and Striano 2002) to
ascertain self-awareness, because Nico only labels its cur-
rently moving parts as “self” (Fig. 7). Extending the self-
label to the entirety of its body would allow Nico to associate
self-touch with the self-image in the mirror, possibly using
a method similar to that described in (Yoshikawa, Hosoda,



Figure 7: Nico recognizes self-motion in a mirror.

and Asada 2004) for non-reflected self images.

Social Agent Recognition
Since gestures are not reliably produced in social interac-
tions, it may prove difficult to use motion information to es-
tablish a time window for identifying social agents. Thus,
vocalizations may be a more effective means of learning
about other social agents.

Long before infants are able to make meaningful gestures,
they are able to elicit a social signal by crying. We believe
that in addition to signaling hunger or unhappiness, crying
may be a means of sending a signal that elicits a social re-
sponse, thus allowing the infant to learn about social beings.
By remembering the visual properties of a caregiver sum-
moned by vocalization, infants may in this way gain their
first knowledge of the properties of other social beings. In
the coming months, we will implement this behavior on
Nico to determine what sorts of properties about the care-
giver can be reliably learned through crying to get attention.

Moreover, we may be able to apply our method of
learning a specific time window to the vocal domain as
well. Javier Movellan has demonstrated a method (Movel-
lan 2004) by which a robotic entity can ascertain through
vocalizations whether it is interacting with a human contin-
gently. Like our work, it categorizes input occuring within
a first time interval as ”self” – in this case, the robot’s own
vocalization – and that occuring within a second window
as indicating a contingent response. His method relies on
a priori assumptions about the timing and duration of the
relevant time windows and the probability distributions as-
sociated with them; we would like to determine with what
degree of accuracy this kind of model can be learned from
experience, and whether it can aid in identifying agents in
the visual field through sound localization.

Conclusions
Our results suggest that using a learned time delay is a
promising method for identifying extensions of the self in
the visual field. It has the advantages of versatility and con-
ceptual simplicity, extending naturally to identifying reflec-
tions as well. In the coming months, we hope to determine

how reliably other visual properties of the self can be ex-
tracted using this basic timing information.

We expect that a robust method of visually recognizing
the robot’s own physical presence will play a significant
role in providing the humanoid with perceptually grounded
meanings for such difficult linguistic concepts as “I” and
“you”. The grounding of abstract symbols and predicates in
sensory data is known as the anchoring problem (Coradeschi
and Saffiotti 2000). Most anchoring research has focused on
anchoring objects external to the robot; and indeed, in many
applications the robot has no need of an explicit concept of
“self”. However, social interactions make heavy use of the
concepts of “I” and “you”, making the ability to symboli-
cally reason about these concepts desirable.

By associating a second characteristic time window with
humans’ reactions to its movements, Nico could also learn
to distinguish between individuals in the room who are ac-
tively engaging him socially and those who are not. Such
information would be useful in directing attention in social
situations, and might serve as a primitive in learning the so-
cial concepts of “self” and “other”. Furthermore, the abil-
ity to recognize socially responsive agents might allow the
robot to attribute intents, beliefs and goals to the agent’s ac-
tions, thus providing a first crucial step towards a robotic
theory of mind.
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