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Abstract

The ability to identify the self in a mirror reflec-
tion and the ability to use the word “I” effectively
are commonly seen as major milestones in a human
infant’s development of a concept of self. In addi-
tion, deictic pronouns such as “I” and “you” present
a technical challenge to computational methods for
grounded word learning, which have commonly as-
sociated word definitions with sensory patterns in-
stead of pragmatic roles. Here, a robot learns the
usage of the words “I” and “you” by observing oth-
ers playing a game of catch, then correctly uses the
terms to refer to its mirror image and to a conversa-
tional partner, respectively. Word learning occurs by
using already understood words (“got the ball”) to
infer the referents of spoken sentences. The proper-
ties of those referents, including the conversational
roles of “speaker” and “addressee” as well as prop-
erties unique to each person, are then associated with
the unknown words, and the significance of these
associations ranked via chi-square tests. After suf-
ficient observation of others using “I” and “you,”
the robot’s own usage is correct without any need
for supervised learning. To achieve mirror self-
recognition, the robot uses the timing of the visual
feedback that results from its arm’s movement. The
part of the image that is labeled as “self” is then
treated as the robot’s location in the image for the
purpose of responding to the command, “Say who
got the ball.”

1. Introduction

In human development, there are two major milestones asso-
ciated with the ability to reason about the self. The first is the
ability to correctly answer the question, “Who’s that in the
mirror?” This ability typically does not develop until about
two years of age (Amsterdam, 1972). Since answering this
question requires the ability to use language, which may be
distinct from self-recognition, a second measure called “the
mirror test” was devised for chimpanzees (Gallup, 1970)
and later adapted to human infants (Amsterdam, 1972).

Typically, a mark that the subject cannot feel or see di-
rectly is applied to the subject while the subject is uncon-
scious. Upon waking, its behavior in front of a mirror is
observed. If the subject uses the mirror to direct its hands
toward the mark, it is said to be “self-aware” by the stan-
dards of the mirror test. Since the test’s conception, the list
of organisms that succeed in recognizing themselves in the
mirror has grown to include chimpanzees, orangutans, and
bonobos (Gallup et al., 2002); human infants beginning at
18 months (Amsterdam, 1972); and, in modified form, dol-
phins (Reiss and Marino, 2001).

Because of the rarity of animal species that can pass
the mirror test, some researchers have concluded that a
broad range of intelligent capabilities, particularly social
understanding, are necessary to accomplish mirror self-
recognition (Gallup et al., 2002). But this assumption has
never been rigorously tested. It has also been unclear just
how broad the divide is between being able to find a mark in
a mirror, and being able to learn the word “I” and apply it to
the mirror image.

Building a robot that can learn to identify its mirror im-
age as “I” can address these questions, while also providing
insight into how we should be building intelligent robots.
Some of the difficult aspects of the mirror test are also dif-
ficult for modern robots. Identifying the robot’s own body
parts when they are seen in an unexpected place is impos-
sible for any robot with a preprogrammed kinematic model
that tells it where to look for visual feedback. Learning that
the word “I” refers to the speaker in general, and that it only
refers to the robot when it is the speaker, is impossible for a
robot that can only associate words with visual images. By
reverse-engineering how humans learn to identify their mir-
ror image as “I,” we can potentially get a glimpse of some
useful principles of human intelligence.

This paper describes a robot that uses only a few prepro-
grammed assumptions to come to the conclusion that its mir-
ror image should be called “I.” By combining our previous
work on learning the meanings of the words “I” and “you”
through observation (Gold and Scassellati, 2006b) with a
module that learns to classify movement in the visual field as
self-generated (Michel et al., 2004), the robot can achievea
task that it could not perform using either module separately:



the robot refers to its mirror image as “I,” without ever being
explicitly trained to do so.

Indeed, the only training required is for the robot to ob-
serve the motion of its hand for a brief while, to learn when
to expect visual self-feedback, and for the robot to observe
two people tossing a ball back and forth saying “I got the
ball” and “you got the ball” as appropriate. From these, the
robot concludes that “I” refers to the speaker, “you” refers
to the addressee, and that motion occurring roughly 500 ms
after it sends a motor command is most likely itself. When
it sees its ball in the mirror next to its reflection, the robot
can then move, see that the reflection moved, identify the re-
flection as itself, conclude that the best word to refer to the
reflection is “I,” and say, “I got the ball.”

2. Prior Work

The learning of “I” and “you” described here
was originally inspired by a system presented in
(Oshima-Takane et al., 1999), which learned in simu-
lation that “I” referred to the speaker and “you” referred
to the addressee. That neural network did not address the
problem of how the system identified who a statement was
about; the referent of the target word was given directly
as an integer to the system. It also did not address the
problem of word learning in the context of more than these
two words, which made the interpretation of the results
somewhat more difficult. Nevertheless, Oshima-Takane’s
work showing that these words are not learned through one-
on-one interaction, but by observing complete conversations
(Oshima-Takane, 1992, Oshima-Takane et al., 1996) has
been valuable in designing our “I” and “you” learning
system (Gold and Scassellati, 2006b). The chi-square test
has been used previously to find statistically significant
collocations of words in text (Manning and Schütze, 1999),
as well as to compute distance measures on image proper-
ties (Steels and Kaplan, 2002), but we know of no previous
system to use chi-square tests to rank word-property
associations in the manner presented here.

Our motion-based self-recognition module was origi-
nally presented in (Michel et al., 2004). The idea of using
feedback time to find the self has been presented before
(Fitzpatrick, 2003), but always in conjunction with some
other kinematic model that would learn a specific expected
location for the robot’s manipulator, then be unable to deal
with the fact that the mirror image was not where it expected
it to be.

Though other work has hard-coded the understand-
ing of deictic pronouns such as “my” and “your”
(Roy et al., 2004), that work did not present an approach
to learning these words. The same lab has also performed
a great deal of work on associating words with sensory
properties (Roy and Pentland, 2002), but not conversational
roles or similarly abstract properties.

This is our first paper to combine our self-recognition
module and language-learning module to produce a robot
that can produce utterances about itself, rather than merely
interpreting the statements of others. It is also our first to

Figure 1: Nico, the physical robot that performed the self-
recognition task.

Figure 2: Processing pipelines for video (top) and audio (bot-
tom). Modules that detect patches of bright color, faces, and self-
generated motion work in parallel to provide the world modelwith
labels for image regions. The self-recognition module alsogener-
ates motor commands, using the timing of visual feedback to iden-
tify regions of the image under the robot’s own control. Audio is
localized using the timing difference between the two microphone
channels, then passed to speech recognition software. Oncecon-
verted to text, the recognized speech is compared to the sensed
environment to ground word meanings. If the recognized speech
is found to be a command asking for information, the word learn-
ing module accesses word definitions and chooses a word that best
matches the model for output.

add a representation of the robot itself to the word-learning
environment, along with the ability to recognize when the
robot is assuming the role of speaker or addressee.

3. Methods

3.1 Robotic Architecture

The robot Nico (Figure 1) consists of a 3 DOF eye assem-
bly that controls a wide and narrow field-of-view CCD cam-
era for each eye, a 4 DOF neck, and a six DOF arm and
hand assembly, all connected via serial cables to a rack of
16 processors running the QNX Neutrino operating system.
Typically one processing module runs on each node. The
nodes are physically connected via Ethernet cable and a 100
Mbit switch, while in software different modules commu-
nicate via a socket-like communications system that allows
either blocking or nonblocking reads by multiple consumer
processes from the same producer process.

Visual information is sent from the cameras and pro-



cessed at a rate of 30 frames per second. This information
is then sent down three different pathways for processing.
One pathway finds faces using the Intel OpenCV vision li-
brary, which in turn uses the boosted pattern-finding algo-
rithm of (Viola and Jones, 2004) to accomplish face detec-
tion at a rate of about 1 FPS. A second pathway detects
motion by finding absolute pixel differences from frame-
to-frame, then performs smoothing and region-growing on
these areas to create bounding boxes around areas of mo-
tion. A third pathway finds regions of high color saturation,
which are smoothed and boxed in a manner similar to the
motion module. (See Figure 2.)

The motion bounding boxes are filtered through a self-
recognition module, which finds motion that coincides with
the robot’s motor commands. Then all three kinds of bound-
ing boxes – faces, color, and motion – are passed to the
world model, a simple two-dimensional representation of
the world consisting of boxes in the visual field. Faces and
self-labeled motion are treated as agents, while the color
boxes are treated as objects that agents can “possess” by be-
ing closest to them.

This state of the world is sent over a wireless TCP/IP
connection to a Windows laptop, where speech processing
takes place using the Sphinx 4 speech recognition system
(Walker et al., 2004). Audio is captured on the laptop using
a powered dual-channel microphone; the individual left and
right receivers were placed roughly one foot apart and three
feet in front of the robot, so as to reduce motor noise. Crude
localization, consisting of merely a “left” or “right” judg-
ment, was performed by noting which channel registered the
sound wave first. In this way, the statements interpreted via
the Sphinx speech recognition system could be attributed to
the agents in the visual field.

Speaker-independent speech recognition in Sphinx 4
is accomplished using a trained Hidden Markov model
(HMM) that uses an established vocabulary to help drive
phonological judgments. In this case, a simple context-free
grammar (CFG) was used to make word decisions:

<utterance> = <subj> <verb> <obj>
<subj> = I | you | Alice | Bob | (say who)
<verb> = got | caught
<obj> = it | the ball

The state of the world, the incoming recognized language,
and its speaker are then combined in the word-learning step,
described below.

3.2 Word Learning

The word learning system relies on sentence context and
previously understood words to learn the meanings of “I”
and “you.” On hearing a sentence, the system finds all al-
ready understood words in the sentence. It then searches the
physical environment for agents that possess those proper-
ties. All unknown words in the sentence then become more
strongly statistically associated with only the properties of
those agents.

Properties of agents are modeled as Boolean vari-
ables, calculated deterministically by earlier modules inthe
pipeline. Property types can include actions (“speaking”),
being the target of an action (“addressee,” the target of a
“speaking” action), unique identifiers, or other perceptual
properties.

Grammatical parsing has not been implemented; thus,
sentences are treated as simple collections of words. When
a sentence is heard, each word for which an association has
been learned with confidence adds its associated property to
a list of properties to seek in the environment. The system
then makes a list of agents satisfying any of these properties;
for example, if it heard and understood “caught,” it would
look for agents that had recently caught something.

For each word-property pair, a chi-square value is calcu-
lated to determine the significance of the association. Typ-
ically, 2 × 2 chi-square tests assess the likelihood of the
null hypothesis that two events are independent – in this
case, the two events being whether a word is in a sentence,
and whether the sentence refers to an agent that possesses
the property. Here, the system adopts a method from sta-
tistical natural language processing, and simply ranks the
properties for each word by their chi-square value to deter-
mine which property is best associated with the word. This
method has previously been used to find words that appear
together with high frequency (Manning and Schütze, 1999).
Here, instead of word-word associations, the system calcu-
lates word-property associations.

Negative associations are excluded from analysis; that is,
word-property pairs that occur significantly less often than
expected are excluded, despite the fact that these pairs may
achieve higher chi-square values overall than the positive
associations. In addition, word-property associations are
treated as unreliable until the expected value of each square
in the chi-square table is at least 5; this is to avoid the prob-
lem of chi-square tests being unreliable when data is sparse
(Manning and Schütze, 1999).

For its initial list of known words, the system allows cer-
tain words to be simply preprogrammed; it does not attempt
to handle the case in which no words are yet learned. A full
developmental system might incorporate pointing and gaze
into that initial word-learning step. “I” and “you,” however,
are both learned by human children well after they have be-
gun to learn other words (Messer, 1994), so it is reasonable
to assume some already known words in our model.

The system is obviously naı̈ve from a computational lin-
guistics perspective, and is not meant to imply that gram-
mar is unnecessary to word learning. For the experiments
presented here, however, additional complexity was unnec-
essary given the simple context-free grammar from which
words could be drawn.

In the experiments that follow, the following properties
were used as possible meanings.Speakerwas true of who-
ever was speaking, as determined by localization, whileAd-
dresseewas true of the person being addressed.HasBall
was true of whoever was closest to the ball, and the words
“got” and “caught” were predefined as referring to this prop-



Figure 3: An illustration of the context-based word learning system, reprinted from (Gold and Scassellati, 2006a). (1)Alice says to Bob,
“you got the ball.” The speech recognition module turns thisinto a string. (2) Searching for words that are already understood, the system
finds that “ball” refers to the property ofhasBall, which is only true of Alice. (3-4) Alice’s properties, but not Bob’s, are used to update
the chi-square tables representing the associations between each undefined word and each property.

erty. LeftProperty, RightProperty, andNicoPropertywere
assumed to be true of the person on the left side of Nico’s
field of vision, the person on the right side, and the robot
itself, respectively. These abstract properties were proxies
for any sensory attributes that were different for each partic-
ipant and did not change over the course of the experiment,
any of which would generate exactly the same chi-square
values given the experiment setup.

For evidence in simulation that the system should
scale to a larger number of dynamically chang-
ing properties and a real parent-child dialogue, see
(Gold and Scassellati, 2006b).

3.3 Self-identification

Self-identification in the system uses the motion-based strat-
egy presented in (Michel et al., 2004). In an exploratory
phase prior to the experiment, the system would perform
random arm motions within its field of view, and note the
time elapsed between sending motor commands and receiv-
ing the resulting motion bounding boxes from the motion
detection module. The round trip time between the decision
to act and receiving the processed visual feedback follows a
normal distribution with 95% of values falling between half
a second and a second. This half-second window could then
act as a filter on future motion bounding boxes, such that
only objects that began to move within that time frame were
classified as “self.” After motion stops, the area enclosed by
the self-labeled bounding box remains classified as “self”
until the robot moves again.

3.4 Speech production

The only kind of productive utterance Nico currently makes
is in response to the command, “Say who got the ball.” In
preparation for an utterance, Nico sets its ownSpeakerprop-
erty to true, and sets theAddresseeproperty of the person
who gave the command to true. Nico then searches the utter-
ance for already understood words, using the same function
used to determine context described above. This produces
the understood word “got” (or, equivalently, “ball”), associ-
ated with the propertyHasBall. Nico then searches the en-
vironment for an agent for whichHasBall is true, and then

finally searches its vocabulary for a word that does not mean
HasBallbut refers to a property that is true of the agent. If
more than one word appears to apply, Nico uses the word
with the highest chi-square value for its associated property.
Thus, if the human who gave the command has the ball,
and Nico does not know the speaker’s name, Nico will find
Addresseeas the only property to which it can refer. Simi-
larly, if the robot determines that it has the ball itself, itcan
use a word associated withSpeaker. Nico then combines
the found word with the phrase “got the ball” to answer the
question.

If no person satisfies theHasBallproperty, Nico’s prepro-
grammed behavior is to use “nobody.” Similarly, if Nico has
no word that can describe a property of the agent for whom
HasBall is true, the preprogrammed response of “can’t say”
is used in place of an understood word.

4. Implementation and Results

The robot loaded chi-square values for word-property
pairs it had learned from a previous experiment
(Gold and Scassellati, 2006a), in which two people
tossed a plastic yellow ball back and forth in front of Nico,
commenting on who had the ball using utterances from
the context-free grammar presented above. The data set
used contained a total of 50 utterances. Using the property
definitions generated by this data, the robot associated
“you” with the property of addresseeand “I” with the
property ofspeaker.

Next, a mirror was placed in front of Nico, and Nico’s
self-recognition module was enabled. In addition, Nico was
programmed to move its arm roughly every 20 seconds. The
ball was either held by experimenter, who alternately stood
either to the left or the right of the mirror, or placed on
Nico’s base, where it was only visible to Nico in its mirror
reflection. (This setup is shown from Nico’s point of view in
Figure 4.) Alternating between these two locations for the
ball, the experimenter told Nico, “Say who got the ball.”

Under these conditions, Nico correctly answered “I got
the ball” 16 out of 20 times (80%) when it could see the
ball at the base of its mirror reflection. The incorrect an-
swer “You got the ball” was given twice, and on two tri-
als the command was simply misinterpreted as the state-



Figure 4: A view of the experimental setup, taken from one of
Nico’s cameras. The robot can see its reflection in the mirror, cen-
ter. Superimposed on the image is the bounding box produced by
the “color” module, which has found the mirror reflection of the
bright yellow ball, and the box produced by the “self-motion” mod-
ule, which has found the reflected motion caused by Nico’s arm
movement. Neither arm nor ball is currently visible to Nico except
in the mirror. When the experimenter entered the field of viewand
commanded Nico to “say who got the ball,” the robot used the word
associations it learned while watching a game of catch to correctly
reply “I got the ball” when the ball was placed as shown, and “you
got the ball” when the experimenter held it.

ment “You got the ball.” Moving once every twenty sec-
onds proved to be confusing, however: the experimenter of-
ten happened to move within Nico’s learned time window
for self-recognition, and this motion was mistaken for self-
motion. As a result, when the experimenter held the ball,
the answer “You got the ball” was given only 11 out of 20
times (55%), with “I got the ball” given 7 times (35%) and
incorrect speech recognition in two trials (10%).

When the behavior of the robot was changed so that
it moved only once, rather than intermittently fidgeting
throughout the experiment, the performance was much im-
proved. “I got the ball” was given as a correct answer on
18/20 trials (90%), with one answer of “you got the ball”
and one speech recognition error. “You got the ball” was the
answer given on all 20 trials when the experimenter held the
ball.

5. Conclusions

While Nico’s world model and language capabilities are
simplistic in several respects, this robot is the first to learn
meanings for the words “I” and “you” from observation,
then apply them successfully itself. In particular, its usage
of the word “I” to refer to its own mirror image, when the
meaning of that word had to be learned from observation,
is an exciting step for robotics. At the same time, a con-
siderable degree of caution and skepticism is necessary in
interpreting this behavior. The term “self-awareness” is not
terribly useful from a scientific point of view; the system
does what it does. Instead, we might examine how the sys-
tem achieves this behavior, and which elements were crucial
to its success.

The first element critical to the system’s performance was
its ability to identify actions and their targets, and make
them salient properties for word acquisition. Obviously, if

the system were forced to associate words with specific vi-
sual patterns, deictic pronouns could not have been learned,
because they can refer to different individuals. Less ob-
viously, to learn “you” a property had to be added to the
model that had nothing to do with the agent in isolation, but
was true because of the way the agent was being acted on
(spoken to) by another agent. The authors believe that as-
sociating words with functional roles and properties, rather
than superficial appearance, will prove a profitable method
for applying machine learning to semantics in the long term.

The second critical ability was that of being able tolearn
language from observed conversation, rather than from
robot-directed speech. Without the chance to observe shift-
ing deictic referents, the system would not have had suffi-
cient examples to infer the meaning of “you,” which would
have always referred to the robot – though it might have
learned “I” given interactions with different speakers.

Critical to this ability to learn language from observation
was its ability toinfer referents from context, using known
words to narrow down the possible referents for the un-
known words. During every utterance, there was always
a speaker and an addressee, so the mere presence of both
properties in the environment would have been insufficient
to distinguish “I” and “you.” By using context to narrow
down the possible referents, the system was able to deter-
mine which of the two people was being talked about, and
did not encounter the troubles that would have befell a naı̈ve
“everything with everything” associationist system.

Then, to use the words effectively, the robot had toequate
its own representation and properties with those of human
agents. It is not necessarily obvious to a robotic system that
when a robot speaks, it is performing the same action as
when a human speaks; in fact, this equivalence had to be
explicitly programmed. Otherwise, the robot would know
that “I” can refer to human speakers, but would never use
the word itself, because it would not know that in speak-
ing, it was assuming an analogous role to a human speaker.
The same equivalence was also implicit in representing the
robot’s self-feedback as an agent in the environment. In
Nico, these equivalences were preprogrammed, but a more
general ability to map human actions and properties onto
the robot’s equivalent states would be a desirable goal for
research.

Finally, to achieve mirror self-recognition, the robot had
to recognize novel visual feedback as self-generated. For
many practical applications, this ability is totally unneces-
sary. A preprogrammed kinematic and physical model that
works only when the robot’s arm where it is expected to be
will often work just fine to achieve the robot’s goals. In
fact, this may well be why the ability to recognize oneself in
the mirror is so sparsely distributed in the animal kingdom:
why waste neurons on the ability to recognize novel self-
generated feedback, when a system with built-in parameters
can work reliably with less training? Gallup’s mirror test
(Gallup, 1970) may not be a test of self-awareness so much
as it is a test of flexibility in recognizing feedback. Yet this
ability certainly confers benefits to humans: it allows us to



drive cars, use computer mice, and yes, comb our hair in
front of mirrors.

Nico possesses only the barest of functionality from each
of the areas listed above, and each component offers much
room for improvement. Action recognition, language learn-
ing, inferring meaning from context, and adaptive control
are each active areas of research, and in any one of these
areas more complex systems than Nico already exist. Yet,
by combining elements of each of these technologies, and
with a few key insights about the nature of language and
self-recognition, Nico has exhibited a behavior that has else-
where been considered a major milestone in human devel-
opment. While the “mirror test” as performed on nonhuman
species perhaps does not imply as much about other aspects
of intelligence as previously thought – most of the abilities
cited above were related to the robot’s learned usage of “I,”
and not mere mirror self-recognition – it would appear that
asking a child “who’s that in the mirror?” truly does test
several different aspects of intelligence that are important to
how we define intelligence in humans.
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