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Abstract— An embodied language-learning system is pre-
sented that can learn the correct deictic meanings for the words
“I” and “you.” The system uses contextual clues from already
understood words and sensory information from its environment
to determine the most likely grounding for a new word. The
system also serves as a model for the phenomenon of pronoun
reversal among congenitally blind children, as the system learns
that “you” is its own name when it is blinded. The system is
novel among grounded systems in that it learns language by
observing interactions between other agents, rather than from
a helpful caregiver, and in that it associates words with social
roles rather than reasoning about visual appearance alone.

Index Terms— pronouns, functional language learning, deixis,
pronoun reversal, humanoid robot, grounded language, blind
language acquisition

I. I NTRODUCTION

The pronouns “I” and “you” present an interesting chal-
lenge to computational models of word learning. Though the
emphasis in word learning research has been squarely on one-
on-one interactions between parent and child, the word “you”
cannot be learned through this kind of interaction alone,
because “you” only ever refers to one entity in that situation:
the child. How is the child ever to learn the more general
meaning of “you” from this kind of interaction alone?

Oshima-Takane has argued [1]–[4] that “I” and “you”
are not learned solely through one-on-one interaction, but
by observing others interact with each other. The evidence
includes the fact that second-born children learn “I” and
“you” faster than firstborns [2] and that a neural network
in simulation learned “I” and “you” faster when there were
more participants to observe [4]. Though neither of these
findings is conclusive evidence in itself, they both support
the intuition that there is little to distinguish “I” and “you”
from proper names if the child only receives input from the
primary caregiver.

Learning by observing other agents interacting with each
other presents its own set of challenges, however. One cannot
depend on the participants to point at each other as they
say “I” and “you,” as this kind of gesture is unnecessary
(if not rude) in normal conversation. Without the helpful
caregiver tailoring the learning experience for the child,much
of the proposed scaffolding for language learning, such as
the exaggerated prosodic cues of “motherese” or helpful

finger-pointing, no longer applies. The only model to date
for learning “I” and “you” ignored this problem entirely by
treating the referent of the word as a direct input to the
network: an integer that gave the exact identity of who the
sentence was about [4]. Thus, realistic models for pronoun
learning through observation are fairly unexplored territory,
and may provide insight into how children can learn other
words through observation.

Realistic models of pronoun learning must also account
for pronoun reversal, a phenomenon that occurs primarily
among autistic children [5], linguistically precocious children
before the age of 2 [6], and congenitally blind children
before the age of 5 [7], [8]. Pronoun reversal is the usage of
“you” or another pronoun where “I” is meant, or vice versa.
For instance, a child exhibiting pronoun reversal may say
“I don’t want to comb your hair” when her mother offers
to comb her hair [8]. Though much pronoun reversal can
be attributed to echolalia or imitation, particularly in the
case of autistic children, at least 48% of pronoun reversals
in one study of linguistically precocious children were not
imitations [6]. Another study that included a congenitally
blind pronoun reverser found that only 29.9% of his reversals
were attributable to imitation [9].

Pronoun reversal among blind children has been attributed
to a poorly developed understanding of self [7], deficits in
perspective-taking [8], and even partial autism brought on
by an inability to see facial expressions [10], but none of
these explanations has been particularly supported by the
evidence. Instead, each study used the phenomenon itself to
justify its interpretation of the blind children’s behavior. If
pronoun reversal is primarily a problem of language instead
of concepts, as Oshima-Takane has argued [1], such “social
deficiency” interpretations may be doing blind children a
disservice.

In addition to its psychological interest, the problem of
learning “I” and “you” is interesting from an artificial intelli-
gence point of view because it challenges common assump-
tions about how robots should learn language. One common
assumption is that robots learn language through interaction
with a single person at a time, who is talking directly to
the robot in a situation of shared attention [11], [12]. Thisis
clearly insufficient to learn that “you” refers in general tothe



person being addressed, because the teacher can only refer
to the robot as “you,” giving the robot no reason to believe
that the word can refer to agents besides itself. Designing a
robot able to learn from conversations not directed toward it
is a daunting proposition, however, because the robot cannot
rely on controlled gaze direction and pointing to determine
reference. Previous robotic language-learning methods have
also been tailored to learn words associated with properties
that are computable from the image itself [11], [13], [14], but
“I” and “you” are not associated with any particular visual
properties.

Oshima-Takane’s theory of pronoun learning suggested to
us that robots should learn “I” and “you,” and by implication
other words as well, by watching humans interact with each
other, rather than by interacting with a teacher. On the other
hand, Oshima-Takane’s pronoun-learning simulation [4] did
not deal with the problem of reference in the real world, nor
did it take into account the existence of irrelevant properties
that might be accidentally associated with the pronouns
instead. In short, this appeared to be a fruitful area for an
interdisciplinary approach that could inform both sides.

We have implemented on a physical robot a method that
successfully learns the semantics of the pronouns “I” and
“you.” Though we have presented this system once before
[15], the current work expands on that work in the following
ways. First, it was unclear how fast the learning was taking
place, and what affected this rate; we analyze this here. Sec-
ond, in our earlier study it was not clear what the competing
word hypotheses meant, since these were essentially fake
variables assigned randomly to the sensed agents. Though
there are now fewer competing hypotheses, they now have
clear interpretations. Third, we have now implemented our
model for blind pronoun reversal on the robot. Finally, while
we originally presented these results to an audience mostly
interested in robot usability, we felt the results would be
more interesting to an audience interested in learning and
development.

II. A M ETHOD FORBOOTSTRAPPEDWORD LEARNING

The challenge in learning words for pronouns is twofold.
First, how can the listener deduce who the word is about –
the referent of the statement? Second, how can the learner
determine whichpropertyof that person the word refers to –
whether it refers to that person’s proper name, conversational
role, current action, physical appearance, or some other
property?

We do not require that the robot begin with no vocabulary
whatsoever. To do so is an unnecessary handicap, both for
modeling purposes and for a practical implementation. Chil-
dren typically do not learn pronouns until they are roughly
2 years old, by which time they have already learned several
concrete nouns and verbs [16]. Moreover, if we wish to build
robots that can learn language from their environment, we

should be more interested in the “inductive step” of adding
to their vocabulary than the “base case” of learning first
words, since groundings for some words can be programmed
in before run-time. Thus, there is no reason to require that
the robot begin with an empty vocabulary.

With even a small vocabulary, the problem of determining
referent becomes easier, because the robot can use the words
it hears as pointers to objects in the environment. This use of
context is especially important because a statistical method
that associates every word with everything in the robot’s
environment cannot learn that “I” refers to the speaker and
“you” refers to the addressee. During each utterance, there
is always a speaker and always an addressee. The words “I”
and “you” must therefore occur equally often in the presence
of both speakers and addressees. Only the use of the context-
fixing phrase “got the ball” allows the robot to concentrate
on which of these two agents the sentence is actually about.

But there still could be any number of other properties
about that agent to which the unknown word might refer.
For all the learner knows, the speaker could be talking about
the color, position, or size of the person that has the ball.
Thus, while determining the referent isnecessaryto learn
the words “I” and “you,” it is notsufficient, because there
is still the question of what property of the person made the
word applicable.

For this part of the learning, we fall back to statistical
methods, to find which properties are most strongly associ-
ated with which words. Once reference has been established
by other words in the sentence, the system uses2 × 2 chi-
square tests [17] to find statistically significant associations
between the spoken words and properties of the referent. The
four squares of the chi-square table correspond to the casesof
whether a word is present or not in the sentence, and whether
the property is true of the current referent. Chi-square tables
and tests for every word-property pair are tabulated and
computed; the resultingp-values can then be interpreted as
confidences in the word-meaning pairs. (Chi-square values
resulting from alower than expected rate of coincidence are
ignored.) Finally, because many words and properties that
are only tangentially related may become significant with
enough data, only the highest chi-square value is taken to be
the word’s meaning. This method is similar to that used for
finding statistically significant word collocations in text[17],
only here words are matched to sensed properties instead of
other words.

Figure 1 provides an example of how the system analyzes
an utterance.

III. E XPERIMENTS

The algorithm described above was implemented on Nico,
our humanoid robotic research platform (Figure 2), in the
context of a game of catch. Vision was handled by one of the
robot’s cameras running at 320x240 resolution. This image



Fig. 1. An example of how the system associates words with properties. (1) Bob says to Alice, “You got the ball.” The speechrecognition software turns
the speech into a string, while localization determines that Bob is the speaker and Alice is the addressee. (2) The systemsearches for words it already
understands, and finds that “ball” corresponds to the hasBall property. The system designates Alice as the referent for the remaining words, because she has
the ball. (3) Each word that was not understood is associatedwith Alice’s properties, by increasing the words’ collocation counts with those properties. (4)
The updated collocation counts are placed in2 × 2 chi-square tables to compute the significance of each word-property association.

Fig. 2. Nico, the robot on which the system was implemented.

was then passed to a module running the Intel OpenCV face
detector and another module built to find the bright yellow
ball in the image. Possession of the ball was determined by
which face was closer to the ball’s centroid.

In the audio pipeline, a dual-channel microphone set was
used to determine who was speaking. The two microphones
were set roughly 30 cm apart, and roughly 40 cm from
each speaker. This separation was sufficient to localize the
auditory signal to “left” or “right,” depending on which audio
channel exceeded a threshold first. Audio was then passed to
the Sphinx-4 speaker-independent speech recognition system,
which turned the words to text via context-free grammar.
The result was then passed to the word learning module for
association (Fig. 3).

Processing was performed in real time, with the primary
bottleneck being the speech recognizer. The recognizer’s self-
reported processing time was 1.56 seconds per utterance. Ball
detection occurred at roughly 30 FPS, while face location
was updated at a rate of 1 FPS. Time to calculate chi-square
values was negligible.

Fig. 3. Processing pipelines for the word-learning robot. Aframe-grabber
passed individual frames to a color processing module that found the bright
yellow ball, and a face detection module that found the subjects’ locations.
Audio was localized between two microphones to determine speaker, then
passed to the Sphinx-4 speech recognition program. The recognized speech
was then compared to the sensed environment to ground word meanings.

The world model consisted of the following salient prop-
erties:speaker, which was true of the person speaking;ad-
dressee, which was assumed to be the other person;hasBall,
which was true of whoever had possession of the ball; and
a unique property for each agent to represent identity. The
robot’s existing vocabulary consisted of knowing that “got”
referred to thehasBall property, allowing the system to
understand that either “got it” or “got the ball” referred to
the ball. (The same results could have been achieved by
restricting subjects to saying “I got the ball” and “you got
the ball.”) The experimenter and a fellow graduate student
tossed the ball back and forth and commented on the action
by saying “I got the ball,” “you got the ball,” “I got it,” or
“You got it,” for a total of 50 utterances.

The second experiment used the same setup as the first, but
this time the robot could not see who had the ball. Instead,
it could only sense when the ball was very close to it, using
the size of the ball in its visual field as a proxy for the
sense of touch. Thus, the robot could only tell when it itself
possessed the ball. Also, though the robot could sense who
was speaking, it could not tell who was being addressed.
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Fig. 4. Chi-square values for the word-property associations in Experiment
1. The large jump at utterance 20 marks the first time the system heard the
word “you.” The chi-square value for statistical significance (3.84) is given
for reference, though meaning is attributed to a word based on its highest
chi-square value. The second-best hypotheses, indicatingthat “I” and “you”
are the names of the two subjects, are also shown.
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Fig. 5. Chi-square values for the “you = robot” hypothesis when the system
was blinded. No other association achieved a valid chi-square value, though
this value would hold equally for any other property that wasuniquely and
consistently true of the robot.

In addition to passing the ball back and forth, the two
speakers could also pass the ball to the robot, and say either
“You got the ball” or “Nico got the ball.” Finally, because
the statements “I got the ball” and “you got the ball” now
provided no linguistic information to the robot when it did
not have possession of the ball, names for the humans were
added to the robot’s vocabulary. The humans referred to each
other by name when addressing the robot, and as “you” when
addressing each other.

IV. RESULTS AND ANALYSIS

As Figure 4 shows, the unblinded system showed clear
long-term trends toward learning that “I” refers to the
speaker, and “you” to the person being addressed. These chi-
square values increased steadily over time, while the compet-
ing hypotheses that they were names for the individuals rose
at a much slower rate.

For the first 19 utterances, the speakers had only used the
phrases “I got the ball” and “I got it.” This produced zeros
in the denominator for at least one chi-square term in all of
the relevant word-property associations. The system had no
reason to assign any meaning to “I,” because it was a part
of every sentence, and no reason to assign any meaning to
“you,” because it was a part of none.

When “you got the ball” was finally spoken at utterance 20,
the chi-square value for the association between “you” and
the addresseeproperty spiked. This was because both “you”
and reference to the addressee were rare events so far, making
their coincidence highly significant. On the other hand, the
usage of “I” and reference to the speaker were both still very
common events, and so little could still be concluded from
their common occurrence.

This points to a rather surprising fact about chi-square
word-object associations: the more common properties gen-
erate less confidence. Because saying “you got the ball”
remained less common than saying “I got the ball” (and
reference to the addressee less common than reference to the
speaker), the confidence in the I/speaker association remained
lower than the confidence in the you/addressee association
over the course of the experiment.

Examination of the underlying chi-square equations con-
firms this analysis. Suppose word W always refers to agents
with property X, and for the moment assume that there is
no error in hearing the word or perceiving the property. Let
w be the number of times W has been heard to refer to an
agent with property X, and letp be the observed frequency
(0 < p < 1) with which property X is true of a referent
regardless of what words are heard. LetC be the total number
of words that the system hears, and assumew ≪ C so that
the contribution from irrelevant words in the absence of the
property is small. Then it can be shown that

χ2
≈ w(1/p − p) (1)

The calculations are somewhat tedious, and we omit them
here; they require the approximation(Cp−w)2/p(C−w) ≈
Cp − w in the chi-square term corresponding to the case
of (∼word ∧ property). The chi-square value thus increases
linearly with the number of times the target word is heard,
but inversely with the frequency with which the property is
observed to be true of a referent.

The drop in confidence beginning at utterance 23 was
caused by a series of speech recognition and localization



errors. Since the chi-square equations quickly become un-
wieldy when multiple variables representing different error
rates are added, we shall analyze only the most damaging
kind of error here: the effect of mistakenly believing that
the word has been used in conjunction with an agent that
does not possess the correct property. This occurred in our
experiment when the speech recognition software mistook
one pronoun for another, or when the localization routine
mistakenly attributed a correctly heard statement to the wrong
person. If ǫ is the rate at which occurrences of the event
(word ∧ property) are mistakenly interpreted as the event
(word ∧ ∼property), then the analogous assumptions to the
errorless case result in the expression:

χ2
≈ w(

ǫ2

1 − p
+

(1 − ǫ)2

p
− p − ǫ) (2)

Here,w is the true count of the number of times the word
was used in conjunction with an agent bearing the correct
property; the agent’s count is actually(1 − ǫ)w. The reader
can verify that whenǫ = 0, equation 2 reduces to the errorless
case of equation 1.

The dominant effect of increasing the error rateǫ is in the
term (1− ǫ)2/p, whereǫ has an effect inversely proportional
to p. This partly explains why the decline in chi-square is so
great due to error during the first few utterances of “you”;
not only is ǫ effectively greater because of the small value
of w, but the addressee property is uncommon, amplifying
the effect of error. Asymptotically, however, the error merely
changes the learning rate by a constant factor, leaving the
rankings of word-property associations unchanged.

It has been suggested in the word-word collocation litera-
ture that chi-square results should be considered untrustwor-
thy unless the expected values in each square of the chi-
square table are at least 5 [17]. In this case, this heuristic
results in the rule that judgment should be withheld until the
following condition occurs:

w > max(5/p, 5/(1− p)) (3)

In our experiment, this would have resulted in the system
withholding judgment on the word “you” until roughly utter-
ance 32, thus avoiding the awkwardness of revoking and then
reinstating confidence in the association with the addressee
property. More balanced occurrence of the “I” and “you”
cases, so thatp = 0.5, would have resulted in confidence
much earlier, around utterance 10.

In the second experiment, association of “you” with the
robot’s identity reached significance in about twenty utter-
ances when the robot was blinded (Fig. 5). This chi-square
value would hold equally well for any property that was
always true of the robot when “you” was spoken, but never
detected about other agents. Thus, if the system had been able
to tell that it was the addressee when it was being addressed,
the chi-square value for associating “you” withaddressee

would have been the same as that for the association of
“you” with the robot’s identity. To distinguish between the
two hypotheses, the robot would then have needed to employ
some other criterion besides strength of association. “I” was
not associated with any property in the blinded case because
the system had no way of determining the referent of the
sentence “I got the ball” when it did not possess the ball.

V. D ISCUSSION

The approach presented here is more abstract than previous
approaches to robotic word learning, which have usually
focused on associating words directly with sensory properties
[13]. In [11], for example, word associations were based on
mutual information between phoneme sequences and slightly
preprocessed representations of shape. While appearance is
an important cue for many nouns, it is not clear that this
approach can applied with success to the majority of words.
For example, words for artifacts, such as “paperweight,” are
more often defined by their function than by their shape [19].

The words “I” and “you” are not associated with visual
properties, but with agent roles. The fact that these words are
universally learned with relative ease suggests that rolesand
actions may be at least as important to word learning as visual
appearance. By making functional properties salient for word
acquisition, words that would be very difficult to associate
with raw sensory data may become much easier to acquire.
In addition, functional definitions are more closely related to
planning, which should prove useful in most applications of
language.

The system presented here also demonstrates the utility of
being able to use sentence context to narrow the space of
possible referents for an unknown word. The conversational
roles of “speaker” and “addressee” are always present in an
observed conversation, but the system presented here only
associates the role associated with the sentence referent with
the unknown words. Without sentence context to determine
referent, both properties would be equally associated with
“I” and “you.” The use of statistical evidence to determine
the exact property associated with a word after reference has
already been established can be seen as a middle ground
between associationist models and “Augustinian” approaches
[19] that rely on context and inference to determine reference.

The mathematical properties of chi-square values appear
to be well-suited to word learning. Confidence in a word-
property association is linearly proportional to the number
of times the word has referred to the property, which is a
reasonable learning rate. Moreover, if a property is com-
mon, the system is reluctant to assign a word to it, while
uncommon properties are quick to be assigned words. This
is useful behavior, because it allows the system to quickly
associate words with the aspects of agents that are unique
to them. The ability to quickly learn new words for new
properties is called “fast mapping” in the developmental



literature [20]. Fast mapping is often explained as resulting
from inference from contrast, as in the statement “Bring me
the beige one, not the blue one” [21], but chi-square tests can
be seen as containing contrast information implicitly using
the learner’s experience. The system’s reluctance to assign
words to common properties would make “I” and “you” slow
to be learned compared to other words if it were learning a
larger vocabulary, but this matches the developmental finding
that “I” and “you” appear later than many nouns and verbs,
despite their prevalence. Though children obviously do not
consciously perform chi-square calculations, the underlying
neural machinery is probably subject to the same constraints
as our system if it is to find meaningful, rather than acciden-
tal, coincidences of word and property.

Any model of human pronoun learning should also be
able to explain pronoun reversal. The present model displays
some of the behavior of pronoun learning, but it does not
yet explain all of it. There is anecdotal evidence that blind
children have trouble understanding “I” [7], which is less
easily accounted for by our model since they should be able
to sense the deictic shift indicated by a change in speaker.
Our model also does not account for the finding that pronoun
reversal is more common in utterances that involve more
than one pronoun [6]. Some cases of pronoun reversal have
involved the substitution of third-person pronouns, instead of
“you,” for “I” [8], a case that we do not handle here. Finally,
autistic pronoun reversal may indeed stem from theory of
mind deficits instead of linguistic error. On this last question,
our previous study [15] provided suggestive evidence that
theory-of-mind heuristics may be important for inferring the
referents of many common statements.

The next steps for our research include the learning of
other deictic pronouns, such as “this” and “that,” and the
extension of this framework to other word categories. The
idea that being the subject of an agent’s attention is a property
that can be treated the same as a visual property was critical
to learning the word “you,” and we expect that a similar
principle should hold true for other deictic pronouns when
applied to objects. Nothing about the present method restricts
it to learning deictic pronouns; in fact, the idea of attention
adding a property to its target is specifically meant to make
deictic pronoun learning compatible with learning words for
more prosaic properties such as shape and color. It is our
hope that by focusing on the hard case of learning deictic
pronouns, the general principles of how humans learn the
meanings of words will become clearer.
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