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Abstract

The ability to use a mirror as an instrument for spatial rea-
soning enables an agent to make meaningful inferences about
the positions of objects in space based on the appearance of
their reflections in mirrors. The model presented in this paper
enables a robot to infer the perspective from which objects re-
flected in a mirror appear to be observed, allowing the robot
to use this perspective as a virtual camera. Prior work by our
group presented an architecture through which a robot learns
the spatial relationship between its body and visual sense,
mimicking an early form of self-knowledge in which infants
learn about their bodies and senses through their interactions
with each other. In this work, this self-knowledge is utilized
in order to determine the mirror’s perspective. Witnessing
the position of its end-effector in a mirror in several distinct
poses, the robot determines a perspective that is consistent
with these observations. The system is evaluated by mea-
suring how well the robot’s predictions of its end-effector’s
position in 3D, relative to the robot’s egocentric coordinate
system, and in 2D, as projected onto it’s cameras, match mea-
surements of a marker tracked by its stereo vision system.
Reconstructions of the 3D position end-effector, as computed
from the perspective of the mirror, are found to agree with
the forward kinematic model within a mean of 31.55mm.
When observed directly by the robot’s cameras, reconstruc-
tions agree within 5.12mm. Predictions of the 2D position of
the end-effector in the visual field agree with visual measure-
ments within a mean of 18.47 pixels, when observed in the
mirror, or 5.66 pixels, when observed directly by the robot’s
cameras.

Introduction
When we look into a mirror, the image that we see is a re-
flection of what actually exists in space. Objects in this re-
flection appear as if they exist on the other side of the mir-
ror, opposite their real-world counterparts. If one were to
naı̈vely reach towards these reflections, one’s hand would hit
the glass of the mirror, rather than the object being reached
for. By understanding this reflection, however, one is able
to use the mirror as an instrument to make accurate infer-
ences about the positions of objects in space based on their
reflected appearances. When we check the rearview mirrors
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on our cars for approaching vehicles or use a bathroom mir-
ror to aim a hairbrush, we make such instrumental use of
these mirrors.

The use of mirrors for spatial reasoning is a precursor to
what is tested in the widely-known “Mirror Test,” as orig-
inally proposed by Gallup (1970), which has become the
classical test of self-awareness in humans and animals. Af-
ter an animal is given time to acclimate to the presence of a
mirror, it is anesthetized and marked on the face with odor-
less, non-tactile dye. The animal’s reaction to their reflec-
tion is used as a gauge of their self-awareness, based on
whether they inspect the mark on their own body, or react
as if it does not appear on themselves, as in cases where
they react as if it is a mark on another animal. The test has
now been performed in many variations and on many ani-
mals (see Gallup, Anderson, and Shillito (2005) or Ander-
son and Gallup (2011) for reviews), but to date, only a few
non-human species pass these tests, including some primates
(Anderson and Gallup 2011), elephants (Plotnik, de Waal,
and Riess 2006), and dolphins (Reiss and Marino 2001). In-
fants are unable to pass this test, developing the necessary
skills by around 18 months (Bertenthal and Fischer 1978).

Tests have been devised to determine whether animals
that are unable to pass the classical mirror test are able to
use mirrors as instruments to solve spatial reasoning tasks.
These tests have shown that there is a larger category of an-
imals that are capable of such instrumental use. Infants who
are too young to pass the mirror task can retrieve an object
that is presented behind them in a mirror, demonstrating a
self-centered awareness of space and reflectance (Bertenthal
and Fischer 1978). Marmosets (which fail the classical test)
are able to use a mirror to obtain food pellets that are visible
only in a mirror reflection (Heschl and Burkart 2006). Us-
ing both mirrors and monitors displaying live video feeds of
their arms, chimpanzees can overcome inversions and rota-
tions of these images, manipulations which break the spatial
relationship that can be established by looking into a mirror,
using these images for spatial reasoning, thus demonstrating
even more general spatial reasoning capabilities than mirror
use (Menzel, Savage-Rumbaugh, and Lawson 1985).

Inspired by the classical Mirror Test (Gallup 1970), a
number of projects have attempted to mimic the act of mir-
ror self-recognition in robots. Michel, Gold, and Scassellati
(2004) and Gold and Scassellati (2007) solved a task of im-
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age segmentation, classifying pixels as either belonging to
the robot (“self”) or not (“other”), based on temporal corre-
lations between changes in the visual field and the initiation
of motor activity. However, this system is unable to pass the
classical Mirror Test because it does not model the visual
appearance of the robot. Takeno, Inaba and Suzuki (2005)
observe a robot when imitating its reflected image in a mir-
ror, versus when imitating another robot, to determine that
the robot can distinguish between the two using a neural net-
work architecture. The mirror behavior in this task, however,
is based on flashing LEDs, and the robot performing this task
has no way of interpreting visual self-image in the way that
the Mirror Test requires. More recently, the Qbo robot was
programmed to respond differently to images of itself (using
first-person pronouns) rather than other objects, by using ob-
ject recognition techniques (Ackerman 2011). This system
is designed to respond differently to the specific image cor-
responding to that of the robot, by cueing the system with
the phrase, ”This is you, Qbo,” during training. If it were
trained to respond this way to a different image, then Qbo
would respond to that object as if it was itself.

While all of these systems incorporate impressive tech-
nologies, none of them are able to pass Gallup’s (1970) clas-
sical Mirror Test, nor are any of them capable of using a
mirror for spatial reasoning. The present model is a com-
ponent of an architecture that we are developing with the
intention of building a robot that is capable of passing the
classical Mirror Test. This component enables the robot to
estimate a visual perspective that is consistent with observa-
tions of the position of its end-effector, as reflected in a mir-
ror when the robot moves into different poses. In this way,
self-knowledge regarding its kinematics and visual system
enables the robot to use a mirror for spatial reasoning.

An Architecture for Mirror Self-Recognition
The overall goal of this project is to develop an architecture
that allows a robot to pass the Mirror Test. The proposed
architecture is composed of six models describing different
forms of self-knowledge that we believe are sufficient to ac-
complish this task. They are the End-Effector Model, the
Perceptual Model, the Perspective-Taking Model, the Struc-
tural Model, the Appearance Model, and the Functional
Model. These are learned by the robot through observation,
allowing for refinement and change over time. We propose
that this process of self-observation will enable the system
to pass the Mirror Test, as the system will detect differences
between its expected appearance and its current one.

The present work develops a version of the Perspective-
Taking Model, given a working implementation of portions
of the End-Effector and Perceptual Models. This portion of
the architecture will enable the robot to perform the spatial
reasoning required to pass the Mirror Task. By allowing the
robot to take the perspective of a mirror, the Perspective-
Taking model allows the robot to compute a projection of
a self-taught 3D visual representation of its appearance in
the mirror, for comparison against the image of itself re-
flected in a mirror. The model should be computable in a
small enough number of samples for inference to be practi-
cal, while being accurate enough to make meaningful com-

parisons between the robot’s expected reflected appearance
and its measured reflected appearance. As such, evaluation
focuses on the number of samples required to train the model
and the spatial accuracy of its reconstructions.

The End-Effector and Perceptual Models
The End-Effector Model, Figure 1a, describes the motion of
the robot’s end-effectors through space. Its kinematics are
modeled using the Denavit-Hartenberg convention (Denavit
and Hartenberg 1955). It is learned based on observations
made by the robot’s stereo vision system.

The Perceptual Model describes the robot’s vision system
using the common Pinhole Camera model (Hartley and Zis-
serman 2004). It is capable of both reconstructing a 3D point
in space, given 2D coordinates in both of the robot’s stereo
cameras, and projecting a known 3D point to its correspond-
ing 2D coordinates in each camera.

An important feature of these two models is that they are
calibrated to each other. By learning the End-Effector Model
through the stereo vision system, the samples used to re-
construct the robot’s kinematic chains are expressed in the
native coordinate system of the stereo vision system. The
mounting of the robot’s cameras with respect to its frame is
known, as in Figure 1b. These subsystems are able to re-
fine each-other’s calibrations by minimizing the difference
between the expected positions of the robot’s end-effectors
in each camera and their observed positions, utilizing mod-
els and methods that we developed in prior work (Hart and
Scassellati 2011).

The Perspective-Taking Model
The Perspective-Taking Model, Figure 1c, is an extension of
the Perceptual Model that allows the robot to model sensors
from an external point of view. Though one could imagine
social functions of this model, such as representing the vi-
sual perspectives of other actors in an interaction, the focus
of the work presented in this paper is to allow the robot to
take the perspective of a mirror in its current visual land-
scape.

The Structural and Appearance Models
The Structural Model will represent the robot’s rigid, exter-
nal 3D structure, as shown in Figure 1d. It will be computed
by automatically, choosing features along the robot’s frame
and computing a model of their position using the techniques
from the End-Effector Model. These points will become
control points in splines approximating the robot’s surface
geometry. The Appearance Model will map surface proper-
ties, such as color, onto this geometry, as in Figure 1e.

The Functional Model
The Functional Model will allow the robot to determine the
effect that its actions have on objects in its environment. It
will enable the robot to infer causal relationships, such as
that between enacting a motor command and changes in the
visual field, and will be based on the methods presented by
Michel et al. 2004, Gold and Scassellati 2007, and Stoytchev
2007, for related tasks.
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(a) End-Effector Model (b) Perceptual Model (c) Perspective-Taking Model

(d) Structural Model (e) Appearance Model (f) Functional Model

Figure 1: Diagrams describing the six of the basic components of the proposed architecture for mirror self-recognition.

The Mirror Perspective Model
Consider the scenario in Figure 2. The robot is only able to
observe the reflection of its end-effector in the mirror, as it
is not directly in its visual field. Reconstructions of the re-
flected end-effector’s position in space will place it behind
the plane of the mirror, rather than in front of the mirror,
where it actually is. In order to accurately reconstruct po-
sitions reflected in the mirror, they must be computed from
the reflection of the camera’s perspective, as in Figure 1c.

The Mirror Perspective Model allows the robot to esti-
mate this visual perspective. In order to do so it leverages
the robot’s Perceptual and End-Effector Models, allowing
the robot to compute a virtual calibration for the perspective
of each of its stereo cameras, for objects that they witness
reflected in the mirror. We will call each of these cameras
a Mirror-Perspective Camera. The basic method for cali-
brating these cameras is for the robot to move into several
poses, yielding a known set of 3D points in space, and their
corresponding 2D images. In this way, the technique in this
section is a form of photogrammetric calibration (Faugeras
1993), with the robot acting as its own calibration target.

Because this model deals with mirrors, it will frequently
be the case that variables are related based on their disposi-
tion with respect to the mirror. Variables referring to quan-
tities based on reflections, rather than the original, physical
properties of the robot, are marked with a caret. For exam-
ple, whereas Ji is the position of the robot’s end effector, Ĵi

is the reconstruction of its reflection in the mirror. Because
the robot samples many poses of its arm, the subscript i is
used to refer to a set of variables describing a single pose.

The procedure is as follows:

1. Sample reflected end-effector images - Record three ver-
sions of the end-effector’s position:

Ji Predicted by the End-Effector Model and appearing in
front of the mirror.

Ĵi Reconstructed by the Perceptual Model from the point
of view of the robot’s cameras and appearing behind
the mirror.

ĵi & ĵ′i Two dimensional positions of the end-effector in
both cameras, appearing as reflections in the mirror.

2. Compute an initial estimate of each mirror perspective
camera, based on the plane in which the mirror lies.

3. Nonlinear refinement of the pair of mirror perspective
cameras.

Background
Homogeneous Coordinates The homogeneous represen-
tation of a point in space is expressed as a vector. A 2D
point is expressed as a vector with 3 elements < x, y, w >,
a 3D point is expressed as a vector with 4 elements <
x, y, z, w >. The Cartesian equivalent of a homogeneous
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Figure 2: The humanoid robot, Nico, as configured for eval-
uation of the system.

coordinate is computed as a ratio of its elements, as in
(x : w, y : w).

The homogeneous representation of a plane is expressed
as a vector, < Π1,Π2,Π3,Π4 >. The first three elements
correspond to the vector perpendicular to the plane. When
normalized such that < Π1,Π2,Π3 > is a unit vector, −Π4

corresponds is the Euclidean distance to the plane from the
origin. The dot product of the homogeneous representations
of a point and a plane corresponds to the distance between
the two. This model will also make use of the fact that the
intersection of 3 planes defines a point.

The Pinhole Camera Model The Pinhole Camera Model
(Hartley and Zisserman 2004) is a convention commonly
used to describe a camera’s projection. The camera intrin-
sic matrix is expressed as a 3 × 3 matrix as in Equation 1.
It describes parameters which are intrinsic to the camera, in-
dependent of its position and orientation. The parameters α
and β describe focal length, their ratio accounting for non-
square pixels. The parameters (u0, v0) describe the princi-
pal point, where a ray perpendicular to the camera’s image
plane runs through the camera center. The parameter γ is a
skew factor accounting for non-rectangular pixels. The ex-
trinsic parameters R and C describe the rotation of imaged
points about the coordinate frame centered at the camera,
and the camera’s position in space, respectively. Expressed
as in Equation 2, the camera’s extrinsic parameters yield the
projection of an ideal camera, whose camera intrinsic ma-
trix is identity. Multiplying this projection by K yields the
camera projection matrix, Equation 3. In this implementa-
tion, radial lens distortion is corrected for using the first two
terms of a commonly used model, as found in Zhang (2000).

Three-dimensional points can be projected to their imaged
equivalents as in Equation 4, where J is the 3D point, and
j its image. Given a point imaged in a stereo pair of cam-
eras, j and j′, and the calibrated parameters describing the
projections of both cameras, it is possible to reconstruct the

position of that point in 3D space.

K =

[
α γ u0
0 β v0
0 0 1

]
(1)

O = [R| −RC] (2)
P = K[R| −RC] (3)
j = K[R| −RC]J (4)

Kinematics This system uses the Denavit-Hartenberg pa-
rameters (Denavit and Hartenberg 1955) to model kine-
matic chains. Each joint is represented by four parameters
which describe the transformation performed by a joint in
the chain, three geometric ones which describe the charac-
teristics of the joint, and θ, the joint angle. For each joint
in a kinematic chain containing n joints, a matrix M can be
computed which describes the transformation performed by
the joint. The matrixM0 represents the transformation to the
first joint, with M1 representing the first joint itself. The 3D
position of the end effector JE , then, can be computed by
Equation 5, using the robot’s joint angles. This is frequently
referred to as the robot’s forward-kinematic model.

JE = M0 . . .Mn[0, 0, 0, 1]T (5)

The Perceptual and End-Effector Models Using tech-
niques described in prior work (Hart and Scassellati 2011),
the End-Effector and Perceptual Models are calibrated to
each other. This allows a prediction of a 2D image of the
robot’s end effector’s position in its cameras, jE to be deter-
mined by Equation 6.

jE = K[R| −RC]M0 . . .Mn[0, 0, 0, 1]T

Estimating the Mirror-Perspective Camera
Because an object’s image in a mirror is a reflection of its
real-world counterpart, its position in space can be correctly
interpreted from the perspective of a camera whose position
and orientation have been reflected with respect to the plane
of the mirror. The goal of this model is to determine the pa-
rameters describing the mirror-perspective camera, P̂ , of a
real-world camera, P , observing objects reflected in a mir-
ror. The mirror-perspective can be determined by reflecting
the camera’s position and orientation across the plane of the
mirror, the intrinsic parameters for the camera and its reflec-
tion are the same, requiring only the position Ĉ and orienta-
tion R̂ of the mirror-perspective camera to be estimated.

Sample Reflected End-Effector Images First the robot
moves its end-effector into a set of random poses that can
be witnessed in the mirror. It records Ji, Ĵi, and (ĵi, ĵ′i) for
each pose. Ji is the position of the end-effector computed by
the robots End-Effector Model. The coordinates (ĵi, ĵ′i) are
the images of the end-effector’s reflection in the mirror. Ĵi is
reconstructed from (ĵi, ĵ′i) by the robot’s perceptual model.

Compute Initial Estimate To simplify the process of
computing the estimate of mirror-perspective camera posi-
tion and orientation, we assume that the camera is situated at
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the origin with R = 1. Because the robot’s cameras are cal-
ibrated, this can be accomplished by transforming the sam-
pled Ji’s and Ĵi’s into the camera’s coordinate frame prior
to computing the mirror plane, and transforming R̂ and Ĉ
back after they are computed.

Mirror plane estimation Because Ji and Ĵi should lie
symmetrically about the plane, for each arm pose, the plane
in which the mirror lies can be approximated as follows.

First the vector perpendicular to this plane is computed.
This is computed as the mean vector from the Ji’s to the Ĵi’s,
using their Euclidean representations, as shown in Equation
6.

< Π1,Π2,Π3 >=

∑n
i=1 Ĵi − Ji

n
(6)

The plane corresponding to the correct orientation, cen-
tered at the origin is then computed by Equation 6. The dis-
tance of the Ji’s and Ĵi’s from this plane can then be used
to compute Π4, as in Equation 8, placing the mirror plane
equidistant to the two sets of points.

Qorigin =< Π1,Π2,Π3, 0 > (7)

Π4 = −
∑n

i=1Qorigin · Ĵi +
∑n

i=1Qorigin · Ji
2n

(8)

Q =< Π1,Π2,Π3,Π4 > (9)

Estimating mirror-perspective camera position and
orientation Figure 3 provides a diagram of the position and
orientation of the real camera and the mirror-perspective
camera with respect to the mirror. The reversal of mirror im-
ages is accounted for by having the mirror-perspective cam-
era oriented such that it is looking away from the mirror, as
if points are being imaged from behind it.

Figure 3: Diagram of the position and orientation of the
real camera and mirror-perspective camera with respect to
the mirror.

Computing the mirror-perspective camera’s position Be-
cause Q is expressed in the camera’s coordinate frame,
< Π1,Π2,Π3 > is the vector perpendicular to the mir-
ror from the camera’s position. Normalizing Q such that
< Π1,Π2,Π3 > is a unit vector allows the position of the
mirror-perspective camera to be computed by Equation 10.

Ĉ = −2Π4 < Π1,Π2,Π3 > (10)

Computing the mirror-perspective camera’s orientation
Camera Projection Matrices can be interpreted as sets of
three planes from which the distance of a 3D point is com-
puted in order to determine its projection. Relatedly, the
first two rows of the matrix O, from Equation 2, describe
the XZ and YZ planes of the camera’s coordinate system.
Knowing that three planes meet at a single point, the in-
tersection of the camera’s z-axis with the mirror plane, L,
can be computed according to Equation 11. The z-axis of
the mirror-perspective camera, then, can be computed ac-
cording to Equation 12. Its rotation, R̂, is the transpose of
the rotation from the canonical z-axis (< 0, 0, 1 >) to the
mirror-perspective camera’s z-axis, computed as a rotation
about the axis perpendicular to both.

[
1 0 0 0
0 1 0 0

Π1 Π2 Π3 Π4

]
L = 0 (11)

Ẑ = Ĉ − L (12)

Nonlinear Refinement The estimate yielded by the pre-
vious step can be refined by minimizing the distance be-
tween estimated projections of the robot’s end-effector po-
sition and their imaged equivalents for m samples, accord-
ing to Equation 13. Optimizations in the presented results
use LevMar (Lourakis Jul 2004), an implementation of the
Levenberg-Marquardt algorithm in C++.

f(R,C) =

m∑
i=1

‖K[R̂| − R̂Ĉ]Ji − ĵi‖2 (13)

Evaluation
Setup
The system was implemented and evaluated on the upper-
torso humanoid robot, Nico, seen in Figure 2. The robot
includes a stereo vision system with two 640 × 480 resolu-
tion cameras. The evaluation utilized four degrees of free-
dom (DOFs) in the robot’s right arm, which is composed of
two main linkages, with pairs of joints mounted at the shoul-
der and elbow. The linkage from the shoulder to the elbow
is 130mm long, and from the elbow to the end-effector is
127mm. The end-effector is tracked by the vision system
through the use of fiducial markers implemented using AR-
ToolKit (Kato and Billinghurst 1999). For this experiment
the tracker was modified to provide more accurate 2D posi-
tioning of the fiducial marker in the visual field. These 2D
positions are provided to the robot’s stereo vision system to
be reconstructed into 3D positions, rather than inferred from
the image of the fiducial marker by ARToolKit.

The End-Effector and Perceptual Models were calibrated
in the following way. The stereo vision system was first cali-
brated using Zhang’s method (Zhang 2000), then refined via
bundle adjustment (Hartley and Zisserman 2004). Known-
good intrinsic parameters were then substituted for the es-
timates yielded by the calibration process, which then re-
performed the bundle-adjustment procedure, pinning the in-
trinsic parameters, in order to derive an accurate estimate
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(a) Results in 3D. (b) Results in 2D.

Figure 4: Distance between end-effector position predicted by the End-Effector Model and as tracked in the visual field over
three mirror views. “Arm” denotes the robot’s ability to perform this task on the arm when witnessed directly in the visual field.

of the extrinsic parameters. Known-good radial distortion
parameters were used throughout this process. Kinematic
parameters that had been estimated using the method from
Hart and Scassellati (2011) were provided to the system to
initialize the End-Effector model. The arm was then moved
into 100 new, unique poses in order to re-calibrate the End-
Effector and Perceptual Models to changes in the pose of
the eye cameras, zeroing of the robot’s encoders, and a new
fiducial marker. This larger fiducial marker had to be used,
because the robot’s cameras were not of sufficient resolution
to find the one used in Hart and Scassellati (2011) when re-
flected in the mirror, due to the larger apparent distance from
its cameras.

Testing was performed over datasets containing 150 poses
of the robot’s arm, 50 of which were used for training, 100
for testing. Three such datasets were sampled with the robot
observing its arm in a mirror, which appeared in a differ-
ent position and orientation for each dataset, dominating
the robot’s field of view. Though the system was tested by
batch-processing these datasets, for efficiency, no apparent
technical barriers exist to developing a version of this sys-
tem which operates in real-time, and efforts to do so have
already commenced.

To measure system performance, the mean distance be-
tween predictions of end-effector position and measured
end-effector position in 3D and 2D are reported. This pro-
vides an estimate of how well the Mirror-Perspective Model
has been measured with respect to the robot’s existing End-
Effector and Perceptual Models, though it has the shortcom-
ing that the end-effector will appear more distant in the mir-
ror and, thus, measurements are inherently less accurate. It
relates well, however, to the goal of passing the classical
Mirror Test. The main difference is that robot makes predic-
tions regarding the position of its end-effector in the mirror
based on self-knowledge, rather than predictions regarding
its appearance in the mirror. This test is also a form of in-
strumental mirror use, in that the robot compares predictions

of its end-effector position based on its forward-kinematic
model, and measured positions based on observations made
in the mirror, in its egocentric frame. The system was trained
on datasets of varying lengths in order to establish the num-
ber of samples required to adequately train the system.

Data Collection
A mirror was mounted to a moveable, tiltable whiteboard,
and placed into the field of view of the robot. Three po-
sitions were chosen for the mirror. For each pose a set of
50 training and 100 test samples of with the arm in various
poses, imaged as reflected in the mirror, was collected.

Results
As can be seen in Figures 4a and 4b, the system performs
well even after training on only 10 arm poses. While the
robot is able to predict the position of the end-effector
viewed directly in its visual field much better than it is
able to in the mirror, it still outperforms competing systems
that only attempt to predict end-effector position directly in
their visual field, when doing so. Recent such systems in-
clude ones presented by Hersch, Sauser, and Billard (Her-
sch, Sauser, and Billard 2008) and Cantin-Martinez, Lopes,
and Montesano (Cantin-Martinez, Lopes, and Montesano
2010), who both report performance to be within 5cm, and
attempt neither the task of predicting end-effector position
in pixels, nor the task of predicting end-effector position in
a mirror.

Part of the system’s degrade in performance when per-
forming this task in the mirror can be attributed to the appar-
ent distance of the end-effector when viewed in the mirror.
The apparent distance of the object, when viewed in the mir-
ror, combines the distance of the robot from the mirror and
the distance of the object from the mirror. As a result, the
view of the object is much farther away. Reconstructions of
the tracked point are subject to a higher degree of error due
to this, leading to a greater degree of disagreement, as the
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same area of visual angle contains a greater physical area.
This is consistent with the fact that performance in pixels
is more similar between the arm in the visual field and the
arm in the mirror, than performance in millimeters. Because
the mirror-perspective cameras are optimized independently
from each other, it is possible for the system to estimate posi-
tions and orientations for these cameras which changes their
position and orientation with respect to each other. This also
contributes to error. By optimizing the position of the mir-
ror, and computing the mirror-perspective cameras from this
position, we should be able to improve performance. This is
saved for future work.

Discussion
In this paper, an architecture is proposed to enable a robot
to pass the classical test of self-awareness, the Mirror Test
(Gallup 1970). This architecture proposes to learn a model
of the structure of the body and senses that is sufficient to
make predictions about the appearance of the robot as re-
flected in a mirror. In this work, we have developed a model
that allows the robot to determine a perspective that is con-
sistent its point of view when looking into a mirror. To do
so, it uses self-knowledge about its body and senses in the
form of kinematic and visual calibration information. To our
knowledge, this is the first robotic system to attempt to use a
mirror in this way, representing a significant step towards a
cohesive architecture that allows robots to learn about their
bodies and appearances through self-observation, and an im-
portant capability required in order to pass the Mirror Test.
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