
Effective Robot Teammate Behaviors for
Supporting Sequential Manipulation Tasks

Bradley Hayes1 and Brian Scassellati1

Abstract— In this work, we present an algorithm for improv-
ing collaborator performance on sequential manipulation tasks.
Our agent-decoupled, optimization-based, task and motion
planning approach merges considerations derived from both
symbolic and geometric planning domains. This results in the
generation of supportive behaviors enabling a teammate to
reduce cognitive and kinematic burdens during task completion.
We describe our algorithm alongside representative use cases,
with an evaluation based on solving complex circuit building
problems. We conclude with a discussion of applications and
extensions to human-robot teaming scenarios.

I. INTRODUCTION

Real-world manipulation tasks typically involve handling
and reconfiguring multiple objects to accomplish abstract
goal criteria. These tasks involve a high-dimensional action
space, making satisfying solutions potentially very difficult
to compute. The use of traditional symbolic planning to
derive a task solution may produce sub-optimal or infeasible
physical impositions on an agent, rendering it insufficient for
many tasks of interest. Avoiding this problematic detachment
from the physical world by using a motion planner to search
and evaluate feasible actions within the task space yields a
separate set of issues, as this approach can make searching
the task space very computationally expensive.

Task and motion planning (TAMP) addresses these chal-
lenging problems, merging the task-level goal demands with
the physical reality and geometric complexities of motion
planning [1]. Even with the state-of-the-art in TAMP ap-
proaches, many tasks remain intractible within online plan-
ning scenarios for a variety of reasons, including object
density, goal flexibility, and kinematic complexity. These
issues become even more prominent when considering multi-
agent problems, as geometric back-tracking can be pro-
hibitively expensive [2]. Multi-agent approaches to TAMP
generally assume an ‘equal-partners’ coordination paradigm,
where agents are jointly working towards directly achieving
a shared goal, such that the same planning heuristics can be
used across the team.

In this work, we propose a novel approach for use within
multi-agent TAMP domains, utilizing a ‘leader-assistant’
teamwork paradigm, explicitly enabling supportive roles for
agents to assume. These supportive roles facilitate task
completion for ‘leader’ agents (that employ traditional TAMP
solution mechanisms) by performing actions to reduce the

1Computer Science Department, Yale University, 51
Prospect Street, Connecticut, USA {bradley.h.hayes,
brian.scassellati}@yale.edu

This work was supported by Office of Naval Research Grant #N00014-
12-1-0822 (“Social Hierarchical Learning”)

cognitive (symbolic planning) or kinematic (motion plan-
ning) difficulty of the on-task actions they perform. Such
roles are critical for human-robot collaboration [3].

In particular, we focus on sequential manipulation tasks,
where high level goals are achieved through a sequential
series of object manipulations. This broad class of tasks is
relevant to personal assistant robots and industrial robots
alike (despite vast differences in expectations, capabilities,
and tooling), making it an excellent candidate for application
to the leader-follower teaming paradigm. In particular, the
representative sequential manipulation task we utilize in this
paper is that of circuit building within a spatially constrained
environment. Given a collection of resources (circuit pieces
such as wires, resistors, LEDs, etc.), there exists a set of
motor action sequences that each yield a constructed circuit
with the characteristics specified by the task’s goal state.

In addition to these motor behaviors that result in the
successful assembly of the circuit, there exist actions that fa-
cilitate task completion without directly contributing towards
reaching the goal state. These actions (such as removing an
obstacle on the table), which we define as supportive actions,
are optional actions that contribute indirectly towards a more
rapid or less challenging task solution. These behaviors are
not nearly as well studied as their on-task counterparts, but
become increasingly relevant as human-robot teaming and
teams of robots with heterogeneous capabilities become more
commonplace.

In the sections that follow, we provide a brief survey
of related work, formally introduce our selected evaluation
domain, and introduce a novel algorithm for improving team
performance in sequential manipulation tasks within the
leader-assistant teamwork paradigm. Our algorithm accom-
plishes this through the evaluation, selection, and execution
of actions with the intent to optimize a task’s environment
for a collection of potential execution policies. By optimizing
towards the maximization of a collaborator’s performance,
it is possible not only to improve makespan time and to
reduce a partner’s cognitive load, but also to manipulate
them into making better decisions towards following more
optimal policies. Our algorithm allows a supportive robot
to drive its team to perform well even in the absence of
intra-agent communication, with only coarse approximations
of collaborators’ kinematic abilities, while only assuming
rational, goal-aligned teammates. Finally, we conclude with
an evaluation within a circuit building domain, exploring
algorithm performance and behavior.

II. RELATED WORK

Sequential manipulation tasks and multi-agent teamwork
are rich research topics that are of great interest within
the robotics community. Solving task and motion planning
problems is well known to be a challenging area, with a
great deal of tools and approaches developed to leverage
more powerful abstractions and heuristics for the purpose of
reducing search complexity [4], [5] or broadening the types
of constraints that can be handled [6], [7], [8], [9].

The majority of multi-agent work within TAMP problems
has focused on an ‘equal partners’ paradigm of teamwork,
producing innovative solutions that rely on the decomposi-
tion of a task into subcomponents that can be distributed
across agents to maximize efficiency and capability [10],
[11], [12]. The ability to convey intent and to learn from or
anticipate the behaviors of others is also critical to multi-
agent TAMP. Accordingly, recent work on collaboration
has been published with a focus on motion planning that
implicitly conveys intent [13], as well as motion planning
that accommodates the expected motions of others within an
interaction [14].

Solving these TAMP problems is also of particular interest
to the scheduling research community. Recent work in multi-
agent scheduling has yielded a constraint-based method of
performing extremely fast scheduling [15] that can be applied
to heterogeneous teams of agents once a TAMP solution is
translated into a simple temporal problem [16]. Each of these
presented works handles an important subset of the issues
central to multi-agent task and motion planning, including
the management of diverse capabilities, world models, agent
models, and behavioral expectations. Our contribution builds
upon these considerations by broadening the utility of agents,
even those without the capability to directly achieve task
goals, by developing a formalized means of generating
supportive actions to assist those that can.

III. TASK AND MOTION PLANNING DOMAIN

Our problem domain is described via traditional planning
operators and symbolic predicates (similar to [17]) with the
addition of special functions to handle geometric constraints.
Goal states are described by these abstract predicates, provid-
ing a description of a desired world state that may include
concepts that do not clearly map to a physical description
of the individual components that contribute to it (e.g.,
a predicate explicitly requiring a circuit to be closed that
happens to contain a diode implicitly requires the diode’s
anode and cathode to be properly connected). Operators
are representative of robot motor primitives, parameterized
by potentially high-dimensional continuous values that may
indicate kinematic positions, grasp types, or object poses.
We address the parameterization issue through the standard
practice of discretizing the parameter space via sampling.

Despite discretizing these variables into finite domains,
it remains impractical to enumerate the symbolic effects of
each possible action, as second-order, third-order, or arbi-
trarily distant effects may impact aspects of the environment
(such as object reachability or placement eligibility). As

such, we implement a similar strategy in keeping a state
representation with predicates comprised of static literals
alongside geometric state-dependent predicates that are com-
puted on-demand.

Recent work has introduced planning concepts that greatly
speed the execution-time computation of valid plans by lever-
aging clever insight into the underlying geometric require-
ments for TAMP problems [4]. One of these insights is the
need to efficiently characterize the free configuration space
of the robot and the manipulable objects within the scene,
which is not possible given static preconditions. Accordingly,
in addition to classical static planning literals, we incorporate
geometric conditionals to ground the symbolic planner within
the physical world as it seeks task solutions.

Choosing optimal behaviors within this problem domain
is challenging to accomplish in acceptable timeframes and
can easily be intractible. Generating plans via symbolic
planning can typically be accomplished within reasonable
timeframes but will not account for geometric complexities
and may not provide realistic estimates of action durations.
The converse, attempting to plan by finding satisfying se-
quences of robot and environment configurations through
motion planner sampling and pathfinding, rapidly becomes
intractable with problem complexity.

Due to this disconnect between ‘possible’ and ‘efficient’
action sequences, seemingly reasonable plans may be far re-
moved from desirable plans both in terms of complexity and
resource utilization. Even if motion planners were capable
of finding acceptable action sequences without incorporating
planning abstractions, this would fundamentally limit the
ability of an agent to reason about its task or environment.
Many relevant tasks have abstract components that go beyond
individual resource usage, and are neatly encapsulated within
traditional planning formulations. For example, a goal pred-
icate may specify that a ‘500Ω resistor’ is soldered to ‘Wire
#1’, but it may not matter which particular 500Ω resistor is
used to accomplish the goal. As such, it is both desirable and
advantageous to seek mechanisms incorporating both types
of planner for sequential manipulation tasks.

IV. SUPPORTIVE BEHAVIORS

We define supportive behaviors as optional, off-goal ac-
tions that contribute indirectly towards a more rapidly satis-
fiable and/or less difficult task solution.

Particularly within assembly domains, there exist actions
that can be performed to ease cognitive or physical burdens
that don’t directly contribute towards the completed construc-
tion. One such example is organizing circuit components
into discrete piles, such that all wires are axis-aligned and
together, or physically sorting resistors in ascending order of
resistance. By performing these organizational behaviors that
are tangential to the task goal, future part-seeking actions
are facilitated and the overall makespan for the assembly
task may be reduced. For motion planning, actions that
remove obstacles from the environment of an object grasping
behavior will reduce the problem complexity by allowing for
more valid or possibly less complex motion paths.

Fig. 1: A graphical representation of the supportive behavior generation pipeline we propose.

Similarly, positioning objects near their final positions
(e.g., screws near appropriate guide holes, components in an
approximation of their final configuration, etc.) may reduce
the cognitive load on the lead agent actually performing the
assembly, as it becomes less ambiguous how to assemble the
components. Within the TAMP domain, this is equivalent to
reducing the symbolic planning complexity. The key insight
being leveraged involves organizing the environment into a
configuration favorable to a lead agent’s planning heuristics,
such that the agent’s search order over objects to use for
action parameterization is optimized.

The goal of the algorithm presented in this work is
the autonomous generation of these types of behaviors,
with the explicit goal of improving a collaborating agent’s
performance through the simplification of various aspects
of a task via calculated environmental manipulations. The
ability to optimize an agent’s behaviors for a supportive
role broadens its utility, especially within problem domains
in which the agent cannot fully perform a specified task
either due to liability, lack of capability, or unacceptable risk.
Further, the potential reduction in cognitive load attained
by incorporating a supportive agent into a problem domain,
particularly in the case of a human-robot team, can serve to
increase worker productivity and safety.

Though we are concerned explicitly with teams of robots
performing tasks, we make no assumptions regarding avail-
able information transfer between collaborators. As such,
the algorithm we present is based upon maximizing the
expected performance improvements achieved by supportive
actions across a range of possible execution policies. As com-
municative capabilities are introduced or agents are given
sufficient information to model each other’s preferences and
capabilities, the likelihood of a supportive robot providing
increasingly beneficial actions improves.

We require the supportive robot to minimally have a model
or approximation of the lead collaborator’s kinematics for the
purposes of estimating plan completion times given particular
environment configurations.

V. APPROACH

We frame the supportive behavior problem as one of in-
direct policy optimization, decoupling the support role from
the lead agent’s planner. Given exclusion criteria such as

operators (actions) the supporter is unable to utilize, spatial
regions the supporter is not permitted to occupy, objects a
supporter is prohibited from manipulating, or predicates the
agent is not allowed to effect on the world, we generate a
permissable action sequence resulting in an environment that
minimizes the expected execution time of the lead agents
working on the task. Conceptually, we accomplish this by
finding the most desirable environmental configurations for
the set of likely execution policies being executed by the lead
agents, limited by the supportive agent’s ability to effect the
environment in a way that achieves this ideal environmental
configuration. This process is summarized in Figure 1.

A. Formalizing the Supportive Behavior Problem
We define the supportive behavior problem as the tuple

Σ = (T,ΠT , as, Cs, sc, P) where
• T = {A,O,C, s0, sG} is a TAMP problem such that:

– A is a set of (‘lead’) agents
– O is a set of operators in the form of motor

primitive prototypes, representing unparameterized
action types

– C is a capabilities mapping function between
agents and operators, indicating actions that may
be performed by each agent in A

– s0 is the set of predicates precisely specifying the
starting environment state

– sG is the set of predicates specifying the goal state
of the task

• ΠT is a set of symbolic plan solutions for T
• as is a supportive agent
• Cs is a mapping function indicating operators from T

usable by as
• sc is the current environment state
• P is a set of predicates or partially specified predicate

prototypes that indicate prohibited operator parameters
A solution to T is a policy π ∈ ΠT that achieves state
sG through a specified sequence of operators in O with
geometrically sound parameterizations, executed by a subset
of agents in A. A solution to the supportive behavior problem
Σ is a plan πs which, when executed by as, reduces the
expected duration for an agent in A of physically executing
a plan in ΠT , or reduces the expected search complexity
required for agents in A to find solutions Π ⊆ ΠT .

To solve the supportive behavior problem described by Σ,
we sample from and reason about alternative environmental
configurations, evaluating them based on metrics such as
the estimated cognitive (planning complexity) or physical
(motion complexity) demands imposed on the agents in the
original TAMP problem. This optimization must account
for the anticipated time costs associated with achieving the
hypothesized improved environment states, as well as the
relative likelihoods of a lead agent following particular plans
in ΠT .

B. Constructing Hypothetical Environments
At the current environment state sc we build a set of

parameterized operators executable by as, which we refer
to as Os. For each action in the support robot’s capability
set Cs, we sample parameterizations from a discretization
of the task world, and valid instantiations are added to Os.
For a ‘pick’ operator, the parameterizations of this action
include the set of all objects except those whose effects
match predicate prototypes specified in P . For example, if
the current environment has predicate ‘inCircuit(battery1)’
and ‘inCircuit(*)’ is a member of P , a prohibited action
parameterization may be ‘pick(battery1)’ as it would remove
battery1 from the circuit. In the case of a ‘place’ operator,
parameterizations include samples drawn from the set of
possible legal placement positions and poses in the task area
for each eligible object.

With Os constructed, we then sample different environ-
mental configurations (‘hypothetical environments’) obtain-
able by changing individual aspects of the environment. The
sampling method we use involves choosing a single object
from the scene and moving it to a randomly sampled new
location and/or pose. For each hypothesized environment,
a plan is determined using actions in Os enabling the
support agent to reconfigure the current environment into
the hypothesized state. An estimate is computed for the
execution duration of each plan associated with a hypotheti-
cal environment (unobtainable configurations are discarded).
These duration estimates are later used to evaluate the
inconvenience associated with the support robot creating this
environment (and tying up the associated resources). Each
attainable hypothetical environment is finally encoded as the
tuple ξ = {π, d, s} indicating a plan composed of allowable
parameterized operators, an estimate of the duration required
to achieve the desired environment, and a set of predicates
describing the resulting environment state. We refer to the
set of all hypothetical environment tuples as Ξ.

C. Plan weight determination
We establish a set of plan weights to influence the type of

support provided. The selection of this weight function can
have strong effects on the behaviors generated, and as such
we characterize three types of weighting schemes that can
be used to direct a system toward particular outcomes. To
establish these relative weights, we utilize a plan execution
duration approximator outlined in Algorithm 1. We define

m = min
π∈ΠT

duration(T, π, ∅, s0, f(x) = 1)

to be the duration of the shortest (temporally optimal) known
plan. Here we describe three cases of useful weighting
functions and their resulting behaviors:

1) A conservative optimization function that weights
plans relative to their estimated optimality of execution
duration. We chose

wπ =

(
m

duration(T, π, ∅, s0, f(x) = 1)

)2

for each known plan π ∈ ΠT , though any similar
positive, monotonically decreasing function can be
used to produce similar results.

2) A greedy optimization function that optimizes for what
is estimated to be the best known plan and ignoring
consequences for all other possible policies, such as:

wπ =

{
1 ; duration(T, π, ∅, s0, f(x) = 1) = m
0 ; otherwise

3) An aggressive optimization function that not only pri-
oritizes making the best plans better, but also making
the worst plans even worse, with the intention of
driving a rational agent away from selecting poorly.
This is desirable in cases similar to those where a
lead agent may either first connect a circuit to a
power source or first build the remainder of the circuit.
Attaching the power source may increase the danger
of the construction operation, and thus makespan, due
to the need for increased care in assembly. This can
be avoided by the support agent introducing a resource
conflict for the power source connection piece, remov-
ing it from the available actions the lead may take.
Functionally, this can be accomplished by providing
undesirable plans with negative plan weights. It is im-
portant to keep the magnitude of negative weights less
than the positive weights (using a normalization factor
α), or the support robot may perpetually block task
progress in the case of partial plan overlap between
‘good’ and ‘bad’ plans. A functional example of such
a weighting scheme can be achieved by modifying
the results from the conservative weighting presented
above. We use ε to denote a value equal to or slightly
greater than m:

wπ =

{
wπ ; duration(T, π, ∅, s0, f(x) = 1) ≤ ε
−αwπ ; otherwise

D. Environment state analysis

Combining the information gathered thus far, we choose
the best supportive action plan ξ ∈ Ξ according to:

min
ξ∈Ξ

∑
π∈ΠT

wπ ∗ duration(T, π, ξ, sc, γ)

where wπ indicates a plan’s associated weight and the
duration function computes an estimate of the TAMP solu-
tion accounting for the cost of the supportive behavior. The
final argument to the duration function, γ : Z+ → [0, 1],
is a decay function used to modulate the prioritization of
supportive actions causing near-term effects over those that

Fig. 2: One sample scenario used in our evaluation. In this
task, the lead agent must create a circuit using two power
sources wired in series to drive an LED on a switched circuit.
Random configurations of objects were utilized to create a
variety of starting conditions.

cause longer-term consequences. Providing a function such
as γ = {f(x) = 1} removes this decay functionality.

Algorithm 1: TAMP Solution Duration Estimation
Input: TAMP Problem T , TAMP solution plan π,

Supportive plan tuple ξ, Start state sc, Decay
function γ

Output: Estimated execution duration of π
1 // PLAN NULLIFICATION PENALTY is a value

greater than the cost of the worst known plan
2 elapsed time ← 0;
3 current state ← sc;
4 foreach i in 1 to |π| do
5 Operator o← π[i];
6 if o.preconditions not satisfied by current state then
7 return PLAN NULLIFICATION PENALTY;
8 step time ← 0;
9 if the set of objects and physical space utilized

between o and ξ.π 6= ∅: then
10 step time ← ξ.d; // Must wait for support plan

to finish
11 step time ← step time + execution duration(o);
12 elapsed time ← elapsed time + step time ∗ γ(i);
13 ξ.d = max(0, ξ.d− step time);
14 apply operator effects(o, current state);

15 return elapsed time;

E. Assumptions and Weaknesses

The method we describe can become arbitrarily computa-
tionally expensive depending on the approximations used for
the duration estimation function and the size of the known
plan set ΠT . As this puts calls to a motion planner in the
inner loop of a computation that is highly dependent on
the current environment (and challenging to pre-compute),
the selection of how coarsely to approximate an agent’s
kinematics and reachability becomes quite important. As
such, we recommend initially choosing rapidly computable,
low-fidelity approximations relevant to the task domain, such
as a cost function that computes the shortest, collision-free

Fig. 3: Example of a SnapCircuits solution. Snap buttons
indicate valid connection points between components, which
must be joined to form circuits in a manner that satisfies
the implicit 3D spatial constraints imposed by the pieces
available and the desired goal circuit function.

path for an agent’s end-effector to take (independent of
its kinematic chain) in the case of tabletop pick-and-place
operations.

Once the space of candidate environments and policies
is sufficiently reduced, higher fidelity simulations can be
utilized, a common technique for expensive evaluations.
Directly as a result of this expensive computation in the
inner-most loop of the planning computation, our proposed
decoupled approach parallelizes better and converges far
faster than an interleaved approach in which the lead and
support roles are not decoupled. While this improved perfor-
mance occurs at the cost of solution optimality, we maintain
that the benefits of achieving ‘good enough’ improvement
on a rapidly solvable timescale are far more useful than
achieving optimality on a far less rapid timescale.

VI. EVALUATION

We performed an evaluation of our algorithm using a
collaborative circuit-building task within a simulation en-
vironment (Figure 2). The circuit-building task is closely
modeled after SnapCircuits, a popular children’s toy. Using
a grid-like board and blocks with electronic components
attached to them (Figure 3), children use this toy to build
simple circuits or devices to learn about electronics. This
puzzle is a particularly interesting domain for study as it
contains complex, abstract concepts that cannot easily be rep-
resented as static literals within operator effect specifications
(such as circuit resistance or shorted paths). Additionally,
there are non-trivial spatial concerns, as pieces may not
be connected side-by-side. Instead, they must be connected
via the snap buttons on the blocks (Figure 3), resulting in
an extra dimension of placement (height) to consider. For
example, one could not connect two LEDs in series directly,
as a wire piece would be necessary to bridge them together.

This domain is particularly attractive due to the prevalence
of cases where multiple valid solutions exist that differ in
terms of their optimality of resource usage. By providing an
agent with an excess of SnapCircuit blocks, it is possible to
influence it to implement less optimal solutions that are more
immediately apparent. We use this case in our evaluation
to demonstrate our algorithm’s ability to influence an agent

away from utilizing these sub-optimal plans, by making more
desirable solutions more obvious.

A. Task Environment

We utilize a predefined grasp library, allowing our simu-
lated agents the ability to grasp and place blocks at 90 degree
increments. Task execution occurs around a table with full
shared reach between the lead agent and supporting agent.
Though this reach distance is configurable within the simu-
lation we utilized, we did not add this additional complexity
in order to more clearly illustrate the conditions under which
our algorithm generates particular supportive behaviors. The
snap board, upon which circuits are constructed, is acces-
sible only to lead agents. Accordingly, support agents are
prohibited from executing operators with parameterizations
that result in environment effects directly modifying anything
on the snap board (specified in the prohibited predicate set
Σ.P initially mentioned in Section V-A).

We conservatively model collisions, maintaining a virtual
buffer space around each robot during action execution. In
the event of an anticipated collision, the agent with the most
priority is permitted to continue its task while the other
agent receives a command to return to its home position
just off-table. Priority is determined by resource utilization,
with the lead agent winning ties. In practice, during conflicts
this manifests as the support agent having to place any
objects it is carrying on the table, returning to its home
position, and then attempting another action. This resolution
strategy respects important considerations relevant to real-
world collaborative robotics, where robots do not necessarily
have the ability to either coordinate behaviors or to explicitly
communicate with their collaborators.

B. Scenarios

Our evaluation concerns itself with two possible worker
team scenarios, based upon the level of knowledge and
coordination assumed between the lead and support agent:

The first scenario we consider is that of unpredictable
team behavior. In this scenario, the lead agent is aware of
a random subset of Σ.ΠT . This example has the lead agent
following the best valid plan of that random subset with the
assistance of a support robot. This support robot attempts to
maximize its assistance without specific knowledge about the
lead robot’s policy, using a balanced plan weighting scheme
that favors more optimal solutions (weighting case 1).

The second evaluation concerns naı̈ve heuristic-driven
team behavior. In this scenario, the lead agent must at-
tempt to solve the task online, aided only by basic planner
heuristics that favor plans following a simple prioritiza-
tion scheme: actions are parameterized using pieces most
proximal to the board in their current orientations, before
branching out to explore more spatially or rotationally distant
alternatives. This agent is also unconcerned with optimality,
which may have otherwise affected its planning strategy to
be more conservative with the circuit blocks utilized or final
configuration achieved. For this example, we utilize a plan
weighting scheme that can actively disincentivize poor plans

while driving the lead agent towards more optimal solutions
through careful environmental reconfiguration (weighting
case 3).

Agent teams were evaluated using lead and support pairs,
characterized by their movement speed as being either fast
(100% speed) or slow (33% speed). We evaluated support
scenarios where a lead agent was paired with either a less,
equal, or more rapidly moving helper. While we evaluated
several circuit building activities (with differing compo-
nent availability/goal specifications) with our algorithm, we
specifically report on our most complex task since the relative
benefits between conditions did not differ strongly with
variations in goal complexity for this class of task.

C. Circuit Building Task Results

As shown in figures 4a and 4b, our algorithm successfully
generated behaviors that reduced the cognitive load and
physical effort required by a lead agent solving a complex
circuit-building sequential manipulation task. Particularly
encouraging for applications into ad-hoc robot teaming is the
result from our first scenario, where a knowledgable support
robot and a competent lead robot could successfully collab-
orate without any direct coordination. Our second scenario
is especially encouraging for human-robot teaming, where
it is possible to leverage the potentially superior symbolic
reasoning and planning of a robot while still deriving the
substantial benefits attained via the dexterous manipulation
and broader contextual awareness of human workers.

Within our makespan (task completion time) evaluation
(Figure 4a), our results show that supportive agents had
helpful effects that drove average task completion times
down universally. We show that a slow lead robot with
a fast supportive-behavior only agent was able to perform
competitively with a single fast lead robot. This improvement
demonstrates that through our contribution, a collection of
potentially less costly, diversely capable agents can approach
or surpass the task completion quality of the less realistic
case of a single, universally capable agent.

In this condition, the support robot provided an efficiency
increase of 44%, yet did not require the same task-relevant
capabilities (precision, tooling, etc.) as the lead. Despite
this, its inclusion substantially improved task performance
through autonomously generated, off-task, supportive ac-
tions. We also see a benefit across task executions for agents
paired with slower or equally rapid supportive collaborators,
with average time improvements of 9.8% and 30.5% over the
unsupported agent scenario, respectively. These gains were
consistent regardless of whether the lead agent was using
a planning heuristic known to the support agent. As this
task takes place over a small, shared work surface, one can
reasonably expect the magnitudes of improvement to scale
with task environment size.

We also evaluated the effects of our support algorithm on a
lead agent’s ability to rapidly plan high quality solutions for
these circuit building tasks (Figure 4b). We see this planning
time as analogous to the cognitive load imposed on the lead
agent while solving these circuit building tasks. The heuristic

(a) Average makespan over multiple random initial environ-
mental configurations of the base task. Adding a support
robot provided substantial task completion time improvement
even though the supportive agent could not directly contribute
towards the task completion.

(b) Mean planning duration of the lead agent for solving var-
ious SnapCircuits TAMP problems. In multi-agent scenarios,
due to the decoupled nature of our approach, the agents had to
replan when resource or spatial conflicts emerged (as compared
to no replanning occurring during the unsupported conditions).

Fig. 4: Planning and execution performance results for a variety of circuit construction tasks.

driven results we present show that a supportive agent, aware
of a lead agent’s planner heuristic(s), can dramatically re-
duce the search space or planning burden of a task while still
maintaining high makespan performance by autonomously
reconfiguring the environment to be more favorable for the
thought process of the lead agent. Notably, it was important
for the support agent to be faster than the lead as it may
have needed to manipulate objects before the lead had a
chance to use them. In the case of a lead agent paired with a
faster support agent, the 10% average loss in task completion
efficiency between the unsupported agent conditions (non-
heuristic driven vs. greedy heuristic driven) disappears, while
planning speed improvements largely persist. This benefit
persists despite our implementation’s need to fully replan
when conflicts arise. The addition of motion plan caching
would further improve these results.

VII. CONCLUSION

We conclude by summarizing our primary contribution in
this work: an algorithm that generates supportive behaviors in
ad-hoc multi-robot teams for sequential manipulation tasks.
By utilizing an approach that proposes and evaluates possible
‘desirable’ environment states in the context of potential
task execution plans, we present a novel idea that can be
used to autonomously create off-goal behaviors that improve
robot-robot and potentially human-robot team performance.
Alongside our algorithm presentation, we show alternative
weighting schemes that can be employed to produce behav-
iors that can be tailored to particular team dynamics or task
considerations. Finally, we present an evaluation of our work
within a complex circuit-building domain, showing positive
effects on task completion speed and cognitive load.

REFERENCES

[1] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[2] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtrack-
ing,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 957–964.

[3] B. Hayes and B. Scassellati, “Challenges in shared-environment
human-robot collaboration,” in Proceedings of the 8th ACM/IEEE
International Conference on Human-Robot Interaction (HRI 2013)
Workshop on Collaborative Manipulation, 2013.

[4] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2014.

[5] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, pp. 1194–1227, 2013.

[6] A. Bhatia, M. R. Maly, E. Kavraki, and M. Y. Vardi, “Motion planning
with complex goals,” Robotics & Automation Magazine, IEEE, vol. 18,
no. 3, pp. 55–64, 2011.

[7] S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao, “Perception,
planning, and execution for mobile manipulation in unstructured
environments,” IEEE Robotics and Automation Magazine, vol. 19,
no. 2, pp. 58–71, 2012.

[8] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for
solving sequential manipulation planning problems,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2014, pp. 3684–3691.

[9] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2010, pp. 5002–5008.

[10] R. Alami, F. F. Ingrand, and S. Qutub, “A scheme for coordinating
multi-robots planning activities and plans execution,” in 13th European
Conference on Artificial Intelligence, 1998, pp. 617–621.

[11] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and
D. Rus, “Towards coordinated precision assembly with robot teams,”
Proceedings of the 2014 International Symposium on Experimental
Robotics, 2014.

[12] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot: An
autonomous multi-robot coordinated furniture assembly system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2013, pp. 855–862.

[13] A. Dragan and S. Srinivasa, “Generating legible motion,” in Proceed-
ings of Robotics: Science and Systems, Berlin, Germany, June 2013.

[14] J. Mainprice and D. Berenson, “Human-robot collaborative manipula-
tion planning using early prediction of human motion,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013, pp. 299–306.

[15] M. Gombolay, R. Wilcox, and J. A. Shah, “Fast scheduling of multi-
robot teams with temporospatial constraints.” in Robotics: Science and
Systems, 2013.

[16] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial intelligence, vol. 49, no. 1, pp. 61–95, 1991.

[17] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research, vol. 14, pp. 253–302, 2001.

	Introduction
	Related Work
	Task and Motion Planning Domain
	Supportive Behaviors
	Approach
	Formalizing the Supportive Behavior Problem
	Constructing Hypothetical Environments
	Plan weight determination
	Environment state analysis
	Assumptions and Weaknesses

	Evaluation
	Task Environment
	Scenarios
	Circuit Building Task Results

	Conclusion
	References

