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Abstract. In 1991, Ballard [2] described the implications of having a visual system that could actively posi-
tion the camera in response to physical stimuli. In humanoid robotic systems, or in any animate vision system
that interacts with people, social dynamics provide additional levels of constraint and provide additional op-
portunities for processing economy. In this paper, we describe an integrated visual-motor system that has been
implemented on a humanoid robot to negotiate the robot’s physical constraints, the perceptual needs of the
robot’s behavioral and motivational systems, and the social implications of motor acts.

1 Introduction

Animate vision introduces requirements for real-time processing, removes simplifying assumptions of static cam-
era systems, and presents opportunities for simplifying computation. This simplification arises through situating
perception in a behavioral context, by providing for opportunities to learn flexible behaviors, and by allowing the
exploitation of dynamic regularities of the environment [2]. These benefits have been of critical interest to a variety
of humanoid robotics projects, and to the robotics and AI communities as a whole. On a practical level, the vast
majority of these systems are still limited by the complexities of perception and thus focus on a single aspect of an-
imate vision or concentrate on the integration of two well-known systems. On a theoretical level, existing systems
often do not benefit from the advantages that Ballard proposed because of their limited scope.

In humanoid robotics, these problems are particularly evident. Animate vision systems that provide only a
limited set of behaviors (such as supporting only smooth pursuit tracking) or that provide behaviors on extremely
limited perceptual inputs (such as systems that track only very bright light sources) fail to provide a natural interac-
tion between human and robot. We propose that in order to allow realistic human-machine interactions, an animate
vision system must address a set ofsocial constraintsin addition to the other issues that classical active vision has
addressed.

2 Social constraints

For robots and humans to interact meaningfully, it is important that they understand each other enough to be able
to shape each other’s behavior. This has several implications. One of the most basic is that robot and human should
have at least some overlapping perceptual abilities. Otherwise, they can have little idea of what the other is sensing
and responding to. Vision is one important sensory modality for human interaction, and the one we focus on in this
article. We endow our robots with visual perception that is human-like in its physical implementation.

Similarity of perception requires more than similarity of sensors. Not all sensed stimuli are equally behaviorally
relevant. It is important that both human and robot find the same types of stimuli salient in similar conditions.
Our robots have a set of perceptual biases based on the human pre-attentive visual system. These biases can be
modulated by the motivational state of the robot, making later perceptual stages more behaviorally relevant. This
approximates the top-down influence of motivation on the bottom-up pre-attentive process found in human vision.

Visual perception requires high bandwidth and is computationally demanding. In the early stages of human
vision, the entire visual field is processed in parallel. Later computational steps are applied much more selectively,
so that behaviorally relevant parts of the visual field can be processed in greater detail. This mechanism of visual
attention is just as important for robots as it is for humans, from the same considerations of resource allocation. The
existence of visual attention is also key to satisfying the expectations of humans concerning what can and cannot
be perceived visually. We have implemented a context-dependent attention system that goes some way towards
this.

Human eye movements have a high communicative value. For example, gaze direction is a good indicator of
the locus of visual attention. Knowing a person’s locus of attention reveals what that person currently considers
behaviorally relevant, which is in turn a powerful clue to their intent. The dynamic aspects of eye movement,
such as staring versus glancing, also convey information. Eye movements are particularly potent during social
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Fig. 1. Kismet, a robot capable of conveying intentionality through facial expressions and behavior [6]. Here, the robot’s phys-
ical state expresses attention to and interest in the human beside it. Another person – for example, the photographer – would
expect to have to attract the robot’s attention before being able to influence its behavior.

interactions, such as conversational turn-taking, where making and breaking eye contact plays an important role in
regulating the exchange. We model the eye movements of our robots after humans, so that they may have similar
communicative value.

Our hope is that by following the example of the human visual system, the robot’s behavior will be easily
understood because it is analogous to the behavior of a human in similar circumstances (see Figure 1). For example,
when an anthropomorphic robot moves its eyes and neck to orient toward an object, an observer can effortlessly
conclude that the robot has become interested in that object. These traits lead not only to behavior that is easy to
understand but also allows the robot’s behavior to fit into the social norms that the person expects.

There are other advantages to modeling our implementation after the human visual system. There is a wealth
of data and proposed models for how the human visual system is organized. This data provides not only a modular
decomposition but also mechanisms for evaluating the performance of the complete system. Another advantage
is robustness. A system that integrates action, perception, attention, and other cognitive capabilities can be more
flexible and reliable than a system that focuses on only one of these aspects. Adding additional perceptual capabil-
ities and additional constraints between behavioral and perceptual modules can increase the relevance of behaviors
while limiting the computational requirements [1]. For example, in isolation, two difficult problems for a visual
tracking system are knowing what to track and knowing when to switch to a new target. These problems can be
simplified by combining the tracker with a visual attention system that can identify objects that are behaviorally
relevant and worth tracking. In addition, the tracking system benefits the attention system by maintaining the ob-
ject of interest in the center of the visual field. This simplifies the computation necessary to implement behavioral
habituation. These two modules work in concert to compensate for the deficiencies of the other and to limit the
required computation in each.

3 Physical form

Currently within our group, the robot with the most sophisticated visual-motor behavior is Kismet. This robot
is an active vision head augmented with expressive facial features (see Figure 2). Kismet is designed to receive
and send human-like social cues to a caregiver, who can regulate its environment and shape its experiences as a
parent would for a child. Kismet has three degrees of freedom to control gaze direction, three degrees of freedom
to control its neck, and fifteen degrees of freedom in other expressive components of the face (such as ears and
eyelids). To perceive its caregiver Kismet uses a microphone, worn by the caregiver, and four color CCD cameras.
The positions of the neck and eyes are important both for expressive postures and for directing the cameras towards
behaviorally relevant stimuli.

The cameras in Kismet’s eyes have high acuity but a narrow field of view. Between the eyes, there are two
unobtrusive central cameras fixed with respect to the head, each with a wider field of view but correspondingly
lower acuity. The reason for this mixture of cameras is that typical visual tasks require both high acuity and a wide
field of view. High acuity is needed for recognition tasks and for controlling precise visually guided motor move-
ments. A wide field of view is needed for search tasks, for tracking multiple objects, compensating for involuntary
ego-motion, etc. A common trade-off found in biological systems is to sample part of the visual field at a high



Social Constraints 3

Fig. 2.Kismet has a large set of expressive features – eyelids, eyebrows, ears, jaw, lips, neck and eye orientation. The schematic
on the right shows the degrees of freedom relevant to visual perception (omitting the eyelids!). The eyes can turn independently
along the horizontal (pan), but turn together along the vertical (tilt). The neck can turn the whole head horizontally and vertically,
and can also crane forward. Two cameras with narrow “foveal” fields of view rotate with the eyes. Two central cameras with
wide fields of view rotate with the neck. These cameras are unaffected by the orientation of the eyes.

enough resolution to support the first set of tasks, and to sample the rest of the field at an adequate level to support
the second set. This is seen in animals with foveate vision, such as humans, where the density of photoreceptors is
highest at the center and falls off dramatically towards the periphery. This can be implemented by using specially
designed imaging hardware [20], space-variant image sampling [3], or by using multiple cameras with different
fields of view, as we have done.

Another of our robots, Cog, follows the human sensing arrangement more closely than does Kismet. Cog is
a 22 degree of freedom upper-torso humanoid. The mechanical design of the head and neck are based on human
anatomy and performance. Each of Cog’s eyes has two color CCD cameras, one with a wide field of view for
peripheral vision and one with a narrow field of view for high acuity vision – as opposed to Kismet’s arrangement,
where the wide cameras are fixed with respect to the head. Cog also has a three-axis inertial package that detects
head rotation and a gravity vector similar to the human vestibular system.

The designs of our robots are constantly evolving. New degrees of freedom are added, old degrees of freedom
are reorganized, sensors are replaced or rearranged, new sensory modalities are introduced. The descriptions given
here should be treated as a fleeting snapshot of the current state of the robots. Our hardware and software control
architectures have been designed to meet the challenge of real-time processing of visual signals (approaching 30
Hz) with minimal latencies. Kismet’s vision system is implemented on a network of nine 400 MHz commercial
PCs running the QNX real-time operating system (see Figure 3). Kismet’s motivational system runs on a collection
of four Motorola 68332 processors. Machines running Windows NT and Linux are also networked for speech
generation and recognition respectively. Even more so than Kismet’s physical form, the control network is rapidly
evolving as new behaviors and sensory modalities come on line.

4 Levels of visual behavior

Visual behavior can be conceptualized on four different levels (as shown in Figure 4). These levels correspond to
the social level, thebehavior level, theskills level, and theprimitives level. This decomposition is motivated by
distinct temporal, perceptual, and interaction constraints that exist at each level. The temporal constraints pertain to
how fast the motor acts must be updated and executed. These can range from real-time vision rates (30 Hz) to the
relatively slow time scale of social interaction (potentially transitioning over minutes). The perceptual constraints
pertain to what level of sensory feedback is required to coordinate behavior at that layer. This perceptual feedback
can originate from the low level visual processes such as the current target from the attention system, to relatively
high-level multi-modal percepts generated by the behavioral releasers. The interaction constraints pertain to the
arbitration of units that compose each layer. This can range from low-level oculomotor primitives (such as saccades
and smooth pursuit), to using visual behavior to regulate human-robot turn-taking.

Each level serves a particular purpose for generating the overall observed behavior. As such, each level must
address a specific set of issues. The levels of abstraction help simplify the overall control of visual behavior by
restricting each level to address those core issues that are best managed at that level. By doing so, the coordination
of visual behavior at each level (i.e., arbitration), between the levels (i.e., top-down and bottom-up), and through
the world is maintained in a principled way.
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Fig. 3. System architecture for Kismet. The motivation system runs on four Motorola 68332 microprocessors running L, a
multi-threaded Lisp developed in our lab. Vision processing and eye/neck control is performed by nine networked PCs running
QNX, a real-time operating system similar to Linux.

– The Social Level:The social level explicitly deals with issues pertaining to having a human in the interaction
loop. This requires careful consideration of how the human interprets and responds to the robot’s behavior
in a social context. Using visual behavior (making eye contact and breaking eye contact) to help regulate the
transition of speaker turns during vocal turn-taking is an example.

– The behavior level:The behavior level deals with issues related to producing relevant, appropriately persistent,
and opportunistic behavior. This involves arbitrating between the many possible goal-achieving behaviors that
the robot could perform to establish the current task. Actively seeking out a desired stimulus and then visually
engaging it is an example.

– The motor skill level:The motor skill level is responsible for figuring out how to move the motors to accomplish
that task. Fundamentally, this level deals with the issues of blending of and sequencing between coordinated
ensembles of motor primitives (each ensemble is a distinct motor skill). The skills level must also deal with
coordinating multi-modal motor skills (e.g., those motor skills that combine speech, facial expression, and
body posture). Fixed action patterns such as a searching behavior is an example where the robot alternately
performs ballistic eye-neck orientation movements with gaze fixation to the most salient target. The ballistic
movements are important for scanning the scene, and the fixation periods are important for locking on the
desired type of stimulus.

– The motor primitives level:The motor primitives level implements the building blocks of motor action. This
level must deal with motor resource allocation and tightly coupled sensorimotor loops. For example, gaze
stabilization must take sensory stimuli and produce motor commands in a very tight feedback loop. Kismet
actually has four distinct motor systems at the primitives level: theaffective vocal system, thefacial expression
system, theoculomotor system, and thebody posturing system. Because this paper focuses on visual behavior,
we only discuss the oculomotor system here.

We describe these levels in detail as they pertain to Kismet’s visual behavior. We begin at the lowest level,
motor primitives pertaining to vision, and progress to the highest level where we discuss the social constraints of
animate vision.

5 Visual motor primitives

Kismet’s visual-motor control is modeled after the human ocular-motor system. The human system is so good at
providing a stable percept of the world that we have no intuitive appreciation of the physical constraints under
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Fig. 4. Levels of behavioral organization. The primitive level is populated with tightly coupled sensorimotor loops. The skill
level contains modules that coordinate primitives to achieve tasks. Behavior level modules deal with questions of relevance,
persistence and opportunism in the arbitration of tasks. The social level comprises design-time considerations of how the robot’s
behaviors will be interpreted and responded to in a social environment.

which it operates. Humans have foveate vision. The fovea (the center of the retina) has a much higher density of
photoreceptors than the periphery. This means that to see an object clearly, humans must move their eyes such that
the image of the object falls on the fovea. Human eye movement is not smooth. It is composed of many quick
jumps, called saccades, which rapidly re-orient the eye to project a different part of the visual scene onto the fovea.
After a saccade, there is typically a period of fixation, during which the eyes are relatively stable. They are by
no means stationary, and continue to engage in corrective micro-saccades and other small movements. If the eyes
fixate on a moving object, they can follow it with a continuous tracking movement called smooth pursuit. This
type of eye movement cannot be evoked voluntarily, but only occurs in the presence of a moving object. Periods of
fixation typically end after some hundreds of milliseconds, after which a new saccade will occur [10].

The eyes normally move in lock-step, making equal, conjunctive movements. For a close object, the eyes need
to turn towards each other somewhat to correctly image the object on the foveae of the two eyes. These disjunctive
movements are called vergence, and rely on depth perception (see Figure 5). Since the eyes are located on the
head, they need to compensate for any head movements that occur during fixation. The vestibulo-ocular reflex uses
inertial feedback from the vestibular system to keep the orientation of the eyes stable as the eyes move. This is
a very fast response, but is prone to the accumulation of error over time. The opto-kinetic response is a slower
compensation mechanism that uses a measure of the visual slip of the image across the retina to correct for drift.
These two mechanisms work together to give humans stable gaze as the head moves.

Our implementation of an ocular-motor system is an approximation of the human system. The motor primitives
are organized around the needs of higher levels, such as maintaining and breaking mutual regard, performing visual
search, etc. Since our motor primitives are tightly bound to visual attention, we will first discuss their sensory
component.

5.1 Pre-attentive visual perception

Human infants and adults naturally find certain perceptual features interesting. Features such as color, motion,
and face-like shapes are very likely to attract our attention [15]. We have implemented a variety of perceptual
feature detectors that are particularly relevant to interacting with people and objects. These include low-level
feature detectors attuned to quickly moving objects, highly saturated color, and colors representative of skin tones.
Examples of features we have used are shown in Figure 7. Looming objects are also detected pre-attentively, to
facilitate a fast reflexive withdrawal.

Color saliency feature map One of the most basic and widely recognized visual feature is color. Our models of
color saliency are drawn from the complementary work on visual search and attention from Itti, Koch, and Niebur
[12]. The incoming video stream contains three 8-bit color channels (r, g, andb) which are transformed into four
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Fig. 5.Humans exhibit four characteristic types of eye motion. Saccadic movements are high-speed ballistic motions that center
a target in the field of view. Smooth pursuit movements are used to track a moving object at low velocities. The vestibulo-ocular
and opto-kinetic reflexes act to maintain the angle of gaze as the head and body move through the world. Vergence movements
serve to maintain an object in the center of the field of view of both eyes as the object moves in depth.

color-opponency channels (r′, g′, b′, andy′). Each input color channel is first normalized by the luminancel (a
weighted average of the three input color channels):

rn =
255
3
· r
l

gn =
255
3
· g
l

bn =
255
3
· b
l

(1)

These normalized color channels are then used to produce four opponent-color channels:

r′ = rn − (gn + bn)/2 (2)

g′ = gn − (rn + bn)/2 (3)

b′ = bn − (rn + gn)/2 (4)

y′ =
rn + gn

2
− bn − ‖rn − gn‖ (5)

The four opponent-color channels are clamped to 8-bit values by thresholding. While some research seems to
indicate that each color channel should be considered individually [15], we choose to maintain all of the color
information in a single feature map to simplify the processing requirements (as does Wolfe [21] for more theoretical
reasons).

Motion feature map Motion is detected using differences between successive camera images while the robot is
not moving. Motion detection is performed on the wide field of view, which is often at rest since it does not move
with the eyes (see Figure 2). Motion regions are “filled in” along scan-lines using a simple dynamic programming
technique.

Skin tone feature map Colors consistent with skin are also filtered for (see Figure 6). This is a computationally
inexpensive means to rule out regions which are unlikely to contain faces or hands.

5.2 Visual attention

We have implemented Wolfe’s model of human visual search and attention [21]. Our implementation is similar
to other models based in part on Wolfe’s work[12], but additionally operates in conjunction with motivational
and behavioral models, with moving cameras, and addresses the issue of habituation. It is also similar to visual
attention systems created for other humanoid robots [18, 13], but operates on more complex visual stimuli and
focuses on applying task demands to direct attention. The attention process acts in two parts. The low-level feature
detectors discussed in the previous section are combined through a weighted average to produce a single attention
map. This combination allows the robot to select regions that are visually salient and to direct its computational
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Fig. 6.The skin tone filter responds to 4.7% of possible(R,G,B) values. Each grid in the figure to the left shows the response
of the filter to all values of red and green for a fixed value of blue. The image to the right shows the filter in operation. Typical
indoor objects that may also be consistent with skin tone include wooden doors, cream walls, etc.

Fig. 7. Overview of the attention system. The robot’s attention is determined by a combination of low-level perceptual stimuli.
The relative weightings of the stimuli are modulated by high-level behavior and motivational influences. A sufficiently salient
stimulus in any modality can pre-empt attention, similar to the human response to sudden motion. All else being equal, larger
objects are considered more salient than smaller ones. The design is intended to keep the robot responsive to unexpected events,
while avoiding making it a slave to every whim of its environment. With this model, people intuitively provide the right cues to
direct the robot’s attention (shake object, move closer, wave hand, etc.). Displayed images were captured during a behavioral
trial session.
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Fig. 8. Manipulating the robot’s attention. Images on the top row are from Kismet’s upper wide camera. Images on the bottom
summarize the contemporaneous state of the robot’s attention system. Brightness in the lower image corresponds to salience;
rectangles correspond to regions of interest. The thickest rectangles correspond to the robot’s locus of attention. The robot’s
motivation here is such that stimuli associated with faces and stimuli associated with toys are equally weighted. In the first pair
of images, the robot is attending to a face and engaging in mutual regard. By shaking the colored block, its salience increases
enough to cause a switch in the robot’s attention. The third pair shows that the head tracks the toy as it moves, giving feedback
to the human as to the robot’s locus of attention. The eyes are also continually tracking the target more tightly than the neck
does. In the fourth pair, the robot’s attention switches back to the human’s face, which is tracked as it moves.

Fig. 9. Effect of gain adjustment on looking preference. Circles correspond to fixation points, sampled at one second intervals.
On the left, the gain of the skin tone filter is higher. The robot spends more time looking at the face in the scene (86% face, 14%
block). This bias occurs despite the fact that the face is dwarfed by the block in the visual scene. On the right, the gain of the
color saliency filter is higher. The robot now spends more time looking at the brightly colored block (28% face, 72% block).

and behavioral resources towards those regions. The attention system also integrates influences from the robot’s
internal motivational and behavioral systems to bias the selection process. For example, if the robot’s current goal
is to interact with people, the attention system is biased toward objects that have colors consistent with skin tone.
The attention system also has mechanisms for habituating to stimuli, thus providing the robot with a primitive
attention span. Figure 8 shows an example of the attention system in use, choosing stimuli in a complex scene
that are potentially behaviorally relevant. The state of the attention system is usually reflected in the robot’s gaze
direction, unless there are behavioral reasons for this not to be the case. The attention system runs all the time, even
when it is not controlling gaze, since it determines the perceptual input to which the motivational and behavioral
systems respond.

5.3 Task-based influences on attention

For a goal achieving creature, the behavioral state should also bias what the creature attends to next. For instance,
when performing visual search, humans seem to be able to preferentially select the output of one broadly tuned
channel per feature (e.g. “red” for color and “shallow” for orientation if searching for red horizontal lines).

In our system these top-down, behavior-driven factors modulate the output of the individual feature maps
before they are summed to produce the bottom-up contribution. This process selectively enhances or suppresses
the contribution of certain features, but does not alter the underlying raw saliency of a stimulus. To implement
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Fig. 10.Schematic of behaviors relevant to attention. The activation of a particular behavior depends on both perceptual factors
and motivation factors. The perceptual factors come from post attentive processing of the target stimulus into behaviorally
relevant percepts. The drives within the motivation system have an indirect influence on attention by influencing the behavioral
context. The behaviors at Level1 of the behavior system directly manipulate the gains of the attention system to benefit their
goals. Through behavior arbitration, only one of these behaviors is active at any time. These behaviors are further elaborated in
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this, the bottom-up results of each feature map are passed through a filter (effectively a gain). The value of each
gain is determined by the active behavior. These modulated feature maps are then summed to compute the overall
attention activation map, thus biasing attention in a way that facilitates achieving the goal of the active behavior.
For example, if the robot is searching for social stimuli, it becomes sensitive to skin tone and less sensitive to color.
Behaviorally, the robot may encounter toys in its search, but will continue until a skin toned stimulus is found
(often a person’s face).

As shown in Figure 10, the skin tone gain is enhanced when theseek people behavior is active and is
suppressed when theavoid people behavior is active. Similarly, the color gain is enhanced when theseek
toys behavior is active, and suppressed when theavoid toys behavior is active. Whenever theengage
people or engage toys behaviors are active, the face and color gains are restored to their default values,
respectively.

5.4 Habituation effects

To build a believable creature, the attention system must also implement habituation effects. Infants respond
strongly to novel stimuli, but soon habituate and respond less as familiarity increases. This acts both to keep
the infant from being continually fascinated with any single object and to force the caretaker to continually en-
gage the infant with slightly new and interesting interactions. For a robot, a habituation mechanism removes the
effects of highly salient background objects that are not currently involved in direct interactions as well as placing
requirements on the caretaker to maintain interaction with slightly novel stimulation.

To implement habituation effects, ahabituation filteris applied to the activation map over the location currently
being attended to. The habituation filter effectively decays the activation level of the location currently being
attended to, making other locations of lesser activation bias attention more strongly.

5.5 Consistency of attention

In the presence of objects of similar salience, it is useful be able to commit attention to one of the objects for a
period of time. This gives time for post-attentive processing to be carried out on the object, and for downstream
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Fig. 11.Behavior of the tracker. Frames are taken at one second intervals. The white squares indicates the position of the target.
The target is not centered in the images since they were taken from a camera fixed with respect to the head. On the third row,
the face slips away from the tracker, but it is immediately reacquired through the attention system. The images are taken from a
three minute session during which the tracker slipped five times. This is typical performance for faces, which tend not to move
too rapidly.
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Fig. 12.Eyes are searched for within a restricted part of the robot’s field of view. The eye detector actually looks for the region
between the eyes. It has adequate performance over a limited range of distances and face orientations.

processes to organize themselves around the object. As soon as a decision is made that the object is not behaviorally
relevant (for example, it may lack eyes, which are searched for post-attentively), attention can be withdrawn from
it and visual search may continue. Committing to an object is also useful for behaviors that need to be atomically
applied to a target (for example, a calling behavior where the robot needs to stay looking at the person it is calling).

To allow such commitment, the attention system is augmented with a tracker. The tracker follows a target in
the visual field, using simple correlation between successive frames. Usually changes in the tracker target will be
reflected in movements of the robot’s eyes, unless this is behaviorally inappropriate. If the tracker loses the target,
it has a very good chance of being able to reacquire it from the attention system. Figure 11 shows the tracker in
operation.

5.6 Post-attentive processing

Once the attention system has selected regions of the visual field that are potentially behaviorally relevant, more
intensive computation can be applied to these regions than could be applied across the whole field. Searching for
eyes is one such task. Locating eyes is important to us for engaging in eye contact, and as a reference point for
interpreting facial movements and expressions. We currently search for eyes after the robot directs its gaze to a
locus of attention, so that a relatively high resolution image of the area being searched is available from the foveal
cameras (see Figure 12). Once the target of interest has been selected, we also estimate its proximity to the robot
using a stereo match between the two central wide cameras. Proximity is important for interaction; things closer
to the robot should be of greater interest. It’s also useful for interaction at a distance, such as a person standing too
far for face to face interaction but is close enough to be beckoned closer. Clearly the relevant behavior (beckoning
or playing) is dependent on the proximity of the human to the robot.

Eye-detection in a real-time, robotic domain is computationally expensive and prone to error due to the large
variance in head posture, lighting conditions and feature scales. We developed an approach based on successive
feature extraction, combined with some inherent domain constraints, to achieve a robust and fast eye-detection sys-
tem for Kismet. First, a set of feature filters are applied successively to the image in increasing feature granularity.
This serves to reduce the computational overhead while maintaining a robust system. The successive filter stages
are:

– Detect skin colored patches in the image (abort if this does not pass above threshold).
– Scan the image for ovals and characterize its skin tone for a potential face.
– Extract a sub-image of the oval and run a ratio template [16, 17] over it for candidate eye locations.
– For each candidate eye location, run a pixel based multi-layer perceptron on the region. The perceptron is

previously trained to recognize shading patterns characteristic of the eyes and bridge of the nose.

By doing so, the set of possible eye-locations in the image is reduced from the previous level based on a
feature filter. This allows the eye detector to run in real time on a 400Mhz PC. The methodology assumes that
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Fig. 13.Organization of Kismet’s eye/neck motor control. Many cross level influences have been omitted. The modules in gray
are not active in the results presented in this paper.

the lighting conditions allow the eyes to be distinguished as dark regions surrounded by highlights of the temples
and the bridge of the nose, that human eyes are largely surrounded by regions of skin color, that the head is only
moderately rotated, that the eyes are reasonably horizontal, and that people are within interaction distance from
the robot (3 to 10 feet).

5.7 Eye movements

Figure 13 shows the organization of Kismet’s eye/neck motor control. Kismet’s eyes periodically saccade to new
targets chosen by an attention system, tracking them smoothly if they move and the robot wishes to engage them.
Vergence eye movements are more challenging to implement in a social setting, since errors in disjunctive eye
movements can give the eyes a disturbing appearance of moving independently. Errors in conjunctive movements
have a much smaller impact on an observer, since the eyes clearly move in lock-step. A crude approximation of the
opto-kinetic reflex is rolled into our implementation of smooth pursuit. An analogue of the vestibular-ocular reflex
has been developed for Cog using a 3-axis inertial sensor, but has not been implemented on Kismet. Kismet uses
an efferent copy mechanism to compensate the eyes for movements of the head.

The attention system operates on the view from the central camera (see Figure 2). A transformation is needed to
convert pixel coordinates in images from this camera into position setpoints for the eye motors. This transformation
in general requires the distance to the target to be known, since objects in many locations will project to the same
point in a single image (see Figure 14). Distance estimates are often noisy, which is problematic if the goal is to
center the target exactly in the eyes. In practice, it is usually enough to get the target within the field of view of
the foveal cameras in the eyes. Clearly the narrower the field of view of these cameras is, the more accurately
the distance to the object needs to be known. Other crucial factors are the distance between the wide and foveal
cameras, and the closest distance at which the robot will need to interact with objects. These constraints determined
the physical distribution of Kismet’s cameras and choice of lenses. The central location of the wide camera places
it as close as possible to the foveal cameras. It also has the advantage that moving the head to center a target as
seen in the central camera will in fact truly orient the head towards that target – for cameras in other locations,
accuracy of orientation would be limited by the accuracy of the measurement of distance.

Higher-level influences modulate eye and neck movements in a number of ways. As already discussed, modifi-
cations to weights in the attention system translate to changes of the locus of attention about which eye movements
are organized. The overall posture of the robot can be controlled in terms of a three-dimensional affective space[5].
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Fig. 14.Without distance information, knowing the position of a target in the wide camera only identifies a ray along which the
object must lie, and does not uniquely identify its location. If the cameras are close to each other relative to the closest distance
the object is expected to be at, the foveal cameras can be rotated to bring the object within their narrow field of view without
needing an accurate estimate of its distance. If the cameras are far apart, or the field of view is very narrow, the minimum
distance the object can be at becomes large.

The regime used to control the eyes and neck is available as a set of primitives to higher-level modules. Regimes
include low-commitment search, high-commitment engagement, avoidance, sustained gaze, and deliberate gaze
breaking. The primitive percepts generated by this level include a characterization of the most salient regions of
the image in terms of the feature maps, an extended characterization of the tracked region in terms of the results of
post-attentive processing (eye detection, distance estimation), and signals related to undesired conditions, such as
a looming object, or an object moving at speeds the tracker finds difficult to keep up with.

We now move up to discuss the next level of behavioral organization – motor skills.

6 Visual motor skills

Given the current task (as dictated by the behavior system), the motor skills level is responsible for figuring out
how to move the actuators to carry out the stated goal. Often this requires coordination between multiple motor
modalities (speech, body posture, facial display, and gaze control). Requests for these modalities can originate
from the top-down (e.g. from the emotion system or behavior system), as well as from the bottom-up (the vocal
system requesting lip and jaw movements for lip synching). Hence, the motor skills level must address the issue of
servicing the motor requests of different systems across the different motor resources.

Furthermore, it often requires a sequence of coordinated motor movements to satisfy a goal. Each motor move-
ment is a primitive (or a combination of primitives) from one of the base motor systems (the vocal system, the
oculomotor system, etc.). Each of these coordinated series of motor primitives is called askill, and each skill is
implemented as a finite state machine (FSM). Each motor skill encodes knowledge of how to move from one motor
state to the next, where each sequence is designed to bring the robot closer to the current goal. The motor skills
level must arbitrate among the many different FSMs, selecting the one to become active based on the active goal.
This decision process is straight forward since there is an FSM tailored for each task of the behavior system.

Many skills can be thought of as afixed action pattern(FAP) as conceptualized by early ethologists [19,
14]. Each FAP consists of two components, theaction component and thetaxis (or orienting) component. For
Kismet, FAPs often correspond to communicative gestures where the action component corresponds to the facial
gesture, and the taxis component (to whom the gesture is directed) is controlled by gaze. People seem to intuitively
understand that when Kismet makes eye contact with them, they are the locus of Kismet’s attention and the robot’s
behavior is organized about them. This places the person in a state of action readiness where they are poised to
respond to Kismet’s gestures.

A simple example of a motor skill is Kismet’s “calling” FAP (see Figure 15). When the current task is to bring a
person into a good interaction distance, the motor skill system activates thecalling FSM. The taxis component
of the FAP issues ahold gaze request to the oculomotor system. This serves to maintain the robot’s gaze on the
person to be hailed. In the first state of the gestural component, Kismet leans its body toward the person (a request
to the body posture motor system). This strengthens the person’s perception that the robot has taken a particular
interest in them. The ears also begin to waggle exuberantly (creating a significant amount of motion and noise)
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Fig. 15.The calling motorskill.

which further attracts the person’s attention to the robot (a request to the face motor system). In addition, Kismet
vocalizes excitedly which is perceived as an initiation of engagement. At the completion of this gesture, the FSM
transitions to the second state. In this state, the robot “sits back” and waits for a bit with an expecting expression
(ears slightly perked, eyes slightly widened, and brows raised). If the person has not already approached the robot,
it is likely to occur during this “anticipation” phase. If the person does not approach within the allotted time
period, the FSM transitions to the third state in which the face relaxes, the robot maintains a neutral posture, and
gaze fixation is released. At this point, the robot is likely to shift gaze. As long as this FSM is active (determined
by the behavior system), the hailing cycle repeats. It can be interrupted at any state transition by the activation of
another FSM (such as the “greeting” FSM when the person has approached).

We now move up another layer of abstraction, to the behavior level in the hierarchy that was shown in Figure 4.

7 Visual behavior

The behavior level is responsible for establishing the current task for the robot through arbitration among Kismet’s
goal-achieving behaviors. By doing so, the observed behavior should be relevant, appropriately persistent, and
opportunistic. Both the current environmental conditions (as characterized by high-level perceptual releasers, as
well as motivational factors (emotion processes and homeostatic regulation) contribute to this decision process.

Interaction of the behavior level with the social level occurs through the world as determined by the nature of
the interaction between Kismet and the human. As the human responds to Kismet, the robot’s perceptual conditions
change. This can activate a different behavior, whose goal is physically carried out the underlying motor systems.
The human observes the robot’s ensuing response and shapes their reply accordingly.

Interaction of the behavior level with the motor skills level also occurs through the world. For instance, if
Kismet is looking for a bright toy, then theseek toy behavior is active. This task is passed to the underlying
motor skills which carry out the search. The act of scanning the environment brings new perceptions to Kismet’s
field of view. If a toy is found, then theseek toy behavior is successful and released. At this point, the perceptual
conditions for engaging the toy are relevant and theengage toy behaviors become active. A new set motor skills
become active to track and smoothly pursue the toy.

8 Social level

Eye movements have communicative value. As discussed previously, they indicate the robot’s locus of attention.
The robot’s degree of engagement can also be conveyed, to communicate how strongly the robot’s behavior is
organized around what it is currently looking at. If the robot’s eyes flick about from place to place without resting,
that indicates a low level of engagement, appropriate to a visual search behavior. Prolonged fixation with smooth
pursuit and orientation of the head towards the target conveys a much greater level of engagement, suggesting that
the robot’s behavior is very strongly organized about the locus of attention.

Eye movements are the most obvious and direct motor actions that support visual perception. But they are by
no means the only ones. Postural shifts and fixed action patterns involving the entire robot also have an important
role. Kismet has a number of coordinated motor actions designed to deal with various limitations of Kismet’s
visual perception (see Figure 16). For example, if a person is visible, but is too distant for their face to be imaged
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Fig. 16.Regulating interaction. People too distant to be seen clearly are called closer; if they come too close, the robot signals
discomfort and withdraws. The withdrawal moves the robot back somewhat physically, but is more effective in signaling to the
human to back off. Toys or people that move too rapidly cause irritation.

at adequate resolution, Kismet engages in a calling behavior to summon the person closer. People who come too
close to the robot also cause difficulties for the cameras with narrow fields of view, since only a small part of a face
may be visible. In this circumstance, a withdrawal response is invoked, where Kismet draws back physically from
the person. This behavior, by itself, aids the cameras somewhat by increasing the distance between Kismet and the
human. But the behavior can have a secondary and greater effect through social amplification – for a human close
to Kismet, a withdrawal response is a strong social cue to back away, since it is analogous to the human response
to invasions of “personal space.”

Similar kinds of behavior can be used to support the visual perception of objects. If an object is too close,
Kismet can lean away from it; if it is too far away, Kismet can crane its neck towards it. Again, in a social context,
such actions have power beyond their immediate physical consequences. A human, reading intent into the robot’s
actions, may amplify those actions. For example, neck-craning towards a toy may be interpreted as interest in that
toy, resulting in the human bringing the toy closer to the robot. Another limitation of the visual system is how
quickly it can track moving objects. If objects or people move at excessive speeds, Kismet has difficulty tracking
them continuously. To bias people away from excessively boisterous behavior in their own movements or in the
movement of objects they manipulate, Kismet shows irritation when its tracker is at the limits of its ability. These
limits are either physical (the maximum rate at which the eyes and neck move), or computational (the maximum
displacement per frame from the cameras over which a target is searched for).

Such regulatory mechanisms play roles in more complex social interactions, such as conversational turn- taking.
Here control of gaze direction is important for regulating conversation rate [9]. In general, people are likely to
glance aside when they begin their turn, and make eye contact when they are prepared to relinquish their turn and
await a response. Blinks occur most frequently at the end of an utterance. These and other cues allow Kismet to
influence the flow of conversation to the advantage of its auditory processing. The visual-motor system can also
be driven by the requirements of a nominally unrelated sensory modality, just as behaviors that seem completely
orthogonal to vision (such as ear-wiggling during the call behavior to attract a person’s attention) are nevertheless
recruited for the purposes of regulation. These mechanisms also help protect the robot. Objects that suddenly appear
close to the robot trigger a looming reflex, causing the robot to quickly withdraw and appear startled. If the event is
repeated, the response quickly habituates and the robot simply appears annoyed, since its best strategy for ending
these repetitions is to clearly signal that they are undesirable. Similarly, rapidly moving objects close to the robot
are threatening and trigger an escape response. These mechanisms are all designed to elicit natural and intuitive
responses from humans, without any special training. But even without these carefully crafted mechanisms, it is
often clear to a human when Kismet’s perception is failing, and what corrective action would help, because the
robot’s perception is reflected in behavior in a familiar way. Inferences made based on our human preconceptions
are actually likely to work.
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We have made a limited number of trails with naive subjects interacting with Kismet which indicate that they
do read and respond contingently to the types of cues we have discussed here. This analysis is still in a preliminary
stage.

9 Limitations and extensions

There are a number of ways the current implementation could be improved and expanded upon. Some of these
recommendations involve supplementing the existing framework, others involve integrating this system into a
larger framework.

Kismet’s visual perceptual world only consists of what is in view of the cameras. Ultimately, the robot should
be able to construct an ego-centered saliency map of interaction space. In this representation, the robot could keep
track of where interesting things are located, even if they are not currently in view. Human infants engage in social
referencing with their caregiver at a very young age. If some event occurs that the infant is unsure about, the infant
will look to the caregiver’s face for an affective assessment. The infant will use this assessment to organize its
behavior. For instance, if the caregiver looks frightened, the infant may become distressed and not probe further.
If the caregiver looks pleased and encouraging, the infant is likely to continue exploring. With respect to Kismet,
it will encounter many situations that it was not explicitly programmed to evaluate. However, if the robot can
engage in social referencing, it can look to the human for the affective assessment and use it to bias learning and
to organize subsequent behavior. Chances are, the event in question and the human’s face will not be in view at the
same time. Hence, a representation of where interesting this are in ego-centered interaction space is an important
resource.

The attention system could be extended by adding new feature maps. A depth map from stereo would be very
useful – currently distance is only computed post-attentively. Another interesting feature map to incorporate into
the system would be edge orientation. Wolfe and Triesman among others argue in favor of edge orientation as a
bottom-up feature map in humans. Currently, Kismet has no shape metrics to help it distinguish objects from each
other (such as its toy block from its toy dinosaur). Adding features to support this is an important extension to the
existing implementation.

There are no auditory bottom-up contributions. A sound localization feature map would be a nice multi-modal
extension [11]. Currently, Kismet assumes that the most salient person is the one who is talking to it. Often there
are multiple people talking around and to the robot. It is important that the robot knows who is addressing it and
when. Sound localization would be of great benefit here.

10 Conclusions

Motor control for a social robot poses challenges beyond issues of stability and accuracy. Motor actions will be
perceived by human observers as semantically rich, regardless of whether the imputed meaning is intended or
not. This can be a powerful resource for facilitating natural interactions between robot and human, and places
constraints on the robot’s physical appearance and movement. It allows the robot to be readable – to make its
behavioral intent and motivational state transparent at an intuitive level to those it interacts with. It allows the robot
to regulate its interactions to suit its perceptual and motor capabilities, again in an intuitive way with which humans
naturally co-operate. These social constraints give the robot leverage over the world that extends far beyond its
physical competence, through social amplification of its perceived intent. If properly designed, the robot’s visual
behaviors can be matched to human expectations and allow both robot and human to participate in natural and
intuitive social interactions.
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