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Abstract
Creating an accurate model of a user’s skills is nec-
essary for intelligent tutoring systems. Without an
accurate model, sample problems or tasks must be
selected haphazardly by the tutor. Once an accurate
model has been trained, the tutor can selectively fo-
cus on training essential or deficient skills. Prior
work offers mechanisms for optimizing the train-
ing of a single skill or for multiple skills when in-
dividual tasks involve testing only a single skill at
a time, but not for multiple skills when individual
tasks can contain evidence for multiple skills. In
this paper, we present a system that estimates user
skill models for multiple skills by selecting tasks
which maximize the information gain across the en-
tire skill model. We compare our system’s policy
against several baselines and an optimal policy in
both simulated and real tasks. Our system outper-
forms baselines and performs almost on par with
the optimal policy.

1 Introduction
In the past decade, there has been a significant increase in the
deployment of Intelligent Tutoring Systems (ITS) [Desmarais
and Baker, 2012]. These systems create models of a student’s
knowledge states, that is, their expertise across a set of skills.
When an ITS system has an accurate model of the student’s
skills, it can selectively choose problems or tasks (we will
use task and problem interchangeably throughout the paper)
to focus teaching where needed.

There has been prior work on selecting which task to
present a user to maximize their learning [Schodde et al.,
2017; David et al., 2016]. However, these systems consider
that each task assigned to a student maps one-to-one with a
modelled skill, an assumption that frequently does not hold.
Consider a simple math task: (3 ∗ 9)/(1 + 3). To success-
fully complete it, the user would need knowledge of addi-
tion, multiplication, and division. However, prior research
usually tests one skill at a time when accounting for several
skills. Testing skills individually takes longer than if multiple
skills are tested concurrently. Furthermore, there are domains
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where it is not possible to separate skills and test them indi-
vidually. For example, swimming might consist of a skill for
arm movement, leg movement and taking breaths, but these
are challenging to test completely independently. Prior work
on tasks containing multiple skills [Xu and Mostow, 2011;
González-Brenes et al., 2014] did not include action selec-
tions policies to select what the best task is to present to the
user, and usually present tasks to the user at random.

Selecting the correct action when multiple skills are
present is a hard problem for several reasons. One (in)correct
observation alone is not sufficient to determine mastery as
there is the chance that the participant has slipped or guessed
during the task. Action selection when the true state (in
this case which skills are mastered) is unknown is usually
solved using a Partially Observable Markov Decision Process
(POMDP) [Astrom, 1965]. However, the number of states
is exponential in the number of skills and a POMDP is ex-
ponential in the number of states, making it computationally
intractable.

In this paper we present a modified version of POMDPs,
allowing action selection on tasks with multiple skills to be
done online. Our system selects the best action, which is the
one that minimizes the uncertainty of the user’s knowledge
state, that is, the task that will give the system the most infor-
mation gain of the user’s skill capabilities. The model is also
extended to not only test skills but to allow for users to learn
throughout the interaction, enabling teaching to occur.

During each time-step, a task is selected for the user. After
observing the user complete the task, the system updates each
skill’s probability of mastery. Using the updated skill levels,
the system proceeds to select a new task. In our system, the
likelihood of skills being mastered or not is updated using
Bayesian Knowledge Tracing (BKT) [Corbett and Anderson,
1994]. Actions are selected using a modified POMDP. We
call our system Bayesian Knowledge Tracing - Partially Ob-
servable Markov Decision Process (BKT-POMDP).

To validate BKT-POMDP, we compare it against three
other action selection policies: a Random policy, a Hand-
crafted policy, and an Optimal policy. We perform three sets
of experiments. The first was done in simulation, where we
randomly generate tasks, skills, and users. The second was
a human-subjects experiment where participants complete an
electronic circuit building task. In the third experiment, BKT-
POMDP accounts for learning throughout a simulated inter-



action. In all three experiments, BKT-POMDP learned the
user’s state faster and more accurately than the Random pol-
icy and the Hand-crafted policy. It performed comparably
to the Optimal policy in terms of accuracy and speed. There-
fore, we show that BKT-POMDP is a suitable action selection
mechanism to create a model of a user’s capabilities across
multiple skills.

2 Background
In this section, we provide background on user skill mod-
elling and action selection in tutoring systems.

2.1 User Skill Modelling
Prior work in assessing knowledge levels of users has mainly
been conducted in Intelligent Tutoring Systems [Anderson et
al., 1985]. The predominant method used for determining
whether a skill has been mastered or not is Bayesian Knowl-
edge Tracing [Corbett and Anderson, 1994] (BKT). In BKT,
the student is given a succession of problems for a single skill.
The system observes the student’s answers and updates their
probability of mastery for each skill. An alternative to BKT
is Learning Factors Analysis (LFA) [Cen et al., 2006], which
learns a cognitive model of how students solve problems. It
learns the difficulty and the learning rate of each skill using
student data. However, LFA does not track individual student
progress by estimating their knowledge state in annotating
correct and incorrect answers. In response to the limitations
of LFA, Performance Factors Analysis (PFA) [Pavlik Jr et al.,
2009] was proposed to both estimate the student’s knowledge
and to create a more complex model of skills.

Several models have extended BKT, LFA, and PFA to al-
low multiple interdependent skills in each problem [Xu and
Mostow, 2011; González-Brenes et al., 2014; Pardos et al.,
2008]. There are also models which assume that all skills
need to be applied correctly to achieve the correct answer in
a problem [Cen et al., 2008; Gong et al., 2010]. Similar to
our system, they can model problems that contain more than
one skill present. However, they do not select which problem
or task to give to a user to maximize the system’s certainty of
the user’s model. They only create a model of how skills are
interlinked in the problems.

In this paper we are using BKT to model the probability
of observations rather than LFA or PFA, as we do not have a
corpus of previous data on the problems we will be testing.
Furthermore, we use BKT instead of a conjunctive model as
we assume independence of skills in each problem. However,
BKT can easily be replaced by a different algorithm when a
more intricate model is required.

2.2 Action Selection During Tutoring
ITS systems have focused on what problems to give students
or how to assist students to maximize learning. There has
been research on which skill to teach a student so that their
knowledge across all skills is maximized [Schodde et al.,
2017], which sequence of problems to present to students de-
pending on skill difficulty [David et al., 2016], and what type
of help to give the students by observing the student’s motiva-
tion and knowledge state [Ramachandran et al., 2019]. Other

studies created a system that decided what type of help to
give a student by creating personalized models of each stu-
dent [Clement et al., 2013; Lan and Baraniuk, 2016]. Cre-
ating individualized models for each student leads to higher
learning gains [Yudelson et al., 2013].

Prior research has focused either on action selection or on
allowing a problem to have multiple skills. In our work, we
construct a system that can both handle problems with mul-
tiple skills and select actions that maximize the certainty our
model has of the user’s skill state.

3 BKT-POMDP Task Selection
We describe here a system which selects optimal actions
when creating a model of user capabilities across multiple
skills. We make several assumptions in our model: 1) The
user skill state is constant, and they will not learn during the
interaction. Although we later present an extension to the
model that allows for learning. 2) Each skill’s importance is
equal; however, this can be changed easily if an application
requires. 3) One task is given to the user at each time-step,
and the task can contain one or multiple skills. 4) Lastly,
skills are independent of each other; that is, one skill’s mas-
tery is independent of another’s skill mastery.

This system draws inspiration from Partially Observable
Markov Decision Processes (POMDPs) [Kaelbling et al.,
1998] and belief state MDPs [McAllester and Singh, 2013]
in that the system does not have full knowledge of the state
S, and uses observations o to create an estimate b of what the
state is. To learn the model, it selects actions a that maximize
the expected information gain reward r of the new belief b′
compared to the prior belief b.

This section presents our system called Bayesian Knowl-
edge Training - Partially Observable Markov Decision Pro-
cess (BKT-POMDP). Similar to the POMDP, our model is
composed of the following:

• S - The true skill state of the user. A state is represented
as a binary vector, with each element i in the vector rep-
resenting whether skill i is mastered (1) or not (0).

• b - The skill belief vector. This is the current estimate the
system has of S. Each element in the vector represents
the estimated probability of skill i being mastered.

• A - The set of actions that can be taken. Each action
is a task that can be presented to the user that contains
multiple skills. Each action is a vector, with 1s for the
skills being tested, and 0s for those that are not.

• O : P (o|b, a) - Observation probabilities. The probabil-
ity of an observation given the current belief distribution
and the action chosen. The observation probabilities are
based on Bayesian Knowledge Tracing.

• T : b′ = P (b|o) - The transition function updates the
belief, given the current belief and the observation. In
BKT-POMDP, the transition will be updated using the
Bayesian Knowledge Tracing formulation.

• R - The reward function. In traditional POMDPs, the
reward is a function of either the current state or of the
current state plus action. However, our reward is a func-
tion of the current belief and the previous belief. Our



reward function maximizes the information gain of the
user’s state at each time-step.

• Ω - The set of possible observations. An observation
will be a vector of 0s, 1s, and 2s, where 0 represents
the wrong answer for that particular skill, 1 represents
the right answer, and 2 represents a skill not being tested
during that time-step.

3.1 Skill Belief Vector

Even though the number of possible states is exponential in
the number of skills tested, it can be represented as a belief
vector with a belief value for each skill. For example, if the
belief for skill i is currently 0.95, that means that it is very
likely that the user has mastered that skill. If the value is 0.3,
it is more likely that they do not know that skill, but the sys-
tem is not certain of this. The skill belief vector is initialized
to 0.5 for all skills, representing complete uncertainty at the
start of the interaction. In our formulation of the POMDP,
all computations can be done on the belief vector rather than
over all the possible states. This makes BKT-POMDP much
faster to solve than traditional POMDP, as POMDP computes
over all the possible skill states (2|S| different possible states),
and our calculations are done on just the belief vector.

3.2 BKT-POMDP Action Selection

The optimal value function of the POMDP will select the ac-
tion (the task), which has the highest expected reduction in
uncertainty of the user’s skill state (Equation 1). It iterates
over all possible actions (in this case, the possible combina-
tions of skills to test) and selects the one which it expects
to have the highest Q value. The Q value (Equation 2) is
the expected reward when taking a specific action. Upon se-
lecting an action, it will consider all the possible observa-
tions and calculate the resulting belief from that observation
b′ = T (b, o). It will calculate the likelihood of the observa-
tion multiplied with the observation’s reward. The reward is
calculated by the expected increase of certainty of the user’s
skill state after taking an action.

V ∗(b) = max
a∈A

(Q∗(b, a)) (1)

Q∗(b, a) =
∑
o∈O

[P (o|b, a) ·R(b, b′)] (2)

3.3 Belief Update

Each of the tested skills in the belief vector is updated inde-
pendently using the BKT framework [Yudelson et al., 2013].
In BKT, the probability of knowing a skill is dependant on
whether the observation was incorrect (oi = 0) or correct
(oi = 1), and also on the probability of guessing (P (Gi)) or
slipping (P (Sli)) for that skill. When the skill is not being
tested (oi = 2), that particular skill’s belief value remains the

same. Equation 3 shows the belief update.

b′i =



bi · p(Sli)

bi · p(Sli) + (1− bi) · (1− p(Gi))
, if oi = 0

bi · (1− p(Sli))

bi · (1− p(Sli)) + (1− bi) · p(Gi)
, if oi = 1

bi, if oi = 2
(3)

3.4 Reward Function
In the traditional POMDP model, the reward usually is re-
lated to the specific state. Conversely, in the BKT-POMDP,
the reward relates to how much the certainty of the skill state
has increased compared to the previous time step. That is,
the more certain the system is of the user’s skill compared to
the previous time step, the higher the reward will be. We use
Kullback-Leibler divergence (KLD) [Kullback and Leibler,
1951] to calculate the information gain of the new belief
compared to the previous belief (Equation 4). KLD is first
calculated for both the old belief and the new belief com-
pared to the belief vector of complete uncertainty (U), where
U = [0.5, 0.5, ...0.5]. The reward is how much information is
gained with the new belief compared to the old belief (Equa-
tion 4).

DKL(b ‖ U) =
∑

i bi ln

(
bi
0.5

)
+ (1− bi) ln

(
(1− bi)

0.5

)
R(b, b′) = DKL(b′ ‖ U)−DKL(b ‖ U) (4)

3.5 Observation Function
The probability of a specific observation is the product of all
of the individual skill observations that were tested during
that round (ai = 1) given the current belief state (Equation
5). The probability of observing the incorrect answer (oi = 0)
is the probability that the user possessed the skill but slipped
plus the probability that they did not possess the skill and did
not guess correctly. The probability of observing the correct
answer (oi = 1), is the likelihood that they possessed the
skill and did not slip plus the probability they did not possess
the skill but guessed correctly. When the skill was not tested
(ai = 0), it did not influence the observation’s probability.
The observation’s update function can be seen in Equation 5.

P (o|b, a) =
∏
i

(p(oi|bi, ai)) (5)

p(oi|bi, ai) =



1, if ai = 0

bi · p(Sli) + (1− bi) · (1− p(Gi)), elif oi = 0

bi · (1− p(Sli)) + (1− bi) · p(Gi), elif oi = 1

4 Metrics
In this section, we present the baselines and the measures
used for evaluating BKT-POMDP.



4.1 Baselines
We compare our policy (BKT-POMDP) against three differ-
ent policies: two baselines (a Random policy and a Hand-
crafted policy) and the Optimal policy. We assume there is
no repetition of tasks, although the policies could easily be
modified to allow it.

• Random - A task is selected randomly and presented to
the user. The Random policy is the most commonly used
action selection mechanism in tutoring systems.

• Hand-Crafted - It selects the task with the skills least
recently tested. It does so by assigning each skill a
counter that is initialized at 0. During each time-step, all
non-tested skills’ counters are increased by one. If the
skill is tested, the counter is reset to zero. This policy
will use the unweighted sum of these counters to choose
its next action.

• BKT-POMDP - Our policy creates a model of the user’s
skills and chooses tasks that it expects will result in the
highest information gain of the user’s skill state. This is
the policy presented in Section 3.

• Optimal - This policy selects the optimal action at each
time-step. In Experiments 1 and 2, where the goal is
skill estimation, it will choose the action that brings the
estimate of the user’s model b as close to the real model
of the user S. In Experiment 3, where the goal is to max-
imize learning, it will choose the action with the highest
expected increase of skills mastered. This policy can se-
lect optimal actions as we assume it has full access to S
from he start. This assumption does not hold in real sce-
narios and therefore this policy serves only to illustrate
what the optimal policy would be.

4.2 Measures
We used the following measures to validate BKT-POMDP.
They were calculated each round after the user completed the
selected task, and the model’s belief was updated.

Distance to True State - How close the current belief b is
from the correct skill state S for each user. It is calculated
by the difference between b and S. This metric is used in the
first two experiments where the goal is correctly estimating
the user’s true state.

Dist(b, S) =
∑
i

(|bi − Si|) (6)

User Mastery - The number of skills that are mastered.
This metric is used in the third experiment, where the goal is
teaching all the skills to the user.

Mast(b) =
∑
i

(Si) (7)

5 Experiment 1 - Skill Estimation in
Simulation

We ran a total of 100 rounds of simulations, where differ-
ent simulated skills, tasks and users were generated. In each
round a different user was generated, and they completed 40
different tasks for each of the four policies.

Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 1: Experiment 1 - The average distance of belief b to the true
state S for each of the four policies. Overall the Optimal and BKT-
POMDP policies chose the best actions learning the user skill states
the quickest. The third best policy was the Hand-crafted policy, and
the Random policy performed the worst.

Skills - 20 different skills were created each round. Each
skill had associated with it a probability of guessing it cor-
rectly and also a probability of slipping while doing it. The
probability of guessing and slipping was randomly chosen
from a uniform distribution between 0 and 0.3.

Tasks - 200 different tasks were created. Each one had
randomly assigned to it between 1 and 5 skills. During each
time-step, a task was selected until a total of 40 different tasks
were chosen for that round.

User - During each round, a simulated user was generated.
For each skill, they were randomly assigned as mastered or
not with equal probability. Each user was associated with an
observation for each task they would complete. The observa-
tion was created using the probability distribution of guessing
or slipping depending on whether they were assigned as hav-
ing mastered that skill.

5.1 Results
We measured the accuracy of the belief state compared to true
state using Equation 6. All four action selection mechanisms
learned the user’s skills accurately over time. However, the
Random policy took significantly longer to approach the true
user state. The Hand-crafted policy performed better than the
Random policy. BKT-POMDP performed almost as well as
the Optimal policy. These results can be seen in Figure 1.

During three different points (after 10 tasks, after 20 tasks,
and after 30 tasks) we compare whether the accuracy of the
policies were statistically significant from each other using
an ANOVA with Bonferroni Corrections. In all three cases,
the Optimal and the BKT-POMDP policies performed statis-
tically significantly better than the Hand-crafted and the Ran-
dom policies, and the Hand-crafted solution performed statis-
tically significantly better than the Random policy. The Opti-
mal and the BKT-POMDP policies did not significantly differ
from each other.

6 Experiment 2 - Skill Estimation with
Participants

We compare BKT-POMDP on a real task with participants
completing electronic circuit tasks [Elenco, 2021], using



Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 2: Experiment 2 - The average distance of belief b to the
correct state S for each of the 12 task actions. The Optimal policy
performed the best, closely followed by the BKT-POMDP policy.
The Hand-crafted policy was the third best policy and the Random
policy was last.

enlarged electronic pieces including wires, resistors, and
switches. The pieces can be snapped together on a board to
form circuits. We chose circuits because they require the user
to be proficient in a variety of skills, many of the skills are
order independent, and there are several possible assemblies.

Skills - There were six different pieces being tested: a
switch, a resistor, an LED, a music circuit, a speaker, and a
photo-resistor. There were three different types of skills nec-
essary for accurately completing the tasks: placing the correct
piece on the board, placing the piece in the correct location,
and placing the piece in the correct orientation. Placement
of pieces was dependent on choosing the correct piece. The
orientation of pieces was dependent on the participant having
chosen the correct piece and placing it in the correct location.
Therefore if the participant did not choose the correct piece,
then we also defined that they were incorrect in the place-
ment of the piece and the orientation of the piece (this slightly
breaks our independence assumption, but does not change the
computational cost of the algorithm). Only the LED and the
music circuit were directional. Therefore there were a total of
14 skills (six pieces chosen + six pieces placed + two pieces
orientation) being tested. We consider a participant to have
mastery of a skill if they apply it correctly at least 70% of the
time (most skills were tested on average five times, so this
allowed at least one slip or guess). The guess and slip proba-
bilities for each particular skill were determined by the num-
ber of times participants did not have mastery and guessed
correctly and when they did have mastery and slipped in our
experiment. The average probability of guessing was 0.28,
and the average probability of slipping was 0.10.

Tasks - There were 12 different tasks for the user to com-
plete. Each task required a combination of different skills. A
board was given to the participant with wires and a battery
piece (without batteries inside) that were already placed. The
participant was then asked to complete a task. For example,
there was a task where the user was asked to create a circuit
with a light that could be turned off and on. Therefore they
needed to choose the correct pieces: an LED, a resistor, and a
switch; place each in the correct location; and place the LED
with the correct orientation. In addition to the six different

pieces that were being tested, we gave the user four additional
distractor pieces (making guessing correctly less likely).

Users - 23 participants completed the 12 circuit tasks, of
which 14 were male and 9 were female. The study was ap-
proved by the university’s Institutional Review Board and
participants signed a consent form agreeing to participate.
They were not provided with any information on how elec-
tronic circuits worked, other than the piece’s name and the
ports on the pieces. We also assumed that no learning hap-
pened throughout the experiment, as no help or feedback was
provided. The participants’ expertise on circuits was varied,
with some participants having mastery of none of the skills,
and some having full mastery. All 23 participants’ data was
used for the four policies by simulating which task the system
would have chosen during each time-step for each participant.

6.1 Results
We annotated for every participant whether they had mastery
over each skill (they were considered to have mastery if they
got the skill right over 70% of the time). For every partici-
pant, observations were created by annotating whether they
demonstrated the skills successfully in each task. On aver-
age, participants were able to choose the right pieces 77.39%
(SD = 14.59%) of the time. Participants placed the piece
in one of the correct locations 38.75% (SD = 33.91%) of
the time. And participants placed the directional pieces in the
correct orientation 35.36% (SD = 32.43%) of the time.

During the last few rounds all four policies had high cer-
tainty on the user’s skills. Therefore we compare rounds 3, 5
and 7 for statistical significance using ANOVAs and Bonfer-
roni Corrections, measuring the distance of the belief com-
pared to the true state (Equation 6). After taking three ac-
tions, the Optimal policy performed significantly better than
the Hand-crafted and Random policies. BKT-POMDP per-
formed significantly better than the Random policy. The other
comparisons were not significant. After five rounds, the Op-
timal policy performed significantly better than the Random
policy. The other comparisons were not significant. There
were no significant differences after seven rounds.

7 Experiment 3 - Learning in Simulation
There are many situations, especially in ITS, where we do
not only want to create a model of skills, but also select the
tasks which will teach the most. We extend BKT-POMDP
by changing the reward function and the belief update func-
tion to account for learning. These modification allow BKT-
POMDP to select the task with the skills that it estimates will
bring all the skills’ mastery’s closest to 1.

7.1 Reward Function for Teaching
The reward function is replaced with Equation 8. It rewards
increases in the belief of the skills. Therefore, it rewards the
user having higher mastery over the skills. At the start of the
interaction the skill belief vector is set to low probability of
mastery (0.05) for all the skills.

R(b, b′) =
∑
i

[(b′[i]− b[i])] if(b′[i] > b[i]) (8)



Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 3: Experiment 3 - The graph shows the number of mastered
skills. The BKT-POMDP and the Optimal policies selected tasks
that brought the user skill closer to mastery of all skills quicker than
the Hand-crafted and the Random policies.

7.2 Belief Update
The belief update still follows Equation 3, however it includes
the learning update from BKT [Yudelson et al., 2013]. Each
time the participant practices a skill, they have a chance of
learning it represented by P (Li).

P (b′i) = P (bi|oi) + (1− P (bi|oi)) · P (Li) (9)

Rounds
100 rounds of simulation were run during which 40 different
tasks were chosen using the different policies. During each
round the following were generated:

Skills - 20 different skills were generated. The probability
of guessing and slipping was randomly chosen from a uni-
form distribution between 0 and 0.3. Additionally the proba-
bility of learning (P (Li)) was generated from a uniform dis-
tribution between 0.15 and 0.3.

Tasks - 200 tasks were generated, each with between one
and five skills.

User - In each round a user was generated. All skills for
the user were set as not mastered. After each task, each non-
mastered skill in the chosen task was updated by having a
P (Li) chance of the user having learned it.

7.3 Results
We tested which of the policies selected tasks that increased
the knowledge of the participants the fastest. We did this
by measure the number of skills with mastery using Equa-
tion 7. The results are shown in Figure 3, which shows that
the Optimal condition selected the best tasks to teach closely
followed by BKT-POMDP. The Hand-crafted condition per-
formed third, and Random performed the worst.

During three different points (after 10 tasks, after 20 tasks,
and after 30 tasks) we compare whether the conditions were
statistically significant from each other using an ANOVA
with Bonferroni Corrections. All six pairwise comparisons
were statistically significant from each other, except the BKT-
POMDP and the Hand-crafted policies after 10 rounds. This
indicates that the Optimal policy performed the best, followed
by BKT-POMDP, Hand-Crafted and Random.

8 Discussion
We discuss the results of the BKT-POMDP system and how
it can be applied in different scenarios.

8.1 BKT-POMDP Task Selection
In the first set of experiments, BKT-POMDP and the Op-
timal condition converged on the user’s true state after 40
tasks. Random and Hand-crafted were approaching conver-
gence and would do so with more assigned tasks. This means
that the policies were able to correctly learn the model of the
user’s skills. However, BKT-POMDP did so much faster than
the other baselines, and almost performed as well as the Op-
timal policy. As the Optimal policy is not possible to use
in real scenarios (as it requires a perfect model of the user),
BKT-POMDP is a good policy to model a user’s skills.

In the circuit experiment, BKT-POMDP and the Optimal
policy also outperformed the other baselines. This experi-
ment shows that BKT-POMDP translates well to real world
applications. Unfortunately none of the models completely
converged in 12 rounds, due to the low number of rounds and
the high guess rate for some of the skills.

In the third experiment, we show that BKT-POMDP can
easily be modified to allow for different goals. We show that
modifying the reward function accounts for user learning. In-
stead of maximizing student skill, it now maximizes the ex-
pected amount of learning the user will have over all skills. In
the experiments, BKT-POMDP outperforms the other base-
lines and performs on par with the Optimal model.

8.2 Applications of BKT-POMDP
BKT-POMDP is a flexible system which can be used for sev-
eral different applications, and where individual parts can be
changed to suit each application. In ITS, the main goal is
to teach skills the student does not have mastery over. BKT-
POMDP can quickly and accurately create a model of a stu-
dent’s capabilities, so that the ITS can focus on teaching.
Modifying the reward function allowed BKT-POMDP to not
only create a model of user skills but also account for learn-
ing. It selected the tasks that would teach the user the most,
and bring the user closer to having full mastery of all skills.
Therefore it can be used in intelligent tutoring systems to se-
lect which task to teach when there are multiple skills present.

BKT-POMDP could also be used in manufacturing set-
tings. The system could quickly model which skills an em-
ployee has, and assign tasks that are within the employee’s
expertise while also avoiding tasks which they would not be
able to do as well. Additionally, when multiple people are
present, the system can assign tasks to each person accord-
ing to their expertise across all tasks, or create teams whose
members have an equal balance of skills. In manufacturing
settings, some skills are more important than others as they
appear in many tasks. The user model over these skills could
be prioritized by giving different weights to each skill in the
reward function instead of having equal value and, therefore,
quickly learning higher weight skills first.
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