
September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH

GANGHUA SUN & BRIAN SCASSELLATI

Computer Science Department, Yale University
New Haven, Connecticut 06511, United States

{ganghua.sun, brian.scassellati}@yale.edu

Abstract.
This paper proposes a self-supervised model which enables a humanoid robot to

learn to reach to visual targets. Only 400 training samples are used to learn a forward
kinematic model of the 6 degree-of-freedom (DOF) arm. The forward model is repre-
sented compactly with just 150 hidden neurons and enables high accuracy reaching in
real-time. We provide an optimization process for the learning parameters and a careful
analysis of reaching errors. An extension of the model is presented to address additional
DOFs in the neck. The consistency of the model with physiological and psychological
observations is elaborated.

Keywords: Reaching, Kinematics, Humanoid Robots.

1. Introduction

In robotics, early work on reaching focused primarily on inverse kinematics. Many of
these solutions are based on the Resolved Motion Rate Control (RMRC) algorithm
which requires the forward kinematics of the arm to be known for the computation
of Jacobian matrices.1 In contrast to high-precision robotic manipulators, the arm
kinematics of a human changes over his/her lifespan and is difficult to describe as
an analytical function. This need for humans to acquire their own kinematic models
was discussed by Piaget in 1936 and has been attracting the attention of numerous
physiologists and psychologists since then.2

What must be learned in order to achieve accurate reaching movements if the
values of the arm parameters are not readily available to the learning system? One
seemingly straightforward approach is to learn the inverse kinematic mapping from
xtarget to θ directly, where xtarget denotes the task vector describing the target and
θ denotes the joint vector describing the corresponding arm posture. This approach
is problematic in the case of human arm movements and many humanoid robot arm
movements because the dimension of the joint vector is larger than that of the task
vector such that there can exist multiple values of θ which correspond to the same
xtarget. Choosing an appropriate θ from all possible values of θ can be difficult.3

Bullock et al. suggested that learning a directional mapping from (θ, ẋ) to θ̇ can
circumvent this decision problem.4 After training, the directional mapping can be
used to incrementally generate a reaching trajectory similar to RMRC. In addition
to the directional mapping, a model of the forward kinematics of the arm is learned

1



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

2 Ganghua Sun and Brian Scassellati

which makes reaching possible without the aid of visual feedback during the course
of the movement. There is evidence that this “forward” model exists in humans.5,6

The advantages of using both the forward model and the directional mapping for
reaching have been demonstrated.4 Arguments supporting the learning of both a
forward model and a direction mapping have also been put forth by Shadmehr and
Wise.7,8

A variety of learning algorithms have been suggested for acquiring these func-
tions, including Self Organizing Maps (SOM), Multiple Layer Perceptrons (MLP),
Reinforcement Learning (RL) and more recently Locally Weighted Projection Re-
gression (LWPR).9,5,10,11 The choice of learning algorithm determines directly the
compactness of the representations of the forward model and the directional map,
as well as the number of training samples required to ensure good convergence.
The larger the dimension of the joint vector θ, the greater the need for compact
representations and reduced training set sizes. Bernstein identified this as the de-
gree of freedom (DOF) problem12 and it is known in statistical learning theory as
the curse of dimensionality. While many have argued about which mappings should
be learned and which learning algorithms were most appropriate for this task, the
dimensionality problem remains. As an example of scale, Bullock et al. employed
15625 neurons to learn a forward model of a 3-DOF arm. The required number of
neurons in this work increases exponentially with each additional DOF in the arm.4

In this paper, we present a model for learning arm movements on a humanoid
robot that requires far fewer training examples and has a more compact representa-
tion than Bullock et al. A Radial Basis Function Network (RBFN) is used to learn
a forward model of the arm. The directional mapping needed for incremental tra-
jectory generation is extracted automatically from the learned forward model and
does not need to be learned separately. This paper has two goals: (1) to introduce a
practical model that can be used without major changes for learning to reach across
different robotic platforms, and (2) to show that it allows for a biologically plausible
implementation and is consistent with physiological and psychological observations.

This paper is organized as follows. Section 2 gives an introduction to the hu-
manoid robot we use as our experimental platform. Section 3 describes in detail the
model used for learning to reach with emphasis placed on the forward model learn-
ing and the trajectory generation. The performance of the model is demonstrated
in Section 4. Section 5 extends the model to incorporate the additional DOFs in
the robot’s neck. Section 6 relates our model to several important observations of
human reaching behavior. Section 7 summarizes the contributions of this paper.

2. Hardware and Software Platform

Nico is an upper-torso humanoid robot developed to match the body dimension of
an average one-year-old infant. It has four DOFs in the neck and six DOFs in each
arm. A gyroscope is mounted in the head on top of all neck joints. Fig. 1(A) shows a
dimetric view of Nico. Fig. 1(B) shows the kinematic structure of the neck joints and



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 3

the joints in the right arm viewed from behind. The vision system of Nico consists of
four miniature CCD video-cameras divided into two sets, one for each eye. In each
set, there is one long focal length camera for fovial vision and one short focal length
camera for peripheral vision. Each joint of Nico is driven independently by a DC
motor with an integrated high-resolution optical encoder. All motors and sensors
on Nico are connected to a 16-node computation cluster running the QNX real-time
operating system. Nodes are connected through a 100Mbit backbone switch and a
number of direct point-to-point network links.

(A) (B)

X

Y

Z

Gyroscope

Oright_cam

Obody
qa2

qa3

qa4

qa5

qa6

qa1

qn2

qn3

qn4

qn1

End effector

Fig. 1. (A) A dimetric view of Nico, an upper-torso humanoid designed to match the size of an
average one-year-old infant. (B) The kinematic structure of the neck and the right arm viewed
from behind. The origins of the eye and the body-centered coordinate system are indicated with
Oright cam and Obody respectively.

A set of modular software components have been implemented on the robot,
ranging from low-level device drivers to selected higher-level cognitive functions.
During run-time, selected modules are allocated to processing nodes based on their
computation requirements. Active modules can selectively communicate with one
another through a common communication interface. Whether a data exchange
takes place on the same node or across the network is transparent to an individual
module.

3. A Model for Learning to Reach

Fig. 2 provides an overview of the model used in this work. The basis of the model
is a forward model of the arm that is learned autonomously through motor bab-
bling. It is important that the parameters for learning the forward model are set
appropriately in order to keep the required number of training samples and the size
of the representation space as low as possible. After the forward model is learned, it



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

4 Ganghua Sun and Brian Scassellati

is used during a reaching movement to predict the position of the end effector from
the current arm posture. The pseudo-inverse of the Jacobian corresponding to the
current arm posture is computed directly from the forward model. ∆x is a direction
vector of small magnitude in the task space pointing from the predicted end effector
position to the target position. It is transformed into a joint vector increment ∆θ

that is relayed to the arm motors. If the end effector can be perceived by the stereo
vision system during the reaching movement, xpred is replaced by xperc and ∆x

becomes a direction vector pointing from the perceived end effector position to the
target position. A description of the stereo vision component is given in Section
3.1. The training of the forward model and the algorithm for incremental trajectory
generation are described in detail in Section 3.2 and 3.3 respectively.

Fig. 2. Overview of a model for learning to reach. It is based on a learned forward model of
the arm kinematics. During a reaching movement, it is used both for the prediction of the end
effector position and the computation of the pseudo-inverse of the current Jacobian. The dashed
line representing the data flow from the stereo vision component means visual feedback is optional
during reaching.

3.1. Stereo vision

The stereo vision component shown in Fig. 2 retrieves video data from the two
short focal length cameras as input. The two long focal length cameras prove to be
impractical for the stereo vision needed for the reaching behavior because their com-
mon vision field has only a small overlap with the reachable space of the robot arm.
The radial distortion coefficients K1 and K2 and other parameters are measured
for each camera through the Camera Calibration Toolbox for Matlab developed by
J.-Y. Bouguet.13 The pixel value of position (x, y) in the corrected frame is filled
with the pixel value of position (x′, y′) in the original frame through the following
equation14 —

{
x′ = x(1 + K1r

2 + K2r
4)

y′ = y(1 + K1r
2 + K2r

4)
(1)



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 5

If values of x′ and y′ are not integers, they are substituted by their respective
integer parts. During the startup of the vision subsystem, a lookup table is built for
each camera consisting of the mappings from (x, y) to (x′, y′) for all possible (x, y).
The pre-built lookup tables enable an efficient distortion correction in real time.

(A) (B)

Fig. 3. Original image (A) and image (B) corrected for radial distortion through Eq. (1)

Currently, a φ19.05mm wooden ball is attached to the distal end of the robot arm
as the end effector and a wooden ball of the same diameter is used as the reaching
target. The projection of either the end effector or the target on each camera image
plane is replaced by its centroid. For the experiments described in this paper, the
two eye cameras are positioned parallel to each other. These simplifications make
it straightforward to determine the position of both the end effector and the target
in the eye-centered coordinate system.15

3.2. Learning a forward model

The forward kinematic function of the arm is defined as a mapping farm : θ → x.
Each of Nico’s arms has 6 degrees of freedom, so we have θ ∈ R6. At the current
stage, we require our robot to touch a presented target without putting any restric-
tion on the orientation of its end effector. This makes x ∈ R3. A forward model
of the arm is learned through motor babbling, during which the arm is repeatedly
moved into random postures. If the end effector can be perceived by the stereo vi-
sion system at the end of an arm movement, the joint vector θ corresponding to the
current arm posture and the perceived 3D position x of the end effector is recorded
as a training sample. The arm stops moving only when a pre-specified number of
training samples are gathered.

Learning a forward model of the arm is essentially approximating the function
farm through training samples of the form (θi, xi)i=1,2,...,n, where n is the size of
the training set. Each xi in (θi, xi) contains noise introduced by the stereo vision
system. Neural networks such as MLP and RBFN are commonly used function
approximation techniques.16 The most important reason for our adoption of RBFN
for learning the forward model is that the only weights to be learned are those



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

6 Ganghua Sun and Brian Scassellati

connecting the hidden layer and the output layer. They can be determined directly
by the linear least square method, which avoids the problem of local minima that
MLPs often encounter. Arguments favoring RBFN from the perspective of biological
plausibility will be given in Section 3.2.2.

3.2.1. Optimization of learning parameters

The Gaussian function is used as the basis function in the hidden layer of our RBFN.
It can be expressed as g(x) = exp(‖x − c‖· 0.8326/spread), where x is the input
vector and c is the center of the Gaussian. The parameter spread controls the extent
of g’s influence in its neighborhood. Since it has been shown that a RBFN with a
set of basis functions that have a common form but different centers can approx-
imate any continuous input-output mapping,17 the same value is assigned to the
spread of each Gaussian. We use the Orthogonal Least Squares (OLS) algorithm to
determine the number and the centers of the Gaussian functions automatically from
the training data.18 The training stops when the root mean square error (rmse)
of the network falls below a certain margin. The optimal values for both spread

and margin must be determined before training. In addition, we are also inter-
ested in keeping the size of the training set as small as possible to save the time
spent on gathering training samples. Computer simulations are used to optimize the
three learning parameters (spread, margin and training set size) because it is very
difficult to measure accurately the quality of the learned forward model through
physical experiments.

Since the optimal spread of the Gaussian functions in the hidden layer depends
primarily on the actual function to be approximated, the effect of noise is excluded
in the simulations conducted to optimize spread, which means the value of xi in
the training sample (θi, xi) is for the time being the true end-effector position cor-
responding to the joint vector θi. Fig. 4 shows four rmse-spread curves for four
different training set sizes. The line style of each curve indicates which size it corre-
sponds to. Each data point is generated by averaging the rmse values measured on
40 random training sets of the same size. It can be observed that for all of the four
curves displayed, the rmse falls sharply at the beginning. As spread grows larger,
the rmse appears to stay constant although it actually rebounds very gently after
reaching a minimum point. The average of the optimal spread values of the four
rmse-spread curves is about 130.

A large part of the noise in the perceived 3D position of the end effector is the
stereo perception error, which is dependent on the resolution of the camera images.
To find the optimal values of margin for different camera resolutions, simulations
were conducted that use training samples whose task vector components contain
stereo perception errors. spread was set to a constant value of 130. The results of the
simulations to optimize margin are shown in Fig. 5, where the curves are plotted
in different styles according to the same convention used in Fig. 4. As expected,
the optimal margin for a 160x120 camera resolution is more than 2mm higher



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 7

40 60 80 100 120 140 160 180
0

5

10

15

20

spread (degree)

rm
se

 (
m

m
)

100
200
400
800

Fig. 4. rmse-spread curves for four different training set sizes. The averaged optimal spread is
130.

2 4 6 8
0

5

10

15

20

margin (mm)

rm
se

 (
m

m
)

camera_resolution=160x120

2 4 6 8
0

5

10

15

20

margin (mm)

rm
se

 (
m

m
)

camera_resolution=320x240

100
200
400
800

100
200
400
800

Fig. 5. rmse-margin curves for four different training set sizes and two camera resolutions. For
each camera resolution, the optimal margins for different training set sizes lie quite close to each
other.

than that for a 320x240 camera resolution. Lower-resolution images result in higher
stereo perception error which in turn requires a larger value for margin to prevent
overfitting. Fig. 5 also shows that the more training samples we use, the higher the
quality of the learned forward model. However, a 400-sample training set already
leads to a small rmse very close to that achieved by a 800-sample training set. 400
samples require a very moderate amount of time to gather on a robotic platform,
less than 30 minutes in our case.

In the real world, the stereo perception error only partially contributes to the
noise in the perceived position of the end effector. The end effector of a robotic arm
is a 3D structure. Its projection on the camera image plane is not a point, but a
blob. Using the centroid of the blob as we do for the calculation of the end effector
position introduces additional error since the two centroids on the right and left
image planes do not represent the same point on the end effector. Putting a special



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

8 Ganghua Sun and Brian Scassellati

2 4 6 8
0

100

200

300

400

margin (mm)

hi
dd

en
 la

ye
r 

si
ze

camera_resolution=160x120

2 4 6 8
0

100

200

300

400

margin (mm)

hi
dd

en
 la

ye
r 

si
ze

camera_resolution=320x240

100
200
400
800

100
200
400
800

Fig. 6. Hidden layer size versus margin curves for four different training set sizes and two camera
resolutions. Unlike the rmse-margin curves that are difficult to generate on a physical robotic
platform, these curves can be easily produced.

3 4 5 6 7
50

100

150

200

250

margin (mm)

hi
dd

en
 la

ye
r 

si
ze

3 4 5 6 7
5.5

6

6.5

7

7.5

8

8.5

margin (mm)

rm
se

 (
m

m
)

Fig. 7. The left plot shows the rmse-margin curve of a RBFN trained on a 400-sample set. The
right plot shows that the hidden layer size versus margin curve of the same network can be fitted
very well with two straight lines (dashed). The intersection of these two lines corresponds roughly
to the optimal margin. A 160x120 camera resolution is used during motor babbling.

marking on the end effector does not solve the problem effectively because it is
hard to guarantee that this marking is visible for all arm postures. From Fig. 5, we
can see that rmse rises significantly as margin moves away from its optimal value.
For a RBFN learned through motor babbling on a physical robot, it is difficult,
if not impossible, to measure the true error vector farm(θi) − f̃arm(θi) accurately,
where f̃arm is the learned forward model represented by a RBFN. Thus, finding out
the optimal margin on a physical robot through gathering data to plot the rmse-
margin curve is impractical. Fortunately, the representation of the RBFN provides a
measurement that is easy to gather and useful for determining the optimal margin.
Fig. 6 shows the curves of the hidden layer size of the RBFN versus margin. Many
of those curves appear to be consisted of two straight segments whose intersection
corresponds approximately to the optimal margin. Some curves exhibit a third
segment in the middle, but this phenomenon is caused by the coarse increment for
margin used for generating these curves. This observation leads to the following



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 9

20 40 60 80 100
0

10

20

30

40

hidden layer size

rm
se

 (
m

m
)

random centers
OLS

Fig. 8. The solid curve is generated by training a RBFN repeatedly on a 400-sample set with OLS,
each time with slightly larger margin. Each data point on the dashed curve is the averaged rmse
of a RBFN trained on 40 different 400-sample sets. Each time, the number of the basis functions
in the RBFN is kept the same, but their centers are randomly set to the joint vectors of randomly
selected samples from the training set. A 320x240 camera resolution is used during motor babbling.

practical strategy: First generate a curve of hidden layer size versus margin by
training a new RBFN each time with a slightly larger margin on the same training
set. Then find the splitting point e for which the sum of the errors for fitting the
left and the right part of the curve with two different straight lines is minimal. e

can be found with a simple exhaustive search. Fig. 7 shows an example.

3.2.2. A biologically plausible implementation

Radial basis function networks have a solid theoretic foundation and close ties
to regularization theory and Support Vector Machine (SVM).19,20,21,22 Poggio has
suggested that RBFN is one of the learning mechanisms in the brain.23 Pouget et
al. saw RBFNs as a form of population coding that could play an important role in
sensorimotor transformation.24,25

Our implementation of RBFN uses the OLS algorithm to determine the number
and the centers of the basis functions in the hidden layer. OLS is a sophisticated
algorithm that tries to approximate an unknown function with a minimum number
of hidden neurons; it is highly unlikely to be used by a biological learning system.
However, OLS is not essential for RBFN training; other algorithms or even heuristics
can be used as substitutes. To consider the worst-case performance, we compared
the performance of two RBFNs, one of which is trained with OLS while for the
other, the centers of the hidden layers are set to the joint vectors of randomly
selected samples from the training set. The results of the simulation are shown in
Fig. 8. It can be observed that the rmse of the second network is within a factor
of 2 of that of the first network if both networks use the same number of hidden
neurons. Compared with the overall range of motion of the arm, this error is still
quite small.

Once the number and the centers of the basis functions in the hidden layer



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

10 Ganghua Sun and Brian Scassellati

have been determined, the weights from the hidden layer to the output layer can
be calculated directly. The output of the hidden layer for the task vector θi of the
training sample (θi, xi) can be described with vector hi. Using H = [h1 h2 ...] and
X = [x1 x2 ...] respectively, we would like to find a weight matrix W such that

WH = X. (2)

Usually no exact solution can be found. A minimum norm solution can be computed
through the linear least square algorithm as

W = XHT (HHT )−1. (3)

From another perspective, W in Eq. (2) can be seen as an associative memory. It can
be formed through an incremental learning rule such as the biologically plausible
Hebbian learning, which is the only learning mechanism needed to learn a forward
model of the arm with a RBFN since the centers of the basis functions in the RBFN
can be randomly selected as discussed in the previous paragraph.9,16

3.3. Incremental trajectory generation

3.3.1. Algorithm description

The forward kinematics equation x = farm(θ) can be transformed into

ẋ = J(θ)θ̇ (4)

by taking derivative on both sides. RMRC solves Eq. (4) with

θ̇ = J#ẋ, (5)

where J# is the pseudo-inverse of the Jacobian matrix J .1 θ̇ in Eq. (5) is the
minimum norm solution to ẋ satisfying Eq. (4). Liegois proposed an extension

θ̇ = J#ẋ + α(J#J − In)∇H (6)

that exploits the null space of J to incorporate an additional optimization criterion
H into Eq. (5).26 Typical applications of Eq. (6) include singularity avoidance and
obstacle avoidance.27,28 We use the original form of RMRC as the basis for our
incremental trajectory generation algorithm (ITGA). However, it should be noted
that our ITGA can be easily adapted to any extension of RMRC based on Eq. (6).

Eq. (5) can be approximated by

∆θ = J#∆x. (7)

J# in Eq. (7) can be understood as a directional mapping which transforms the
direction vector ∆x in the task space into direction vector ∆θ in the joint space. It



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 11

has been suggested that an approximation J̃# of J# can be learned independent of
the forward model f̃arm. However, the most direct way to obtain J̃# is to extract
J̃ from f̃arm and transform it into J̃#. (Recall that f̃arm can be easily learned as
was shown in Section 3.2.) One way to extract J̃ is to replace the basis functions
in the hidden layer of the RBFN representing f̃arm with their appropriate partial
derivatives.29 For instance, in order to get an approximation of [J11, J21, J31]T , we
simply replace the basis functions by their partial derivatives with respect to θ1 and
use the output of the network as the approximation for [J11, J21, J31]T . In this way,
a complete Jacobian approximation J̃ can be constructed. Another way to derive
J̃ is simply to use numerical differentiation. Our ITGA that relies on both f̃arm

and J̃ is shown below. This version assumes that visual feedback of the end effector
position is not available throughout the reaching movement.

1 initialize θstart, xtarget, step size

2 θ̃(0) ← θstart

3 x̃(0) ← f̃arm(θ̃(0))
4 i ← 0
5 loop
6 i ← i + 1
7 if ‖xtarget − x̃(i− 1)‖2 > step size

8 α(i) ← step size/‖xtarget − x̃(i− 1)‖2
9 else
10 α(i) ← 1
11 end
12 Calculate J̃ and J̃# for θ̃(i− 1)
13 ∆x ← α(i)(xtarget − x̃(i− 1))
14 θ̃(i) ← θ̃(i− 1) + J̃#∆x

15 Output θ̃(i) to the motor controller
16 x̃(i) ← f̃arm(θ̃(i))
17 if α(i) equal 1
18 break
19 end
20 end

Based on the predicted current position of the end effector x̃(i − 1) and the
target xtarget, the joint vector θ̃(i) at step i is calculated using

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − x̃(i− 1)), (8)

where xtarget − x̃(i − 1) represents the direction vector in the task space toward
the reaching target. α(i) ensures that the magnitude of α(i)(xtarget − x̃(i − 1)) is
equal to step size before the final reaching step. Eq. (8) can be seen as a further



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

12 Ganghua Sun and Brian Scassellati

approximation of Eq. (7).

3.3.2. Analysis

To make it clear that both the learned forward model f̃arm and the extracted
Jacobian J̃ are involved in Eq. (8), we can rewrite Eq. (8) as

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − f̃arm(θ̃(i− 1))). (9)

According to Eq. (9), the errors in both J̃ and f̃arm contribute to the final position
error. In order to isolate the effects of these two kinds of errors, we consider three
variants of Eq. (9):

θ̃(i) = θ̃(i− 1) + J#α(i)(xtarget − f̃arm(θ̃(i− 1))). (10)

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − farm(θ̃(i− 1))) (11)

and

θ̃(i) = θ̃(i− 1) + J#α(i)(xtarget − farm(θ̃(i− 1))) (12)

In contrast to Eq. (9), Eq. (10) only uses f̃arm to generate a reaching trajectory
while Eq. (11) only uses J̃ . So the final position error resulting from an ITGA based
on Eq. (10) or (11) is caused solely by the error in f̃arm or J̃ respectively. Eq. (12)
can be seen as an exact reformulation of Eq. (7). Because Eq. (12) relies on the exact
forward kinematics and Jacobian, among the four equations listed above, it should
achieve the best reaching performance and can serve as a benchmark. For the sake
of simplicity, the four different versions of ITGA based on Eq. (9), (10), (11) and
(12) are referred to below as ITGA(f̃arm, J̃), ITGA(f̃arm, J), ITGA(farm, J̃) and
ITGA(farm, J) respectively.

Error histograms of the four ITGAs defined above are shown in Fig. 9. They
are generated by simulations based on the same forward model. A 320x240 camera
resolution is used during motor babbling. It is assumed that xtarget contains no
perceptual noise. 10mm is assigned to the variable step size. The starting posture
is selected such that all joints assume values in the middle of their motion ranges.
Since ITGA(f̃arm, J̃) uses no visual feedback at all, it is very satisfying to see that
almost all of its errors are below 5mm. Despite the good reaching performance
achieved, there are two very interesting questions to be answered: What are the
most important factors that determine the reaching accuracy? Does our model
scale to tasks requiring very high reaching accuracy, e.g. threading a needle?

Fig. 10 shows a second set of error histograms for the four ITGAs with reduced
camera resolution of 80x60. With all other simulation parameters held constant,
the error histograms of ITGA(f̃arm, J̃) and ITGA(f̃arm, J) look much worse than
their counterparts in Fig. 9. However, the error histogram of ITGA(farm, J̃) does



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 13

0 5 10
0

200

400
ITGA(f~, J~)

0 5 10
0

200

400
ITGA(f~, J)

0 5 10
0

200

400

end effector position error at the end of reaching (mm)

nu
m

be
r 

of
 te

st
 p

os
iti

on
s

ITGA(f, J~)

0 5 10
0

200

400
ITGA(f, J)

Fig. 9. Error histograms of the four different versions of ITGA. A 320x240 camera resolution is
used during motor babbling. 10mm is assigned to step size.

0 5 10
0

200

400
ITGA(f~, J)

0 5 10
0

200

400

end effector position error at the end of reaching (mm)

nu
m

be
r 

of
 te

st
 p

os
iti

on
s

ITGA(f, J~)

0 5 10
0

200

400
ITGA(f~, J~)

0 5 10
0

200

400
ITGA(f, J)

Fig. 10. Error histograms of the four different versions of ITGA. A 80x60 camera resolution is used
during motor babbling. 10mm is assigned to step size.

not deteriorate significantly. More interestingly, it can observed in both Fig. 9 and
Fig. 10 that the reaching accuracy of ITGA(farm, J̃) is much higher than that
ITGA(f̃arm, J), which seems to indicate that the quality of J̃ is much better than
f̃ . Through a careful examination of the original ITGA algorithm listed in Section
3.3.1 and Eq. (10) and (11), it can be discovered that while the reaching accuracy
ITGA(f̃arm, J) is almost single-handedly determined by the errors in f̃arm, the



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

14 Ganghua Sun and Brian Scassellati

0 5 10
0

200

400
nu

m
be

r 
of

 te
st

 p
os

iti
on

s ITGA(f, J~) with step_size=5mm

end effector position error at the end of reaching (mm)
0 5 10

0

200

400
ITGA(f, J~) with step_size=2mm

Fig. 11. Error histograms of ITGA(f, J̃) based on reduced step sizes. A 80x60 camera resolution
is used during motor babbling.

reaching accuracy of ITGA(farm, J̃) is determined by both the errors in J̃ and the
variable step size. Furthermore, the reaching accuracy can be improved by reduc-
ing step size while keeping J̃ fixed. Fig. 11 shows two error histograms produced
by ITGA(farm, J̃) with reduced step sizes while inheriting the rest of the param-
eters from Figure 10(c). The mean reaching error achieved by ITGA(farm, J̃) with
step size=2 is only 0.26mm, enough for threading a needle considering the average
size of a needle eyelet. This result is surprising because the forward model used for
Fig. 11 is learned with a very crude camera resolution. For physical experiments on
a robotic platform, we have no other choice than using ITGA(f̃arm, J̃) for trajectory
generation. But if we use the feedback from the stereo vision to track the position of
the end effector during reaching movements, we no longer need f̃arm for prediction,
as long as the end effector is visible to the stereo vision system. In fact, if xpred is
substituted by xperc in Fig. 2, the actual reaching movements are controlled by a
new ITGA. Its core equation can be described as

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − st(farm(θ̃(i− 1)))), (13)

where the function st() is the stereo perception function. The higher the resolution
of visual feedback, the closer st(x) is to x. With a very high camera resolution for
visual feedback, the term st(farm(θ̃(i−1))) in Eq. (13) is virtually indistinguishable
from farm(θ̃(i−1)) such that the new ITGA in effect becomes ITGA(farm, J̃). With
the discussion above and the results shown in Fig. 11, it can be concluded that a
very high reaching accuracy can be achieved with a small step size and the aid
of visual feedback of a high resolution. This combination can compensate for the
relatively large errors in a forward model trained on samples that are gathered
under a crude camera resolution.

4. Physical Experiments on Nico

Experiments have been carried out on Nico to test the performance of our model. A
320x240 camera resolution is used during motor babbling. 400 samples are collected
to train a forward model of the arm kinematics. It takes less than 30 minutes to



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 15

(A)

(B)

Fig. 12. Please refer to Section 4 for detailed description.

collect these samples. spread is set to 130. margin is determined by the heuristics
described in Section 3.2.1. The reaching target is attached to the tip of a modified
retractable TV antenna to facilitate its positioning. A fixed starting posture is used
to generate all reaches. At the beginning of a reaching movement, step size is set
to 10mm and a 320x240 camera resolution is used to locate the target. After the
difference between the target position and the end effector position estimated by
the forward model becomes smaller than 50mm, step size is reduced to 5mm and
the camera resolution is switched to 640x480. Visual feedback of the end effector is
exploited whenever available after the resolution switch. Fig. 12 shows two groups



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

16 Ganghua Sun and Brian Scassellati

of pictures. Each group consists of six pictures organized from left to right with the
pictures in the second row following the pictures in the first row. Group (A) shows
a successful reach by Nico that moves its end-effector toward the target with the
guidance of visual feedback. The pictures in Group (B) shows a reaching movement
from the perspective of Nico’s stereo vision system. Segmentation results presented
in these pictures are computed using prior knowledge about color. The camera
images in the first picture are captured before the resolution switch. The images in
the rest of the pictures are captured with a 640x480 resolution. It can be seen from
the last picture that at the end of the movement, the end effector already touches
the target from the perspective of Nico’s stereo vision system.

5. Extending the Model to More Degrees of Freedom

To extend our model to more realistic situations, we allow the four neck joints in
Nico are allowed to move freely during motor babbling. With the neck joints acti-
vated, the forward kinematics becomes fneck arm : (θarm, θneck) → x. Our previous
work demonstrated that the number of training samples needed to learn a forward
model of a 4-DOF arm using the method described in Section 3.2 is around 120,30

while in this paper, about 400 samples are used for a 6-DOF arm. Using a larger
training set to learn the expanded forward kinematics does not constitute a good
strategy because the number of training samples needed rises almost exponentially
with each additional joint. However, sensory information other than proprioceptive
feedback can be exploited to alleviate the degree of freedom problem.

O

X

Y

X'

Y'

Fig. 13. Illustration showing the effect a shifted head posture on the eye-centered coordinate
system. The original and the shifted head posture is painted in black and grey respectively. The
sensory feedback from the vestibular system (the gyroscope in the case of a robot) allows for the
correction of the eye-centered coordination system OXY into OX′Y ′.

Fig. 13 illustrates a simplified situation where a shift of the head posture leads
to changes in both the position and the orientation of the head. Although the eye-
centered coordinate system’s positional change can not be perceived directly, its
change in orientation can be sensed by the vestibular system (a gyroscope in case
of a robot). The information delivered by the vestibular system/gyroscope can then



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 17

be used to correct this orientation shift caused by the postural change of the head,
i.e. the coordinate system OXY can be corrected into OX ′Y ′ as shown in Fig. 13.

The original input and output of the kinematics function fneck arm is θ =
(θarm, θneck) and x = T eye

body(θneck) ·T body
ee (θarm) · [0, 0, 0, 1]t respectively, where T eye

body

and T body
ee are homogenous transformation matrices. ee stands for end-effector. T eye

body

can be expressed as

T eye
body =

[
R3×3 T3×1

01×3 11×1

]
, (14)

where R is the rotation matrix and T is the translation vector. R can be recon-
structed from the readings from the vestibular system/gyroscope. We denote T ′eye

body

as

T ′eye
body =

[
R3×3 03×1

01×3 11×1

]
. (15)

Using T ′eye
body, the perceived position x of the end-effector can be transformed into

x′ = (T ′eye
body)−1 · x. This has the same effect as the correction of OXY into OX ′Y ′

shown in Fig. 13. If we assume that the overall effect of the neck joints is purely ro-
tational so that it is fully eliminated in x′, (θarm, x′) is just a lossless transformation
of ((θarm, θneck), x). In reality, the assumption just mentioned does not hold true,
which can be easily seen in Fig. 13. Learning a forward model with the transformed
training samples is equivalent to regarding the translational effect of the neck joints
as noise. Simulations based on the kinematics of Nico have determined that the
standard deviation of possible end effector positions is more than three times the
standard deviation of possible eye camera positions. Fig. 14 shows a scatter plot for
1000 random positions of the end-effector and a scatter plot for 1000 random posi-
tions of the right eye camera. The large difference in the ranges of motion between
the end-effector and the eye camera means x′ is determined to a much greater extent
by the translational effect of the arm joints than that of the neck joints. Therefore,
learning a forward model on samples (θarm, x′) will not degrade the quality of the
forward model significantly.

This learning strategy does not increase the number of dimensions of the kine-
matic models. It has the additional advantage that the diagram shown in Fig. 2
does not need to be changed for generating reaching trajectories. Simulations show
that the average position error of blind reaching based on a forward model learned
with the new strategy is about 20mm. Although this is significantly larger than the
average position error (< 5mm) achieved by a system that assumes a fixed head
posture, it can be compensated by exploiting visual feedback of the end effector
during the actual reaching movements.

The essential sensory information delivered by the vestibular system/gyroscope
can be summarized into a three dimensional vector θeuler. It is worth noting that
on our robotic platform, if a forward model is learned on samples in form of
((θeuler, θarm), x), the dimension of the input is nine, only one less than that of



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

18 Ganghua Sun and Brian Scassellati

−300
−200

−100
0

100
200

300

−200

−100

0

100

ZX

Y

Right cam pos
End effector pos

Fig. 14. 1000 random positions for both the right eye camera (in black) and the end effector (in
gray) are plotted in the body-centered coordinate system. It can be easily seen that the range of
motion of the end effector is much larger than that of the eye camera.

the input of the original farm neck. While this seems to be only a small dimension-
ality reduction on our robotic platform, the advantage will scale with additional
joints in the neck. Because the human neck has more than four DOFs at even the
joint level, the dimensionality reduction can be substantially more. On the level of
muscle activation, using θeuler to represent the principle effect of the head posture
can lead to an enormous saving of both the time spent on learning and the size for
model representation.

6. Discussion

It has been suggested by some psychologists that the representation of a reaching
target undergoes a series of transformation stages from the eye-centered coordi-
nate system via the head-centered and body-centered coordinate systems to the
hand-centered coordinate system before an arm movement is initiated.31,32 How-
ever, studies of hemineglect patients and recording experiments in the brain areas
associated with reaching have not found convincing evidence for the existence of
neural representations unique to the intervening stages.33,34 So far, only substantial
neural correlation of the difference vector between the target and the hand posi-
tion in the eye-centered coordinate system has been reported.35 Our model can use
this difference vector directly for generating reaching movements without any addi-
tional transformational stages. A forward model can be learned on training samples
in form of either (θarm, x) or ((θeuler, θarm), x) depending on whether the neck is
activated during motor babbling. Figure 6 demonstrates that a forward model with
only about 100 hidden neurons can already represent the forward kinematics of the
arm reasonably well (examine the value of the curve corresponding to 400 training
samples in the right plot at margin=4.5mm). Even if the neck is activated during



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 19

motor babbling, a population with at most several thousands hidden neurons will be
sufficient. This number is far smaller than previously reported results on a 3-DOF
arm.4,9

One interesting paper that studies motor learning on a robotic platform tries
to solve the degree of freedom problem with a sophisticated statistical learning al-
gorithm called Locally Weighted Projection Regression (LWPR).11 LWPR is used
to learn the direction mapping from ∆x to ∆θ with effort put into locally reduc-
ing the dimensionality. However it does not make use of any additional sensory
information other than proprioceptive feedback. Our experiments suggest that the
dimensionality of motor learning can be reduced globally by completely substitut-
ing the proprioceptive feedbacks from all neck joints with the feedback from the
vestibular system that can be found in all human beings.

In Section 3.3.2 we came to the conclusion that a very high reaching accuracy
can be achieved with high resolution visual feedback and small step size even if the
forward model is learned with a crude visual resolution. step size can be seen as the
counterpart of speed in the discrete domain. This conclusion is supported by obser-
vations of human behavior. It has long been known that for humans, the accuracy of
a reaching movement is inversely related to the speed of the movement.36 However,
if high resolution vision can be used for feedback during reaching movements, why
not use it for forward learning as well? Why bother to consider using a crude visual
resolution at all? As mentioned in Section 3.2.1, because we replace the projections
of the end effector on the two camera image planes with their centroids for the
calculation of its 3D position, the effective resolution can be crude even if a high
camera resolution is used. When an infant starts to make spontaneous reaches, its
vision is quite poor compared with that of an adult. The conclusion drawn in Sec-
tion 3.3.2 ensures that a forward model learned with crude vision can be used later
on for generating accurate reaches when high resolution vision becomes available.

Reaching is one of the most thoroughly investigated sensorimotor tasks. Because
the human arm contains more joints than the dimensionality of an ordinary task
space, there are in principle infinite postures that reach the same target in space.
The experiments carried out by Morasso demonstrated the remarkable result that
human reaching movements invariably possess two characteristics: the trajectory
is gently curved and the velocity profile is bell-shaped.37 Many theories have been
proposed to explain the observations made by Morasso with the assumption that
motor learning is governed by some optimization measure. The optimization mea-
sures suggested include minimum jerk, maximum smoothness, minimum torque and,
recently, minimum variance of the final hand position.38,39,40,41 For a comprehensive
review, please refer to a recent review by Todorov.42

Interestingly, the strategy of substituting sensory feedback from the vestibular
system for the neck kinematics also causes curved reaching trajectories. This substi-
tution leads to errors in the forward model and the extracted Jacobian. These errors,
while still relatively small, invariably result in a trajectory that does not follow the
optimal shortest path through Cartesian space. Fig. 15 shows a sample trajectory



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

20 Ganghua Sun and Brian Scassellati

for both blind reaching and reaching aided by visual feedback. Both trajectories are
visibly curved. This observation serves as a support for dimensionality reduction as
a complementary explanation to the observed curvature in human reaching trajec-
tories. We have recently begun to explore this effect both in simulation and with
the robot Nico.43

−100

0

100

50
100

150
200

−180

−170

−160

−150

−140

X

Blind reaching

Z

Y

−100

−95

−90

−85

−80

80100120140160180
−200

−100

0

X

Reaching with visual feedback

Z

Y

Start

Start

Fig. 15. Sample reaching trajectories for blind reaching and reaching with visual feedback. The
straight lines in both plots connect the starting position of the effector effector and the target
position. The dotted lines are the actual reaching trajectories. For blind reaching, the position
of the end effector at the end of the movement is a small distance away from the target because
of the error in the learned forward model. These two trajectories are based on a forward model
trained on samples of the form (θarm, x′).

7. Conclusion

In this paper, we have presented a model for learning to reach. A forward model of
the arm kinematics is learned on autonomously gathered training samples. We have
described in detail an optimization process for the learning parameters because the
quality of the learned forward model heavily influences the position error of a blind
reach. With the learned forward model, reaching movements towards targets can be
generated based on the derived directional mapping. We have shown through careful
analysis that if high resolution visual feedback is available during reaching, tasks
requiring high accuracy can be achieved despite the residual errors in the forward
model. For a 6-DOF arm, our model requires only about 400 training samples, which
takes a very modest amount time to collect on a modern robotic platform.

In addition, the consistency of our model with physiological and psychological
observations of human arm movements has been discussed. We have demonstrated
that through the substitution of a portion of the proprioceptive feedback by other
sensory feedback, motor learning can take place in a space with a dimension that is
much lower than the number of actual degrees of freedom involved. Even when all
the degrees of freedom in the neck and the arm are taken into account, a maximum of
only a few thousand neurons are needed to represent a forward model for generating
accurate reaching trajectories. This number is far fewer than previous conjectures.



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 21

8. Acknowledgement

Support for this work was provided by a National Science Foundation CAREER
award (#0238334). Some parts of the architecture used in this work was constructed
under NSF grants #0205542 (ITR: A Framework for Rapid Development of Reliable
Robotics Software) and #0209122 (ITR: Dance, a Programming Language for the
Control of Humanoid Robots) and from the DARPA CALO/SRI project.

References

1. D. E. Whitney, Resolved motion rate control of manipulators and human prostheses,
IEEE Transactions on Man-Machine Systems 10(2), 47-53 (1969).

2. J. Piaget, La naissance de l’intelligence chez l’enfant, (Delachaux et Niestlé, Geneva,
1936).

3. D. DeMers, K. Kreutz-Delgado, Inverse kinematics of dextrous manipulators, in Neural
Systems for Robotics, ed. O. Omidvar and P. van der Smagt (Academic Press, New
York, 1997), pp. 75-116.

4. D. Bullock, S. Grossberg and F. H. Guenther. A self-organizing neural model of motor
equivalent reaching and tool use by a multijoint arm, Journal of Cognitive Neuroscience
5(4), 408-435 (1993).

5. M. I. Jordan and D. Rumelhart, Supervised learning with a distal teacher, Cognitive
Science 16, 307-354 (1992).

6. R. C. Miall and D. M. Wolpert, Forward models for physiological motor control, Neural
Networks 9, 1265-1279 (1996).

7. R. Shadmehr and S. P. Wise, Motor learning and memory for reaching and point-
ing, in The Cognitive Neurosciences III, ed. M. S. Gazzaniga (MIT Press, Cambridge,
Massachusetts, 2004), pp. 511-524.

8. R. Shadmehr and S. P. Wise, The Computational Neurobiology of Reaching and Point-
ing, (MIT Press, Cambridge, Massachusetts, 2005).

9. H. Ritter, T. Martinetz and K. Schulten, Neural Computation and Self-Organizing
Maps: An Introduction, (Addison-Wesley, New York, 1992).

10. N. E. Berthier, M. T. Rosenstein and A. G. Barto, Approximate optimal control as a
model for motor learning, Psychological Review 112, 329-346 (2005).

11. A. D’Souza, S. Vijayakumar and S. Schaal, Learning inverse kinematics, in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS) (IEEE Press, Piscataway, New
Jersey, 2001), pp. 298-303.

12. N. A. Bernstein, The Co-ordination and Regulation of Movements, (Pergamon, New
York, 1967).

13. J.-Y. Bouguet, Camera calibration toolbox for Matlab, http://www.vision.caltech.edu
/bouguetj/calib doc/.

14. J. Heikkilä and O. Silvén, Calibration procedure for short focal length off-the-shelf
CCD cameras, in Int. Conf. on Pattern Recognition (IEEE Computer Society, Wash-
ington, DC, 1996), pp. 166-170.

15. L. G. Shapiro and G. C. Stockman, Computer Vision, (Prentice-Hall, Upper Saddle
River, New Jersey, 2001), pp. 397-398.

16. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall,
Upper Saddle River, New Jersey, 1999).

17. J. Park and I. W. Sandberg, Universal approximation using radial-basis-function net-
works, Neural Computation 3(2), 246-257 (1991).

18. S. Chen, C. F. N. Cowan and P. M. Grant, Orthogonal least squares learning algorithm



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

22 Ganghua Sun and Brian Scassellati

for radial basis function networks, IEEE Transactions on Neural Networks 2(2), 302-
309 (1991).

19. M. J. D. Powell, The theory of radial basis function approximation in 1990, in Advances
in Numerical Analysis Vol. II: Wavelets, Subdivision Algorithms, and Radial Basis
Functions, ed. W. Light (Oxford Science Publications, Oxford, 1992), pp. 105-210.

20. T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the
IEEE 78, 1481-1497 (1990).

21. F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks archi-
tectures, Neural Computation 7, 219-269 (1995).

22. V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd edn. (Springer Verlag,
New York, 1999).

23. T. A. Poggio, A theory of how the brain might work, Cold Spring Harbor Symp.
Quant. Biol. 55, 899-910 (1990).

24. A. Pouget and L. H. Snyder, Computational approaches to sensorimotor transforma-
tions, Nature Neuroscience 3, 1192-1198 (2000).

25. S. Deneve, P. E. Latham and A. Pouget, Efficient computation and cue integration
with noisy population codes, Nature Neuroscience 4(8), 826-831 (2001).

26. A. Liegeois, Automatic supervisory control of the configuration and behavior of multi-
body mechanisms, IEEE Transactions on Systems, Man and Cybernetics 7(12), 868-871
(1977).

27. Y. Nakamura and H. Hanafusa, Inverse kinematic solutions with singularity robustness
for robot manipulator control, ASME Journal of Dynamic Systems, Measurement and
Control 108, 163-171 (1986).

28. A. A. Maciejewski and C. A. Klein, Obstacle avoidance for kinematically redun-
dant manipulators in dynamically varying environments, The International Journal
of Robotics Research 4(3), 109-117 (1985).

29. C. M. Bishop, Neural Networks for Pattern Recognition, (Oxford University Press,
Oxford, 1995), pp. 148-150.

30. G. Sun and B. Scassellati, Reaching through learned forward model, in IEEE-
RAS/RSJ Int. Conf. on Humanoid Robots (Humanoids), (Los Angeles, California,
2004).

31. M. Flanders, S. I. Helms-Tillery and J. F. Soechting, Early stages in a sensorimotor
transformation, Behavioral and Brain Sciences 15, 309-362 (1992).

32. J. McIntyre and F. Stratta, Short-term memory for reaching to visual targets: psy-
chophysical evidence for body-centered reference frames, Journal of Neuroscience 18,
8423-8435 (1998).

33. A. Pouget, S. Deneve and T. Sejnowski, Frames of reference in hemineglect: a com-
putational approach, Progress in Brain Research 121, 81-97 (1999).

34. J. R. Duhamel, F. Bremmer, S. BenHamed and W. Graf, Spatial invariance of visual
receptive fields in parietal cortex neurons, Nature 389, 845-848 (1997).

35. C. A. Buneo, M. R. Jarvis, A. P. Batista and R. A. Andersen, Direct visuomotor
transformations for reaching, Nature 416, 632-636 (2002).

36. P. M. Fitts, The information capacity of the human motor system in controlling the
amplitude of movements, Journal of Experimental Psychology 47, 381-391 (1954).

37. P. Morasso, Spatial control of arm movements, Experimental Brain Research 42(2),
223-227 (1981).

38. N. Hogan, An organizing principle for a class of voluntary movements, Journal of
Neuroscience 4(11), 2745-2754 (1984).

39. T. Flash and N. Hogan, The coordination of arm movements: an experimentally con-
firmed mathematical model, Journal of Neuroscience 5(7), 1688-1703 (1985).



September 23, 2005 13:16 WSPC/INSTRUCTION FILE SunScassellati

A FAST AND EFFICIENT MODEL FOR LEARNING TO REACH 23

40. Y. Uno, M. Kawato and R. Suzuki, Formation and control of optimal trajectory in hu-
man multijoint arm movement: minimum torque-change model, Biological Cybernetics
61(2), 89-101 (1989).

41. C. M. Harris and D. M. Wolpert, Signal-dependent noise determines motor planning,
Nature 394(6695), 780-784 (1998).

42. E. Todorov, Optimality principles in sensorimotor control, Nature Neuroscience 7(9),
907-915 (2004).

43. G. Sun and B. Scassellati, Exploiting vestibular output during learning results in nat-
urally curved reaching trajectories, in Proceedings of the Fifth International Workshop
on Epigenetic Robotics (EpiRob), (Nara, Japan, 2005).

Ganghua Sun received his Diploma degree in Computer Science
(Diplom.-Inform) from University of Bonn in 2001. He is cur-
rently a Ph.D. candidate in the Computer Science Department
of Yale University. His research interests include developmental
learning of human cognitive functions, statistical learning theory
and computer vision. He is the chief designer of the humanoid
robot Nico.

Brian Scassellati received both his M.Eng. degree and a Ph.D.
in Computer Science and Electrical Engineering from the Mas-
sachusetts Institute of Technology in 1995 and 2001, respectively.
Since 2001, he has been an Assistant Professor of Computer Sci-
ence at Yale University.


