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Abstract— In this work, we introduce a strategy that frames
the sequential action selection problem for robots in terms
of resolving blocking conditions, i.e., situations that impede
progress on an action en route to a goal. This strategy
allows a robot to make one-at-a-time decisions that take in
pertinent contextual information and swiftly adapt and react
to current situations. We present a first instantiation of this
strategy that combines a state-transition graph and a zero-
shot Large Language Model (LLM). The state-transition graph
tracks which previously attempted actions are currently blocked
and which candidate actions may resolve existing blocking
conditions. This information from the state-transition graph is
used to automatically generate a prompt for the LLM, which
then uses the given context and set of possible actions to select
a single action to try next. This selection process is iterative,
with each chosen and executed action further refining the state-
transition graph, continuing until the agent either fulfills the
goal or encounters a termination condition. We demonstrate the
effectiveness of our approach by comparing it to various LLM
and traditional task-planning methods in a testbed of simulation
experiments. We discuss the implications of our work based on
our results.

I. INTRODUCTION

Robots offer the promising potential to assist people
across a variety of domains, including home care, healthcare,
agriculture, and manufacturing. In these scenarios, robots are
tasked with determining the most beneficial action to take at
any given moment to achieve specific goals or objectives.

Much previous work has investigated the action selection
problem posed above [8, 9, 10, 11, 15]. At a high level,
previously proposed algorithms often reason over the broad
space of which actions are viable at a certain state. For in-
stance, task planners often consider prerequisites that define
whether a given action is viable, then use modeled effects to
define how the environment would change if a certain action
is executed. Using this information, a task planner considers
many possible roll-outs of legal action trajectories, stopping
when a sequence of actions reaches a given goal.

The action viability-centered view of task selection has
afforded several useful algorithms (§II); however, the strategy
as a whole can often lead to computational and represen-
tational challenges. For instance, if there are many viable
actions that beget many viable actions to consider at a next
step, and so on, the number of possible action branches
scale exponentially with respect to the number of planning
steps, often overwhelming computational resources. While
heuristics can help alleviate this issue [9, 11], it may still be

1Liam Merz Hoffmeister, Brian Scassellati, and Daniel Rakita are with
the Department of Computer Science, Yale University, New Haven, CT
06520, USA liam.merzhoffmeister@yale.edu

This work was supported by Office of Naval Research award N00014-
24-1-2124

��������������������
�������������������������

��������
��������������������

��������
��
��	����������

��������������������
���
������	������������������������������

�����������������
�	������������

������������������
�	�����
�����
	����������	��������	�
����

�	���

Fig. 1: We present a strategy that frames action selection
in terms of resolving blocking conditions, i.e., situations
that impede progress on an action en route to a goal. This
example illustrates a robot using blocking conditions and
resolutions to complete the task “wash the cup in the sink”
in the AI2Thor simulation environment. This task is part of
our evaluation.

difficult to prune large segments of or find shortcuts through
these dense branches of actions as it is often unclear which
current actions will be necessary to achieve future goals.
Also, given the uncertainty of the real-world, it can often be
impossible to perfectly model which actions will be viable
at what time. For instance, it is impossible to know if the
robot will know where a target object is or if it will have
the physical strength to lift a certain object ten steps into the
future. Thus, if any modeled assumption is broken in the real
world, a full re-plan often has to be triggered, exacerbating
the computational challenges outlined above.

In this work, we introduce a strategy that frames the
action selection problem for robots in terms of resolving
blocking conditions, i.e., situations that impede progress on
an action en route to a goal. This strategy allows a robot to
make one-at-a-time decisions that take in pertinent contextual
information and swiftly adapt and react to current situations.

Our proposed strategy follows three high-level steps: (1)
The robot selects an action from a set of candidate actions;
(2) The robot assesses if any conditions are blocking progress
on the current action; and (3) If progress is blocked on its
current action, the robot evaluates all attempts to resolve the
situation, incorporating possible resolutions into its set of
candidate actions (circling back to Step 1). At this juncture,
the robot may either choose an action that resolves the issue
and resume the previously blocked action or prioritize a new
action, reflecting an adapted strategy. This loop continues
until the agent fulfills the goal criteria or encounters a
termination condition.

Our central premise is that centering action selection de-



cisions around blocking conditions and resolutions will ease
the computational and representational challenges associated
with discrete action selection, ultimately enabling more suc-
cessful robot task execution. For instance, the exponential
action branching challenge discussed above is eased by only
considering actions that can either directly achieve the given
goal or resolve a blocking condition currently impeding
progress toward the goal. Our empirical results (§V) suggest
that this set of candidate actions will be much smaller than
the set of all viable actions at a particular state. Also, because
action decisions are made one at a time in response to
blocking conditions, it is straightforward to quickly adapt
strategies when needed in the face of physical obstructions
or lack of information that could not be modeled a priori.

We present a first instantiation of our strategy that com-
bines a state-transition graph and a zero-shot Large Language
Model (LLM). The state-transition graph tracks which pre-
viously attempted actions are currently blocked and which
candidate actions may resolve existing blocking conditions
(Steps 2 and 3 in the strategy above). This information from
the state-transition graph is used to automatically generate
a prompt for the LLM, which then uses the given context
and set of candidate actions to select a single action to try
next (Step 1 in the strategy above). This selection process
is iterative, with each chosen and executed action further
refining the state-transition graph. The algorithm continues
iterating until the agent fulfills the goal criteria or encounters
a termination condition.

We demonstrate the effectiveness of our approach by
comparing it to various LLM and traditional task-planning
methods in a testbed of simulation experiments (§V). We
conclude by discussing the implications and limitations of
our work based on our results. We provide open-source code
for an implementation of our approach.1

II. RELATED WORKS

A. Task Planning

The goal of task planning is to compute a sequence
of actions that achieve some given goal. Task planners
typically reason over some logic-based domain language,
such as STRIPS [8] or PDDL [15]. At a high level, these
domain languages specify a start state, a goal state, and what
constitutes legal, viable actions at any given state.

Over the years, several highly efficient task planning
algorithms have been developed to find feasible sequences of
actions from start to goal, including Fast Forward (FF) [11]
and Fast Downward (FD) [9]. FF uses a graph search strategy
coupled with a carefully designed heuristic that estimates the
cost to reach the goal from the current state. FD decomposes
planning tasks into more manageable sub-problems, allowing
for significant speedups on a hierarchical representation.

Several task planners were subsequently presented that
address the challenges of non-observability and uncertain-
ties. For instance, FF-Replan [18], which modified the FF
planner to address non-deterministic outcomes through a

1https://github.com/Apollo-Lab-Yale/llm task planning

“determinize-and-replan” strategy, marked a significant shift
towards managing unpredictable elements in task planning,
although it did not completely resolve the issue of state
uncertainties.

Further advancement was achieved through planning over
belief states, i.e., some representation of many possible world
states [3, 4]. For instance, Hoffmann and Brafman [10]
presents implicit belief state planning where actions can have
non-deterministic outcomes. Handling implicit belief states
allows the planner to consider various contingencies and
develop plans that are robust to uncertainties.

Our proposed strategy draws on many concepts from
task planning. For instance, our strategy uses a logic-based
domain language to specify goals and track information
about the world and possible actions. However, our work
differs in that instead of framing search in terms of what
actions are viable from a certain state (or belief state), our
strategy frames action selection in terms of which actions
may resolve blocking conditions that have been observed.
This strategy enables a robot to make one-at-a-time decisions
that take in contextual information and adapt and react to
current situations.

B. LLMs for Planning

Recent developments have demonstrated remarkable
progress in natural language processing models, particularly
Large Language Models (LLMs) [19]. One key area of
exploration is the potential for these models to understand
a planning query in natural language and generate a clear,
step-by-step response to achieve a specific goal.

Modern LLMs are known to struggle with various
planning-related tasks [5]. However, recent work has inves-
tigated this problem. For instance, work from Ahn et al. [2]
and Chalvatzaki et al. [6] have demonstrated how LLMs can
bridge the gap between abstract instructions and actionable
tasks, leveraging their vast semantic understanding. These
works resonate with our emphasis on adaptability and dy-
namic action selection in response to evolving environments.
Also, the work by Song et al. [17] and Singh et al. [16]
emphasizes the role of LLMs in generating dynamic plans,
grounding them in the physical environment, and employing
programmatic prompting to aid in plan formation.

Frameworks combining LLMs with structured planning,
such as the work by Liu et al. [14] and Ding et al. [7],
showcase the benefits of integrating LLM-derived insights
to navigate unforeseen scenarios and improve flexibility in
changing settings. Our first instantiation of our proposed
strategy (outlined in §IV) fits well in this category. Our idea
involves merging the contextual understanding provided by
LLMs with the clarity and precision of a state-action graph
representation. This integration aims to create a flexible and
robust method for action selection, combining the best of
both to enhance decision-making processes.

III. STRATEGY OVERVIEW

In this section, we describe the high level strategy pro-
posed in this work: framing discrete action selection around

https://github.com/Apollo-Lab-Yale/llm_task_planning


blocking conditions and resolutions. In §IV, we describe
in detail one instantiation of this strategy which we sub-
sequently use in our evaluation.

A. Strategy Components

Our strategy builds on the following components. Several
of these components are also used in standard task planners,
and are named the same, accordingly.

• A set of distinct nouns in the world called instances.
• A set of binary-valued functions of one or more in-

stances, called predicates. Each application of a predi-
cate to a specific set of instances can return true (called
a positive literal) or false (called a negative literal).
For example, suppose we have a predicate Under
that takes two instances as arguments Under(dirt,
rug). This predicate would return true and be a positive
literal if dirt is under the rug.

• The current setting of all literals over all instances will
be called the world state.

• A set of actions which each provide a functional specifi-
cation (through predicates) for how the robot can change
the world state.

• Each action has a set of effects, which each specify
the changes to the world state resulting from the ex-
ecution of its action. Importantly, our strategy allows
for effects with truth values of possibly true or
possibly false to accommodate uncertain results.

• Each action has a set of blocking conditions, which each
provide reasons for why the action may not succeed. For
instance, example blocking modes for a “pick up item”
action may be “target object not in view”, “item is out
of reach”, or “item is too heavy to lift”.

• Each blocking condition has a set of resolutions, which
are literals that must be satisfied for the blocking mode
to be considered resolved.

• Each blocking condition has a corresponding set of
resolution actions, which are actions that have effects
that would adjust the literals of the world to satisfy its
resolutions.

B. Strategy Steps

The strategy starts by representing some goals as a set
of literals. Actions with effects that directly achieve some
aspect of these goals are added as roots of their own tree
structures. Then, our task execution via blocking conditions
and resolutions strategy proceeds as follows:

(1) The robot selects an action from a set of candidate
actions. The set of candidate actions is all leaf nodes in the
tree structures mentioned above. The module that makes this
decision is called the selection engine; (2) The robot attempts
executing the selected action and assesses if any blocking
conditions are present on the current action; and (3) If the
action executes successfully, it and all of its sibling nodes
(i.e., nodes with the same parent) are removed from the tree
structure. If progress is blocked on the current action, the
robot evaluates all attempts to resolve the situation, adding
all resolution actions for the blocking condition at hand as

children nodes of the blocked action in the tree structure
(circling back to Step 1).

At this juncture, the selection engine may either choose
an action that resolves the issue in service of resuming
the previously blocked action or prioritize a new action,
reflecting an adapted strategy. These three steps iterate until
the robot either satisfies the goal literals or encounters a
termination condition.

C. Strategy Example

Here, we outline how our strategy may apply to a robot
tasked with retrieving milk from a refrigerator. The goal
literal for this task is On(milk, counter) = true.

There is one action that has an effect that achieves
the given goal: Place(milk, counter). The approach
adds this action as a root node in a tree structure. The
selection engine chooses this action (it is the only option)
and attempts to execute it. However, a blocking condition
is encountered: for an object to be placed, it must first
be currently held. The resolution literal for this blocking
condition is isHolding(milk) = true.

The robot has one possible way to elicit the desired effect:
grasp(milk). This action is added as a child node to the
place action node. The action selection engine chooses
the grasp(milk) action (again, the only option). The
robot attempts to execute this action, but another blocking
condition is met: for an object to be grasped, it must currently
be visible. The resolution literal for this blocking condition
is isVisible(milk) = true.

While no actions can guarantee the milk becoming
visible, several actions may lead toward achieving
the desired outcome. For example, the actions
visualSearch(direction bias), open(
refrigerator), open(freezer), open(oven)
all have effects that include isVisible(milk) =
possibly true.

The selection engine chooses open(refrigerator).
The tree structure at this point in the task is visualized in
Figure 2. Upon successfully opening the refrigerator, new
instances become visible inside, such as yogurt, juice, etc.
However, the milk is not immediately detected.

The selection engine opts for the
visualSearch(direction bias) action, this
time applying a direction bias toward the refrigerator.
The robot maneuvers its viewpoint and locates the milk
in the back of the refrigerator. The blocking condition
regarding the milk’s visibility is thereby resolved, and all
other resolution actions related to this issue are consequently
removed from the tree structure.

The action grasp(milk) is no longer obstructed, and
the selection engine elects to pursue this action next. After
the grasp action is executed, the blocking condition af-
fecting the place action has been cleared. Consequently,
the robot positions the milk on the counter, successfully
accomplishing its given goal.
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Fig. 2: The tree structure during the retrieving milk from the refrigerator example. The red nodes signify blocked actions, the orange
diamonds signify blocking conditions, gray nodes signify available actions, the green node is the currently selected action, and the blue
symbols signify resolution actions that may fix the parent blocking condition.

IV. INITIAL INSTANTIATION OF STRATEGY

In this section, we present an initial instance of the strategy
discussed in §III. We also employ this implementation in our
evaluation in §V.

A. Selection Engine using LLM

As outlined in Section III-B, an integral component of
our proposed strategy involves a selection engine tasked with
choosing an action from a set of candidate actions. In this
work, we use an LLM to make this selection, aiming to use
its understanding of context to effectively advance the robot
toward its goal.

At each step, the algorithm first aggregates all candidate
actions from which the selection action can be chosen.
This set of candidate actions is comprised of all leaf nodes
in the state-action graph, which represent all possible
actions that have effects that may either directly achieve
a specified goal or resolve a current blocking condition.
For instance, in Figure 2, the set of feasible actions
would be [visualSearch(direction bias),
open(oven), open(refrigerator),
open(freezer)]. All of these actions may resolve
the blocking condition “milk must be seen”.

The set of all candidate actions is converted into a text
string. This string is then incorporated into an expansive
prompt, the specifics of which are elaborated upon in Sec-
tion IV-B. The fully constructed prompt is subsequently
dispatched to the LLM. Following the LLM’s analysis of
the prompt, it produces a response articulated in natural
language. The action chosen by the LLM is identified and
extracted from this output.

Steps 2 and 3 in §III-B progress with the action selected by
the LLM module. When the approach circles back to Step 1
(the selection engine step), a new prompt is generated given
the current context. Every decision the LLM makes regarding
action selection is conducted afresh without leveraging any
knowledge from its prior interactions or choices. While we
speculate that maintaining continuous interaction with the
LLM throughout all decisions may significantly impact the
observed results, these investigations are beyond the scope
of our current work. We discuss this point further in §VI.

B. LLM Prompt Generation

In our approach, generating prompts for the LLM involves
populating a predefined template with specific details at
each decision point. Given that the LLM does not maintain
a history of prior interactions or decisions, it’s crucial to
repeatedly clarify its role and provide ample context within
our framework. We outline below the eight sequential com-
ponents that make up the prompt, with complete input and
output examples in Appendix A and B:

(1) The prompt begins by stating the LLM’s role,
indicating that the LLM is assisting the user in selecting
their next action. This sets a clear context and defines the
scope of tasks expected to be addressed; (2) The prompt
next incorporates instructions for the LLM, advising it
to take its time and reason methodically, aligning with
recommendations from the literature [12]; (3) An array of
previous actions taken by the robot is added to the prompt.
This summary gives a sense of history in the interaction to
contextualize the current decision; (4) An array of sub-goals
already completed by the robot is added to the prompt.
Again, this list provides important context for the current
decision; (5) The array of candidate actions is added to the
prompt; (6) An array of remaining goal predicates are added
to the prompt, focusing the robot’s effort towards achieving
its given goals; (7) Next, the prompt includes descriptions of
any errors or failures encountered during previous actions.
These descriptions may include relevant errors returned by
the simulation in action execution, any unforeseen blocking
condition encountered, or if the action returned by the
LLM was not part of the list of candidate actions provided;
and (8) Finally, the prompt again emphasizes the necessity
of selecting actions from the provided list and asks the
LLM output its response in a specified output format using
the sentence provide your selected action in
the format ’format ’$$ <selected action>
$$. This format string makes it easier to extract the selected
action from the output.

These ordered components were selected based on ex-
tensive trial-and-error testing. While a goal of this work
is to show that these prompt components are sufficient for
effective action selection, demonstrating the necessity or
optimality of these (or any) prompt components is beyond
the scope of our current investigation.



V. EVALUATION

In this section, we present an evaluation of our sequential
action selection approach, comparing its performance against
various LLM and traditional task-planning alternatives.

A. Implementation Details

Our experimental implementation is programmed in
Python. Experiments were run on an Asus Vivobook laptop
with a 2.4 GHz Intel Core i7 processor and 16GB RAM.
While our selection engine approach posed in §IV can
with any off-the-shelf LLM, our current implementation is
integrated with OpenAI LLMs. Because our approach needs
to make fast, real-time decisions, our evaluation uses the
efficient GPT-3.5 Turbo model [1].

B. Experimental Testbed

Our experimental testbed is set within the AI2Thor simu-
lation environment [13], designed to simulate realistic home
scenarios for AI agents.

The experimental testbed is structured as follows:
(1) An experimental condition (i.e., some action selection

approach) is provided a goal literal. The process of trying
to achieve a goal will be called a “task”. The approach
selects a sequence of actions, trying to achieve the provided
goal within the simulation environment. Each approach only
interfaces with the simulator through action selection, all
other rendering and object manipulation are handled by the
simulator. We record information and metrics along the way.
If the goal is not reached within 100 actions, this trial is
considered a failure for the given approach; (2) Step 1 is
repeated for 50 trials, with information and metrics recorded
for all trials; (3) Steps 1 – 2 are repeated for four tasks,
each characterized by their own goal literal (outlined below);
and (4) Steps 1 – 3 are repeated for five action selection
conditions (outlined below).

C. Baseline Comparisons

We compare our approach (Blocking-conditions and Res-
olutions Action Selection, abbreviated as BCR) to two base-
lines: (1) ProgPrompt, a few-shot Large Language Model
(LLM) planner [16]; and (2) FF-Replan [18]. We chose
these comparisons because they represent two common yet
disparate strategies for discrete action selection.

For both ProgPrompt and FF-Replan, we consider two
conditions each. We use a publicly available implementation
of ProgPrompt.2 The algorithm presented by Singh et al.
[16] includes an action find ?obj, where ?obj is some
stand-in variable for an object in the environment. As the
name implies, this action results in the robot automatically
finding a certain object in the environment. The two con-
ditions for ProgPrompt are (1) the exact version proposed
by [16] (referred to as ProgPrompt; and (2) a version that
excludes the find ?obj action (referred to as ProgPrompt-
no-find). This distinction allows us to assess ProgPrompt’s
performance under optimal conditions as well as in scenarios,

2https://github.com/NVlabs/progprompt-vh

akin to our approach, where this automatic locating of objects
is absent and objects must be located manually using actions
like rotate right or rotate left.

We also use a publicly available implementation of FF-
Replan.3 The conditions are (1) the standard version pre-
sented by Yoon et al. [18] (referred to as FF-Replan), and
(2) a version that removes all room location information
for relevant goal objects before attempting to generate plans
(referred to as FF-Replan-limited). Similar to the case above,
this distinction allows us to assess FF-Replan’s performance
under optimal conditions as well as in scenarios, akin to our
approach, where the planner has to locate pertinent objects
on the fly.

D. Experimental Tasks

Each action selection condition (outlined below) was
tasked with executing four distinct tasks within the exper-
imental testbed:
1) Making Coffee (abbreviated as Coffee): involves locating
a mug and a coffee maker and turning the coffee maker on
while the mug is in the output area.
2) Putting the Apple in the Fridge (abbreviated as Apple):
Involves the robot locating the apple and fridge, and storing
an apple in the fridge.
3) Washing the Mug in the Sink (abbreviated as Mug):
Involves the robot locating the mug and sink, putting the
mug in the sink, and turning the faucet on.
4) Making Toast (abbreviated as Toast): involves locating a
loaf of bread and a toaster, slicing the bread, and toasting it
in the toaster.

The tasks above are specified by goal literals, and provided
to each condition at the beginning of each trial.

For all tasks, necessary components are factored ahead
of time to be compatible with each condition in §V-C.
For instance, actions are manually associated with blocking
conditions and effects for our approach, actions are manually
associated with preconditions and effects for FF-Replan, and
literals are reformatted into Python function templates for
ProgPrompt. All possible actions are also associated with
their own AI2Thor wrapper function. AI2Thor then knows
how to execute each of these wrapper functions at run-time
to correctly update the simulation environment.

Importantly, certain actions within these tasks are subject
to points of failure. For example, the “navigate to object”
action does not take into account the optimal point of
interaction with the object, so if the robot navigates to the
fridge and then opens it, the fridge door may block the
robot’s view not allowing it to interact with objects in the
fridge. Thus, a key aspect of our evaluation is assessing the
resilience of various action selection approaches in the face
of such obstacles or uncertainties.

E. Evaluation Metrics

We report on three metrics in our evaluation: (1) success
rate, the number of trials out of 50 total trials where the

3https://fai.cs.uni-saarland.de/hoffmann/cff.html
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Table 1: Success Rate

Coffee Apple Mug Toast
BCR (ours) 50/50 39/50 39/50 49/50
ProgPrompt 19/50 40/50 18/50 0/50
FF-Replan 14/50 13/50 11/50 0/50

ProgPrompt-no-find 14/50 12/50 0/50 0/50
FF-Replan-limited 0/50 0/50 0/50 0/50

Table 2: Mean Runtime per Trial

Coffee Apple Mug Toast
BCR (ours) 10.6±16 46.8±50 46.4±44 11.6±16

ProgPrompt 20.3±6.7 8.77±8.4 73.8±75 24.1±3.1

FF-Replan 0.52±0.3 0.97±0.4 6.90±5 2.74±5.6

ProgPrompt-no-find 20.2±5.5 20.7±9.2 117±59 27.9±41

FF-Replan-limited 4.23±0.55 7.81±1.7 8.8±2.6 5.4±1.8

(measured in seconds and range values are standard deviation)

approach was able to reach the goal; (2) The average runtime
per trial; and (3) the average number of actions considered
per action selection decision (not applicable for ProgPrompt).

F. Results

As shown in Table 1, our approach has a higher success
rate than the alternative conditions. Even when ProgPrompt
and FF-Replan are provided additional information or en-
hanced actions not available to our approach, we see that
our approach still has a comparable or higher success rate.
Moreover, as demonstrated in Table 2, the runtime of our
approach is comparable to ProgPrompt, although it is not
as fast as FF-Replan. Each decision in our approach takes
about one second, which is certainly fast enough to make
one-at-a-time sequential decisions in real time.

Additionally, Table 3 shows that our approach achieves
these results while considering many fewer actions than the
FF-Replan conditions. This suggests that our approach is
more data efficient, helping to mitigate the exponential scal-
ing of action branches typically exhibited by task planners.

VI. DISCUSSION

In this work, we have presented a strategy that frames
the action selection problem for robots in terms of resolving
blocking conditions. This strategy allows a robot to make
one-at-a-time decisions that take context and adapt and react
to current situations. We also presented the first implementa-
tion of this strategy that uses a natural language processing
model (LLM) as the selection engine. Our tests in a simulated
environment show that our approach is often more effective
than alternative methods, leading to a higher success rate in
completing various tasks.

A. Limitations and Future Work

We note several limitations of our work that suggest
future extensions and investigations. First, the LLM selection
engine approach in §IV and prompt components in §IV-B
reflect just one possible instance of the strategy specified
in §III. Our current work does not claim that any of these
choices are “best”, only sufficient within the context of our
evaluation. We will continue to explore this broad design
space going forward, assessing the necessity and optimality
of these components.

Table 3: Mean Number of Actions Considered per Decision

Coffee Apple Mug Toast
BCR (ours) 11.2±7.6 12.0±4.5 13.6±4.5 11.0±5.4

FF-Replan 49±56 117±118 139±135 135±117

FF-Replan-lim. 661±74 649±112 721±213 669±106

(range values are standard deviation)

The results in §V suggest that our approach scales well to
tens of candidate actions (i.e., < 100) at a time. However,
the LLM would likely get overwhelmed with decisions on
the order of hundreds or thousands of candidate actions.
Additional investigation is needed to characterize and address
these possible scaling challenges.

Our approach outlined in §IV exhibits several occasional
errors. For instance, even when directly instructed to only
select an action from the set of candidate actions, the LLM
may still hallucinate and select an action from outside of
this set. Our current implementation detects this error and
simply re-sends the prompt with an additional note urging
the LLM to carefully read this instruction, which often fixes
this issue. Also, it is possible for the LLM to get caught in a
loop of repeated actions. Many of the unsuccessful trials in
our evaluation were due to this issue, wherein our approach
reached the 100-action maximum. We speculate that this
issue may be mitigated by maintaining continuous interaction
with the LLM instead of starting a fresh interaction at every
decision. We plan to directly address this challenge in future
work.

Our approach currently requires all actions to be manually
populated with blocking conditions and resolutions. While
this process is analogous to manually specifying precon-
ditions and effects for standard task planners, the process
may still be tedious. We plan to investigate methods to
automatically generate these connections between actions,
blocking conditions, and resolutions, both with offline pre-
processing as well as creative online inference. A promising
future direction is to incorporate Visual Language Models
(VLMs) capable of detecting and adapting to previously
unknown blocking modes encountered during runtime.

B. LLMs for Sequential Task Reasoning

Our work demonstrates a promising application of LLMs.
We show that, if used in a particular way, even LLM models
that are not the largest or newest at the time of writing
(e.g., GPT-3.5) can enable effective sequential discrete action
selection. This observation is in contrast to other works that
suggest that even more modern LLM models (e.g., GPT-4)
still struggle with sequential task reasoning [5].

We suggest the following hypothesis: current LLM models
may struggle with robustly formulating a sequence of actions
to reach a goal all in one output. However, these models may
excel at making one-at-a-time action selection decisions to
reach a specified goal if given choices and enough context
at each decision point. While our current work does not
provide enough evidence to prove this point, our findings
offer preliminary evidence suggesting some validity of this
phenomenon. We suggest this hypothesis as an exciting
avenue of research going forward.
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APPENDIX

A. Example LLM Prompt

Here, we provide a full example prompt dispatched
to the LLM in our approach. (Note that tags like
Cabinet|-01.14|+00.39|+03.52 are object IDs for
instances in AI2Thor).

[’role’: ’system’, ’content’: ’You are
helping me select my next action,
take your time and verify that the
action you select is part of the list
I provide. Take your time and go step
by step.’,’role’: ’user’, ’content’:
’I am in the kitchen. I am not
holding anything.’,’role’: ’user’,
’content’: ’The action scanroom if
available allows me to visually scan
the room I am currently in to see if



an object is visible. All actions
require the target object to be
visible other than scanroom.’,’role’:
’user’, ’content’: ’Some objects may
be contained within others that need
to be opened and wont be found by
scanroom.’,’role’: ’user’, ’content’:
"select the the best action from this
list: [’$$ turnleft character $$’,
’$$ turnright character $$’, ’$$
moveforward $$’, ’$$ movebackward
$$’, ’$$ turnaround $$’, ’$$ lookup
$$’, ’$$ lookdown $$’, ’$$
walk to room kitchen $$’, ’$$ open
Cabinet|-01.14|+00.39|+03.52 $$’, ’$$
walk to object
Drawer|-02.11|+00.71|+03.66 $$’, ’$$
walk to object
Cabinet|-02.38|+02.01|+01.69 $$’, ’$$
walk to object
Cabinet|-01.98|+01.78|+03.73 $$’, ’$$
walk to object
Fridge|-02.64|+00.00|+02.13 $$’, ’$$
walk to object
Cabinet|-02.38|+00.64|+01.68 $$’, ’$$
walk to object
Cabinet|-02.38|+02.01|+01.06 $$’, ’$$
walk to object
Cabinet|-01.96|+01.93|+03.73 $$’, ’$$
walk to object
Cabinet|-02.95|+01.93|+03.73 $$’, ’$$
walk to object
Cabinet|-02.43|+00.44|+03.42 $$’, ’$$
walk to object
Cabinet|-02.38|+01.69|+02.57 $$’, ’$$
walk to object
Cabinet|-02.43|+00.44|+03.17 $$’, ’$$
walk to object
Cabinet|-02.38|+02.01|+02.56 $$’, ’$$
walk to object
Cabinet|-01.99|+00.39|+03.51 $$’, ’$$
walk to object
Cabinet|-02.38|+02.01|+03.18 $$’, ’$$
walk to object
Cabinet|-02.38|+01.93|+01.69 $$’, ’$$
walk to object
Cabinet|-02.38|+01.41|+01.68 $$’, ’$$
walk to object
Cabinet|-02.62|+01.93|+03.73 $$’, ’$$
walk to object
Cabinet|-01.97|+00.39|+03.52 $$’, ’$$
scanroom Apple|-00.74|+00.77|+00.99
kitchen $$’, ’$$ turnleft character
$$’, ’$$ turnright character $$’, ’$$
moveforward $$’, ’$$ movebackward
$$’, ’$$ turnaround $$’, ’$$ lookup
$$’, ’$$ lookdown $$’] that is most

likely to help me achieve my goal:
[’INSIDE Apple|-00.74|+00.77|+00.99
Fridge|-02.64|+00.00|+02.13’]?
include an explaination for your
action selection, only use the object
name in your consideration ie
’<objectname>|#|#|#’. Please refrain
from getting stuck in action loops
and provide your selected action in
the format ’format ’$$ <selected
action> $$.",’role’: ’user’,
’content’: ’Please only select
actions in the list I provided.’]

B. Example LLM Output
Here, we provide a full example output returned by the

LLM in our approach:

$$walk to objectFridge|-02.64|+00.00|+02.
13$$.ThisactionwillhelpyoureachtheFri
dge,whichiswheretheAppleislocatedbase
dontheinformationyouprovided.

C. Example Action Sequence
Here, we provide a full sequence of actions generated by

our approach for the task “putting the apple in the fridge”:

[’walk to objectFridge|-02.64|+00.00|+02.
13’,’openFridge|-02.64|+00.00|+02.13’
,’scanroomApple|-00.74|+00.77|+00.99k
itchen’,’grabApple|-00.74|+00.77|+00.
99’,’putinApple|-00.74|+00.77|+00.99F
ridge|-02.64|+00.00|+02.13’,’putApple
|-00.74|+00.77|+00.99DiningTable|-00.
92|00.00|+01.20’,’openFridge|-02.64|+
00.00|+02.13’,’walk to objectCabinet|-
02.38|+02.01|+01.06’,’openCabinet|-02
.38|+02.01|+01.06’,’scanroomEgg|-02.5
3|+01.18|+02.22kitchen’,’grabEgg|-02.
53|+01.18|+02.22’,’putEgg|-02.53|+01.
18|+02.22Fridge|-02.64|+00.00|+02.13’
,’walk to roomkitchen’,’openCabinet|-0
2.38|+01.69|+02.57’,’scanroomApple|-0
0.74|+00.77|+00.99kitchen’,’grabApple
|-00.74|+00.77|+00.99’,’walk to object
Fridge|-02.64|+00.00|+02.13’,’walk to
objectCabinet|+00.58|+00.39|+02.36’,’
walk to roomkitchen’,’openCabinet|+00.
58|+00.39|+02.36’,’moveforward’,’move
backward’,’openDrawer|+00.73|+00.70|+
02.20’,’scanroomFridge|-02.64|+00.00|
+02.13kitchen’,’walk to objectFridge|-
02.64|+00.00|+02.13’,’putinApple|-00.
74|+00.77|+00.99Fridge|-02.64|+00.00|
+02.13’]

(Note that actions like grabEgg and placeEgg here
are resolution actions needed because these objects are in
the way, hindering progress on the task at hand)
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