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Social robots in the home will need to solve audio identification problems to better interact with their users.

This article focuses on the classification between (a) natural conversation that includes at least one co-located

user and (b) media that is playing from electronic sources and does not require a social response, such as

television shows. This classification can help social robots detect a user’s social presence using sound. Social

robots that are able to solve this problem can apply this information to assist them in making decisions, such

as determining when and how to appropriately engage human users. We compiled a dataset from a variety of

acoustic environments that contained either natural or media audio, including audio that we recorded in our

own homes. Using this dataset, we performed an experimental evaluation on a range of traditional machine

learning classifiers and assessed the classifiers’ abilities to generalize to new recordings, acoustic conditions,

and environments. We conclude that a C-Support Vector Classification (SVC) algorithm outperformed other

classifiers. Finally, we present a classification pipeline that in-home robots can utilize, and we discuss the

timing and size of the trained classifiers as well as privacy and ethics considerations.
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1 INTRODUCTION

Imagine you are walking around the house when you stumble upon a door that is slightly ajar—
opened just enough so you can hear, but not see, what is going on inside. Opening the door to
see if it is appropriate or not to enter is self-defeating. If you do not hear anything, then it is very
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difficult to make any judgments. Suppose, however, that you hear human speech from behind the
door. This piece of information can give you insight and can help you in your decision-making.

However, knowing that there is human speech is not enough. Many lower-level characteristics,
as well as higher-level conceptual components of this speech, might be important factors in your
decision. Do you recognize the voices? Does the speech sound serious or is it more lighthearted? Is
there shouting or is the tone normal? What emotions can you detect from the speech? How many
people can you hear? If you hear two friendly sounding people having a chat, then you might
be more inclined to knock. If you stop by to relay a message and you hear yelling coming from
the room, then it is probably best to steer clear for now. But, imagine that the yelling is from an
enthusiastic sportscaster describing a sporting event or that the serious tone that you hear is from
a dramatic soap opera. You might make a different decision if you know that the speech is coming
from a television show rather than from physically present people in the room conversing. This
is an important component of the speech that will influence your understanding of the situation
and can affect how you interact, if you do.

Similarly, a social robot that is designed to interact with users in realistic and appropriate ways
should have the ability to make this disambiguation. The robot can benefit from knowing whether
the speech coming from behind the door is from a physically present human socializing. More gen-
erally, knowing when speech is a product of at least one co-located person conversing, or not, can
assist social robots in making inferences about users’ activities and can help them accommodate
their users through a better understanding of their environments. This article focuses on whether
there is (1) natural conversation occurring that includes at least one co-located user or (2) media

playing from electronic sources that does not require a social response. These are common speech
scenarios in the home that can assist the robot in detecting the social presence of a user through
what the robot hears.

In practice, we imagine countless settings where the ability to make such a classification could
be utilized by robots to assist them in accomplishing their goals. For example, a social companion
robot in the home may decide to engage a co-located user with a supportive, social interaction if it
infers that the user is upset, as opposed to if it knows the speech is media. A robot assisting people
with Autism Spectrum Disorder may not interrupt when a user is engaged in natural conversation
(to encourage social interaction) but may attempt to engage if it suspects the user is watching
too much media. A customer service robot may decide whether or not to head in the direction of
customers chatting in a store or may choose to disregard the speech if it is coming from a TV. An
in-home robot may reach out for external assistance if a user is distressed but may not if it realizes
the speech is from an action movie on TV. Depending on the end goals of the system, the robot
can use such a classification, along with other prudent factors, to help it in making decisions.

To precisely characterize the differences between audio from natural and media scenarios is a
challenge. Both of these audio categories contain human voices. Both categories contain diverse
audio with similarities that make it difficult to quantify how we, as humans, usually know which
of the two we are listening to. One potential discriminatory criterion, for example, is the speech
patterns in the scripted conversation of television shows, as opposed to the more spontaneous
nature of impromptu conversation. This could be sufficient for categorizing a sitcom as media, but
this does not help us in correctly classifying a radio podcast where the host is casually interviewing
a guest. One could also try to make this classification based on if they hear cleanly engineered
audio, like that produced in a studio, versus the noisy, distorted natural audio environments of
everyday life. This can help with correctly classifying a TV show or movie played on a good sound
system as media but will not help when listening to sports, which involve crowd and audience noise.
Solely detecting the presence of electronically sourced audio (i.e., coming from the speakers of a
computer or television) is also not enough. Video calls with friends are natural situations in which
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there is electronic-sourced audio, along with at least one organically sourced (i.e., coming directly
from human vocal cords) speaker playing an active role in the conversation. If we know that some
part of the audio is organically sourced, then we can be sure that there is a co-located, physically
present person talking. But, it can sometimes be tough to know if this is the case, especially if
electronic audio sounds natural (e.g., conversational) and is played on a high-quality sound system.
Making the classification between audio that is natural or media is hard.

For this article, we focus on being able to classify between natural and media audio from the dy-
namic environment of the home. We focus on differentiating between speech from popular genres
of media that is originating from loudspeakers and speech from natural conversations including
at least one co-located person in the home. Ideally, robots in real-world environments would have
the ability to make this classification, regardless of the acoustic environments they are in (e.g.,
different rooms, different loudspeakers, distances from the audio source) and the different audio
content that they hear (e.g., different voices, different TV/radio shows, background noise). Social
roboticists that deploy robots in the home and intend to use audio to make decisions on how their
robots interact with users can benefit from this work.

Our main contributions are:

— Describing a salient audio problem that social robots in the home face: the classification
between (a) natural conversation including at least one co-located user and (b) media playing
from electronic sources that does not require a social response

— Training classifiers1 that use in-home audio to differentiate between natural and media and
evaluate how well the classifiers generalize to new recordings, acoustic conditions, and en-
vironments

— Proposing a classification pipeline that can provide additional, situational context to a social
robot by assisting it in detecting social presence using sound

The organization of the article is as follows: Section 2 offers background and related work.
Section 3 describes the methodology in collecting the dataset, in selecting and extracting features
of the audio, and in selecting the classification algorithms. Section 4 describes the experiments
used to test the generalizability of the classifiers and discusses the results. Section 5 discusses how
these classifiers can be applied in practice, with details on timing and size of each, a proposed
classification pipeline, and a discussion on ethics and privacy considerations. Section 6 discusses
some limitations of the work, and Section 7 concludes the work.

2 BACKGROUND

According to a recent U.S. Bureau of Labor Statistics survey [44], watching television was the most
popular and time-consuming leisure activity in an American’s average day, with people spending
close to three hours watching TV. In comparison, activities such as eating, drinking, socializing,
and communicating amount to approximately two hours total a day. These everyday domestic
situations involve humans engaging with media (e.g., watching television) or natural situations
(e.g., participating in a conversation at the dinner table).

2.1 In-home Virtual Assistants

Popular virtual assistants, such as Amazon’s Alexa, have already been integrated into many homes
around the U.S. They use audio-based techniques that make them effective in the household. Source
localization approximates the origin of audio input and wake-word detection [25] prompts sending

1A link to our trained models and the code used to create the input feature vectors for our models: https://github.com/

ScazLab/social-presence-sound
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the speech command to the cloud for natural language processing [26]. These features inform the
assistant’s decision-making policy to effectively and appropriately respond [29, 35]. These in-home
systems do not incorporate much, if any, contextual awareness of their surroundings [40]. In fact,
these systems typically require specific and explicit user prompts to engage them (e.g., “Alexa”).
Because these systems are user-initiated, the detection of social context is much less necessary.
Yet, for systems designed to interact with users autonomously, the ability to garner context about
the environment is crucial [28].

We believe that virtual assistants can also benefit from the ideas presented in this article, espe-
cially if developers believe there is value in additional functionality that includes behaving more
socially and independently. Although we will focus on social robots in this article, we note that
social presence through sound can be of use to any device in the home that could utilize such
context to help it make decisions.

2.2 Using Audio for Activity and Event Detection in the Home

Automatic recognition of user activity in dynamic, unstructured environments, like the home, is
important for systems whose primary purpose is to support their users through social means. Hav-
ing some understanding of a user’s activity and social context can help the system in its decision-
making.

Audio scene classification (ASC), or the identification of the environment or activity
based on acoustic signals, is important for robotics and can help better facilitate human-robot
interaction [3]. ASC has become a trending topic with growing interest because of the advent of
smart homes and robots [14, 45, 47]. In recent years, audio analysis capabilities have been added
to assistive robotic systems, such as the TIAGo service robot [19] and RiSH, a robot-integrated
smart home for elderly care [13], with the goal that audio will provide more contextual awareness.
Work for audio analysis in the home includes activity detection specific to helping the elderly by
detecting falls [38] or by identifying common activities to help medical staff monitor people who
utilize ambient assisted living services [2, 11, 36]. Audio scene classification has also been used
in the context of differentiating between specific kitchen sounds such as the mixer, dishwasher,
and utensils clanking [45], bathroom sounds such as showering, washing hands, and flushing [9],
breathing or snoring [17], or common sounds including keyboard typing, applause, and phone
ringing [42]. Traditional machine learning classifiers have been used for these classifications with
success.

Work has also been done that involves classifying in-home audio with the help of humans-in-
the-loop. Some of this work includes human-assisted sound event recognition for home service
robots for the elderly, where a human caregiver helps provide a robot with in-the-loop labels to
non-voice sounds to help a robot actively learn auditory events [12]. Additional work has used
audio to classify different rooms in the home, such as the kitchen and office, and also discriminated
between nonverbal sounds such as clapping and one-word speech scenarios [30].

The research area of voice activity detection (VAD) looks to classify between audio that con-
tains speech and non-speech [20]. Research has been done to use noise cancellation to better imple-
ment VAD on smart home devices [22]. Other VAD work includes enhanced speech detection for
humanoid robots in sparse dialogue [24] and robust classification between speech and non-speech
[39] in noisy environments. Work has been done to recognize emotional states from speech using
a support vector machine [41], to separate speech from music [1], and to detect and classify noises
in speech signals [33].

There has also been research looking into how to accurately discriminate between speech com-
mands produced from an electronic speaker from organic human speech [6]. This approach was
discussed in the context of cybersecurity to better identify replay attacks of certain commands on
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Internet of Things devices, by focusing on determining the origin of pre-written speech commands,
but does not focus on in-home, noisy experimentation.

Our work presents a new tool that can be used by robots in the home to gather more social
context about a user’s social presence through sound when presented with human speech. The
classification between natural and media that we focus on in this work encapsulates common
speech scenarios in the home that can give insight into people’s activities. Our experimentation
focuses on real-world audio recorded in noisy, in-home environments, and this work adds to the
research area of activity detection in a dynamic environment.

2.3 Audio Classification of Media

Work has also been done in the classification of different forms of media. Audio information has
also been utilized when researching genre classification in different forms of media. Music infor-
mation retrieval methods have explored classifying songs into genres such as pop, rock, or blues
[5, 43], and television media classification has classified videos into genres such as cartoons, news,
or weather forecasts [15]. A key aspect of many of these media approaches, along with the in-home
activity detection of Section 2.2, involves extracting time and frequency domain features (e.g., spec-
tral contrasts, spectral roll-offs, Mel-Frequency Cepstral Coefficients, or chroma features) from the
overall audio signal and using these features to inform and train machine-learning classification
algorithms. We build on this work by using similar features in our analysis, and we discuss more
background and motivation of the feature selection in Section 3.2.

3 METHODOLOGY

In this section, we describe how we (a) compiled an audio dataset containing the natural and
media classes, (b) extracted features from each audio sample, and (c) selected the machine learning
classifiers that we experimented with. We define two terms that we will be using throughout this
article. First, when discussing a sample, we are referring to a 5-second segment of audio that
has been recorded and is used in feature extraction. A recording is a collection of contiguously
captured samples during a given time window.

3.1 Audio Sample Collection

We collected audio content from various television genres and radio shows (sound from electronic
speakers) and human speakers (sound from human voices). The final dataset contained approxi-
mately 30 hours of audio recordings and was well-balanced between the media and natural classes.

Both categories were recorded on Kinect One microphones. This was important, because any
decisions made by a machine learning classifier would be able to focus on the difference of the
audio content, rather than discrepancies caused by different recording hardware.

3.1.1 Media Recording Set. Our media (M) recording set consisted of a variety of TV shows
or radio recordings that we recorded on the Kinect One.2 We focused on collecting audio record-
ings from popular television genres, which include drama, comedy, participatory/reality, news,
and sports [46], as well as audio from radio shows. This category was recorded in different rooms,
using a variety of electronic speakers,3 with the microphone capturing audio at varying distances
from the speakers during different contiguous time windows. Recording during different time win-
dows allowed for different background and ambient noise to be captured as a part of the various

2We recorded the media recordings being emitted through electronic speakers, instead of inputting the media audio file

directly into the classifier, because this is how a robot in the home would be capturing the media audio.
3The specific speaker models are as follows: Bose SoundLink 359037-1300 Mini Bluetooth Speaker (Bose), MacBook Pro

13" (Mac), iPhone 11 Pro (iPhone), Bose Wave Music System II (BigBose), 40" Eco Bravia VE5 Series LCD HDTV (SonyTV).
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recordings. All audio recordings were recorded at a rate of 16 kilohertz (kHz) in the waveform

audio file format (.wav).
Each room, speaker, and microphone position configuration is referred to as its own unique

label. These different recording configurations emulate a variety of recording conditions that an
in-home agent might face. The distribution of the audio in each label can be seen in Table 1. There
are 60 media recordings in our dataset, with a total of 10,138 samples, for around 14 hours of audio.
Depending on the experiment that we performed, a different split of the recordings in the media

set was used as training and testing data (explained in more detail in Section 4).

3.1.2 Natural Recording Set. The natural recording set can be broken down into three cate-
gories: CHiME5 (C), Video Calls (V), and Family Conversations (F).

Natural Audio from CHiME5. Category C recordings were composed of content from the CHiME-
5 dataset [4], available online. CHiME-5 contains audio captured from dinner parties in different
houses. Each dinner party involved a different group of four people, who were told to engage in
natural conversation in the house’s kitchen, dining room, and living room for at least 2 hours.

Category C contained audio from 10 different CHiME-5 sessions. Each session contained audio
from six Kinect microphone arrays, placed in different locations (bedroom, kitchen, living room)
in each home, with audio input from each channel of each microphone. We used audio from the
different Kinect microphones within the same dinner party in our dataset, because we wanted a
diverse set of audio captured from different locations with varying acoustic properties. For the C
category, we considered a recording to be all of the audio collected from a unique CHiME-5 session.
The CHiME-5 audio files were in the waveform audio file format (.wav), with a recording rate of
16 kHz. We chose CHiME-5, because it captured natural, social scenarios that one can expect to
find in a home environment. We input the CHiME-5 files directly into the classifier, because this is
how natural audio would be captured by the robot. In total, category C contained 10,130 samples
(1,013 samples per recording). This sample number is equivalent to approximately 1.4 hours per
CHiME-5 session, for a total of almost 14 hours of audio. Samples from the C category were used
as our natural training data.

Natural Audio from Our Home Environments. We also captured natural audio from our own
homes. We had Institutional Review Board approval to record audio in homes and to extract
and analyze acoustic features. There were two categories that we experimented with, involving
natural scenarios from six rooms in three different homes. We left a recording microphone in
locations that we deemed appropriate for an in-home robot or device to be placed, recorded audio
and later inspected the audio. Audio from these two categories was used as our natural testing
data.

Category V captured audio from video calls taking place in a home’s office, dining room, and
living room. These recordings involved conversations between members of a family consisting
of two children and three adults. Members of the family congregated in their dining room and
spoke over a video call on a laptop and phone using Zoom or Facebook Messenger. The calls were
all on speaker. As a result, voices were variably distant from the microphone, and the recordings
captured by the Kinect included a mixture of voices coming from an organic source (the person
in the same room as the Kinect microphone) and from electronic sources (the people on the video
call). The same person was physically in the room with the Kinect for each of these recordings.
Category V included six separate recordings, with a total of 917 samples.

Category F consisted of audio collected from family conversations in kitchens and living rooms
in three different homes. The microphone was placed close to where people were dining and
conversing. An example location for the microphone was on a counter in an open, spacious
kitchen. The kitchen recordings included some background noises such as the running sink,
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Table 1. Media Dataset Composition

Label Room Speaker Kinect Distance Total Samples Recordings

A Bedroom Bose 1 ft 617 6

B Bedroom Bose 9 ft 852 7

C Bedroom Mac 6 ft 2,075 11

D Playroom Bose 1 ft 627 5

E Playroom Bose 5 ft 517 9

F Playroom Bose 10 ft 332 3

G Playroom iPhone 1 ft 423 3

H Playroom iPhone 4 ft 372 2

I Kitchen Bose 9 ft 543 2

J Kitchen BigBose 9 ft 1,185 5

K Kitchen SonyTV 4 ft 1,432 2

L Kitchen iPhone 6 ft 201 1

M Kitchen Mac 6 ft 551 3

N Kitchen Mac 1 ft 411 1

clanking utensils, and plates and glasses moving, while the living room recordings happened
with little to no noise in the background. Category F included 965 samples and seven separate
recordings, including voices from 11 different people.

There are multiple reasons that we decided to also collect natural audio that we recorded our-
selves, despite having an extensive corpus of in-home, natural audio from CHiME5. Even though
we tried to collect our media sample set with similar recording characteristics (i.e., microphone
and sampling frequency) to CHiME5, we wanted to see whether or not classifiers trained solely
on CHiME-5 could generalize to classifying other natural audio from outside of that corpus. This
could show that these classifiers are able to correctly disambiguate between natural and media

recorded by us, and that the classification is not just a result of some discrepancies in how CHiME-
5 was collected and how we recorded our audio. Last, we wanted to be able to experiment with
the case of social presence that includes a mixture of electronic audio and organic-sourced natural

audio, captured in the V dataset. This circumstance indicates social presence, because at least one
user that is co-located with the robot is engaged in a natural conversation, while chatting on a call
with others. Samples from the V and F categories were used as our natural testing data.

3.2 Feature Extraction

We split our entire audio dataset into 5-second samples. From each sample, we extracted features
to create an input vector that was used to train machine learning classifiers. We used the LibRosa
Python package [31] to extract audio features. These are commonly used features in audio analysis
(as mentioned in Section 2.3), which was the motivation for using them.

In total, 83 features were extracted from each audio sample. We performed a standard transfor-
mation of each feature to normalize the feature set. The input vector contained the features below
for each audio sample:

— Mel-frequency cepstral coefficients (MFCCs): These are dominant features that have been
historically used in speech recognition, and they have been explored in separating music and
speech [27]. It is typical that 13 coefficients are used for speech representation [43], so we
use the means and standard deviations for each of the first 13 coefficients over the sample,
for a total of 26 features.
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— Chroma Energy Normalized Statistics (CENS): These are features that have been used in
audio analysis research to match similar audio [34]. There are 12 chroma classes, and we
use the mean and standard deviation for each chroma class over the sample, for a total of 24
features.

— Root-mean-square (RMS) energy values: Energy features are commonly used in audio anal-
ysis, with some prior work finding that the combination of energy with MFCC is better than
using MFCCs alone [23]. We use the range, standard deviation, and skewness of this feature,
for a total of 3 features.

— Zero-crossing rates: These are features that are commonly used in audio analysis [15] and
can help provide a measure of noisiness of the audio sample [43]. We use the mean, standard
deviation, and skewness, for a total of 3 features.

— Tempo: This feature estimates the beats per minute in the audio sample. The motivation
behind adding this is that music from TV or radio commercials typically have more tempo
than conversational audio in the home. This is 1 feature.

— Spectral centroid, flatness, rolloff, and bandwidth: These are also commonly used low-level
components of the audio signal [10, 43]. We use the mean, standard deviation, and skewness
for each, for a total of 12 features.

— Spectral contrast: These are features that have been shown to discriminate among different
music genres [23], so we use the means and standard deviations for seven sub-bands, for a
total of 14 features.

Note that none of these features involve transcription or semantic representation of dia-
logue/words in the audio environment. This way, the audio is translated into a machine-readable
format that has little to no meaning to a human, as opposed to words, which are used in lexical anal-
ysis in Natural Language Processing. This is an arguably less invasive and more privacy-sensitive
approach than using words, especially if the robot is intending on sending the input vector to the
cloud to be analyzed.

3.3 Classification Algorithms

In our experiments to determine if our classification problem can be solved, we trained and tested
different models with six traditional machine learning classification algorithms, using the sci-kit
learn Python library [37]. These are commonly used algorithms for audio classification tasks (see
Section 2 for more details). We performed an experimental evaluation of various approaches to see
which classifiers would be best suited to tackle the problem. We experimented with the following
algorithms:

— KNeighborsClassifier [18]
— DecisionTreeClassifier [7]
— QDA (Quadratic Discriminant Analysis) [21]
— Logistic Regression [49]
— GaussianNB (Gaussian Naive Bayes) [48]
— SVC (C-Support Vector Classification) [8, 16]

We use these traditional classifiers instead of deep learning techniques, which have gained popu-
larity in recent years in the audio analysis space for multiple reasons. First, our dataset is modestly
sized, and traditional ML algorithms have a much better chance at performing successfully than
deep learning when the dataset is not very large. Second, we know the feature space that we want
to use for this classification task. Last, we are hoping to be able to use these trained classifiers on
real-time systems, so the response time needs to be quick and the complexity and space taken by
the classifier needs to be reasonable (many social robots have limited compute power).
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A gridsearch on each classification algorithm measured what hyperparameter combination was
the best for each algorithm on our first experiment (described in Section 4.1). The different hyperpa-
rameter combinations for each classifier that were experimented with can be found in Appendix A.
The hyperparameters that led to the highest performance, and were subsequently selected for the
classifier in all of the following tests, can be seen in Appendix B.

4 EXPERIMENTS AND RESULTS

In this section, we describe how the various classifiers performed on experiments that tested the
classifiers’ abilities to generalize to novel recordings, environments, and conditions. We test how
well classifiers perform on a leave-one-recording-out cross-validation, where we test on recordings
that were left out of the training set. We also test how well the classifiers generalize to classifying
natural recordings from outside of the training corpus and to media recordings from (1) rooms, (2)
speakers, (3) microphone positions, and (4) combinations of all three, that they were not trained on.

4.1 Leave-one-recording-out Cross-validation

We performed an evaluation similar to a leave-one-out cross-validation (LOOCV), but in our
case, leave-one-recording-out cross-validation (LOROCV).4 To perform LOROCV, we trained
models using natural recordings from our C category and media recordings from our M recording
set. For each fold of LOROCV, we trained on all recordings except for one from C and one from
M. We did this for all possible pairs of recordings from C and M, which resulted in 600 folds (the
Cartesian product of the 10 recordings in C and the 60 recordings in M). For each fold, we tested
our classifier on the (1) left-out {C,M} recording pair, (2) left-out M recording and natural audio
sampled from V, (3) left-out M recording and natural audio sampled from F, and (4) left-out M
recording and natural audio sampled from both F and V. Because recordings can be of different
lengths, we randomly sampled from the larger recording to match the size of the smaller recording.
This ensured that we had balanced test sets each time.

The metrics that we recorded for all of our experiments are below. TP is a true positive, TN is a
true negative, FP is a false positive, and FN is a false negative.

— Accuracy=(TP+TN)/(TP+TN+FN+FP)
— Precision = TP/(TP+FP)
— Recall = TP/(TP+FN)
— F1 Score = (2*Precision*Recall)/(Precision+Recall)

We recorded the precision, recall, and F1 scores for both the media and the natural classes (i.e.,
we treated both as the positive class). Both the macro averages (arithmetic mean) and micro aver-
ages (weighted average) were recorded across all folds. The full results for LOROCV can be found
in Table 13 in Appendix D, with a summary in Table 4 in Appendix C.

With LOROCV, we test on natural audio from left-out CHiME-5 sessions (new voices and rooms
from new homes within the CHiME-5 corpus), or better yet, on natural audio from the V or F
categories that we recorded ourselves. We also test on unseen media recordings that the classifiers
have not trained on and that we have recorded ourselves. This provides insight into how the trained
algorithms can generalize to classifying novel recordings of media and natural audio.

4A conventional splitting of all of the samples into a training, test, and validation set would not be very insightful, because

many of our data samples were part of the same contiguously recorded audio clips (recordings). For any given recording in

our dataset, there were at least 15 samples that were a part of the same original audio recording. When randomly shuffling

the dataset for the training/test/validation splits, it is likely that some of a recording’s 5-second samples land in each

of the folds and the test and validation sets. Since audio from the same recording is inherently similar, we performed a

cross-validation per recording.

ACM Transactions on Human-Robot Interaction, Vol. 12, No. 4, Article 47. Publication date: December 2023.



47:10 N. C. Georgiou et al.

4.2 Leave Out Rooms, Speakers, and Microphone Positions in the Media Set

We can gain further insight into how robustly the classifiers can differentiate between natural and
media audio if media in the training set contains recordings from different acoustic conditions
(e.g., rooms, loudspeakers, microphone distances) than media in the testing set. In the experiments
in this section, we evaluate how our classifiers perform when toggling which condition(s) of the
media recording set to leave out of the training set. We also use the natural audio from the C
category to train our models. We test on the natural V and F categories that we recorded ourselves
and on the left-out media.

We left all of the media samples of a specific (1) room, (2) speaker, (3) microphone position, or
(4) combinations of the three out of the training set and tested on the left out media samples and
on natural samples from the V and F test categories. We matched the number of media samples in
the training set with an equally distributed, random sample of 5-second samples from each natural

recording in category C. We randomly sampled from all of the recordings in the larger test subset
to match the size of the smaller subset. This ensured that we had balanced test sets each time.
We recorded the micro and macro averages of precision, recall, and F1 scores for both the media

and natural classes, as in LOROCV. The following paragraphs describe each experiment that we
performed:

In Leave One Label Out (LOLO), we wanted to see how well classifiers would perform when
they trained on media from specific labels, or specific room, speaker, and Kinect distance configura-
tions (see Table 1), along with natural from category C and then were tested against configurations
that they were not trained on. We performed a LOLO experiment on all labels of our media data,
where we trained different models using all the recordings from all combinations of labels, and
tested against the held out labels. The left out media data at each fold was tested along with natu-

ral audio from the category V, F, and V+F datasets. The full results for each classifier can be found
in Table 14 of Appendix D, with a summary in Table 5 of the Appendix C.

In Leave One Room Out (LORO), we wanted to see how well classifiers would perform when
they trained on media from specific rooms, along with natural from category C, and then were
tested against media from a room they had not trained on. This is important, because each room
has a different acoustic environment and layout. The classifiers should be able to make accurate
predictions regardless of if they have trained on audio from the room in which they are deployed.
In LORO, classifiers test on media recordings from a room that they have not trained on, but the test
set includes loudspeakers and microphone distances that they have trained on. The left out media
data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The
full results for each classifier can be found in Table 15 of Appendix D, with a summary in Table 6
of Appendix C.

In Leave One Speaker Out (LOSO), we wanted to see how well classifiers would perform when
they trained on media from specific loudspeakers, along with natural from category C, and then
were tested against media from loudspeakers they had not trained on. This is important, because
each loudspeaker has different hardware properties, and the classifiers should be able to make
accurate predictions regardless of if they have trained on audio from the loudspeaker from which
they hear audio. In LOSO, classifiers test on media recordings from a loudspeaker that they have
not trained on, but the test set includes rooms and microphone distances that they have trained
on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classifier can be found in Table 16 of Appendix D, with
a summary in Table 7 of Appendix C.

In Leave One Distance Out (LODO), we wanted to see how well classifiers would perform
when they trained on media from certain microphone distances from a loudspeaker, along with
natural from category C, and then were tested against media from microphone distances they had
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not trained on. This is important, because the robot might be at variable distances from the sound
source. In LODO, classifiers test on media recordings from a microphone distance that they have
not trained on, but the test set includes loudspeakers and rooms that they have trained on. The
left out media data at each fold was tested along with natural audio from the category V, F, and
V+F datasets. The full results for each classifier can be found in Table 17 of Appendix D, with a
summary in Table 8 of Appendix C.

In Leave One Room and Speaker Out (LORSO), we wanted to see how well classifiers would
perform when they were tested on media rooms and speakers that they had not trained on. This
is a more robust test than the previous ones. In LORSO, classifiers test on media recordings from
a room and speaker that they have not trained on, but the test set includes microphone distances
that they have trained on. The left out media data at each fold was tested along with natural audio
from the category V, F, and V+F datasets. The full results for each classifier can be found in Table
18 of Appendix D, with a summary in Table 9 of Appendix C.

In Leave One Room and Distance Out (LORDO), we wanted to see how well classifiers
would perform when they were tested on media rooms and microphone distances that they had not
trained on. In LORDO, classifiers test on media recordings from a room and microphone distances
that they have not trained on, but the test set includes microphone distances that they have trained
on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classifier can be found in Table 19 of Appendix D, with
a summary in Table 10 of Appendix C.

In Leave One Speaker and Distance Out (LOSDO), we wanted to see how well classifiers
would perform when they were tested on media speakers and microphone distances that they had
not trained on. In LOSDO, classifiers test on media recordings from a loudspeaker and microphone
distances that they have not trained on, but the test set includes rooms that they have trained on.
The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classifier can be found in Table 20 of Appendix D, with
a summary in Table 11 of Appendix C.

In Leave One Room, Speaker, and Distance Out (LORSDO), we wanted to see how well clas-
sifiers would perform when they were tested on media speakers, rooms, and microphone distances
that they had not trained on. This is the most challenging test that we perform for the classifier. In
LORSDO, classifiers test on media recordings from a room, loudspeaker, and microphone distance
that they have not trained on. The left out media data at each fold was tested along with natural

audio from the category V, F, and V+F datasets. The full results for each classifier can be found in
Table 21 of Appendix D, with a summary in Table 12 of Appendix C.

4.3 Selecting a Classifier

In general, we see that most of the trained classification algorithms perform well on our experi-
ments. We see that most of the classifiers have average F1 scores in the 90s or 80s for a majority
of the experiments. Table 2 summarizes the results for all our experiments for each classifier.

4.3.1 Results. We see that SVC has the best performance on the most tests throughout our ex-
periments. SVC has the highest average F1 score on 12 out of the 27 tests, with the highest average
F1 score on 7 out of the 12 more difficult tests (where two or three of the media parameters are left
out of the test set in LORSO, LORDO, LOSDO, and LORSDO). SVC has the highest performance
on the F+V+M test sets on all but one of the more difficult experiments, and SVC has the highest
F1 score on the F+M test sets for almost all of the experiments. On LORSDO, the most difficult ex-
periment, SVC has the best performance on two out of three of the tests (V+M and F+M). Despite
not having the highest scores on V+M, it does consistently well on the test set throughout all of
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Table 2. Experiment Summary

Experiment Test Set KNN QDA DT GNB LR SVC

V+M 94.5 89.0 87.9 86.0 87.9 91.3
LOROCV F+M 87.1 99.5 98.9 96.2 98.9 96.6

F+V+M 91.3 93.3 92.8 90.5 92.8 93.7

V+M 78.5 99.3 96.0 90.4 91.7 93.1
LOLO F+M 85.6 88.8 77.9 82.4 82.9 90.4

F+V+M 82.5 93.4 85.8 85.5 86.4 91.7

V+M 77.4 99.2 94.3 81.0 85.0 94.9
LORO F+M 83.1 86.1 75.1 83.5 82.7 86.5

F+V+M 80.4 92.6 84.8 82.9 84.5 90.6

V+M 76.9 98.5 99.0 93.8 97.1 93.4
LOSO F+M 83.6 84.4 75.2 80.7 84.3 87.5

F+V+M 80.9 91.0 86.6 87.0 90.4 90.3

V+M 78.9 98.8 97.3 91.6 97.8 94.8
LODO F+M 74.3 83.6 63.9 71.6 81.6 84.1

F+V+M 77.7 91.0 81.4 81.8 89.6 89.4

V+M 67.9 86.6 87.9 70.1 85.6 86.3
LORSO F+M 82.1 82.9 78.1 76.7 87.2 88.1

F+V+M 76.1 85.1 83.1 74.9 86.9 87.6

V+M 70.0 92.5 95.3 78.5 88.8 87.4
LORDO F+M 78.3 86.7 77.9 77.1 89.4 90.5

F+V+M 75.0 89.4 85.8 78.0 89.6 89.5

V+M 76.3 90.9 90.1 85.2 95.3 94.5
LOSDO F+M 79.1 80.8 76.6 78.3 83.3 84.8

F+V+M 77.9 85.5 82.8 81.4 89.0 89.5

V+M 65.8 82.4 87.2 70.0 86.5 85.3
LORSDO F+M 73.0 77.1 72.7 66.7 83.7 85.2

F+V+M 69.9 79.5 79.6 68.2 85.0 85.3

The table shows the average of the macro average F1 scores ((Fnatur al + Fmedia )/2)

for each classifier across all folds of each experiment. The table shows the average

results of the trained classifiers being tested on the left out media sets along with

natural recordings from the V and F categories. The classifier with the best average

performance on each test set and experiment is in bold. More comprehensive results

can be found in the Appendix.

the experiments. Generally, SVC is the most consistent classifier across the different test sets and
experiments and is always performing with high F1 scores.

The next-best classifier in terms of leading F1 scores is QDA, which has seven of the best F1
scores. For QDA, all of these top results come in the first five experiments, where the training data
includes more of the acoustic environment and conditions than in the last four experiments. QDA
performs very strongly on the V+M test sets and on the F+V+M test sets for these experiments.
This shows that if the training set has certain qualities similar to the test set, then QDA could be a
legitimate option for classifying between natural and media. However, the classifier that performs
the best when the test data is most dissimilar to the training data is SVC. QDA does reasonably
well but performs overall worse than SVC in the last four experiments, especially on the F+M
and the F+V+M datasets. QDA could be a good option alongside SVC if we know that the testing
environment and conditions will have similarities to the training set.
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DT has the top average F1 scores on four of the tests. DT does very well when classifying the
V+M test set, with high scores on three out of four of the V+M tests in the more difficult experi-
ments. Except for LOROCV, DT performs very well on the V+M test sets on all of the experiments.
However, there is a significant tradeoff seen in how well DT performs on the F+M test sets. DT
might be very good at classifying between natural and media with natural video calls and media

in the test set, but does very poorly at classifying natural family conversations. In this regard, SVC
is better overall for its consistency across both the V+M and F+M test sets.

LR has the top average F1 score on only two of the tests, however, we see that LR is able to gener-
alize well to new media and natural audio. LR performs very well in many of the experiments, with
F1 scores that are close to, albeit slightly worse than, SVC in most of the experiments. Especially
in LORSO, LORDO, LOSDO, and LORSDO, we see that LR is able to perform consistently well on
V and F data, with scores similar to that of SVC on the F+V+M datasets. LR does a good job at
generalizing to new environments that it has not trained on for left out media data and video calls
and family conversations. However, QDA is better than LR when the training set is more similar
to the test set, and SVC is better than LR when the test set is more dissimilar.

KNN and GNB have the worst performances on our experiments. KNN performs the best on
V+M in LOROCV, but besides that, KNN and GNB show substantially worse performance than the
other classifiers. They perform particularly poorly on LORSDO, which tests how well they can
generalize when training on very dissimilar media data to the test set. We would not recommend
KNN or GNB, especially when compared to our other trained classifier.

4.3.2 Discussion. Overall, SVC is best able to generalize to new recordings. We see this both
in SVC’s ability to perform well on natural data that we recorded in our own homes, which was
outside of the natural audio from the CHiME-5 corpus that the model was trained on, as well as
good performance of the classifier to media from loudspeakers, microphone distances, and rooms
that it was not trained on (Table 21). SVC performs consistently well when tested on in-the-home,
natural audio of both V and F. SVC performs with accuracies of over 85% on LORSDO, with recall
scores of over 90% for natural V or F audio and recall of over 81% for media data from a different
room, loudspeaker, and microphone distance than it was trained on. We believe that SVC is the
best classification algorithm that we experimented with at disambiguating between natural and
media. It does the most consistently well across our test sets in our experiments and does the best
at generalizing to new environments and conditions that it has not trained on.

LR also performs well on both of the natural test sets and on many of the experiments but per-
forms worse than SVC overall. QDA performs very well when tested against data with some similar
characteristics to what it is trained with but does more poorly on stricter generalizability tests. DT
performs very well on video calls but very poorly when tested against family conversations. KNN
and GNB do not perform well.

Since QDA, LR, and SVC all perform well across all of our test sets and experiments, with QDA
showing particularly strong performance when the media testing conditions have some similarities
to their training conditions, it could be an option to use an ensemble of classifiers in making the
natural vs. media prediction. We need to verify that the classifiers do not take too long to make
predictions and that they do not take too much space in memory. If these two statements hold
true, then it could be reasonable to use all three in predicting natural vs. media. We perform these
timing and size experiments in Section 5.1.

5 PROPOSED APPLICATION

A critical criterion when selecting a classification algorithm is that it can perform in close to real-
time to be suitable for a robot in the home or in the real world. A robot should provide a naturalistic

ACM Transactions on Human-Robot Interaction, Vol. 12, No. 4, Article 47. Publication date: December 2023.



47:14 N. C. Georgiou et al.

and intuitive interaction for human users, so real-time classifications and responses are essential.
Taking too much time to analyze the audio environment, extract features, make predictions, and
act on those predictions may negatively affect the overall interaction. Keeping these factors in
mind, we (a) perform several timing and size tests on various steps of the audio collection and
decision-making process, (b) suggest an overall classification pipeline for a robot to implement
this approach, and (c) present ethics and privacy considerations that were taken into account for
this pipeline. For these timing and size experiments, we train the classifier on the entire natural C
category that we compiled and all of our media recordings.

5.1 Timing and Size Experiments

We measured the speed of feature extraction and prediction using around 45 minutes of audio data
(540 5-second samples). Extracting features from each of the 540 audio samples took an average
of 0.557 second (STD=0.0442 second) on a Dell Laptop with an Intel i5-5200U CPU @ 2.2 GHz and
8 GB RAM. To measure the average prediction time for each audio sample, we measured the time
that it took to standardize and predict the entire (540×83) input vector and divided it by 540. The
trained standardization scaler had a size of 4 kB. The average prediction times and the sizes on
disk for each trained classifier can be seen in Table 3.

We see that all of the classifiers that we trained have fast prediction times. DT and GNB are the
fastest, with LR and QDA next, then SVC, and KNN last. However, all the classifiers, except for
KNN, are considerably faster than a millisecond, so we believe that any of the classifiers would be
sufficient in that respect.

With respect to size on disk, LR and GNB are the smallest, with DT as next smallest. SVC is the
second largest, but still not prohibitively big.

These sizes (and predictions) are also promising in that if the dataset were to get substantially
larger, then most of these classification algorithms seem like they would be able to scale and still
be reasonable to use on-board and in real time. This might not be true for KNN, but that was
eliminated due to its poor performance on generalization.

This also means that after recording a 5-second sample, the whole classification process could
be used on-board a robot, even on one with little memory. The whole classification process, after
recording a 5-second sample, can take less than a second for feature extraction, standardization,
and the prediction, making it possible to use this in real time.

Furthermore, a robot could reasonably include multiple trained classifiers on disk and require
less than one megabyte (MB) of space. If using an ensemble of classifiers, then the prediction time
still remains substantially lower than one millisecond. Both the timing and size of the classifiers
together allow for an ensemble to be used.

5.2 Classification Pipeline

In a real-world setting, we suggest our classifier be used as a part of a greater classification pipeline,
shown in Figure 1. A Kinect One microphone would be required5 along with minimal onboard
computing power. All audio collection, analysis, and computation can take place locally, without
needing to offload any data to online services.

The system begins by recording a 5-second raw audio stream of the environment and initializ-
ing the count variables to 0. The system stores the recording and checks it for speech.6 If speech is

5We did not test multiple microphones, so we cannot say whether or not our classifier would have any success recording

with a different microphone.
6Speech could be checked for by using a VAD algorithm, trained on the Kinect, that can detect when human speech is a

part of the acoustic environment.
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Table 3. Classifier Size and Prediction Times

Model Avg. Prediction Time (ms) Size (kB)

KNN 2.524 13,545

QDA 0.01064 115

DT 0.00117 12

GNB 0.00312 4

LR 0.00366 4

SVC 0.17480 668

Fig. 1. Proposed classification pipeline. See Section 5.2 for description.

not detected, then the system should loop back to the start by resetting the counts and delete the
recording. If speech is detected, then the feature extraction is performed, the audio is deleted, and
a corresponding natural or media prediction is made. After a prediction, the corresponding count

is incremented, and the other count is reset to 0. Only after X , or Y , consecutive predictions in a
certain category will the decision be “final.” Otherwise, the corresponding count is reset to 0. Once
a final decision is output by the pipeline, the process starts again, with both counts initialized
to 0.

Depending on how sensitive we want the system to be to the classifier’s predictions, we can
alter the values of X and Y. For example, with X = 3, the classifier will have to predict close to
15 consecutive seconds (three decisions in a row) as media. This approach does not allow for one
false positive to ruin the final classification, but rather the classifier would have to get the audio
scene wrong three times in a row to make a mistake.

An alternative approach is to set both X=1 and Y=1, in which case the pipeline will be returning
a final prediction on every 5-second audio sample unless it does not detect speech. This will give
a robot using this pipeline more frequent data points to use in its final decision-making.

After the system determines whether or not the speech that it hears in its environment is media

or natural, it can use this classification, along with other contextual information, to make decisions
on how to act. For example, the robot could also have other tools available to it that can detect
characteristics from human speech, such as tone, emotion, and intensity. The robot could also
utilize context such as the time of day, the day of the week, its location in the home, the current
weather, and more.

Another interesting contextual tool that could be incorporated into this pipeline is sound

source localization (SSL), which utilizes the microphone array of the Kinect. SSL could help
the robot get an approximation of where the speech is coming from. This extra context, combined
with the natural vs. media classification, could further assist the robot in making a more informed
decision on social presence and providing it with a better understanding of its environment. VAD
and SSL could be combined to localize and individually classify multiple speakers in a noisy au-
dio scene, but such VAD for multi-speaker diarization in real-world scenarios remains an open
research problem[32].
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This classification pipeline can provide the robot with an understanding of if speech is natural or
media in its environment, helping it in inferring social presence. The robot can use this information,
along with other context, to make appropriate decisions about how to interact, or not, and to best
accommodate its user(s) and to reach its goals.

5.3 Ethics and Privacy Considerations

In home, data is inherently sensitive, and the audio pipeline presented in our article is considerate
of that. We believe our solution is minimally invasive. Using one modality (i.e., just audio) to make
decisions is undoubtedly less invasive than using more. In fact, our suggested solution is computed
locally (it is lightweight and would not require sending any sensitive data to online services), only
needs to store a 5-second sample of audio at a time (which can be deleted immediately after features
are extracted from it), and does not use any semantic representation or transcription of the audio
(which could contain sensitive information) as a part of its decision-making. These are important
factors that keep users’ privacy in mind.

6 LIMITATIONS

There are several limitations to this work that we believe are important to make clear. First, the
dataset that we compiled could be more diverse and representative. Our natural training data is
only composed of audio from the CHiME-5 dataset, even though it does contain audio from dif-
ferent homes, rooms, and voices. Our media dataset contains three different rooms from within
one home and five different electronic devices. Obviously, there are countless other possible de-
vices from which audio can be emitted in the home, which were not included in our training set.
Despite these limitations, our results showed that classifiers were able to make accurate media

classifications on audio from recording devices, rooms, microphone distances, and combinations
of the three that they were not trained on, and the classifiers were able to classify natural audio
from outside of the CHiME-5 training corpus, which included new rooms and voices in the V and F
test sets. Another limitation is that the recordings in our V and F categories could be more diverse
and comprehensive, with the inclusion of audio from more homes, families, and people. Also, we
only focus on audio from the home, when, ideally, such a classification tool should be able to make
predictions in other dynamic, human environments as well.

Additionally, our dataset does not include examples of scenarios where media from television
or radio shows is playing at the same time that natural conversation (which includes at least one
co-located person) is occurring.7 Further testing would be needed to see how our classifiers would
perform when both media and natural audio are overlaid. We did see that in situations where elec-
tronic and organic speakers are conversing with each other in the audio scene (in our video calls
test category), the classification algorithms classified the audio as natural. It could be beneficial if
a robot could garner more detailed context of identifying, indexing, and classifying between each
organic and electronic speaker engaged in the conversation, but we leave this as a future research
direction. Regardless, through our experimentation in this article, we see that the classifiers can
provide important context to a robot by accurately differentiating between common speech sce-
narios in the home from which social presence can be implied: popular genres in media originating
from loudspeakers and natural conversation including a co-located user.

7Because the end goal of our natural vs. media classification is to help a robot in detecting a co-located user’s social

presence using sound, we would consider labeling this situation as natural, because it includes conversational audio from

a co-located person, and it implies that a user is physically present with the robot. However, it could be beneficial if a

social robot could detect that there is both natural and media audio in the environment. Such knowledge could give it

more nuanced context than purely a natural classification, but we leave this for future work.
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7 CONCLUSIONS

Detecting social presence using sound involves being able to classify audio as containing either (1)
natural conversation including at least one co-located user or (2) media playing from electronic
sources that does not require a social response, such as television shows. It is important for in-home
social robots to have such a capability, as the additional context can help them in their decision-
making. We perform an experimental evaluation that tests the robustness of several traditional
machine learning classifiers on data from our compiled natural vs. media dataset. We conclude
that an SVC algorithm outperforms other classifiers, and we propose a classification pipeline
that can be utilized by social robots in the home to help them in detecting social presence using
sound.

APPENDICES

A HYPERPARAMETERS USED FOR GRIDSEARCH ON

LEAVE-ONE-RECORDING-OUT CROSS-VALIDATION

A.1 KNN

— “n_neighbors”: [1,3,5,7,9]
— “weights”: [“uniform,” “distance”]
— “p”: [1,2]

A.2 QDA

— “reg_param”: [0.00001, 0.0001, 0.001,0.01, 0.1
— “tol”: [0.0001, 0.001,0.01, 0.1]

A.3 DT

— “criterion”: [“gini,” “entropy”]
— “max_depth”: [1, 5,10,None]
— “min_samples_split”: [2,5,10]
— “min_samples_leaf”: [1,2,5]

A.4 GNB

— “var_smoothing”: [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14,
1e-15]

A.5 LR

— “solver”: [“lbfgs,” “liblinear,” “newton-cg”]
— “penalty”: [“l1,” “l2”]
— “C”: [0.001,0.01,0.1,1,10,100,1000]

A.6 SVC

— “kernel”: [“linear,” “rbf”]
— “gamma”: [“scale,” “auto”]
— “C”: [0.1,1,10,1000]
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B HYPERPARAMETERS OF MODELS PRESENTED IN SECTION 4 RESULTS

Model Hyperparameters

KNN “algorithm”=“auto,” “leaf_size”=30, “metric”=“minkowski,” “met-
ric_params”=None, “n_jobs”=None, “n_neighbors”=8, “p”=1,
“weights”=“distance’

QDA “priors”=None, “reg_param”=0.01, “store_covariance”=False, “tol”=0.0001.

DT “ccp_alpha”=0.0, “class_weight”=None, “criterion”=’entropy,”
“max_depth”=None, “max_features”=None, “max_leaf_nodes”=None,
“min_impurity_decrease”=0.0, “min_impurity_split”=None,
“min_samples_leaf”=2, “min_samples_split”=2,
“min_weight_fraction_leaf”=0.0, “random_state”=0, “splitter”=“best”

GNB “priors”: None, “var_smoothing”: 0.001

LR “C”: 0.1, “class_weight”: None, “dual”: False, “fit_intercept”: True, “inter-
cept_scaling”: 1, “l1_ratio”: None, “max_iter”: 100, “multi_class”: “auto,”
“n_jobs”: None, “penalty”: “l2,” “random_state”: None, “solver”: “lbfgs,” “tol”:
0.0001, “verbose”: 0, “warm_start”: False.

SVC ‘C”: 10, “break_ties”: False, “cache_size”: 200, “class_weight”: None, “coef0”: 0.0,
“decision_function_shape”: “ovr,” “degree”: 3, “gamma”: “scale,” “kernel”: “‘rbf,”
“max_iter”: -1, “probability”: False, “random_state”: None, “shrinking”: True,
“tol”: 0.001, “verbose”: False

C EXPERIMENT F1 SCORE SUMMARIES

Table 4. Leave-One-Recording-Out Cross Validation (LOROCV) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 95.1 87.7 86.4 85.5 86.4 90.6
V + M F1media 93.8 90.2 89.4 86.5 89.3 91.9

Avg. F1 94.5 89.0 87.9 86.0 87.9 91.3

F1natur al 86.9 99.5 98.9 96.4 99.0 96.5
F + M F1media 87.2 99.5 98.8 95.9 98.8 96.6

Avg. F1 87.1 99.5 98.9 96.2 98.9 96.6

F1natur al 91.7 93.1 92.3 90.4 92.3 93.4

F + V + M F1media 90.9 93.4 93.2 90.5 93.2 93.9

Avg. F1 91.3 93.3 92.8 90.5 92.8 93.7

We present the average F1 scores between each of the two classes across all

LOROCV folds. For each fold, all of a room’s media recordings were held out of the

training set and used in the testing set along with the natural audio from our own

homes.
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Table 5. Leave-One-Label-Out (LOLO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 81.5 99.3 96.9 92.9 94.9 94.1
V + M F1media 75.5 99.2 95.1 87.9 88.5 92.1

Avg. F1 78.5 99.3 96.0 90.4 91.7 93.1

F1natur al 88.4 87.5 75.6 84.0 85.0 90.2

F + M F1media 82.7 90.0 80.2 80.7 80.8 90.6

Avg. F1 85.6 88.8 77.9 82.4 82.9 90.4

F1natur al 85.4 93.0 85.8 87.8 89.4 92.0
F + V + M F1media 79.5 93.8 85.8 83.2 83.3 91.3

Avg. F1 82.5 93.4 85.8 85.5 86.4 91.7

We present the average F1 scores between each of the two classes across all 14

LOLO folds. For each fold, a media recording and natural C recording were held out

of the training set and used in the testing set along with the natural audio from our

own homes.

Table 6. Leave-One-Room-Out (LORO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 77.8 99.2 94.8 85.6 88.9 94.7
V + M F1media 76.9 99.2 93.7 76.3 81.0 95.0

Avg. F1 77.4 99.2 94.3 81.0 85.0 94.9

F1natur al 85.2 84.3 71.8 82.9 82.5 86.5

F + M F1media 81.0 87.8 78.3 84.0 82.9 86.4
Avg. F1 83.1 86.1 75.1 83.5 82.7 86.5

F1natur al 81.5 92.1 84.1 84.0 85.2 90.4
F + V + M F1media 79.3 93.0 85.4 81.7 83.7 90.7

Avg. F1 80.4 92.6 84.8 82.9 84.5 90.6

We present the average F1 scores between each of the two classes across all three

LORO folds. For each fold, all of a room’s media recordings were held out of the train-

ing set and used in the testing set along with the natural audio from our own homes.

Table 7. Leave-One-Speaker-Out (LOSO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 78.8 98.5 99.0 94.1 97.1 93.4
V + M F1media 75.0 98.4 98.9 93.4 97.1 93.4

Avg. F1 76.9 98.5 99.0 93.8 97.1 93.4

F1natur al 87.0 83.1 72.7 82.0 83.8 87.2

F + M F1media 80.1 85.7 77.6 79.4 84.8 87.8

Avg. F1 83.6 84.4 75.2 80.7 84.3 87.5

F1natur al 83.3 90.6 85.9 87.6 90.2 90.1
F + V + M F1media 78.4 91.3 87.2 86.4 90.5 90.4

Avg. F1 80.9 91.0 86.6 87.0 90.4 90.3

We present the average F1 scores between each of the two classes across all five

LOSO folds. For each fold, all of a loudspeaker’s media recordings were held out of

the training set and used in the testing set along with the natural audio from our

own homes.
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Table 8. Leave-One-Distance-Out Cross Validation (LODO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 79.7 98.8 97.4 92.1 97.7 94.5
V + M F1media 78.1 98.8 97.1 91.1 97.8 95.0

Avg. F1 78.9 98.8 97.3 91.6 97.8 94.8

F1natur al 81.5 82.5 70.9 76.9 82.2 84.6

F + M F1media 67.0 84.6 56.8 66.3 80.9 83.6
Avg. F1 74.3 83.6 63.9 71.6 81.6 84.1

F1natur al 79.9 90.7 83.6 83.9 89.6 89.2
F + V + M F1media 75.4 91.3 79.2 79.6 89.5 89.5

Avg. F1 77.7 91.0 81.4 81.8 89.6 89.4

We present the average F1 scores between each of the two classes across all three

LODO folds. For each fold, all of a microphone distance’s media recordings were

held out of the training set and used in the testing set along with the natural audio

from our own homes.

Table 9. Leave-One-Room and Speaker-Out (LORSO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 75.5 92.2 91.7 81.4 89.0 89.5
V + M F1media 60.3 81.0 84.0 58.8 82.2 83.1

Avg. F1 67.9 86.6 87.9 70.1 85.6 86.3

F1natur al 85.8 84.5 76.1 80.5 87.6 89.1

F + M F1media 78.4 81.2 80.0 72.9 86.7 87.0

Avg. F1 82.1 82.9 78.1 76.7 87.2 88.1

F1natur al 81.1 88.2 83.6 80.6 88.1 89.0

F + V + M F1media 71.0 81.9 82.5 69.1 85.7 86.2

Avg. F1 76.1 85.1 83.1 74.9 86.9 87.6

We present the average F1 scores between each of the two classes across all nine

LORSO folds. For each fold, all of a room’s media recordings were held out of the train-

ing set and used in the testing set along with the natural audio from our own homes.

Table 10. Leave-One-Recording and Distance-Out (LORDO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 76.1 94.0 96.4 85.4 91.5 89.6
V + M F1media 63.8 90.9 94.2 71.6 86.0 85.1

Avg. F1 70.0 92.5 95.3 78.5 88.8 87.4

F1natur al 83.9 86.3 75.6 80.3 89.2 90.5

F + M F1media 72.7 87.0 80.2 73.8 89.6 90.5

Avg. F1 78.3 86.7 77.9 77.1 89.4 90.5

F1natur al 80.2 90.0 85.8 82.6 90.2 90.0
F + V + M F1media 69.8 88.8 85.8 73.4 88.9 88.9

Avg. F1 75.0 89.4 85.8 78.0 89.6 89.5

We present the average F1 scores between each of the two classes across all nine

LORDO folds. For each fold, all of a room and microphone distance’s media

recordings were held out of the training set and used in the testing set along with the

natural audio from our own homes.
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Table 11. Leave-One-Speaker and Distance-Out (LOSDO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 79.7 94.6 93.7 89.6 95.2 94.3
V + M F1media 72.8 87.2 86.4 80.7 95.4 94.6

Avg. F1 76.3 90.9 90.1 85.2 95.3 94.5

F1natur al 84.0 82.7 77.4 81.6 85.5 87.0

F + M F1media 74.2 78.9 75.7 75.0 81.0 82.5

Avg. F1 79.1 80.8 76.6 78.3 83.3 84.8

F1natur al 82.1 88.3 85.4 85.2 89.7 90.0

F + V + M F1media 73.7 82.6 80.2 77.5 88.3 89.0

Avg. F1 77.9 85.5 82.8 81.4 89.0 89.5

We present the average F1 scores between each of the two classes across all nine

LOSDO folds. For each fold, all of a speaker and microphone distance combination’s

media recordings were held out of the training set and used in the testing set along

with the natural audio from our own homes.

Table 12. Leave-One-Room and Speaker and Distance-Out

(LORSDO) Summary

Test Set Metrics KNN QDA DT GNB LR SVC

F1natur al 74.1 89.6 91.1 81.2 89.1 88.1
V + M F1media 57.4 75.1 83.3 58.8 83.8 82.5

Avg. F1 65.8 82.4 87.2 70.0 86.5 85.3

F1natur al 80.9 83.6 72.3 76.9 86.7 88.2

F + M F1media 65.0 70.5 73.1 56.4 80.6 82.1

Avg. F1 73.0 77.1 72.7 66.7 83.7 85.2

F1natur al 78.0 86.4 82.0 78.9 87.8 88.1

F + V + M F1media 61.7 72.5 77.2 57.5 82.2 82.4

Avg. F1 69.9 79.5 79.6 68.2 85.0 85.3

We present the average F1 scores between each of the two classes across all 14

LORSDO folds. For each fold, all of a room, speaker, and microphone distance

combination’s media recordings were held out of the training set and used in the

testing set along with the natural audio from our own homes.
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D EXPERIMENT COMPREHENSIVE RESULTS

Table 13. Leave-One-Recording-Out CV Results

Our In-home Natural Recordings
C+M F+M V+M V+F+M

Model Metrics Macro Micro Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

96.8
95.7
99.5
97.3
99.4
94.1
95.8

96.3
94.8
99.6
96.8
94.8
93.1
95.3

94.7
95.7
95.0
95.1
94.1
94.4
93.8

94.0
94.7
94.6
94.4
93.7
93.4
93.1

87.3
94.8
81.0
86.9
82.5
93.6
87.2

86.9
93.7
81.1
86.5
82.3
92.7
86.7

91.5
95.3
89.0
91.7
88.7
94.1
90.9

90.9
94.2
88.7
91.1
88.4
93.1
90.2

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

99.6
99.8
99.5
99.6
99.5
99.8
99.6

99.6
99.7
99.5
99.6
99.7
99.7
99.6

89.1
99.8
78.4
87.7
82.4
99.8
90.2

88.9
99.7
78.0
87.4
82.1
99.8
90.0

99.5
99.7
99.3
99.5
99.3
99.7
99.5

99.4
99.7
99.1
99.4
99.1
99.7
99.4

93.6
99.7
87.3
93.1
88.8
99.8
93.4

93.5
99.7
87.2
93.0
88.7
99.7
93.4

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

99.0
99.2
99.1
99.1
99.1
99.0
99.0

99.0
99.2
99.1
99.1
99.2
99.0
99.0

88.2
99.0
77.6
86.4
82.0
98.8
89.4

88.3
99.1
77.7
86.6
82.0
98.9
89.4

98.9
99.3
98.7
98.9
98.7
99.1
98.8

98.8
99.3
98.6
98.9
98.6
99.1
98.8

92.8
99.1
86.7
92.3
88.3
99.0
93.2

92.9
99.2
86.7
92.3
88.4
99.0
93.2

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

92.2
93.7
91.2
91.7
92.7
93.2
92.3

92.8
94.8
91.1
92.2
94.8
94.4
93.1

86.2
93.0
79.7
85.5
81.2
92.6
86.5

87.4
94.1
80.8
86.7
82.9
94.0
87.9

96.2
94.7
98.5
96.4
98.5
93.9
95.9

96.7
95.7
98.4
96.9
98.3
95.0
96.4

90.5
93.6
87.8
90.4
88.4
93.2
90.5

91.4
94.7
88.4
91.3
89.0
94.4
91.5

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

99.0
99.2
99.1
99.1
99.1
98.9
98.9

99.0
99.2
99.1
99.1
99.2
99.0
98.9

88.2
99.0
77.5
86.4
82.0
98.8
89.3

88.3
99.1
77.7
86.6
82.0
98.9
89.4

98.9
99.3
98.7
99.0
98.7
99.1
98.8

98.8
99.3
98.6
98.9
98.6
99.0
98.8

92.8
99.1
86.7
92.3
88.3
98.9
93.2

92.9
99.1
86.7
92.3
88.4
99.0
93.2

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

99.4
99.4
99.6
99.4
99.6
99.2
99.3

99.4
99.4
99.6
99.5
99.4
99.2
99.3

91.4
99.4
83.5
90.6
85.5
99.2
91.9

91.5
99.4
83.8
90.9
86.0
99.2
92.1

96.6
99.4
94.0
96.5
94.4
99.1
96.6

96.5
99.4
93.9
96.5
94.2
99.2
96.5

93.6
99.4
88.0
93.3
89.3
99.2
93.9

93.7
99.4
88.2
93.4
89.4
99.2
93.9

The table presents the macro and micro averages across all LOROCV folds for each classifier.
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Table 14. Leave-One-Label-Out Results

LOLO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

79.5
84.1
81.2
81.5
76.2
77.8
75.5

78.8
83.9
80.5
80.9
75.4
77.2
74.7

86.4
85
94
88.4
91.6
78.8
82.7

86.1
85.3
92.8
88
90.5
79.4
82.6

83.4
84.5
88.4
85.4
84.4
78.3
79.5

82.9
84.5
87.3
84.9
83.5
78.4
79.1

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

99.2
99.2
99.3
99.3
99.3
99.2
99.2

99.2
99.3
99.1
99.2
99.1
99.3
99.2

88.9
99.3
78.3
87.5
82.2
99.5
90

87.7
99.3
76
86
80.7
99.5
89

93.4
99.3
87.5
93
88.9
99.3
93.8

92.8
99.3
86.3
92.3
87.9
99.4
93.3

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

95.6
94
99.8
96.4
99.6
91.5
94.2

96.3
94.8
99.8
96.9
99.7
92.7
95.1

78.6
93.2
64.9
75.6
71.9
92.4
80.2

78
93.4
63.1
74.5
71.1
92.8
79.9

86.1
93.6
80.2
85.8
81.8
92
85.8

86.1
94.1
79.5
85.7
81.4
92.8
86

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

90.7
88.4
98.2
92.4
91.1
83.1
86.4

91.5
89.4
97.9
92.9
91.9
85
87.9

83.2
87.1
82.4
84
78
84
80.7

84
88.9
81.7
84.5
78.4
86.3
82

86.5
87.5
89.3
87.8
83.2
83.6
83.2

87.3
89
88.9
88.4
83.8
85.7
84.6

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

92.3
92.6
98.3
94.4
92.5
86.4
86.7

93.2
93.3
98.2
94.9
93.3
88.1
88.5

84.1
92.6
80.5
85
76.6
87.6
80.8

84
93.4
79.2
84.5
76.4
88.8
81.2

87.7
92.6
88.4
89.4
82.2
87
83.3

88.1
93.3
87.7
89.5
82.6
88.5
84.3

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

93.4
95.6
93.6
94.1
92.7
93.3
91.8

93.5
95.5
93.5
94.1
92.8
93.5
92.1

90.5
97.1
84.9
90.2
86.4
96.2
90.6

90.1
97.5
83.5
89.6
85.4
96.7
90.3

91.8
96.3
88.7
92
89.1
94.9
91.3

91.6
96.5
88
91.7
88.5
95.3
91.2

The table presents the macro and micro averages across all LOLO folds for each

classifier.
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Table 15. Leave-One-Room-Out Results

Kitchen Bedroom Playroom Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

82.4
82.1
82.9
82.5
82.7
81.9
82.3

84.3
77.4
97
86.1
96
71.6
82

83.4
79.4
90.1
84.4
88.6
76.6
82.2

73.1
71.4
77.2
74.2
75.2
69
72

93.2
97.3
88.8
92.8
89.7
97.5
93.4

83.4
83.6
83.2
83.4
83.2
83.6
83.4

76.7
76.3
77.4
76.9
77.1
76
76.6

72.8
67.1
89.5
76.7
84.3
56.2
67.4

74.7
71
83.6
76.8
80.1
65.8
72.3

77.4
76.6
79.2
77.8
78.3
75.6
76.9

83.4
80.6
91.8
85.2
90
75.1
81

80.5
78
85.6
81.5
84
75.4
79.3

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

98.9
99.7
98.1
98.9
98.2
99.7
98.9

89.6
99.1
80
88.5
83.2
99.3
90.5

94.2
99.4
88.8
93.8
89.9
99.5
94.5

99.6
100
99.2
99.6
99.2
100
99.6

82.5
99.7
65.2
78.8
74.1
99.8
85.1

90.8
99.9
81.8
89.9
84.6
99.9
91.6

99
98.3
99.7
99
99.7
98.3
99

86.9
94.4
78.4
85.7
81.6
95.3
87.9

92.8
96.5
88.8
92.5
89.6
96.8
93.1

99.2
99.3
99
99.2
99
99.3
99.2

86.3
97.7
74.5
84.3
79.6
98.1
87.8

92.6
98.6
86.5
92.1
88
98.7
93

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

98.4
96.9
99.9
98.4
99.9
96.8
98.3

81.7
99
63.9
77.7
73.4
99.4
84.4

89.8
97.8
81.5
88.9
84.1
98.1
90.6

86.3
79.5
97.7
87.7
97
74.8
84.5

72.4
88.3
51.7
65.2
65.9
93.2
77.2

79.2
82.4
74.1
78.1
76.5
84.2
80.2

98.4
97.1
99.7
98.4
99.7
97.1
98.3

73
73.7
71.3
72.5
72.2
74.6
73.4

85.3
85.5
85.1
85.3
85.2
85.5
85.4

94.3
91.2
99.1
94.8
98.9
89.6
93.7

75.7
87
62.3
71.8
70.5
89.1
78.3

84.8
88.6
80.2
84.1
81.9
89.3
85.4

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

87.9
82.5
96.3
88.9
95.5
79.6
86.9

82.5
80.2
86.2
83.1
85.1
78.8
81.8

85.1
81.4
91.1
86
89.9
79.2
84.2

64.1
58.6
96.1
72.8
89.1
32.2
47.3

85
96.2
72.8
82.9
78.1
97.1
86.6

74.8
70.9
84.2
77
80.5
65.5
72.2

95
91.6
99
95.2
98.9
90.9
94.8

83.1
85.1
80.2
82.6
81.3
85.9
83.5

88.9
88.5
89.4
88.9
89.3
88.4
88.8

82.4
77.6
97.1
85.6
94.5
67.6
76.3

83.5
87.2
79.8
82.9
81.5
87.3
84

82.9
80.3
88.2
84
86.6
77.7
81.7

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

98.5
99.9
97.1
98.5
97.1
99.9
98.5

87.9
95.9
79.2
86.7
82.3
96.6
88.8

93
98
87.9
92.7
89
98.2
93.4

66
59.8
97.7
74.2
93.7
34.2
50.2

87.9
100
75.8
86.2
80.5
100
89.2

77.2
73
86.5
79.1
83.4
68
74.9

94.3
96.9
91.6
94.2
92
97.1
94.5

72.8
70
79.9
74.6
76.6
65.8
70.8

83.3
81.9
85.6
83.7
84.9
81
82.9

86.3
85.5
95.5
88.9
94.3
77.1
81

82.9
88.6
78.3
82.5
79.8
87.5
82.9

84.5
84.3
86.6
85.2
85.8
82.4
83.7

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

94.9
98.6
91.2
94.7
91.8
98.7
95.1

93.5
95.3
91.5
93.3
91.8
95.4
93.6

94.2
96.8
91.3
94
91.8
97
94.3

95.9
100
91.7
95.7
92.3
100
96

89.6
100
79.3
88.4
82.8
100
90.6

92.7
100
85.3
92.1
87.2
100
93.2

93.7
96.4
90.8
93.5
91.3
96.6
93.9

76.3
73.6
82.2
77.6
79.8
70.5
74.8

84.8
83.7
86.4
85
85.9
83.2
84.6

94.8
98.3
91.2
94.7
91.8
98.4
95

86.5
89.6
84.3
86.5
84.8
88.6
86.4

90.6
93.5
87.7
90.4
88.3
93.4
90.7

The table presents the results of the three LORO folds (each room column is the left-out room), and the macro

averages across all LORO folds for each classifier. Only macro averages are presented, because the test sets were the

same size (the left out room media set was larger than the natural testing subset, so media was sampled to match the

size of the natural sets).
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Table 16. Leave-One-Speaker-Out Results

Bose iPhone BigBose Sony Mac Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M
V+M F+M V+F+M

M μ M μ M μ

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

68.4
66.2
75.5
70.5
71.4
61.4
66

59.8
56.1
89.6
69
74.3
29.9
42.7

64
60.2
82.7
69.7
72.4
45.3
55.7

87.1
91.1
82.3
86.4
83.8
91.9
87.7

95.7
100
91.5
95.5
92.1
100
95.9

92
96.1
87.4
91.6
88.5
96.5
92.3

87.1
96.7
76.9
85.6
80.8
97.3
88.3

95.5
98.9
92.1
95.4
92.6
98.9
95.7

91.8
98
85.3
91.2
87
98.2
92.3

56.2
54.2
79.6
64.5
61.6
32.8
42.8

73.9
67.9
90.7
77.6
86
57.1
68.6

65.9
61.4
85.7
71.5
76.3
46.1
57.5

86.6
89.1
83.5
86.2
84.5
89.7
87

95.8
96.7
94.8
95.8
94.9
96.8
95.8

91.3
93.1
89.3
91.2
89.7
93.4
91.5

77.1
79.4
79.5
78.7
76.4
74.6
74.4

76.2
77.8
79.5
77.9
76.1
72.9
73.4

84.1
83.9
91.7
86.7
88
76.5
79.7

82.5
81.8
91.8
85.5
87.3
73.3
77.4

81
81.7
86.1
83
82.8
75.9
77.9

79.6
79.7
86
81.9
82.1
73.1
76

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

94.4
90.1
99.8
94.7
99.8
89
94.1

65.2
61.2
83.1
70.5
73.7
47.4
57.7

79.4
73.8
91.2
81.6
88.5
67.6
76.7

99.2
99.8
98.6
99.2
98.6
99.8
99.2

85.9
99.8
71.9
83.6
78
99.8
87.6

91.7
99.8
83.5
90.9
85.8
99.8
92.3

99.3
99.8
98.9
99.3
98.9
99.8
99.3

85.6
99.2
71.7
83.2
77.9
99.4
87.3

91.7
99.5
83.8
91
86
99.6
92.3

99.5
100
99.1
99.5
99.1
100
99.5

86.5
100
73
84.4
78.7
100
88.1

92.4
100
84.8
91.8
86.8
100
92.9

98.9
99
98.8
98.9
98.8
99
98.9

84.7
98.8
70.3
82.1
76.9
99.2
86.6

91.6
98.9
84.2
91
86.2
99.1
92.2

98.3
97.7
99
98.3
99
97.5
98.2

97.9
97
99.1
98
99.1
96.7
97.8

81.6
91.8
74
80.8
77.1
89.1
81.5

80.6
90
74.4
80.1
76.8
86.8
80.1

89.4
94.4
85.5
89.2
86.7
93.2
89.3

88.7
92.9
85.9
88.7
86.8
91.4
88.4

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

95.7
92.2
100
95.9
100
91.5
95.6

55.8
54.6
68.8
60.9
57.8
42.7
49.1

75.2
71.5
84
77.2
80.6
66.5
72.9

99.3
98.6
100
99.3
100
98.6
99.3

80.7
99.7
61.6
76.1
72.2
99.8
83.8

88.8
99.1
78.3
87.5
82.1
99.3
89.9

100
100
100
100
100
100
100

79.4
100
58.8
74.1
70.8
100
82.9

88.6
100
77.1
87.1
81.4
100
89.7

99.8
99.7
100
99.8
100
99.7
99.8

79.1
100
58.2
73.6
70.5
100
82.7

88.5
99.8
77.1
87
81.3
99.9
89.7

99
98.2
99.8
99
99.8
98.1
99

69.6
72.9
62.3
67.2
67.1
76.9
71.7

83.9
86.3
80.6
83.3
81.8
87.2
84.4

98.8
97.7
100
98.8
100
97.6
98.7

98.5
97.2
99.9
98.5
99.9
97
98.4

72.9
85.4
61.9
70.4
67.7
83.9
74

71.3
82.2
62.4
69.3
66.8
80.3
72

85
91.3
79.4
84.4
81.4
90.6
85.3

84
89.1
79.9
83.7
81.4
88.1
84.1

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

93.6
88.9
99.7
94
99.6
87.6
93.2

55.5
53.8
77.8
63.6
59.9
33.2
42.7

74.1
68.7
88.5
77.3
83.8
59.7
69.7

96.4
94.3
98.8
96.5
98.8
94
96.3

86.8
92.6
80.1
85.9
82.4
93.6
87.7

91
93.4
88.3
90.8
88.9
93.8
91.3

96.7
96.1
97.3
96.7
97.3
96
96.7

87.8
95.9
79
86.7
82.2
96.7
88.8

91.8
96
87.2
91.4
88.3
96.4
92.1

95.7
94.6
97.1
95.8
97
94.4
95.7

88.3
98.5
77.8
87
81.7
98.9
89.5

91.7
96.5
86.5
91.2
87.8
96.9
92.1

80.7
73.2
96.8
83.4
95.3
64.6
77

85.1
83.1
88.2
85.6
87.4
82.1
84.7

83
77.7
92.4
84.4
90.6
73.5
81.2

92.6
89.4
98
93.3
97.6
87.3
91.8

91.4
87.6
98
92.2
97.5
84.8
90.3

80.7
84.8
80.6
81.7
78.7
80.9
78.7

79.2
82.5
80.9
80.7
77.9
77.5
76.5

86.3
86.5
88.6
87
87.9
84
85.3

84.9
84.1
88.9
85.9
87.7
80.9
83.5

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

91.2
91.7
90.6
91.2
90.7
91.8
91.3

73.1
69
83.6
75.6
79.2
62.5
69.9

81.9
78.9
87
82.8
85.6
76.8
80.9

99.3
100
98.6
99.3
98.6
100
99.3

88.1
100
76.2
86.5
80.7
100
89.3

93
100
85.9
92.4
87.7
100
93.4

99.3
99.8
98.9
99.3
98.9
99.8
99.3

87.7
100
75.4
86
80.2
100
89

92.9
99.9
85.8
92.3
87.6
99.9
93.3

96.8
95.1
98.6
96.8
98.6
94.9
96.7

88.3
99.8
76.7
86.7
81.1
99.9
89.5

92.1
97.3
86.6
91.6
87.9
97.6
92.5

99.2
99.5
98.9
99.2
98.9
99.5
99.2

87.3
99.6
74.9
85.5
79.9
99.7
88.7

93.1
99.5
86.6
92.6
88.1
99.6
93.5

97.2
97.2
97.1
97.2
97.1
97.2
97.2

96.6
96.7
96.6
96.6
96.6
96.7
96.6

84.9
93.7
77.4
84.1
80.2
92.4
85.3

84.2
92.3
77.7
83.5
80.2
90.7
84.4

90.6
95.1
86.4
90.4
87.4
94.8
90.7

90
94
86.5
89.9
87.3
93.5
90.1

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

85.4
85.6
85.1
85.3
85.2
85.7
85.4

76
72
85.1
78
81.8
66.9
73.6

80.6
78.1
85.1
81.4
83.6
76.1
79.7

95.9
100
91.7
95.7
92.3
100
96

91.5
100
83.1
90.8
85.5
100
92.2

93.4
100
86.8
93
88.4
100
93.8

96.7
100
93.4
96.6
93.8
100
96.8

90.7
100
81.5
89.8
84.4
100
91.5

93.4
100
86.8
92.9
88.3
100
93.8

91.7
89.8
94.1
91.9
93.8
89.3
91.5

90.3
100
80.6
89.3
83.8
100
91.2

91
94.7
86.7
90.6
87.8
95.2
91.3

97.1
100
94.2
97
94.5
100
97.2

89.8
100
79.7
88.7
83.1
100
90.8

93.4
100
86.8
92.9
88.3
100
93.8

93.4
95.1
91.7
93.3
91.9
95
93.4

92.8
94.3
91.3
92.7
91.5
94.2
92.8

87.7
94.4
82
87.3
83.7
93.4
87.9

86.9
93.1
82
86.7
83.5
91.9
87

90.3
94.6
86.4
90.2
87.3
94.3
90.5

89.7
93.4
86.3
89.5
87
93
89.7

The table presents the results of the five LOSO folds (each speaker column is the left-out speaker) and the macro (M)

and micro (μ ) averages across all LOSO folds for each classifier.
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Table 17. Leave-One-Distance-Out Results

1 ft 4-6 ft 8-10 ft LODO Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

83.3
87.7
77.5
82.3
79.9
89.1
84.2

55.3
53
94.8
68
75.2
15.8
26

68.9
64
86.4
73.6
79.1
51.5
62.4

87.9
88.9
86.7
87.8
87
89.2
88.1

84.4
80.6
90.7
85.3
89.3
78.1
83.4

86.1
84.3
88.7
86.5
88.1
83.5
85.8

65.8
63.1
75.9
68.9
69.8
55.6
61.9

91.6
93.5
89.3
91.4
89.8
93.8
91.7

79
76.9
82.8
79.8
81.4
75.2
78.2

79
79.9
80
79.7
78.9
78
78.1

77.1
75.7
91.6
81.5
84.8
62.6
67

78
75.1
86
79.9
82.9
70.1
75.4

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

98.6
97.5
99.8
98.7
99.8
97.5
98.6

75.3
76.2
73.5
74.8
74.4
77.1
75.7

86.7
86.9
86.3
86.6
86.4
87
86.7

99.1
99.6
98.7
99.1
98.7
99.6
99.1

87
98.8
74.9
85.2
79.8
99.1
88.4

92.9
99.2
86.5
92.4
88
99.3
93.3

98.5
98.8
98.3
98.5
98.3
98.8
98.5

88.7
99.5
77.8
87.3
81.8
99.6
89.8

93.5
99.1
87.8
93.1
89
99.2
93.8

98.8
98.6
98.9
98.8
98.9
98.6
98.8

83.7
91.5
75.4
82.5
78.7
91.9
84.6

91
95.1
86.9
90.7
87.8
95.2
91.3

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

93.2
88.2
99.8
93.6
99.7
86.6
92.7

41.1
45
80.2
57.7
9.48
2.07
3.4

66.5
61.3
89.7
72.8
80.8
43.3
56.4

99.5
99.1
99.9
99.5
99.9
99.1
99.5

79.4
92.8
63.7
75.6
72.4
95
82.2

89.2
96.5
81.3
88.3
83.9
97
90

99
98.1
100
99
100
98
99

82.6
97.6
66.8
79.3
74.8
98.3
85

90.6
97.9
83
89.8
85.2
98.2
91.3

97.2
95.1
99.9
97.4
99.9
94.6
97.1

67.7
78.5
70.3
70.9
52.2
65.1
56.8

82.1
85.2
84.7
83.6
83.3
79.5
79.2

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

91.7
86.1
99.3
92.3
99.2
84
91

46
47.4
73.7
57.7
40.9
18.2
25.2

68.2
63.4
86.2
73.1
78.4
50.3
61.3

88.1
83.6
94.9
88.9
94.1
81.4
87.3

84.3
82
87.9
84.8
86.9
80.7
83.7

86.2
82.8
91.3
86.8
90.3
81
85.4

95
93.8
96.5
95.1
96.4
93.6
95

89.1
96.4
81.1
88.1
83.7
97
89.9

92
95
88.6
91.7
89.3
95.3
92.2

91.6
87.8
96.9
92.1
96.6
86.3
91.1

73.1
75.3
80.9
76.9
70.5
65.3
66.3

82.1
80.4
88.7
83.9
86
75.5
79.6

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

95.6
99.9
91.4
95.4
92.1
99.9
95.8

67.3
63.8
79.9
71
73.1
54.7
62.6

81.1
78.6
85.5
81.9
84.1
76.7
80.2

98.8
99
98.6
98.8
98.6
99
98.8

88.8
97.8
79.4
87.6
82.7
98.2
89.8

93.7
98.5
88.7
93.3
89.7
98.6
94

98.8
99
98.6
98.8
98.6
99
98.8

89.3
99.9
78.8
88.1
82.5
99.9
90.3

93.9
99.4
88.4
93.6
89.6
99.5
94.3

97.7
99.3
96.2
97.7
96.4
99.3
97.8

81.8
87.2
79.3
82.2
79.4
84.3
80.9

89.6
92.2
87.5
89.6
87.8
91.6
89.5

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

94
99.8
88.2
93.6
89.4
99.8
94.3

71.1
67.4
81.9
73.9
76.9
60.4
67.7

82.3
80.6
85
82.7
84.1
79.6
81.8

96.9
100
93.9
96.9
94.2
100
97

90.3
99
81.3
89.3
84.2
99.2
91.1

93.5
99.5
87.5
93.1
88.8
99.6
93.9

93.3
96.6
89.7
93
90.4
96.8
93.5

91.5
99.4
83.4
90.7
85.7
99.5
92.1

92.3
98
86.5
91.9
87.9
98.2
92.8

94.7
98.8
90.6
94.5
91.4
98.9
95

84.3
88.6
82.2
84.6
82.3
86.4
83.6

89.4
92.7
86.3
89.2
86.9
92.5
89.5

The table presents the results of the three LODO folds (each microphone distance is the left-out distance) and the

macro averages across all LODO folds for each classifier. Only macro averages are presented, because the test sets

were the same size (the left out microphone distance media set was larger than the natural testing subset, so media

was sampled to match the size of the natural sets).
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Table 18. Leave-One-Room+Speaker-Out Results

LORSO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

70.3
71.6
82.7
75.5
67.8
57.9
60.3

67
68.8
81.6
73.2
63
52.3
54.6

83
79.5
95.1
85.8
93.2
71
78.4

81.9
78.2
94
84.7
91.9
69.8
77.4

77.3
75.6
89.6
81.1
83.6
65.1
71

75.1
73.4
88.4
79.3
81.5
61.9
68.1

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

89.1
88.4
99.3
92.2
99.3
79
81

90.1
89.3
99.2
92.8
99.2
80.9
83

84.2
92.5
80.3
84.5
80.8
88.1
81.2

85
94.5
77.5
84.1
80.3
92.5
84.2

86.4
90
88.9
88.2
87.3
84
81.9

87.3
91.2
87.4
88.3
86.8
87.2
84.7

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

89.2
86.3
100
91.7
99.9
78.5
84

86.9
83.6
100
90
99.9
73.9
80.3

78.6
90.2
67.4
76.1
73.5
89.8
80

79.2
90.2
67.5
76.6
73.8
90.9
81

83.3
87.3
82
83.6
82.4
84.6
82.5

82.7
85.8
82.2
83.2
82.3
83.2
81.9

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

75.1
71.7
97.6
81.4
95.7
52.5
58.8

75.3
72.1
97.6
81.6
95.6
53
59

78.5
80.5
83.2
80.5
78.7
73.7
72.9

80.9
83.9
81.8
81.8
80.1
80.1
78

76.9
74.8
89.7
80.6
83.6
64.1
69.1

78.4
76.3
88.9
81.3
84.3
67.8
72.8

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

86.8
86.3
93.5
89
87.7
80.1
82.2

86.3
85.7
94
88.9
87
78.7
80.8

87.6
93.9
83.6
87.6
86
91.5
86.7

88
95.4
81.6
87.4
84.3
94.4
88

87.2
89.4
88.1
88.1
87.4
86.3
85.7

87.2
89.7
87.2
87.9
86.7
87.3
86.1

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

87.4
88.4
92.5
89.5
87.4
82.4
83.1

86.5
88
91.6
88.8
85.3
81.4
81.4

88.4
91.1
88.6
89.1
89.3
88.3
87

88.4
91.9
86.4
88.5
87.3
90.4
87.8

88
89.1
90.4
89
89.6
85.6
86.2

87.5
89.2
88.7
88.3
88
86.3
86.1

The table presents the macro and micro averages across all LORSO folds for each

classifier.
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Table 19. Leave-One-Room+Distance-Out Results

LORDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

71.7
71.8
83.3
76.1
72
60.2
63.8

74.2
74.1
83.9
77.8
75.1
64.6
68.1

80.2
77.3
94.2
83.9
90.7
66.2
72.7

81.4
79.2
94.3
84.9
92
68.6
73.9

76.4
74.2
89.3
80.2
83.1
63.6
69.8

78.1
76
89.5
81.3
84.8
66.7
72.6

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

92.8
90.2
99.4
94
99.4
86.2
90.9

94.8
93.3
99.1
95.6
99.1
90.6
93.5

86.8
92.8
81.5
86.3
83.1
92
87

87.5
95.1
80.2
86.6
82.7
94.7
88

89.5
91.3
89.6
90
89.2
89.5
88.8

90.9
93.9
88.9
91
89.1
92.8
90.5

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

95.6
94
99.8
96.4
99.6
91.5
94.2

96.3
94.8
99.8
96.9
99.7
92.7
95.1

78.6
93.2
64.9
75.6
71.9
92.4
80.2

78
93.4
63.1
74.5
71.1
92.8
79.9

86.1
93.6
80.2
85.8
81.8
92
85.8

86.1
94.1
79.5
85.7
81.4
92.8
86

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

81.4
77.9
97.2
85.4
84.7
65.5
71.6

81.3
78.2
95.7
85.1
87.4
66.8
73.1

78.5
80
82.6
80.3
74
74.3
73.8

80.3
81.6
83
81.5
78
77.6
77.4

79.7
78.5
89.1
82.6
77.9
70.3
73.4

80.8
79.3
88.9
83.1
81.8
72.6
76.2

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

89.9
91.3
93.2
91.5
88.3
86.7
86

91.6
92.4
95
93.1
90.4
88.1
87.9

89.4
92.8
86.4
89.2
87.3
92.5
89.6

88.9
93.4
84.5
88.5
85.9
93.3
89.2

89.7
91.7
89.6
90.2
89.1
89.9
88.9

90.1
92.5
89.4
90.5
89
90.9
89.4

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

88.2
90.3
90.3
89.6
86.9
86
85.1

90
92.5
91.2
91.2
88.2
88.8
87.2

90.6
92.5
89.1
90.5
89.5
92.1
90.5

91
93.5
88.8
90.9
89.4
93.3
91.1

89.6
91.1
89.7
90
89.3
89.5
88.9

90.5
92.5
89.9
90.9
89.7
91.2
90

The table presents the macro and micro averages across all LORDO folds for each

classifier.
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Table 20. Leave-One-Speaker+Distance-Out Results

LOSDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

77.5
78.7
82.7
79.7
75.9
72.2
72.8

74.7
75.4
82
77.6
73.5
67.4
69

80.8
77.4
93.6
84
85.9
68
74.2

78.5
75.1
93
82.3
83.5
63.9
70.5

79.3
77.7
88.7
82.1
80.6
69.8
73.7

76.7
75
88
80.2
78.1
65.5
70

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

92.6
91.7
99.5
94.6
98.4
85.8
87.2

92.3
91.8
99.3
94.4
98
85.3
86.1

81.8
88.6
80.2
82.7
78.6
83.3
78.9

81.1
88.1
79.4
82.1
77
82.8
77.9

86.6
89.9
88.9
88.3
84.9
84.4
82.6

86.2
89.8
88.5
88
83.6
83.9
81.7

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

91.8
91.3
97.9
93.7
98
85.7
86.4

91.4
90.5
98.9
93.6
98.9
84
85.1

77.8
87.4
71.9
77.4
70.1
83.7
75.7

74.8
85.9
68.1
74.1
66
81.6
72.4

84.2
89.3
83.7
85.4
77.3
84.6
80.2

82.4
88.2
82.1
83.9
74.5
82.7
77.7

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

87.1
83.8
98
89.6
86.6
76.1
80.7

85.5
82.4
97.5
88.4
84.1
73.5
78

79.6
81.5
83.8
81.6
75.7
75.4
75

78.8
81.1
83.2
81
73.5
74.4
73.4

82.9
82.4
90.1
85.2
80.4
75.7
77.5

81.9
81.6
89.7
84.5
78.2
74
75.5

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

95.3
97.2
93.5
95.2
93.8
97.1
95.4

95.3
96.3
94.4
95.3
94.6
96.3
95.4

84.2
89.6
84
85.5
80.9
84.5
81

82.9
88.7
82.5
84.2
78.7
83.2
79.1

89.2
92.2
88.3
89.7
88
90.1
88.3

88.6
91.5
87.9
89.1
87.5
89.2
87.5

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

94.5
97.2
91.7
94.3
92.2
97.2
94.6

93.6
96.1
91.2
93.5
91.7
96.1
93.8

85.7
89.5
86.7
87
83.8
84.7
82.5

83.9
88.1
85.3
85.5
81.6
82.5
80

89.6
91.8
89
90
88.9
90.2
89

88.3
90.5
88
88.8
87.7
88.7
87.6

The table presents the macro and micro averages across all LOSDO folds for each

classifier.
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Table 21. Leave-One-Room+Speaker+Distance-Out Results

LORSDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

68.5
67.2
84.9
74.1
69
52
57.4

69.3
68.4
85.1
74.8
68.4
53.5
57.8

75.8
71.2
95.9
80.9
88.8
55.6
65

77.2
72.7
96.4
82.1
90
58.1
67

72.6
69.4
91.1
78
79.4
54
61.7

73.7
70.8
91.4
78.9
80.2
56
63

QDA

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

85.6
83.9
99.5
89.6
99.5
71.7
75.1

88.7
87.5
99.5
91.8
99.5
77.9
80.4

80
84.1
87.5
83.6
79.2
72.4
70.5

81.1
87
84.9
83.8
78.6
77.3
73.4

82.5
84
92.9
86.4
85
72.1
72.5

84.5
87.2
91.4
87.6
85
77.6
76.4

DT

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

88.7
85.6
99.5
91.1
99.4
78
83.3

89.2
85.8
99.5
91.4
99.5
79
84.5

74.4
81.1
69.8
72.3
71.6
78.9
73.1

71.2
78.3
62.7
67
68.1
79.7
71.5

80.8
83.9
83
82
80.3
78.5
77.2

79.3
83.2
79.1
79.8
77.8
79.4
76.6

GNB

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

74.9
71.2
97.7
81.2
85
52.1
58.8

78.7
75
96.6
83.4
86.8
60.8
67

71
72
87.1
76.9
68
54.9
56.4

74.8
75.9
86.5
79.2
71.9
63.2
64

72.7
71.5
91.8
78.9
73.1
53.6
57.5

76.5
75.3
91
81.1
76.6
62.1
65.3

LR

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

87.5
87.9
91.6
89.1
86.4
83.3
83.8

89.1
89.2
93.1
90.5
88.6
85.2
86

85
87.3
88.7
86.7
85
81.3
80.6

86.1
89.9
87.3
87.4
84.5
84.8
82.5

86.1
87.2
90
87.8
85.3
82.1
82.2

87.4
89.2
89.9
88.8
85.9
85
84.2

SVC

Accuracy
PrecisionN

RecallN
F1N

PrecisionM

RecallM
F1M

86.2
86.3
91.4
88.1
85.6
81
82.5

86.9
87.6
90.9
88.5
86.1
82.9
83.7

86.3
87.4
91.3
88.2
88
81.2
82.1

87.6
89.8
90.4
89.1
87.7
84.8
84.1

86.3
86.7
91.4
88.1
86.8
81.1
82.4

87.3
88.5
90.6
88.7
86.8
84
84.1

The table presents the macro and micro averages across all LORSDO folds for each

classifier.
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