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This thesis describes a novel system that allows a robot to infer the meanings of new words from

their usage in context. TWIG (Transportable Word Intension Generator) can parse simple sentences,

determine the reference of any unknown words to objects or people in the environment through

sentence context, and can determine over time what the meanings of the new words are by building

“definition trees” that imply the word meanings from their structure. The system was originally

built to learn pronouns, a word category that has previously been unmodeled in the robotic word

learning literature, but is general enough to learn some other word categories, including prepositions

and transitive verbs. The system was implemented on a physical robot equipped with face detectors,

simple vision systems, and a sensor network for object localization. TWIG succeeded in learning

that “I” and “you” refer to the speaker and addressee; that “he” must refer to a person that is

neither of these; that “this” and “that” must refer to proximal or distal non-person objects; that

“above” and “below” are prepositions that refer to relative height; and that “am” and “are” refer to

the identity relation. The system can be used for sentence production as well as comprehension, and

was found to produce more correct sentences and fewer incorrect sentences about its environment

than similar systems that lacked the system’s extension inference and definition tree capabilities.

The work contains several new approaches in the area of robotic word learning, and can also be

interpreted as a computational model of how human infants use contrast to learn word meaning.
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Chapter 1

Introduction

Learning a new language from observation alone is hard. Most conversations take place without

helpful pointing gestures at what the speaker is talking about. Following a speaker’s gaze, when it

can be done at all, can be misleading or uninformative if the speaker is looking at the person he or

she is addressing, or at something unrelated to the content of the speech. Even if the speaker were

to point at, say, an empty chair, this hardly narrows down the range of semantic possibilities: the

speaker could be saying, “Sit down,” or “I got this at Target for ten bucks,” or “We need one more

for Bridge – care to join us?” A listener who knows no words of a language will usually be at a

complete loss to decipher the utterances of adult speakers addressing each other.

On the other hand, a listener who knows some words of a language has a great advantage in

learning new words, because that listener can infer some of the meaning of a new word from context.

If the speaker says, “This chair is made of mahogany,” an English-speaker might infer that mahogany

is a kind of wood. If the speaker says, “The Caliph will sit there,” the listener could wait to see what

kind of person eventually sits in the chair. In both cases, the learner avoids the naive assumption

that the new word is a name for the chair itself.

This thesis is about how a robot can take advantage of this kind of reasoning to learn new words

from the people around it. Using the methods I will describe, a robot can watch two nearby people
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have a simple conversation, pick out a sentence in which it understands all but one word, and then

reason about what the new word means, based on its experience. The robot is then able to use

the new word in understanding new sentences, generating its own sentences, and helping it to learn

other words. To borrow an analogy from inductive proofs, my concern here is not with the “base

case” of learning first words, but the “inductive step” of moving from a vocabulary of n words to a

vocabulary of n+1 words. Previous robotic work has focused primarily on that first step of learning

first words (see Chapter 2), and so has not explored the power of using existing word meanings

and linguistic knowledge to learn new meanings. The work presented here shows how to expand a

vocabulary, given a little knowledge to start.

My work on this problem began with a thought experiment. How would a robot learn the

meanings of the words “I” and “you”? When I began this project, robotic word learning research

had been mostly about finding repeated patterns of audio and matching those patterns to visual

images (Roy and Pentland, 2002; Yu and Ballard, 2004). A robot using this kind of algorithm would

fail to learn either “I” or “you,” because “I” would always appear to refer to a human of some kind,

and “you” would not look like anything at all if the speaker was looking at the robot and there was

no mirror nearby. I was drawn to this puzzle, as well as the compelling idea of a robot learning to

use “I” to refer to itself.

But the prize was more than just learning these two words. “I” and “you” seemed to point to

a whole realm of language that was unavailable to the previous word learning systems. Even the

youngest language learners often use words that would be inaccessible to a system that assumed all

words can be defined by association with images: a child’s first fifty words can include the words

“more,” “that,” and “bye” (Nelson, 1973). By focusing on simple, universal words that were explicitly

not visually defined, I hoped to uncover how other such words might be learned by a robot, and

perhaps learn something of the mental scaffolding that underlies human language and thought.

I turned to the developmental psychology literature to find out what was known about how human

children learned the words “I” and “you.” The work of psychologist Yuriko Oshima-Takane suggested
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that children do not learn these words through one-on-one teaching, but through observing other

people talk to each other (Oshima-Takane et al., 1996, 1999; Oshima-Takane, 1988). This stands to

reason; after all, if a child only learns words in one-on-one conversation, she will only ever hear the

word “you” in reference to herself. How, then, would the child ever learn that “you” can refer to

somebody else? The child would need to hear the word used in reference to somebody else, and that

meant learning from conversations in which she was not taking part.

But learning words from speakers that do not intend to teach is hard – perhaps the hardest part

about learning “I” and “you.” I mentioned some of the reasons for this earlier: speakers cannot

be expected to be helpful with their gaze and pointing, and they will generally speak in complete

sentences. They will also tend to only use language correctly; there is no explicit “negative evidence”

for the learner to decide when it would be incorrect to use a particular word.

Thus, by attacking the problem of “I” and “you,” I had stumbled upon one of the great mysteries

of child language acquisition: how young children manage to learn language even when they receive

no explicit instruction. There are, in fact, some communities that consider teaching a child language

as absurd a task as teaching the child to crawl; many adults in these communities do not even deign

to speak to children directly until they already understand some language (Heath, 1983). Moreover,

several researchers have argued that children do not pay attention to grammatical correction (Braine,

1971; Morgan et al., 1995), though this may not hold for semantic correction (Brown and Hanlon,

1970). In any case, it is certainly true that under many circumstances, children do not need to be

told the meanings of words, but can infer meaning from context (Bloom, 2000; Brown, 1957)

A robot that could learn words passively, by observing humans talk to each other, would be

considerably more useful than one that required explicit instruction. Humans have better things to

do than teach a robot new words. Moreover, they may not know which words the robot does not

already know, or may not even realize that a robot has the ability to learn new words at all. A robot

that is able to learn without explicit instruction will be generally better able to adapt than one that

does not have the same capacity. One resident of a working class mill town put it well when she told

3



a psychologist her philosophy on child word learning:

He’s got to learn to know about this world; there’s no one who can tell him . . .White

folks hear their kids say something, they say it back to them, they ask them again and

again about things, like they’re supposed to be born knowing. You think I can tell [my

grandson] all that he’s got to know to get along? He’s just got to be keen, keep his eyes

open . . . There’s no use me telling him, “Learn this, learn that. What’s this? What’s

that?” (qtd. in Heath, 1983)

Indeed, neither the robot designer nor the naive user can be expected to have the time or thor-

oughness to tell the robot “all he’s got to know to get along.” If the ability to learn new words at

runtime is to be useful, it can’t require a teacher’s explicit instruction for every single new word.

Not even human children receive such extensive instruction.

The method I eventually settled upon for determining the reference of new words was using

sentence context. By parsing the understood words of a sentence, and grounding those words in the

robot’s environment, the robot could tell what the new word was referring to. For example, if the

robot heard “I got the ball,” and it knew what “got the ball” meant, it could look to see who was

holding the ball, and assume “I” referred to that person. The details of this system are to be found

in Chapter 6.

But this is only half the problem: finding the extension of the word, or what it refers to in a

particular sentence. Over time, the system must learn the intension of a word, or what it means

in a general sense without a particular referent in mind. In the case of nouns and pronouns, the

intension of a word includes all the facts that the word implies about its referent: a “ball” must be

round, “you” must be the person spoken to, and so on. For transitive verbs and prepositions, the

intension is the information that the word implies about the relation between the two noun phrases

it joins: for instance, “A chases B” implies A is behind B, and that both are moving quickly.

Ulimately, word meanings should be grounded in facts that the robot can infer from its sensors.

This connection to the real world is what makes the robot more than a simple repository of facts it
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has been told. It allows the robot to communicate what it senses using the words it has learned, and

augment its sensory knowledge with factual knowledge. (For more arguments on the need to ground

language and facts in experience, see Harnad (1990) and Roy (2005).)

There are several difficulties in learning the meaning of a word from examples in context alone.

Sensor noise is a constant problem, rendering useless any technique that expects the data set to be

fully accurate. Some words require that certain properties are not true of their referents; for example,

“he” implies that the referent is not the speaker. Allowing such properties to be a part of a word’s

meaning can open up a Pandora’s Box of possible meanings, because there are a huge number of

facts that are not true at any given time, and some will consistently hold across all examples of a

word. There are also issues of deciding how complex to make a definition, and how far it should

generalize from only a few examples. Finally, there is the issue of deixis : some word meanings, such

as “I,” depend on who is speaking, and the robot must generalize to its own case using only examples

from other people. I shall describe in Chapter 7 an elegant system that solves these problems, using

a novel variant on decision trees in which the meanings are stored on the paths to the root.

The list of words that these methods have learned through observation is growing all the time,

but has included the deictic pronouns “I,” “you,” “this,” and “that”; the linking verbs “am” and

“are”; and the prepositions “above” and “below.” Each word is defined in terms of basic sensory

predicates that the robot can verify for itself. Unlike previous word-learning systems, once the robot

has learned a word, it can use the word in full sentences, even understanding sentences composed

entirely of words that it did not know when the learning began. The robot can answer questions

about its environment that contain the new words, or answer a question using a new word it has

learned. In fact, the same methods that allow the robot to infer new extensions can also allow the

robot to infer the referents of ambiguous pronouns such as “it,” or to understand what is being asked

in a question. In short, this thesis represents a significant step forward in increasing robots’ ability

to communicate.

Chapter 2 will review previous approaches to robotic word learning, thus giving the reader a
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better idea of the aims, scope, and contributions of this thesis. Chapter 3 will review some of

the psychological and linguistic principles that are embodied in the present work, including a brief

overview of formal semantics and some relevant facts about childrens’ word learning. Chapter 4 will

discuss the sensory systems of the robot I used for my experiments. Chapter 5 will summarize the

experiments I performed leading up to the present system, which were geared toward learning the

words “I” and “you” as particularly tricky examples; this work previously appeared at the First

Annual ACM Conference on Human-Robot Interaction (2006), the 5th IEEE International Confer-

ence on Development and Learning (2006), and the Sixth International Conference on Epigenetic

Robotics (2006). Chapter 6 will describe the extension inference system that grew out of the earlier

experiments, which was presented at the annual meeting of the Association for the Advancement

of Artificial Intelligence (AAAI) in 2007. Chapter 7 will present my “Definition Trees” method for

learning word intensions, which first appeared at the 2007 International Conference on Development

and Learning. Chapter 8 will summarize the contributions of the system and its implications for

other work.
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Chapter 2

A Review of Robotic Word Learning

2.1 Overview

We may hope that machines will eventually compete with men in all purely intellectual

fields. But which are the best ones to start with? Even this is a difficult decision. Many

people think that a very abstract activity like the playing of chess would be best. It

can also be maintained that it is best to provide the machine with the best sense organs

that money can buy, and then teach it to understand and speak English. This process

could follow the normal teaching of a child. Things would be pointed out and named,

etc. Again I do not know what the right answer is, but I think both approaches should

be tried. (Turing, 1950)

As this quote from Turing’s “Computing Machinery and Intelligence” shows, the idea of teaching a

robot words for the things it sees has been around even longer than the field of artificial intelligence

has had a name. (The Dartmouth Artificial Intelligence Conference would would not occur until

1956.) Turing thought that by providing a robot with a sensory system and a capacity for language,

a robot might then be able to obtain an education in a manner similar to a human child. Like much

else in this famous essay that introduced Turing’s imitation game, the idea was far ahead of its time
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in terms of the available technology. Nevertheless, Turing recognized that if the intelligence’s pursuits

were not to be limited to “a very abstract activity like the playing of chess,” it would probably need

some sensory connection to the real world, as well as a means by which humans could communicate

facts about that world to the robot.

Turing made his observations so briefly that he is not usually given credit for his argument that

robots should be taught English using “the best sense organs money can buy.” Rather, the more

common citation in recent years is Stevan Harnad’s “The Symbol Grounding Problem.” Harnad

likened the state of most artificial intelligence systems to somebody trying to learn Chinese from a

Chinese/Chinese dictionary. In most reasoning systems, “meanings” for symbols merely pointed to

other symbols, with nothing necessarily anchoring the whole system in reality. Harnad asked, “How

can you ever get off the symbol/symbol merry-go-round?” He concluded that meaning had to be

built “bottom up,” from sensors, or else the meanings of the symbols would be simply “parasitic on

the meanings in the head of the interpreter” (Harnad, 1990).

Harnad’s analysis was probably influenced by Searle’s Chinese Room argument. Searle likened

artificial intelligence programs to a person locked in a room, forced to respond to Chinese phrases

by looking up the replies in a giant book of protocol. Artificial intelligences cannot be said to

understand their content any more than the person locked in the room can be said to understand

Chinese, said Searle (1980a). Arguably, if the locked room aspect were taken away, and the Chinese

characters presented along with the real situations that engendered them, then the person locked

in the Chinese room could be able to “understand Chinese” after all. This is the heart of the

“robot reply” to the Chinese room argument: that giving the artificial intelligence sensors, or having

the symbols be caused by the external environment “in the right way” could allow the intelligence

to understand its symbols after all (Fodor, 1980). This answer doesn’t satisfy Searle, who argues

that this semantics isn’t the kind of semantics he’s looking for; he wants the understanding to be

grounded in subjective experience, or “qualia,” which he believes can only be generated by brains

(Searle, 1980b). Nevertheless, the Chinese Room analogy is interesting in that it can be seen as an
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argument against artificial intelligence from semantics, and therefore suggests the importance of the

“epistemology” of an A.I.’s semantics – i.e., how it came to know the meanings of its words and

symbols.

Curiously, however, the recent work that has attempted to ground words in perception has come

mostly from the cognitive science community, with an emphasis on cognitive modeling over artificial

intelligence; this includes the work of Regier (1996), Bailey (1997), Yu and Ballard (2004), de Marcken

(1996), and Roy and Pentland (2002). The lack of roboticists working on the problem might be

the legacy of Rodney Brooks, who argued forcefully that the robotics community ought to give

up implementing logic and reasoning entirely, and focus instead on low-level reflexes and instincts

(Brooks, 1990). It may also be attributable to the focus of the natural language processing community

on text in the absence of perception, since this tends to be where most practical applications lie

(e.g., web crawling, document summarization, and automated telephony). Furthermore, roboticists

interested in language acquisition have tended to focus on the most obvious words: concrete nouns.

This makes the problem seem to be unsolvable without good computer vision, which itself is a

subcommunity with plenty of open problems.

Below, I shall briefly summarize the most influential pieces of robotic language acquisition research

leading to the present work. Most of them have appeared within roughly the last ten years, and

most of them were framed in some way as models for child language acquisition. My own motivation

is somewhat more complicated; I believe that human word learning is worth trying to “reverse

engineer,” but that clarity, versatility, logical coherence, and accuracy are more interesting goals than

biological and psychological plausibility, which are often in the eye of the beholder. Nevertheless,

because they learn sensor-grounded meanings for words in an unsupervised fashion, the systems I

will describe below are the most similar to the present work in their goals and methods.
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Figure 2.1: Sample visual inputs to Roy and Pentland’s CELL system (top), and the histogram of
pairwise distances between points on the objects’ perimeters (bottom), which CELL used to visually
characterize them (Roy and Pentland, 2002).

2.2 The CELL System

Deb Roy’s CELL system (Roy and Pentland, 2002) was one of the first systems to use real auditory

input with real images for word discovery and learning. Though there were word learning systems

that came before it, no previous system combined word discovery from real infant-directed audio

with vision.

The inputs to the CELL system were audio recordings of real mothers talking to their children

about various toys, combined with static images of those toys against plain backgrounds (Figure

2.1). The desired outputs were phonetic transcriptions of words for toys, paired with histograms of

pairwise point distances that represented the shape of each toy.

To do this, CELL passed the audio information to a recurrent neural network that had been

trained to output a vector of phoneme probabilities for each 10ms time window. The visual infor-

mation was changed into a representation of object shape by subtracting out the plain background
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from the image, then calculating the relative distance between every pair of points, as well as the

relative angle between the line connecting the points and the object edge at one of the points. This

information was then stored in a histogram for each view of each object; histograms for multiple

views were stored in lieu of a true 3D representation.

Roy’s algorithm handled the noisy, variable nature of his data by defining distance metrics between

audio segments, and between video segments. For the audio, this was done by creating a Hidden

Markov Model for each audio segment, in which the production probabilities were the probabilities

output by the RNN and the transition probabilities were trained from the TIMIT audio database

(Garofalo, 1988); the distance between audio segments was then a function of the probabilities that

each segment’s HMM generated the observed output of the other. For the shape histograms, a

simple chi-square statistic on the four most-similar views for two objects served as the distance

metric. The audio distances were used to find repeated words in the system’s “short term memory,”

which qualified an audio-visual pair for entry into “long term memory.” Then both kinds of distances

were used to consolidate similar audio-visual pairs in long-term memory.

The CELL system’s greatest strength was its clever distance metrics, which allowed it to compare

messy real data for word discovery. Going from idealized representations to real input is a huge step,

and the distance metrics were the key to making this happen. On the other hand, CELL was still a

long way from learning language in a real environment. Assuming that all words refer to the shape

of an object, and that the object in question is visible and obvious, is a long way from being able

to learn language in general. It isn’t clear, for example, how the distance metric idea would work in

a domain where shape is sometimes irrelevant; objects may be quite distant along some dimension,

while still close in the dimension relevant to the word at hand. (Consider being presented with Big

Bird and a sunflower as examples of the word “yellow.” What should the distance between their

visual representations be?) Also, the semantics of the system were entirely based on recognition,

rather than production, and it is difficult to see how shape histograms could be integrated into a full

sentence compositional semantics.
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2.3 Yu’s Gaze-Tracking Word Learner

Real word learning does not occur in a blue-background vacuum, and Chen Yu’s word learning

system (Yu and Ballard, 2004) used gaze direction to determine what the speaker was talking about.

The system used a head-mounted eyetracking system to determine the speaker’s head pose and gaze

fixation points; a Hidden Markov Model with these inputs decided whether the observer was fixating

or in the midst of a saccade to a new target. An image segmentation algorithm (Wang and Siskind,

2003) was combined with a color similarity measure to extract the observed object from the rest of

the scene.

The visual features used in Yu’s word learner were considerably more expressive than the CELL

system’s simple shape histograms. Color, shape, and texture were extracted from the objects ob-

served. In addition, for hand movements of the speaker, the system extracted three-dimensional

translation and rotation speeds.

Similarity between words was determined using “edit distance” calculations in which the distance

between phonemes was based on the similarity of their articulatory features. Rather than requiring

that words be repeated within a short amount of time, the system put all utterance fragments into

bins based on their visual context, and searched for similarity only within the same bin. (Unlike

CELL, Yu’s system does not appear to have needed a short-term memory buffer, probably because the

phoneme representation was more efficient than storing Roy’s probability vectors at 100 Hz.) Each

bin was the result of a clustering algorithm applied to the visual data; these clusters were considered

the possible meanings of the words, and each word could be binned with as many “meanings” as

applicable at the time it was uttered. A final step performed expectation maximization to calculate

the most likely conditional probabilities of “Pr(meaning | word)” for each word.

Yu’s system included several advances over Roy’s: a wider variety of visual features, a method for

determining the referent of a word from a complicated visual scene, a reduced reliance on repetition

within a short time frame, and better accuracy overall. The ability to pick out referents through

gaze tracking was an especially clever addition.
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While Roy’s method provided a distance metric such that objects within a certain perceptual

distance of each other could be judged the same, Yu’s method clustered the existing examples

together. This unfortunately meant that the system’s meanings lacked an easily expressible, compact

form that could be used in a compositional semantics. Another possible criticism is that the visual

prototypes themselves were difficult to interpret, being the result of clustering applied to principal

component analysis applied to large-dimensional spaces. It is unclear how well the clusters fit the

“necessarily true” aspects of the words in question, as opposed to facts incidental to the experimental

setup.

Yu’s recent work (Yu, 2006) has shown that information about the “syntactic class” of a word,

corresponding to the kinds of words that have been observed to be substituted for that word, can

help in mapping words to objects. The work represents an interesting bridge between automated

grammar learning (the system uses the ADIOS grammar learner (Solan et al., 2005)) and semantics

learning. Yu’s work along these lines was tested only in simulation, with the environmental context

represented as unordered lists of abstract symbols (similar to de Marcken (1996); see below), and thus

could not capture the relational information, compositional semantics, or conjunctions and numerical

values used by TWIG; on the other hand, this system learned some grammatical information online,

which TWIG does not do.

2.4 Regier’s Preposition Learning

We turn now from methods implemented on real robots to cognitive models implemented in simu-

lation, one of the most influential of which was Terry Regier’s preposition-learning system (Regier,

1996). Regier’s interest was in how word meanings can be learned from only “positive examples,”

when so many neural networks require “negative feedback” for learning categories. (Children are

thought to learn language primarily from correct examples; see chapter 3 for more details and cita-

tions.) His answer was essentially that situations labeled with other words count as implicit, “weak”
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negative examples for the target word. For example, if a situation was labeled as an example of

“near,” it would also update the representation for “outside” as a weak negative example. This

translated into mathematical terms as a reduction in the step-size ∆ during back-propagation of

error through the neural network.

Though Regier’s work was done in simulation, it was a much better simulation than most. Images

were processed with artificial neurons performing the processing of center-surround and more complex

cells, modeling actual human visual processing. Visually, then, it was quite close to the goal of

grounding language in perception, at least for the case of prepositions when the “trajector” and

“landmark” are known. (In “A is near B,” A is the trajector and B is the landmark.) Still, the

shapes involved were largely simple line drawings, making Yu’s and Roy’s systems slightly more

convincing demonstrations of practical visual grounding.

The model was also notable for modeling the prepositions of several different languages, including

Russian, German, and Mixtec, which can contain very different prepositions. For example, German

subdivides the case handled by the English “on” depending on whether the landmark supports the

trajector (auf ) or not (an). Mixtec, meanwhile, makes analogies with body parts, such as sini

meaning “on the (animal) back of” to describe an object on a table.

If insisting on neurally inspired computation was a strength of Regier’s system, it probably also

limited the model to learning words in isolation; each scene was presented while activating a single

“neuron” representing the target word. Parsing and compositionality would have been difficult to

add to the system while retaining a connectionist implementation, but were tangential to Regier’s

primary interests.

2.5 Bailey’s Verb Learning

A related system that emerged from the same group as Regier was Bailey’s x-schema system for

learning verbs (Bailey, 1997). Bailey’s system was also connectionist, with the underlying repre-
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sentations called Petri nets (Murata, 1989) controlling the flow of actions. Action parameters were

characterized by discrete values; for instance, objects being grasped were “small” or “large.” Unlike

Regier’s system, Bailey’s system did not receive input from sensors or simulations thereof; the system

was given only sets of these discrete classifications, matched with verbal labels.

Bailey’s system was primarily of interest in the way it built up verb definitions via Bayesian

model merging. Each action given as an example of a verb began as a separate sense for the word,

but models with many senses had small prior probabilities due to their complexity. The system then

iteratively combined senses as long as this increased the posterior probability of the overall model.

A single sense could contain a probability distribution over the attributes of the action – so that, for

instance, “push” might refer to an action performed on a small or large object with equal probability

(p = 0.5), but might strongly prefer an open palm (p = 0.9) to a fist (p = 0.1). In the end, different

senses for the same word ideally only remained if the senses were quite different – for example, the

“push” that moves an object across the floor versus the “push” that depresses a button.

In the end, the Petri net formalism did not seem to matter much to Bailey’s system; its inclusion

seems to have been largely cosmetic, to appease connectionists (or perhaps his advisor). The use

of discrete classifications for all actions is somewhat problematic, however, since real sensors would

not provide such convenient classifications with certainty. One can imagine a system that uses more

sophisticated Bayesian mathematics to deal with continuous distributions instead – but there are so

many details missing, such as what underlying sensory details to use, whether or how to classify them

into discrete parameters, and how to deal with sparse data and noise, that Bailey can’t really be said

to have built a system that would work with actual sensors. Nevertheless, the use of Bayesian model

merging for building senses is interesting, particularly as it is similar to the expectation maximization

method de Marcken used to discover words (de Marcken, 1996).
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2.6 Siskind’s Simulations and Logical Inference

Siskind’s model of word learning in the presence of noise (Siskind, 1994) was performed entirely in

simulation, and is a good example of the way simulations can be highly successful on their own terms

by abstracting away some of the problems facing a real-world word learner.

Siskind’s model of word learning treated each utterance as an unordered set of words w1, . . . , wn

that had already been matched to a set of possible utterance meanings M . These possible meanings

were themselves s-expression-like representations; Siskind gives “CAUSE(mother, GO(ball,UP))” as

an example, though a more complete description of the space of possible meanings was not given.

This did not matter much, however, because the system immediately decomposed these expressions

into sets of the symbols that compose them (e.g., {CAUSE, GO, UP, ball, mother}). The system’s

task was to provide a set of senses for each word, such that these possible meanings were consistent

with the input.

The basic algorithm consisted of adding to the set of “possible” meanings for each word and

reducing the set of “necessary” meanings until the two were equal. An extension addressed the

problems of noise and homonymy (multiple word meanings) by adding meanings to words if no one-to-

one mapping was logically possible, then deleting extra meanings that were encountered infrequently.

A little thought about Siskind’s algorithm reveals that it would probably not function very well

in a real environment, because some meanings are logically possible for every single utterance – for

example, “I exist,” or “Pay attention,” or “What I say is true.” Without any notion of word or

property frequency, or informativeness, only very artificial environments will have a uniquely con-

sistent word-to-meaning mapping. In fact, Siskind only tested this algorithm under highly artificial

circumstances: 80% of the time, utterances were presented with their correct meanings and nine ran-

domly generated meanings, while the other 20% of the time all 10 possible meanings were randomly

generated. With 1,680 word senses alone, the number of possible random utterance meanings was

so high that a collision between possible meanings across utterances was highly unlikely.

It is also difficult to see how Siskind’s algorithm would function with real data, instead of symbols

16



alone. Using numbers requires that one specify how exactly a pattern of numbers should generalize.

There are literally an infinite number of ways of doing this in a matter consistent with data, making

logical consistency alone an insufficient criterion for learning meaning.

Siskind’s later work has dealt with ways of modeling verbs in a form appropriate to learning their

definitions – for instance, extracting support, contact, and attachment relations from line drawings

(Siskind, 1995) and later from video (Fern et al., 2002). The former did not actually involve learning

or language at all, though it is often cited in this area, perhaps because of its overly promising

title (“Grounding Language in Perception”). The latter did involve learning positive examples of

actions from video, but no words were actually involved. Perhaps these are milestones on the way to

eventually circling back to the problem of word learning itself, but the difficult problem of changing

the visual scene into a logical formalism appears to have sidetracked the linguistic aspects of Siskind’s

work.

2.7 de Marcken: Learning as Compression

Carl de Marcken’s Ph.D. thesis (de Marcken, 1996) is a good representative example of a system

built to segment text or phonetic transcriptions into words and phrases by finding repeated patterns.

Several other systems have used similar lexicon-building methods (e.g., Brent and Cartwright, 1996),

but de Marcken’s example also attempts to handle the case of “extralinguistic channels,” or in other

words, learning meanings for words at the same time as their segmentations.

de Marcken’s strategy rested on the “Minimum Description Length” (MDL) principle, or the

idea that learning is a kind of compression of data (Grünwald, 2005; Rissanen, 1972). Essentially, if

one can represent the input concisely, then one has probably learned something about its structure.

Seeking concise representations of the input encourages the use of concise hypotheses that explain

the data; if a good explanation of the data can be found, it should result in an overall savings

in the number of bits necessary to represent the input. The desirability of short hypotheses is a
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principle most famously advocated by the medieval theologian William of Occam, and has long

been used as a heuristic for judging scientific theories; the heuristic “is often referred to as Occam’s

Razor to indicate that overly complex scientific theories should be subjected to a simplifying knife”

(Kearns and Vazirani, 1994). More recently, it has been proven that “Occam learning,” or learning

that guarantees a hypothesis that can be represented by a small number of bits, results in “probably

approximately correct learning,” or learning that has an arbitrarily high probability 1 - δ of arbitrarily

low error ǫ, given a sufficient (polynomial in 1/δ and 1/ǫ) number of examples (Blumer et al., 1989).

Given an input corpus of raw text (or, equivalently, a phonetic transcription), de Marcken’s

algorithm made many passes over it, replacing repeated patterns with shorthand symbols which

were explained by a small lexicon. This transformation was only performed if the combined size of

new, compressed text and lexicon was smaller than the original size. A basic version of the algorithm

would only search for the lexicon entry that provided the greatest savings, but de Marcken included

methods for adding several lexicon entries at a time, so long as they did not conflict. In addition, the

lexicon could itself be compressed by referring to other symbols in the lexicon; in this way, the lexicon

contained not only words, but larger phrase structures and smaller morphemes. When the text and

lexicon could no longer be compressed, the final lexicon contained a fairly good representation of the

kinds of words, phrases, and morphemes that could carry individual meaning.

Obviously, some words do not simply concatenate with their morphemes to create new words;

sometimes consonants must be doubled when adding “ing,” for instance. de Marcken allowed for this

possibility by also including “perturbations” in the search. Thus, a new lexicon entry could contain

not only the parts that composed it, but also rules that changed the parts’ structure when they were

combined.

This method of pertubations led to de Marcken’s representation of meaning in the lexicon: a

meaning was simply a perturbation that added a symbol for a “thing out there” to the lexicon entry.

For example, if the text “walk” was encountered along with the “extralinguistic” symbol WALK,

then the lexicon might add the entry “ω = w+a+l+k + {WALK},” associating the letters with the
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meaning and a shorthand ω with which to represent both. de Marcken argued that this would allow

entries such as “γ = c+r+a+n+ β + {RED} and β = b+e+r+r+y + {BERRY } for “cranberry”

and “berry,” respectively, which would allow “cranberry” to make use of the existing meaning for

“berry” while tacking on the fact that it was red.

Though de Marcken’s algorithm was remarkably successful on noisy phonetic transcriptions of

audio when it came to finding meaning, his semantics was highly suspect: the meanings provided as

“extralinguistic” information were actually the spoken sentences themselves! These sentences were

treated as sets of symbols, with one symbol for each word; thus, a successful “meaning” paired the

correct string of phonemes from the auditory channel with the appropriate word-symbol. Though this

method was certainly easier to implement and evaluate for accuracy than a more realistic method,

it made for a strange model of the world. Though lexicon entries were allowed to be compositional,

the facts about the world were not; concepts such as WALK and ON floated out in space, unbound

to any particular entity.

de Marcken’s method of perturbation operators for meanings in the lexicon may yet prove to be

useful, and his algorithm was highly successful at word discovery. Nevertheless, his representation

of the world as a “bag of symbols” could have been helped tremendously by the introduction of

something like Montague semantics (see Chapter 3). One also suspects that there must be a better

way to compress the data than de Marcken’s expectation maximization approach, which is not well-

suited to online learning and seems a little too much like a brute force search.

2.8 Other Related Work

The projects mentioned above are the most similar to the current project in their aims and scope,

but a few other projects similar to these deserve mention.

The earliest system that explicitly could learn new words was Terry Winograd’s SHRDLU system

(Winograd, 1971). The system could accept new definitions explicitly, such as “a ‘steeple’ is a stack
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which contains two green cubes and a pyramid.” Though SHRDLU predates the widespread use

of Montague-style semantics in NLP, it performed a similar transformation of sentences into logical

form. Quotes typed around a word indicated that it was new, and that a definition was being

provided.

Tim Oates’ PERUSE system (Oates, 2002) used “dynamic time-warping” to find repeated words

in raw audio, without the use of a phoneme classifier. Dynamic time-warping is a dynamic pro-

gramming approach to “stretching” segments of audio over time until they resemble each other;

the amount of stretch necessary determines the goodness of the match. PERUSE was primarily a

method for word discovery, and did not particularly otherwise interact with the environment (visually

or otherwise).

Tim Oates also developed a method for inferring the rules of a context-free grammar from ex-

amples labeled with semantic types (Oates et al., 2004). Grammatical inference is a subfield unto

itself, only tangential to the current work, but this is one of the few papers that combines learning

with Montague semantics, which we shall discuss later as a very useful framework for word learning

(see Chapter 3). Oates, in turn, cites Tellier (1998) for having used Montague semantics in her

grammatical inference work; oddly, though, nobody appears to have used Montague’s framework for

learning the meanings of words.

Brent proposed an algorithm similar to de Marcken’s for word discovery and segmentation, called

INCDROP (Brent, 1999). It had the advantage of being an online algorithm, but it did not handle

the problem of association with meaning, concentrating instead on word segmentation and discovery.

Latent Semantic Analysis (LSA) is a method that supposedly learns the meanings of words

by processing large amounts of text and associating nearby words with each other (Landauer and

Dumais, 1997). While the method does provide a metric of similarity between words (it was tested by

asking it to choose synonyms), to describe what LSA produces as “meanings” might be a bit strong,

given that the system cannot judge the truth of statements composed of the words it supposedly

understands. “Associations” might be a better term for what LSA produces, since it can represent
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what things are related to each other, but not the ways in which they are related, nor any factual

information about the concepts in themselves.

The ADIOS system was another system that attempted to learn language through statistical

means (Solan et al., 2005). Its strategy was to find common phrase structures, such as “X wants a

Y,” and then cluster words based on which other words that appeared to be interchangeable with

them in the context of these phrases. ADIOS was more interested in grammar and segmentation

than semantics, but it did cluster similar words while also discovering what phrases they could be

used in. In that way, ADIOS did what LSA did, only better. Yu has recently shown (in simulation)

that ADIOS’s word clustering could be used to help match words to percepts (Yu, 2006).

2.9 Summary of Previous Work in Machine Word Learning

The greatest success of previous word learning systems was the ability to find new words in audio

without any prior knowledge of language beyond phoneme recognition. Roy, Yu, de Marcken, Brent,

Oates, and the ADIOS team all included interesting systems for picking out words from raw audio

or phonetic transcriptions. In fact, these systems handled that aspect of the problem so well that I

will hardly cover it in this thesis; I will for the most part assume that words are already segmented

when they are to be learned.1

Of all the previous word-learning systems, only Yu’s had a good solution for finding the referent of

a new word, by tracking gaze. The other systems generally ignored the problem of how the referent of

a new word is picked out of the environment. Roy, Bailey, and Regier worked around the problem by

making their referents the only objects in sight. de Marcken treated the possible meanings as atomic

1There are three other justifications for this move, besides the fact that word segmentation has been well-studied.
First, there is evidence that children can perform word segmentation long before they begin to speak and without
any particular semantics for the words (Saffran et al., 1996), so segmentation then semantics seems to be the order
that children follow. Second, it seems more effective to concentrate on the “inductive step” of using language to learn
more language than the “base case” of not knowing anything; the latter might be harder, but the former seems more
useful when some definitions can be preprogrammed. Third, very good speech recognition software already exists, at
least when it is trained to hear a single speaker, so it makes sense to leverage this technology and concentrate on the
semantics instead.
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symbols floating out in space, as if the words could be associated with anything in the environment.

Siskind avoided the problem by assuming some kind of black box gives the possible meanings for an

utterance. Only Yu had the ingenious solution of using an eyetracking device to find the referent of

a new word, which allowed him to use real footage instead of oversimplified environments (Yu and

Ballard, 2004).

Almost all of the systems restricted their learning to a particular part of speech (Bailey, 1997;

Regier, 1996; Roy and Pentland, 2002). Those that did not impose such a restriction usually treated

meanings as sets of atomic symbols (de Marcken, 1996; Siskind, 1994), and thereby avoided the

complexities of dealing with the scalars and vectors that are typical of real data. Again, Yu’s word

learning system (Yu and Ballard, 2004) was a notable exception, handling both verbs and nouns –

although it is difficult to see how words of a particularly compositional nature, such as prepositions,

could have been learned by the system.

Most previous systems could not capture the compositional nature of language, either; once

the words were learned, these systems had no way of combining them into sentences. Again, the

primary exceptions to this rule were the systems that were not actually connected to a real world at

all: de Marcken and Siskind’s systems. de Marcken’s system was interesting in that it could learn

meanings for whole phrases before breaking them into compositional parts, but the overly simplistic

meanings were themselves not compositional. Siskind suggested solving for how the words composed

after their individual meanings were learned by reconstructing the training sentences, but without

an experiment with a real robot (or even a realistic simulation) it isn’t clear how well this would

actually work.

Finally, the curious commonality between these systems that led to my current research is that

they had no way of learning the words “I” and “you.” It seems strange that such simple words

should so confound existing approaches to word learning, but not one of them could handle these

words. Roy’s system would have incorrectly memorized a shape to go with each word, or at best

would give no definition. Yu’s system likewise would have assumed a meaning based on shape, color,
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and texture, if it could find the referent for “I” at all. Regier and Bailey’s systems were not designed

to handle nouns at all. deMarcken’s system would have remained flummoxed at the paradox that

there is always a SPEAKER in the environment for every sentence, giving it no reason to associate

SPEAKER with “I” in particular. Siskind’s system might have done it under the right assumptions

for its “black box” of meanings, but hoping that a black box solves the problem is hardly a solution.

We shall see in later chapters how, in the process of tackling the problem of “I” and “you,” I

eventually came to address several of the other issues, such as how to find a referent and learning

truly compositional language. In the next chapter, I will cover some of the background material in

psychology and linguistics that motivated my particular approach to the problem of word learning.
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Chapter 3

Important Principles in Word Learning

We ended the last chapter with a puzzle: how could a machine learn the meanings of “I” and “you”

from examples? This chapter will present some general principles of word learning and semantics

that had heretofore been overlooked by the machine word learning community, including intensions

and extensions, Montague semantics, and the Principle of Contrast, which all proved to have more

applications than just the “I” and “you” problem.

3.1 Passive Word Learning in Children: The Case of “I”

and “You”

Suppose a child could only ever learn words through one-on-one teaching sessions with other people.

Thus, whenever the child heard the teacher say “you,” the word would refer to the child. It would

therefore be logically consistent for a child to believe that “you” refers exclusively to herself, as a

kind of proper name (Dale and Crain-Thoreson, 1993). If the child believed this hypothesis, then

during production, the child would use “you” in the place of “I” – a behavior called pronoun reversal

(Dale and Crain-Thoreson, 1993; Lord and Paul, 1997). Pronoun reversal is quite common among

children using pronouns before the age of two (Dale and Crain-Thoreson, 1993), suggesting that
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young children do entertain this mistaken notion about the meanings of “I” and “you” at first.

The fact that children eventually do learn the correct meanings for “I” and “you” suggests that

they are not just learning from speech directed toward them, but from overheard speech as well. To

understand that “you” generally means whoever is being addressed, the child must hear “you” refer

to other people besides herself.

Psychologist Oshima-Takane has done the most to argue that the observation of speech not

directed at the child must necessarily figure into the learning of “I” and “you,” presenting three

different strands of evidence. First, there is some experimental evidence to suggest that children

whose parents actively demonstrated the use of the word “you” for a few weeks learned its correct

use earlier than those that received no such instruction (Oshima-Takane, 1988). Second, a neural

network simulation produced the correct hypotheses about the meanings of “I” and “you” only

when exposed to multiple (virtual) speakers, and its performance improved with more speakers

(Oshima-Takane et al., 1999). Third, it appears that secondborn children tend to use these earlier

than firstborn children, suggesting that they are learning from speech directed toward their siblings

(Oshima-Takane et al., 1996).

Taken individually, each strand of Oshima-Takane’s evidence is somewhat weak. The difference

achieved by instruction was not significant due to small sample size. The neural networks were

somewhat unnecessary given that the result they demonstrated more or less logically followed from

the assumptions of their construction. The fact that secondborn children learned the deictic pronouns

faster could have been explained through another mechanism, such as the availability of more input

overall. Yet, taken together, they constitute the bulk of what is known about how typically developing

children learn the words “I” and “you.”

Interestingly, there are two groups of children for whom pronoun reversal is more common than is

typical: blind children (Andersen et al., 1984) and autistic children (Lord and Paul, 1997). In both

cases, it has been suggested that the children may be reversing pronouns more often than typical

children because of a failure to shift perspective (Andersen et al., 1984; Loveland and Landry, 1986).
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However, in the blind children’s case there is not much reason to believe in an impaired “theory

of mind” – in fact, researchers sometimes appear to infer this disability from fact of the pronoun

reversal itself (Brown et al., 1997; Fraiberg and Adelson, 1977), despite no corroborating evidence.

A more reasonable theory of pronoun reversal might suggest that these two groups are more

likely to reverse pronouns because they are not receiving the same amount of “overheard” input as

other children. In the blind children’s case, the blind children cannot see who the speaker is looking

at when saying “you,” making the word’s reference more difficult to infer. Autistic individuals are

thought to be at a disadvantage in learning to communicate with others partly because their initial

disadvantages are compounded by a reduced overall social interaction (Lord et al., 1983); if they

interact less with others, this will reduce the overall amount of linguistic input they receive. The

theory that pronoun reversal occurs due to lack of data is also consistent with the case of precocious

talkers; children at twenty months often either reverse pronouns or try to avoid them altogether (Dale

and Crain-Thoreson, 1993). It has therefore been suggested that pronoun reversal is a stage that

most children go through, but some simply progress past this stage before venturing into pronoun

production (Clark, 1978). Thus, what is known about pronoun reversal supports Oshima-Takane’s

theory: in general, observing others’ conversations seems to be necessary to get pronoun learning

right.

I have heretofore been focusing on the case of “I” and “you” because it is such a clear example

of the logical necessity of observing the conversations of others during language learning. But this

line of argument is not limited to these deictic words; psychologists tend to argue that, in general,

children can learn quite a bit from conversations that are not directed toward them, and that explicit

instruction in a first language may not even be necessary. One famous study of a working-class

African-American neighborhood in the 1970s found that adults there hardly spoke to infants at all;

nevertheless, the children apparently did listen to conversations between adults, because the children

could be overheard repeating sentences from these conversations that were not directed toward them

(Heath, 1983). Others have argued that even in cultures where parental correction is the norm, it

26



often does not appear to do much of anything, as in this oft-cited example:

Child: Nobody don’t like me.

Mother: No, say “Nobody likes me.”

Child: Nobody don’t like me.

(this exchange is repeated eight times)

Mother: No, now listen carefully: say “Nobody likes me.”

Child: Oh! Nobody don’t likes me.(McNeill, 1966)

This line of argument, and the sometimes anecdotal research that supports it, is more common

in the study of children’s grammar learning than word learning. One three-year study of three

preschool children’s verbal interactions with parents found that the adults were almost as likely

to not express comprehension after their chilren’s grammatical sentences (42%) as ungrammatical

sentences (47%), while indicating comprehension was exactly as likely under either circumstance

(45%; Brown and Hanlon, 1970). Marcus (1993) has used this finding to argue that adults do

not give clear enough feedback to guide a supervised learning process for grammatical acquisition,

though Marcus’s argument is somewhat flawed in that he assumes a child must hear the exact same

sentence often enough to be statistically certain of whether the sentence is correct or not before

making use of it as a learning example (pointed out by Dana Angluin, personal communication).

Interestingly, Brown and Hanlon (1970) suggested that parental disapproval does tend to occur in

response to semantic errors. For example, “Mama isn’t a boy, he a girl” received “That’s right” in

response, but “There’s the animal farmhouse” received the reply “No, that’s a lighthouse” (Brown

and Hanlon, 1970, p. 49). Thus, one must be careful in extending the “no supervised learning”

argument to semantics. In fact, there is some evidence that word learning rate improves with adult

interaction (Akhtar et al., 1991; Harris et al., 1983; Tomasello and Todd, 1983). Nevertheless, it is

often argued that even if adult instruction helps, there are cases in which such instruction is absent,

and the children learn to speak anyway (Bloom, 2000; Heath, 1983; Pinker, 1994).
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Why should all of this matter to the roboticist? The case of children’s learning “I” and “you”

shows that it is not only possible to learn words without explicit supervised feedback, but that it may

in fact be necessary for certain classes of words. Unfortunately, this kind of learning challenges many

assumptions that roboticists would like to make, because conversations that are not directed toward

a robot are unlikely to be tailored for its benefit. In conversations between adults, conversation may

be about things the robot can’t see, gaze direction may be harder to follow, pointing gestures may

be absent, and speech recognition may be more noisy due to rapid speech and out-of-vocabulary

utterances. On the bright side, if children themselves are proof that laborious teaching sessions

are not ultimately necessary to learn language, this opens up the exciting possibility that robot

vocabulary learning may not need to be supervised at all.

Of course, even if the ideal is a system that can learn from a totally unstructured environment,

experiments must necessarily be planned so that learning can occur within the span of an hour

instead of years. Nevertheless, the ideal of learning from passive observation can be distilled into two

principles to guide the present work. First, the present work will use purely unsupervised learning, on

the principle that even if children can make use of corrections, the unsupervised part of their learning

constitutes the bulk of their input and so deserves the focus of any attempt to replicate child-like

performance. Second, all information about the learning situation or examples must be gleaned from

the robot’s sensors alone; there can be no extrasensory channel for the labeling of examples, the

identification of referents, or cues about what was meant to be learned from the exchange. With

these two principles, the ways in which the environment had to be structured for the robot’s benefit

could be limited to necessary concessions to the robot’s limited sensors and the limited timeframes

of the experiments, without sacrificing the possibility of scaling the same methods up to observing

conversations in less constrained environments.
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3.2 On the Meanings of Words: Extensions, Intensions, and

Ideas

When one speaks of learning the “meaning” of a word, one must be careful, because a word can

have several kinds of meanings. On the one hand, a word in a sentence has a reference, or extension:

something in the world which it is about. There is also a word’s sense, or intension: its shared

meaning for the various speakers of a language, which allows one to judge the truth of a sentence

that includes the word. Finally, a word can be associated with an idea or exemplar : a subjective

association with the word that is unique to each individual.

The distinction between “sense,” “reference,” and “idea” can be traced back to the philosopher

Gottlob Frege. His essay “On Sense and Reference” (Frege, 1892/2003) argued that even though the

claims “a = b” and a = a” had essentially the same factual content when a = b was true, it seemed

that the two sentences should have different meanings, because one held a priori while the other did

not. To take a more concrete example, Frege argued that even though “The morning star is a body

illuminated by the Sun” and “The evening star is a body illuminated by the Sun” both contain the

same factual information, since the two expressions refer to the same heavenly body, in fact the two

sentences have different meanings. One could logically believe one of these statements and not the

other if one did not know that the evening star and the morning star were one and the same, and so

it must be the case that these were two different propositions somehow (Frege, 1892/2003).

To resolve this distinction in meaning, Frege argued that while the reference of “the evening

star” was the same as “the morning star” – namely, the object we call Venus – the sense of these

two expressions differed, because the two were not logically equivalent. It could have been the case

that the evening star and the morning star were different objects; this just turns out to not be

factually true. Though Frege did not express his arguments in “On Sense and Reference” in the

form of propositional calculus, one can capture Frege’s distinction by treating a word’s “reference”

as a particular literal in a symbolic calculus representation of the world (e.g., Evening Star v), while
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allowing the “sense” of an expression to correspond to a lambda calculus expression in predicate

logic (e.g., λX.EveningStar(X)” vs. λX.MorningStar(X)). This was the approach of Church, who

“remains one of the most (and perhaps one of the only) prominent proponents of broadly Fregean

semantics” (Klement, 2002, p. 96).

Interestingly, Frege also introduced an oft-overlooked third category of meaning in this essay: the

“idea” of a word. While a “sense” was a meaning shared by all or most users of a word, an “idea” of

a thing referred to the idiosyncratic mental image one imagined when thinking about the word. “In

the light of this, one need have no scruples in speaking simply of the sense, whereas in the case of

an idea one must, strictly speaking, add to whom it belongs and at what time” (Frege, 1892/2003,

p. 178). This third kind of meaning, idiosyncratic to the learner, was largely omitted from the work

that built on Frege’s, presumably because it did not sit well within the formal logical systems that

Frege’s work inspired.

The philosopher Carnap formalized Frege’s first two kinds of meaning, while ignoring the third

(Carnap, 1947). In place of Frege’s “sense” and “reference,” Carnap proposed a system of “intension”

and “extension.” Carnap defined his extensions and intensions differently depending on whether

he was speaking about words, sentences, or properties, but his definitions all had in common the

distinction between logical equivalence (or “L-equivalence”) and mere equivalence, perhaps best

called “factual equivalence.” If two expressions happened to denote the same set of individuals, they

shared the same extension. In the case of a property, this extension would be the set of individuals

that possessed the property; in the case of an expression that uniquely identified an individual, the

extension was that individual. Two expressions only shared the same intension if the were logically

equivalent; that is, if they shared the same truth-conditions. Thus, while “unicorn” and “dragon”

might both share a null extension in a world that possesses neither beast, the two words have different

intensions, because they are not logically equivalent. Though Carnap apparently did not invent the

terms “intension” and “extension,” as he refers to these terms as having “various customary uses”

(Carnap, 1947, p. 18), he was the first to formalize Frege’s distinction between sense and reference
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(Dowty et al., 1981, p. 145).

In a modern approach, the extension of a linguistic fragment corresponds to a set of individuals,

in the case of a predicate, or a truth value in the case of a sentence. An intension of a sentence is

a function (usually logical in form) that, given a state of the world, returns whether the sentence is

true, and the intension of a word is, correspondingly, a function that requires the rest of the sentence

as well as the state of the world to return a truth value. Given the intension of a sentence and a

world (or “model”) to compare it with, one can generate the extension of the sentence and determine

whether the sentence is true (Dowty et al., 1981). Frege’s third kind of meaning, the “idea” generated

by a word that is unique to each individual, can be compared to the idea of indexing intensions by

speaker to generate extensions for indexicals and such (Dowty et al., 1981), but it is more similar to

the idea of an “prototype” in psychology: a representation that is a typical example of a particular

class (Rosch, 1973).

In making these distinctions in meaning, we can avoid several common mistakes that result from

confusing these levels. Several previous systems for learning word meanings have confused extension

with intension when learning word meanings. For example, in learning the meaning of “Mommy

raised the ball,” Siskind’s system used representations such as GRASP(mother, ball) as a possible

meaning for the utterance, then mapped the word “Mommy” to the symbol mother and “ball” to

the symbol ball (Siskind, 1994). But this is a mistake, at least in the case of the word “ball”; if ball

is a literal, we do not wish to map the word “ball” to just that ball, but to any object that shares the

right properties to qualify as a ball. Siskind’s system has thus failed to generalize the word “ball”

at all, but it isn’t obvious until one notes that the literal ball is in this case the extension, and not

the intension, of the word. The same mistake continues to be made in modern word-learning work

(e.g., Kate and Mooney, 2007).

Another mistake would be to confuse the intension of the word – its logical contribution to

the overall proposition of a sentence – with its “idea,”, consisting of its prototype or subjective

associations. Latent Semantic Analysis, for example, attempts to get at word meaning by finding
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which words appear near each other in text (Landauer and Dumais, 1997). While the resulting

similarity matrix bears some resemblance to a net of subjective associations between words, the

result is more or less useless for judging the truth value of a proposition. An LSA system may know

that the word “sun” is highly associated with the words “light,” “sky,” and “clouds,” but this still

would give no basis for judging the truth of the statement, “The clouds have blocked out the sun”

when presented with the appropriate sensory evidence. Associations are not sufficient for using words

to communicate.

A system that attempts to get at word meaning by creating a sensory prototype for each word

would likewise have difficulty in judging the truth of propositions in cases where some sensory

information is irrelevant. For example, a person’s imagined prototype for the word “human” may

be of a particular gender or skin color, but the same person may know that these attributes do not

matter for judging whether someone is human or not. This is important when evaluating techniques

which define words as balls of radius r within a sensory space (e.g., Roy and Pentland, 2002);

such techniques assume that every dimension is equally important when evaluating distance from an

exemplar, which does not actually make sense in general. Painting a bachelor purple does not make

him any less a bachelor; only marrying him does.

The TWIG system eventually settled on learning word intensions as the best way of capturing

the meaning of a word. Not only does a formal semantics better equip the robot for natural lan-

guage processing, but as Frege wrote in defending his notion of “sense,” “one can hardly deny that

mankind has a common store of thoughts which is transmitted from one generation to another”

(Frege, 1892/2003, p. 177). In attempting to learn meanings common to many speakers of a lan-

guage, rather than learning private and idiosyncratic meanings based on prototypes and associations,

the learner is better equipped to both understand the truth or falsity of utterances and also to profit

from the distinctions between words that previous generations have found useful.
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3.3 The Principles of Contrast and Mutual Exclusivity

Once I had implemented a simple system for “I” and “you,” a natural yet at first puzzling question

was how one would learn the meaning of “he” from unsupervised observation.1 The interesting thing

about “he” is that it implies that the speaker is not referring to himself, and also not referring to

the addressee – yet, with only positive examples to learn from, the learner has no way of knowing

that using “he” in those cases is unacceptable. How could these qualifications on “he” be learned?

The answer was that these qualifications were implicit in contrast to “I” and “you.” Because

“I” and “you” are always used in their respective situations of the speaker referring to himself or

the addressee, it is implicit that “he” is not to be used in these situations. Even though it is

logically consistent with the evidence that “he” might validly refer to the speaker or the person

being addressed, this mapping is not consistent with the assumption that different words refer to

different things.

Clark states this “Principle of Contrast” (Clark, 1987) as follows: “Speakers assume that any

difference in form signals a difference in meaning” (Clark, 2003, p. 144). If a different word is used for

an object than the best-known word, the listener can assume that the new word refers to a different

aspect of the word. If a speaker points to a rabbit and says, “That’s my pet,” a child who knows the

word “rabbit” will assume that “pet” refers to something else besides its physical form. Similarly, if

a speaker points to a kangaroo jumping and says “kangaroo,” a child who knows the word “jump”

will assume that the new word refers to the animal, and not to the act of jumping (Clark, 2003, p.

145).

Clark suggests that the Principle of Contrast is actually a corollary to a “Principle of Conven-

tionality”: “For certain meanings, speakers assume that there is a conventional form that should be

used in the language community” (Clark, 2003, p. 143). Indeed, the two statements are more or

less logically equivalent; the Principle of Contrast is “if word W has meaning M, then not-W implies

not-M,” while the Principle of Conventionality is “if word W has meaning M, then M implies W.” We

1I apologize for the use of “he” as the sole third person pronoun throughout.
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shall usually find it more useful to speak of the Principle of Contrast, since it speaks more directly

to establishing distinctions in meaning between different words.

A stronger version of the Principle of Conventionality is the Principle of Mutual Exclusivity, which

is that for any object, only one label is appropriate for the object itself (Markman and Wachtel, 1988).

The Principle of Conventionality allows for different words to refer to the same object, as long as

they have different general meanings, but the Principle of Mutual Exclusivity forbids different words

for the same thing altogether. For example, when asked whether a doll is a “toy,” a two-year-old

may say “no”; when asked to give an example of a “toy,” the child will then present a whole group

of toys, assuming that “toy” cannot refer to the doll alone (Markman and Wachtel, 1988).

Markman and Wachtel have argued that mutual exclusivity is necessary to explain why children

cease to use “dog” to mean “four-legged animal” when they learn the word “cat”: the two terms

cannot refer to the same object, and so the concept of “dog” is narrowed to not include cats. The

Principle of Contrast, Markman and Wachtel argued, is insufficient to explain this phenomenon,

because “four-legged animal” and “feline” already mean different things (Markman and Wachtel,

1988). On the other hand, Clark has reported children as young as 1;7 using “food” and “cereal” to

refer to the same item, and a 2;1 child named Damon exclaimed “I ‘Damon,’ I ‘cookie,’ I ‘sweetheart’ !”

(Clark, 2003, p. 149). If there is a constraint that forbids the use of multiple words to refer to the

same object, it either disappears quickly or is specific to only certain kinds of words; perhaps both.

Clark does concur with the report that children will reject superordinate category labels if they have

more specific ones, e.g., “It’s not an animal, it’s a dog” (Clark, 1987). But, oddly enough, Clark also

reports a child naming animals one by one as they are put back in their container – lion, tiger, zebra

– only to conclude with the comment, “Animal back” (Clark, 2003).

This puzzle is not entirely worked out yet. The examples that Markman and Wachtel (1988)

and Clark (2003) provide suggest that category words such as “animal” or “toy” are first learned as

names for collections of things, and only later are used to refer to individuals within those collections.

If so, then Markman and Wachtel’s best example of mutual exclusivity has more to do with the
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internal representations of category words than with a general word learning principle; Clark seems

to have many examples of exclusivity being violated for other kinds of words. On the other hand,

Markman and Wachtel raise a compelling point about the problem with the Principle of Contrast

during word learning, namely that this principle alone cannot explain children’s scaling back of their

overextensions when new words are learned. It is for this reason, the usefulness of exclusivity as an

assumption during learning for influencing word definitions, that TWIG assumes mutual exclusivity.

(Problems with the assumption of mutual exclusivity will be revisited in section 8.4.1.)

3.4 Using Syntax to Aid Word Learning

Children also use syntax to infer aspects of word meaning. In one study, children between the ages

of 3 and 5 were shown a picture of a pair of hands kneading confetti-like material in a low, round

container. The experimenter would then use a new word, “sib,” “niss,” or “latt,” either as a verb

(“Do you know what it means to sib? In this picture you can see sibbing”), a count noun (“Have

you ever seen a sib? In this picture, you can see a sib”), or a mass noun (“Have you ever seen any

sib? In this picture, you can see sib”). When asked later to point to “sibbing,” 10 of 16 children

chose a picture of a similar movement over similar material or a similar container; 11 of 16 chose a

similar container when asked to point to “a sib,” and 12 of 16 pointed to similar confetti-like material

when asked to point to “sib” (Brown, 1957). Though Bloom has pointed out that the children might

have just been responsive to the word categories in the questions themselves, without learning them

(Bloom, 2000), Brown reports that children sometimes immediately commented on the action in the

appropriate form, e.g., “The latt is spilling” (Brown, 1957).

Other researchers have found syntax effects at earlier ages. When shown a pile of a novel sub-

stance, two-year-olds interpret a mass noun to refer to the substance, while a count noun is interpreted

to refer to the accumulation of stuff (as with “puddle” or “pile”) (Soja, 1992). Two- and three-year-

olds told that an object is either “a zav” (noun) or “a zav one” (adjective) tend to assume that
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“zav” refers to the object’s form or class in the noun case, and its other properties such as color and

texture in the adjective case (Taylor and Gelman, 1988).

It is possible to read too much into the importance of syntax, as children can sometimes make

inferences about words without syntax cues. As Bloom points out, “If I pointed to a strange object

and said ‘gloppel,’ you would take the word as a name for that kind of object; if I pointed to a

strange substance and said ‘gloppel,’ you would take it as a name for that kind of substance; and

if I pointed to a person and said ‘gloppel,’ you would take it as a name for that particular person”

(Bloom, 2000, p. 197). Nevertheless, in many cases where syntax can be used to resolve ambiguity,

young children appear to use it.

3.5 Other Proposed Heuristics in Children’s Word Learn-

ing, and the Maxim of Quantity

A variety of other heuristics have been proposed to describe children’s assumptions about word

meaning. The “whole object assumption” is that a new word presented with a new object refers to

the entire object, and not a particular feature, property, or aspect of the object (Markman, 1989, p.

26). Related to this idea is the idea of “shape bias,” that new words tend to be extended to objects

of a similar shape instead of size, color, or texture (Clark, 1973; Landau et al., 1998). Children have

also been said to have a “basic level assumption,” that new words are assumed to refer to “basic”

categories such as dog instead of subcategories such as dachshund or superordinate categories such

as animal, and a “type assumption” that new words refer to classes of things instead of individual

instances of them (Clark, 1973).

One thing we might note about all of these biases is that they are regularly violated by even

children’s language; we certainly have words for parts (“nose”), for non-shape categories (“water”),

for non-basic categories (“animal”), and for particular people or things (“mommy”). These effects

tend to only be observed in ambiguous situations, where the adult labels a completely novel object.
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Note, then, that if an adult were to present a novel object and violate one of these principles, the

adult would also be violating Grice’s Maxim of Quantity: “Be exactly as informative as is required”

(Grice, 1975; Jurafsky and Martin, 2000). The most relevant thing to say in the presence of a novel

object is indeed the type of object it is. Naming only a part, referring only to the object’s texture

or color, referring to an inappropriate level of abstraction, or giving the object its very own name

would fail to provide complete and useful information about the object, while an object’s basic level

category provides clues to all of this information (except the object’s name, but this usually does

not exist). Once the most useful information about an object has been conveyed, only then does it

make sense to speak of the object’s other properties, parts, or categories – and this is in fact what

adults do when speaking to children (Masur, 1997). It is also unsurprising that children extend words

based on shape; the act of pointing to an object and naming it implies that the object is visually

recognizable, and shape typically affects an object’s functionality in a way that color and texture

do not. Thus, even shape bias can be construed as an assumption that an adult has said something

useful rather than useless.

We shall return later to this idea that assumed informativeness is of central importance in word

learning. It is a powerful idea, and one that may explain many smaller findings.
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Chapter 4

Materials: The Robot Nico

This chapter will describe the sensors and algorithms used on the robot Nico (Figure 4.1) in the

experiments to be described in later chapters. Nico is an upper-torso humanoid robot that has been

used for experiments in several different domains, including learning to point (Sun and Scassellati,

2004), modeling infant looking-time experiments (Lovett and Scassellati, 2004), testing algorithms

for intention recognition (Crick et al., 2007), drumming to a conductor’s beat (Crick et al., 2006),

and self-recognition (Gold and Scassellati, 2007b). It was not constructed specifically for the word

learning experiments of this thesis. The word learning algorithms I shall discuss in chapters 6 and 7

could have been implemented on a robot with different sensory capabilities, but it is useful to keep

the underlying robotic architecture in mind when dealing with such abstractions.

4.1 Vision

4.1.1 From camera to image stream

Nico possesses four 1/4 inch color CCD (charge-coupled device) cameras: a short focal length (f/2.8

aperture, f=2.2mm, 80o horizontal viewing angle) and a long focal length (f/3.5 aperture, f=15mm,

13.5o horizontal viewing angle) camera for each compound “eye” on the left and right side of its

38



Figure 4.1: Nico, the robotic platform for the implementations and experiments to be described.

face.1 These cameras correspond to low resolution, wide angle peripheral vision and high resolution,

narrow angle foveal vision, respectively. Unless otherwise indicated, the experiments to be described

here used only Nico’s right wide-angle camera, since the extra cameras would introduce only need-

less complexity in the absence of depth perception and fine-detail image processing. The cameras

produced images with 470 lines of resolution at a fixed rate of 30 frames per second.

The cameras were connected to digital signal processing control units2 that could automatically

adjust gain on the camera signal, but this process tended to be noisy and was not used. Imagenation

PXC200a frame grabbers captured the frames from these control units; these frame grabbers could

process up to 640 × 480 pixels and could match the 30 fps rate of the cameras.

In software, frames could be provided at a resolution of either 320 × 240 or 640 × 480; unless

otherwise indicated, 320×240 resolution was used for faster image processing. Lens distortion could

be removed by the grabber software, but this feature was usually not necessary, and was not used

1The lenses are Elmo product code 9821 and code 9831, respectively. The cameras were Elmo product QN42H.
2Elmo product CC421E.
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unless otherwise indicated. The grabber software was run on its own 3.2 GHz Intel Pentium 4 running

QNX3. At this resolution, it provided frames at a full 30 frames per second.

4.1.2 Faces and their facing

Faces were detected in each frame using the implementation of the Viola and Jones object-finding

algorithm (Viola and Jones, 2004) that comes with the Intel OpenCV vision library (Bradski et al.,

2005).

The Viola and Jones method for face detection relies on a series of weak classifiers (decision

tree stumps) that detect adjacent rectangles of light and dark regions. These classifiers’ values can

be computed quickly using an “integral image” of the original image, an image that stores at each

pixel the sum of the pixel values up to that point. The overall value of the classifier can then be

computed by accessing only the rectangle corners within this integral image, for a constant time

evaluation of the difference in brightness between the light and dark regions of the classifier. The

orientations and placements of the rectangles are analagous to the center-surround, edge-detecting,

and line-detecting cells of the human visual system (Figure 4.2). Each weak classifier outputs a

simple “accept” or “reject” based on whether the brightness difference falls within a specific range.

These weak classifiers are combined using a boosting algorithm (Freund and Shapire, 1996), trained

on examples of the object to be found that have been reduced and scaled to 24 × 24 pixels in order

to reduce the dimensionality of the feature space. In the final classifier, multiple boosted classifiers

are used in serial, with the more quickly evaluated classifiers rejecting obviously bad examples before

they ever reach the more complicated and time-consuming classifiers. The classifiers are easily scaled

in size by changing the rectangle endpoints, and so the search can take place at multiple scales using

essentially the same classifiers (Bradski et al., 2005; Viola and Jones, 2004).

The OpenCV implementation of Viola and Jones includes two trained classifiers: one for detecting

3QNX never officially released drivers for the Imagenation PXC200a compatible with QNX 6; the drivers on Nico
were the result of combining untested, unreleased source code from QNX for the related PXC200 frame grabbers with
code from the PXC200a DOS drivers.(Herberg, 2002)
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Figure 4.2: The features which the OpenCV implmentation of the Viola and Jones face-finding
algorithm (Viola and Jones, 2004) uses to find faces. From (Bradski et al., 2005).

faces observed head-on, and another that detects faces viewed in profile. Each detector was run on

a separate 3.2 GHz Pentium 4, processing the 320× 240 images from the cameras at roughly 10 fps.

Then, to combine the information from the two detectors into a single classification of “no face,”

“looking at nico,” or “looking across,” I used the forward component of the forward-backward algo-

rithm (Rabiner, 1989), sometimes simply called the forward algorithm (Russell and Norvig, 2003).

The output from the two face detectors can be seen as two noisy evidence nodes that both stem

from the same underlying state, which falls into one of the three categories just mentioned. This

underlying state can change over time, either when a person looks a different direction or moves out

of the camera’s field of view, but is expected to generally remain the same over time. Using the

forward algorithm, I can integrate all of the evidence observed so far from both detectors into the

estimation of the face/no-face classification and the head pose. (The forward-backward algorithm is

unnecessary here because the algorithms to come only use the classification of the most recent frame,

which is unaffected by the backward propagation of probabilities.)
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P(forward hit | looking at Nico) 0.972
P(forward hit | looking across) 0.0226
P(forward hit | no face) 0.0535
P(profile hit | looking at Nico) 0.0700
P(profile hit | looking across) 0.855
P(profile hit | no face) 0.0099

Table 4.1: Conditional probabilities for the probabilistic model of facing direction.

To estimate the conditional probabilities of this model, I recorded 3 minutes (1800 frames) of

output from these detectors as I looked in one of the two directions (across Nico or at Nico) from

various locations, and counted the number of hits from each detector for each ground truth state.

This resulted in the conditional probabilities shown in Table 4.1.

I estimated the rate of change of facing direction to be roughly twice every four seconds, which

at 10 fps results in a probability of changing facing direction of 0.05; a probability of transitioning

from “no face” to a face (i.e., a person entering the field of view) to be roughly once every 5 minutes,

or 1/3000 = 0.00033; and the probability of leaving the field of view to be even less, 0.00001. Given

all of these probabilities, the resulting Hidden Markov Model could integrate all of the output over

time from both detectors and give a likelihood of each state that could be updated in constant time,

using the following forward equation:

P (Φi
t+1) = P (Ft+1|Φi

t+1)P (Pt+1|Φi
t+1)

∑

j

P (Φi
t+1|Φj

t )P (Φj
t) (4.1)

where Φi
t is the event of hidden state i holding at time t, Ft is the output of the forward-looking face

detector at time t, and Pt is the output of the profile face detector at time t. These calculations are

carried out for any area of the image where a face is detected, where a detection in frame t + 1 is

assumed to refer to the same face as a detection in frame t if their regions overlap. If no face was

detected recently in an area, the last detected region for an object is used for computing its overlap

with a face in the most recent frame. The initial probabilities for each state were P(no face) = 0.99,

P(looking across) = P(looking at Nico) = 0.005.

42



In addition to providing a means of deciding between classifications when both detectors returned

“true,” using the forward algorithm also presumably reduced the number of false positives from each

detector, since a false positive would need to be consistent over time and across detectors for it to

gain a non-negligible probability.

Occasionally, it was necessary to estimate the coordinates of a person in the room using the face

detector output. This was done by assuming a constant depth of 60cm and solving for the other

coordinates using the position of a detected face’s centroid.

4.1.3 Color blob detection

Often, it is useful to have a detector for a particular uncommon color, so that objects of that color

can be easily found in a complicated visual scene. In the experiments to be described, that color was

the bright yellow used for Lego Duplo blocks. The filter code was adapted from that used in Sun

and Scassellati (2004).

A filter discarded pixels with average RGB luminance less than a threshold (50/255) and marked

pixels as salient if their luminance-normalized red and green values were both at least 1.5 times their

luminance-normalized blue values. A second pass through the image applied labels to salient pixels

in preparation for grouping them, applying the same label as any salient pixels found within 3 pixels

above or 5 pixels to the right, or a new label otherwise. If different labels were found within this

range, the regions were merged by applying one label to all the pixels in the area. A third pass

created bounding boxes around each salient area by finding the minimum and maximum rows and

columns for each label, as well as the centroid of each group.
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4.2 Audio

4.2.1 Microphones and sound localization

For microphones, the system used a dual-channel microphone setup consisting of two microphone

heads, connected via separate 6 ft. (1.83m) cables to a preamplifier powered by a 9V battery.

The two microphone heads were located roughly 30cm apart and 50cm in front of the robot. This

location reduced the noise from the robot’s motors and rack fans, and made speech detection and

recognition slightly less noisy (see below).

The louder channel of the two microphones was found by counting the number of 10 ms segments

in which one channel’s output was at least 1.1 times as loud as the other and exceeded an adjustable

volume threshold.

4.2.2 The Sphinx-4 speech recognition system

The robot used the Sphinx-4 speech recognition system (Walker et al., 2004) to segment audio into

words. Since Sphinx-4 is highly configurable, I shall go into detail about some of the systems used

in this particular implementation.

Sphinx-4 continuously monitored the average background volume and the average signal volume,

marking audio as “speech” if the difference between the two exceeded a threshold and “non-speech”

otherwise. An endpoint marking the beginning of speech was inserted where the first transition

from non-speech to speech occurred, and an endpoint marking the end of speech was inserted at the

beginning of the first 500 continuous milliseconds of non-speech.

Once a set of speech endpoints was found, the audio marked as speech was changed into a

sequence of Mel-Frequency Cepstral Coefficients (MFCCs), sampled at a rate of 16000 Hz. Cepstral

coefficients are a common means of representing the acoustic signal in speech recognition (Jurafsky

and Martin, 2000), and the use of Mel frequency scaling to better model human psychoacoustics

appears to improve recognition performance (Davis and Mermelstein, 1980).
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Sphinx used the Viterbi algorithm (i.e., dynamic programming) combined with beam search

pruning to attempt to find the maximum-likelihood path through a large chain of Hidden Markov

Models (HMM) that would have produced the observed MFCC sequence. The structure of the

search graph was determined by several nested components. The possible sequences of words and

were determined by a simple context-free grammar that varied from one experiment to the next. For

each word, the CMU phonetic dictionary 4 determined the possible phoneme sequences for each word.

Each word’s phoneme sequence was represented by a chain of HMMs that had been trained using

readings of the Wall Street Journal as a corpus. Because phonemes can sound different depending on

the surrounding phonemes and their position in a word, a separate HMM was used for each possible

phonetic context (preceding and following phonemes) and word position context (beginning, end,

middle, or whole word) for each phoneme. The search parameters were kept at their defaults.5 The

search was kept small with a small context-free grammar (CFG) containing the grammatical forms

and words that were used in each experiment, which limited the recognition possibilities.

This setup was not optimal either for experimental success or maximum flexibility in learning.

Had the HMMs been trained in the lab instead of using the Wall Street Journal acoustic model,

recognition performance would have undoubtedly been better; as it was, the ambient noise from

computer fans and motors typically resulted in quite poor recognition performance. However, col-

lecting an acoustic corpus with a reasonable amount of data to cover all possible phoneme contexts

is no small feat, and creating a smaller, specific acoustic corpus for each experiment would have

resulted in much less flexibility to try new designs. Likewise, it would have been nice to perform

experiments in the absence of a phonetic dictionary and context-free grammar, since relying on this

existing language model reduces the system’s flexibility in recognizing and learning new words. How-

ever, removing the language model so that the acoustic model alone was used to produce phoneme

sequences (using whole-word contexts for each phoneme) reduced the recognition performance from

very noisy to totally unworkable, with the system producing unrecognizable phoneme sequences as

4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
5absoluteBeamWidth=-1, relativeBeamWidth=1E-80
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Figure 4.3: A Cricket sensor, attached to a stuffed pig used in the learning experiment of Gold et al.
(2007).

output. Thus, the phonetic dictionary and CFG-based language model were used for better speech

recognition.

4.3 The Cricket Indoor Location System

In later incarnations of TWIG, the Cricket Indoor Location System (Priyantha, 2005) was used

to find the locations of objects in the room.6 Each battery-powered Cricket node (Figure 4.3)

sends out a simultaneous radio broadcast and ultrasound “chirp”; the difference in arrival times

at a Cricket sensor can be used to calculate the distance between sender and receiver. The sensed

distances between a mobile node and each stationary sensor can be combined by using a least-squares

calculation, thus giving a best approximation as to the x, y, and z coordinates of the Cricket node.

Eight Cricket sensors were attached to the ceiling in a square, each roughly 1.5m from its neigh-

bors. A ninth cricket hung from an overhead light in the center, 95cm from the ceiling, and a tenth

was attached to the wall to Nico’s right, 128 cm from the ceiling and 290cm from the overhead light.

6The Cricket system described here was implemented by Chris Crick, with some help from Marek Doniec in
integrating it with the rest of the robot.
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Typically two Cricket beacons were used for the objects of interest in a scene. Humans and Nico

did not use crickets for localization, since there simply were not enough cricket beacons. Nico, being

stationary, assumed a constant position at the origin of the robot’s coordinate system, while the

position of each human in the room was estimated from the output of the face detectors (see above).

4.4 Processing and Communication

Because any given video processing module tends to consume almost all of a CPU’s cycles when

running at a high frame rate, processing was split among several computers, which communicated

via TCP/IP.

The frame grabber, the profile face detector, the forward face detector, the color module, and

a module that integrated all of these inputs each ran on a separate 3.2 GHz Intel processor under

QNX. The Cricket calculations were performed on a 2.26 GHz desktop running Windows XP, while

the audio and language processing were performed on a 3.4 GHz laptop running Windows XP. The

various modules communicated over TCP/IP, using a 1000 Mbps switch in the case of the QNX

modules, a 100 Mbps wired ethernet connection in the case of the Windows machine performing

Cricket calculations, and a 24.0 Mbps wireless connection to the laptop.

For most experiments, communication was handled via libtcpip a library of message-broadcasting

functions developed by Marek Doniec.7 This library allowed a module to write output to a single

port that could be read by any process that connected to it. Each client process reading from a

particular output buffer received its own thread that would send a copy of the buffer whenever it was

requested. Reads on receiving modules could either block while waiting for new data from a buffer,

or be left unblocking and have the chance of not retrieving any data if there was no new data since

the last read on the port. Connections from the frame grabber to the sensory processing modules

7The experiments to be described in Chapter 5 were done using the “porter” system, a predecessor to libtcpip which
used QNX-native message passing; but the porter system tended to be buggy, was difficult to port across platforms
(or even from one version of QNX to the next), and resulted in network congestion. Its operation in practice was
otherwise similar to the functionality described here.
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were blocking, while all other connections were non-blocking.

Typically if a consumer process did not read fast enough to consume all frames or messages

written to a buffer, the frames or messages in between reads were overwritten and lost. This allowed

slow consumers such as the face detectors to remain in sync with the current image. However, in

cases where all messages had to be kept in order to keep the world state consistent, all messages

were read in order. This was done for messages from the Cricket system.

Because the libtcpip system was not ported to Prolog, the language inference system described

in Chapter 6 communicated with the robot via a simple TCP/IP socket.
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Chapter 5

Preludes to TWIG: Learning “I” and

“You” with Chi-Square Methods

This chapter describes my research on learning “I” and “You” prior to the implementation of the

TWIG system. These experiments did not use the full TWIG machinery described in chapters 6 and

7: the system in these experiments did not actually parse full sentences, and did not have the more

sophisticated representations of meaning that TWIG used.

Nevertheless, this early system had the advantage of not needing utterances to remain in-

grammar, since it did not use grammatical structure, and so it was the only incarnation of my

word-learning system that was run on real transcripts of mother-child interactions. It also introduced

the inference of reference from sentence context, one of the key ideas that would become central to

TWIG. Finally, because the experiments run in this chapter were mostly performed in simulation, it

allowed me to determine how robust my methods were to environment size and speaker localization

error.
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Figure 5.1: An example of how the system I described in (Gold and Scassellati, 2006e) associates
words with properties. (1) Bob says to Alice, “You got the ball.” The speech recognition software
turns the speech into a string, while localization determines that Bob is the speaker and Alice is
the addressee. (2) The system searches for words it already understands, and finds that “ball”
corresponds to the hasBall property. The system designates Alice as the referent for the remaining
words, because she has the ball. (3) Each word that was not understood is associated with Alice’s
properties, by increasing the words’ collocation counts with those properties. (4) The updated
collocation counts are placed in 2 × 2 chi-square tables to compute the significance of each word-
property association.

5.1 The Chi-Square Method

Before TWIG, my primary methodology was to use chi-square tests to find words that were strongly

associated with particular properties (Figure 5.1). The essential idea is that one can count the number

of times a word appears in dialogue to estimate the probability P (word) that the word appears in

an arbitrary sentence, count the number of lines of dialogue in which the subject of the sentence

satisfies a property att to estimate the probability P (att) that a property is true of the subject of

the sentence, and then calculate the number of times one would expect to see the word and property

occur together if the two events were independent by multiplying these two probabilities. One can

perform similar counts for the events ¬word and ¬att, that the word does not appear in the sentence

or the property is not true of the subject of the sentence, respectively. The likelihood that the word

and property occur together only because of chance is then calculable by a chi-square test:

χ2 =
∑

ij

(Oij − Eij)
2

Eij

(5.1)

where Oij and Eij are the observed and expected values in the 2 × 2 table of events corresponding
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to each of the possibilities for whether the word and/or property was observed.

The notions of “property” and “subject of the sentence” are here much simpler than they would

become in the final system (Chapters 6 and 7). In the models described here, “properties” are all

boolean values that can be determined to be true or false for each actor in the world, and a sentence

refers to an actor if and only if it contains a word associated with one of the properties that is true of

that actor. Thus, these systems contain no notion of parsing or grammar, and only a simple notion

of reference and semantics.

For learning “I” and “you,” the goal was to show that this simple chi-square mechanism could

result in “I” being most strongly associated with a property of being SPEAKER, and “you” most

strongly associated with the property ADDRESSEE.

5.2 Experiments in Simulation

5.2.1 Overview

Gold and Scassellati (2006d) introduced the two central ideas that would end up evolving into the two

halves of the TWIG system. The first idea was that chi-square tests for significance could uncover

links between words and properties, even in noisy environments and even if the words appear within

full sentences. The second idea was that many of the conundrums surrounding “I” and “you” could

be resolved if the learner could use the other words in the sentence to determine who was being

talked about.

Chi-square tests are sometimes used in natural language processing to find words that appear

together more often than one would expect due to chance (Manning and Schütze, 1999a); my initial

idea was to perform chi-square tests to discover word-property collocations as well. A great advantage

of the chi-square method is that it does not require parsing, which would be difficult with the ill-

formed sentences that commonly appear in transcripts of real speech.

The idea of using sentence context to determine reference came out of the simple fact that there
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is always a “speaker” and an “addressee” for each utterance, and so there was no way that these

would become associated with particular words if they were always “true” for each utterance. Thus,

the system had to focus on a particular person in the exchange in order to have these attributes be

sometimes true, sometimes not.

My original experiments were performed on transcripts of child-directed speech. The CHILDES

corpus (MacWhinney, 2000) contained transcriptions of child-caregiver interactions, and seemed to

provide a natural data set to run simulations with. The corpus contained no stage directions, but

luckily, one transcript (Bohannon, 1976) contained a fairly straightforward game of “catch” between

a mother and her child, in which they exclaimed “I got the ball” at appropriate moments. It was

straightforward to turn the transcript into a modest simulation of a learner perceiving this game of

catch.

When this simulation failed to learn that “you” referred to the person being addressed, I noticed

that it was difficult to find examples in the CHILDES database of statements involving the word

“you.” Much more often, “you” was used in questions about what the addressee wanted. A modified

version of the system that assumed questions that included the word “want” referred to the addressee

learned that “you” referred to the addressee as well.

This difference suggested an explanation for pronoun reversal, the phenomenon in which blind

(Andersen et al., 1984; Fraiberg and Adelson, 1977), autistic (Lord and Paul, 1997), or particularly

young (Dale and Crain-Thoreson, 1993) children confused “I” and “you”: perhaps these learners

were failing to correctly surmise to whom “want” questions were directed. Blind children might fail

to see where the speaker was looking, while autistic and very young children might lack the ability to

reason about other people’s desires (Baron-Cohen, 1995), and thus fail to understand those critical

“want” questions. A third experiment tested this idea by simulating a learner who always assumed

questions including “want” referred to the learner himself. For a sufficiently descriptive model, this

resulted in the system learning that “you” always referred to something about himself as well.
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5.2.2 Simulation methods: “I”

The system was run in simulation on a transcript of a mother and her child playing catch (Bohannon,

1976; Bohannon and Marquis, 1977; Stine and Bohannon, 1983), taken from the CHILDES database

(MacWhinney, 2000). Only the raw words were used from these transcripts, and not the CHILDES

part-of-speech annotations. No “stop words” (filler words such as “the”) were omitted from the

analysis. The corpus was relatively small, consisting of 1707 words in 308 sentences. Of these, only

372 appeared in sentences with understood referents.

The simulation consisted simply of a list of boolean attributes for each participant in the scene.

Actions that could be inferred from dialogue (e.g.: “You got it!”, “Why are you blowing on it?”, etc.)

were added as stage directions to the transcript, and changed the state of the relevant simulated actor

when they were read from the transcript. Annotating the text in this way produced six attributes

that changed over the course of the text: throwing, catching, missing a catch, getting hit on the

head, blowing on an object, and falling down.

The words that referred to these actions – “threw,” “throw,” “got,” “catch,” “caught,” “dropped,”

“missed,” “hit,” “blowing,” and “blew” were given to the system as referring to the corresponding

stage directions. “Mommy” and “Bax” (the child’s name) were given to the system as referring to

the mother and child.

To more fully model a complicated environment, I added additional properties to the actors which

did not correspond to anything in the script, but that changed with probability 1/2 from line to line.

These represented other attributes of the attended objects that were changing, and could potentially

be associated with the dialogue by accident. The number of these “dynamic variables,” as I called

them, varied according to experimental condition, as described below. In addition, six attributes

with random values remained fixed for each actor over the course of the interaction, to simulate

miscellaneous properties of the actors that were unchanging.

Finally, the two attributes SPEAKER and ADDRESSEE were set to true or false for each actor

depending on who was speaking. Errors in the localization process could be artificially injected by
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Figure 5.2: Success rates in simulation for learning “I” for varying numbers of speaker attributes
that changed over the course of the simulation. No trial correctly surmised the meaning of “you”
under these conditions. Reprinted from Gold and Scassellati (2006d).

swapping the attributes of the two actors with a fixed probability.

The simulation was run for varying numbers of dynamic variables (between 10 and 40) and for

varying rates of speaker identification error (between 0% and 10%). Each condition was run 40 times.

5.2.3 Simulation results: “I”

A trial was considered a success if, by the end of the exchange, the most significant property-word

association for the word “I” was associated with the attribute speaking. Figure 5.2 shows the success

rates out of 40 trials for varying numbers of dynamic variables, which determined environmental

complexity. These results suggested that a reasonable increase in the number of attributes sensed

would not unduly cripple the learning.

Figure 5.3 shows the impact of speaker identification error on the success rate for learning “I.”

Even for small error rates, the chance of correctly learning the meaning of “I” falls off substantially,
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Figure 5.3: Success rates in simulation for learning “I” with varying rates of speaker identification
errors. Reprinted from Gold and Scassellati (2006d).

suggesting that errors in localization offered more potential for disrupting learning than environmen-

tal complexity.

The trials produced very few erroneous associations. In the 6 dynamic variables case, only two

words were given new associations: “I” was associated with speaking, and “it” was associated with

catching (presumably because of the frequency of the phrase “I got it” in the script). Even in the 40

dynamic variable case, only 10 (25%) of the trials produced more associations than this, associating

“you” or “the” with arbitrary dynamic variables.

However, in none of these trials was “you” correctly associated with the property of ADDRESSEE.

The script contained very few utterances of “you got it,” and I wondered whether this was simply a

problem of insufficient evidence. Combing the rest of the CHILDES archive, I found few examples

of statements involving “you”; most of the time “you” was used in a question, such as “You wanna

sit in my lap?” (Bohannon, 1976) It stood to reason, I thought, that one generally doesn’t tell

another person about themselves; one asks. I also thought that perhaps the most common question
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Figure 5.4: Success rates in simulation for learning “I” and “you” when questions about wants were
assumed to refer to the addressee. From Gold and Scassellati (2006d).

to ask was about someone’s mental state, which is not immediately observable; particularly, what

the person in question wants. This led to the design of the second simulation experiment.

5.2.4 Simulation methods: “You”

The methods were the same as in the “I” learning simulation above, including using the same script,

but with one small change. Questions that included variants on the word “want” were assumed to

refer to the person with property ADDRESSEE, and all words in such sentences were assumed to

refer to some property of that person.

5.2.5 Simulation results: “You”

The results for this experiment are shown in Figures 5.4 and 5.5. The correct binding for “you” was

correctly learned even for large numbers of distractor variables, and its success rate was comparable
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Figure 5.5: As figure 5.4, but with varying rates of speaker identification error. From Gold and
Scassellati (2006d).

to that of “I” when speaker confusion occurred.

In addition, extraneous dynamic variables were not as detrimental to the learning of “I” in

this trial, because the additional sentences that could now be comprehended provided additional

statistical evidence for the “I” hypothesis, and evidence against association with other dynamic

variables. (The number of words in sentences with at least one “known” word increased from 372 to

417.) This suggests that as vocabulary size increases, conversations can be used more efficiently to

test the meanings of words.

Increasing the number of unchanging variables did not affect the performance of the system.

This is unsurprising, as there were only four functionally distinct kinds of static variables in the

simulation, depending on whether they were true of the mother and whether they were true of the

child.
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Figure 5.6: Response of the simulation when it assumed that questions about wants were always
about itself. From Gold and Scassellati (2006d).

5.2.6 Pronoun reversal simulation: Methods

The simulation was run as before, but with three participants in the simulation: the mother, the child,

and a learner, with random static and dynamic properties generated as for the other participants but

no stage directions. Questions including variants on the word “want” were assumed by the system to

refer to the learner, instead of the addressee. In addition, a new property of LISTENER was added

to the system, distinct from ADDRESSEE, which was true of both non-speakers in the simulation.

The simulation was run for varying numbers of properties that remained unchanged (between 6

and 20), with 40 trials for each condition.

5.2.7 Pronoun reversal simulation: Results

As Figure 5.6 shows, when the number of random properties was increased sufficiently to ensure that

at least one variable was uniquely true of the observer as well as the person being addressed, the
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observer assumed that the word “you” referred to this property. In other words, when the system

assumed that “want” questions were always directed at itself, it learned that “you” always referred

to itself as well.

When there was no property that was uniquely true for the observer, the word “you” was typically

associated with the property of LISTENER, which was always true for the observer.

Despite some evidence to the contrary in the script (e.g., “you got it,” which would still associate

you with only the catcher), none of the trials correctly associated “you” with the addressee alone

when “want” was incorrectly associated with the learner. However, all trials still correctly identified

“I” as referring to the property of SPEAKER.

5.2.8 Discussion

Gold and Scassellati (2006d) introduced quite a number of ideas that would come to play an important

role in TWIG: the significance-testing approach to property learning, the idea of using other words

in the sentence to establish reference, and a tentative introduction of a “theory of mind” concept to

explain pronoun reversal.

One valid criticism of these simultions is that the experimental designs were often overly complex,

obscuring the results. While the “dynamic variables” approach was a fine idea for making the

simulation a bit more realistically complex, random “static variables” were a bit unnecessary; I

could have simply introduced one variable per person that was uniquely true for that person, as I

did later. This would have made the pronoun reversal experiment much easier to interpret.

The idea of using sentence context to narrow down reference was also obscured in this paper’s

original presentation; I didn’t realize at the time how central it was. Some readers of the paper were

confused as to why “I” in particular should be associated with SPEAKER, but not other words,

even though somebody is always speaking; they had missed the idea that only the sentence referent’s

properties get associated with the words, and that SPEAKER could sometimes effectively be false.

Using the same transcript over and over for the various simulations was a bit scientifically suspect,
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since the later experiments could be tailored to that specific transcript. It is therefore unclear how

general the importance of the word “want” in learning pronouns really is; it could have been a

peculiarity of this transcript. However, I could not find another transcript in the CHILDES database

that included plenty of pronouns and also clearly indicated the participants’ actions.

5.3 Robotic Implementation and Analysis

5.3.1 Overview

The experiments described in Gold and Scassellati (2006e) were streamlined, real-world versions of

the experiments performed in simulation in Gold and Scassellati (2006d). While the fake variables in-

troduced in Gold and Scassellati (2006d) had been an admirable attempt to make a simple simulation

a bit more realistically complex, that paper had also shown that the environmental complexity did

not particularly matter, and I had felt that they considerably muddied the presentation, particularly

when explaining pronoun reversal. Fake noise seemed to have no place in a robotic implementation

that seemed to have plenty of sources of real noise: in recognition, localization, and syncing audio

to video.

I was also dissatisfied with the explanation of pronoun reversal given in Gold and Scassellati

(2006d), because it explained congenitally blind children’s reversal in the same way as autistic pro-

noun reversal. While some researchers have argued that blind children’s pronoun reversal might stem

from a lack of self-understanding (Fraiberg and Adelson, 1977), a deficiency in perspective-taking

(Andersen et al., 1984), or other processing difficulties that resemble autism (Brown et al., 1997), it

seemed that a simpler explanation might be that they often couldn’t tell who was being addressed

or what was being talked about, and so would learn pronouns much later. A robotic experiment

in which the robot was blind and could only tell when it had the ball, confirmed that under such

circumstances the learner would associate “you” only with himself.

Finally, the experiments in Gold and Scassellati (2006d) had given success rates for fixed numbers
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of utterances, but no indication of how much evidence might be required for statistical significance,

how fast learning was occurring, how susceptible the associations were to changing on new evidence,

or what kinds of words might be harder to learn than others. These experiments focused on the

development of the strength of association between word and property over time. More importantly,

my analysis included several equations derived from the chi-square equations that shed light on some

of these questions.

5.3.2 Development of associations over time: Methods

The first experiment consisted of the robot watching myself and another subject toss the ball back

and forth, saying either “I got the ball,” “You got the ball,” “I got it,” or “You got it” for 50

utterances. The robotic setup used the color blob detector to find the ball, and one face detector

to find faces (see Chapter 4). The facing decision algorithm described in Chapter 4 was not yet

implemented; speakers were assumed to be facing each other in this experiment. Microphones were

30 cm apart, and 40 cm from each speaker. Audio localization continued to be based on time-of-flight

for the first sound louder than a threshold, rather than overall loudness over the whole utterance.

The word “got” was interpreted as a signal that all the other words in the sentence referred

to the person who was closer to the ball, a property called HASBALL. The other properties were

SPEAKER, ADDRESSEE, LPROP, and RPROP; these last two corresponded to “person on the

left” and “person on the right,” replacing the “static variables” of Gold and Scassellati (2006d) with

one variable uniquely true for each participant. Being on the left or right side of the robot’s visual

field was used as a proxy for personal identification, since face recognition was beyond the scope of

the experiment.

In the second experiment, the robot was unable to tell when anybody but itself possessed the

ball, and did not sense the property ADDRESSEE. Though this experiment was meant to simulate

blindness, the robot had no tactile sensors, so proximity had to be sensed by requiring the ball’s

size in the visual field to pass a large threshold. (Unlike the first experiment, the two people could
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Figure 5.7: Chi-square values for the word-property associations in Experiment 1 of Gold and Scas-
sellati (2006e). The large jump at utterance 20 marks the first time the system heard the word
“you.” The chi-square value for statistical significance (3.84) is given for reference, though meaning
is attributed to a word based on its highest chi-square value. The second-best hypotheses, indicating
that “I” and “you” are the names of the two subjects, are also shown.

now pass the ball to the robot.) The names of the participants in the experiment were added to

the robot’s vocabulary, as referring to LPROP, RPROP, or NPROP, a property uniquely true of the

robot; this was to prevent “You got the ball” from being the only interpretable utterance.

5.3.3 Development of associations over time: Results

As Figure 5.7 shows, the unblinded system showed clear long-term trends toward learning that “I”

refers to the speaker, and “you” to the person being addressed. These chi-square values increased

steadily over time, while the competing hypotheses that they were names for the individuals rose at

a much slower rate.

For the first 19 utterances, the speakers had only used the phrases “I got the ball” and “I got

it.” This produced zeros in the denominator for at least one chi-square term in all of the relevant
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word-property associations. The system had no reason to assign any meaning to “I,” because it was

a part of every sentence, and no reason to assign any meaning to “you,” because it was a part of

none.

When “you got the ball” was finally spoken at utterance 20, the chi-square value for the association

between “you” and the ADDRESSEE property spiked. This was because both “you” and reference

to the addressee were rare events so far, making their coincidence highly significant. On the other

hand, the usage of “I” and reference to the speaker were both still very common events, and so little

could still be concluded from their common occurrence.

This points to a rather surprising fact about chi-square word-object associations: the more com-

mon properties generate less confidence. Because “you got the ball” remained less common than

“I got the ball” (and reference to the addressee less common than reference to the speaker), the

confidence in the I/speaker association remained lower than the confidence in the you/addressee

association over the course of the experiment.

In the second experiment, association of “you” with the robot’s identity reached significance in

about twenty utterances when the robot was blinded (Fig. 5.8). This chi-square value would hold

equally well for any property that was always true of the robot when “you” was spoken, but never

detected about other agents. Thus, if the system had been able to tell that it was the addressee when

it was being addressed, the chi-square value for associating “you” with addressee would have been

the same as that for the association of “you” with the robot’s identity. To distinguish between the

two hypotheses, the robot would then have needed to employ some other criterion besides strength

of association. “I” was not associated with any property in the blinded case because the system had

no way of determining the referent of the sentence “I got the ball” when it did not possess the ball.

5.3.4 Analysis of the Behavior of the Chi-Square Method

The expected behavior of the system over time can be calculated through the following analysis,

which first appeared in Gold and Scassellati (2006e).
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Figure 5.8: Chi-square values for the “you = robot” hypothesis when the system was blinded, from
Gold and Scassellati (2006e). No other association achieved a valid chi-square value, though this
value would hold equally for any other property that was uniquely and consistently true of the robot.

64



Suppose word W always refers to agents with property X, and for the moment assume that there

is no error in hearing the word or perceiving the property. Let w be the number of times W has

been heard to refer to an agent with property X, and let p be the observed frequency (0 < p < 1)

with which property X is true of a referent regardless of what words are heard. Let C be the total

number of words that the system hears, and assume w ≪ C so that the contribution from irrelevant

words in the absence of the property is small. Then it can be shown that

χ2 ≈ w(1/p − p) (5.2)

The derivation requires the approximation (Cp − w)2/p(C − w) ≈ Cp − w in the chi-square term

corresponding to the case of (¬word ∧ property).

The chi-square value thus increases linearly with the number of times the target word is heard,

but inversely with the frequency with which the property is observed to be true of a referent. This

is more or less what one would hope to find: experience with a word increases certainty about its

meaning, but very common properties are less interesting and disfavored as potential meanings.

It is also possible to derive the expected effects of sensory error on the chi-square values. If ǫ is

the rate at which occurrences of the event (word ∧ property) are mistakenly interpreted as the event

(word ∧¬property), then the analogous assumptions to the errorless case result in the expression:

χ2 ≈ w(
ǫ2

1 − p
+

(1 − ǫ)2

p
− p − ǫ) (5.3)

Here, w is the true count of the number of times the word was used in conjunction with an agent

bearing the correct property; the agent’s count is actually (1− ǫ)w. The reader can verify that when

ǫ = 0, equation 5.3 reduces to the errorless case of equation 5.2.

The dominant effect of increasing the error rate ǫ is in the term (1− ǫ)2/p, where ǫ has an effect

inversely proportional to p. This partly explains why the decline in chi-square is so great due to

error during the first few utterances of “you”; not only is ǫ effectively greater because of the small
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value of w, but the addressee property is uncommon, amplifying the effect of error. Asymptotically,

however, the error merely changes the learning rate by a constant factor, leaving the rankings of

word-property associations unchanged.

It has been suggested in the word-word collocation literature that chi-square results should be

considered untrustworthy unless the expected values in each square of the chi-square table are at

least 5 (Manning and Schütze, 1999b). In this case, this heuristic results in the rule that judgment

should be withheld until the following condition occurs:

w > max(5/p, 5/(1 − p)) (5.4)

In the first experiment of Gold and Scassellati (2006e), this would have resulted in the system

withholding judgment on the word “you” until roughly utterance 32, thus avoiding the awkwardness

of revoking and then reinstating confidence in the association with the addressee property. More

balanced occurrence of the “I” and “you” cases, so that p = 0.5, would have resulted in confidence

much earlier, around utterance 10.

Though these derivations were probably the most valuable contribution from Gold and Scassellati

(2006e), they came about as I was attempting to explain the data from the first experiment, which

made the experiment valuable despite the fact that it was only run once and did not result in

significance for the definition of “you.” (I believe I was still being hampered by bad sound localization

at that point, and some issues in syncing the speech recognition with the visual data.)

The second experiment, by contrast, was not much of an experiment at all – there was really

no way that the robot could have learned either correct definition, by the very setup, and so the

outcome was obvious. It was more of a demonstration to prove the point that word meanings are

difficult to learn without the relevant sensory input, and thus that theories explaining blind children’s

pronoun reversal as partial autism are spurious. It remains a valid point, even if the experiment was

something of a one-sided oversimplification.
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5.4 Integration with Self-Recognition

Though the experiments described above showed that the robot could learn the correct meanings

of “I” and “you” in an abstract sense, it is useful to demonstrate that it could use these words

appropriately, given a means of recognizing itself. In Gold and Scassellati (2006c), I integrated the

chi-square based word learning system with a method for self-recognition devised by Michel et al.

(2004), and also added the ability to respond appropriately to the command, “Say who got the ball.”

The method for self-recognition was introduced in Michel et al. (2004) and developed somewhat in

Gold and Scassellati (2006b): from its own random movements, the robot learned in what window of

time to expect motion after it had sent a motor command. Any movement in the robot’s visual field

that started within this window, which typically began at about 500ms and ended around 1s, was

labeled as “self.” This allowed the robot to identify its mirror image as “self” as easily as it identified

its physical, unreflected arm. The method’s inability to integrate multiple pieces of evidence over

time tended to result in quite a few false positives – the method I introduced in Gold and Scassellati

(2007b) worked much better, using likelihood calculations on Markov models instead of time windows

for motion-based self-recognition – but that fact does not matter much for the exposition here.

The natural language interface worked well enough in the simple setting: a command of “say

who got the ball” would get the robot to produce a word that referred to a property of the person

for whom hasBall was true, followed by “got the ball.” To answer correctly, the robot had to equate

its self-representation (i.e., list of Boolean attributes) with the boxes in the visual field labeled as

“self” and set Speaker and Addressee appropriately for all parties before answering.

The robot used a face detector to find the experimenter, the color blob detector to find the yellow

ball, and a module that found regions of motion in the visual field (Michel et al., 2004) to find

motion that coincided with its motor movements. The motion module found pixels that differed in

luminance from their values in the previous frame by more than 18/255 and clustered them together

into bounding boxes using a region-growing technique identical to that used for the color module.

These boxes were then tracked over time using a system designed by Andrew Lovett (Lovett and
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Figure 5.9: A view of the setup of Gold and Scassellati (2006c), taken from one of Nico’s cameras.
The robot can see its reflection in the mirror, center. Superimposed on the image is the bounding
box produced by the “color” module, which has found the mirror reflection of the bright yellow ball,
and the box produced by the “self-motion” module, which has found the reflected motion caused by
Nico’s arm movement.

Scassellati, 2004). If a motion box first appeared within roughly 300-800ms of a motor command

to the arm – a time window learned in a previous self-recognition experiment (Gold and Scassellati,

2006b) – the box was labeled as “self.” Sample output from the various systems is shown in Figure

5.9.

The following grammar was used for Sphinx speech recognition:

<utterance> = <subj> <verb> <obj>

<subj> = I | you | Alice | Bob | (say who)

<verb> = got | caught

<obj> = it | the ball

The system used the associations of “I” and “you” with speaker and addressee and “got” with

hasBall generated in Gold and Scassellati (2006e). On hearing a sentence that began with “say who,”

the robot would set the speaker and addressee variables of that person and itself appropriately, then

answer with a word for the entity for whom hasBall was true. (Distance in the two-dimensional
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image was used to find which entity was closer to the ball, since depth perception had not been

implemented.)

Two tests of the system were run. In one, the robot moved its arm every twenty seconds, while in

the other, the robot moved only once to ascertain its position. Under both setups, the robot was told

“Say who got the ball” forty times, twenty for each case of “I” or “you” being the correct answer.

When the robot moved every 20 seconds, it correctly said who had the ball 27 out of 40 times: 16

out of 20 when the correct answer was “I,” and 11 out of 20 when the correct answer was “you.”

When the robot moved only once at the beginning of the experiment, reducing its susceptibility to

incorrectly labeling the experimenter as itself, it answered correctly 38 out of 40 times. Thus, the

errors lay mostly with the false positives from the early self-recognition system, and not with its

integration with the “I” and “you” learning per se.

Like the pronoun reversal “experiment” of Section 5.3, this was more of a demonstration than a

true experiment; the only possibly surprising thing was how susceptible to false positives the self-

recognition method was at the time. Nevertheless, this demonstration was a nice way of concretely

showing that the system had learned something usable from both systems.

5.5 Summary

The chi-square based learning system represented a first pass at word learning that, though it was

not as linguistically sophisticated as the system to follow, contained some of the core ideas that

would later become the TWIG system. The idea of using sentence context to find the reference

of unknown words was introduced in Gold and Scassellati (2006d). The idea of using chi square

tests for significance to find word-property pairings was introduced in Gold and Scassellati (2006d)

and its performance over time was analyzed in Gold and Scassellati (2006e). The applications of

question-answering and relating the words to the robot’s mirror image demonstrated that the robot’s

knowledge of the meanings of these words was usable, rather than being purely abstract (Gold and
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Scassellati, 2006c). And finally, most of the sensory systems that would be used in the TWIG system

were implemented in this robotic system.

These papers also suggested some of the ways in which the phenomenon of pronoun reversal,

common to autistic, blind, and particularly precocious children, could occur. Gold and Scassellati

(2006d) showed that difficulty in understanding the word “want” could delay the acquisition of the

word “you” (Gold and Scassellati, 2006d). Gold and Scassellati (2006e) showed that simply being

blind and unable to determine where people were looking could result in an overly restrictive definition

of “you” and no definition at all for “I” (Gold and Scassellati, 2006e). Though these experiments

were arguably oversimplifications of the environments of real children, they nevertheless were the first

quantitative models of pronoun reversal in real environments. In the autistic case, misunderstanding

“want” fits entirely with the “mindblindness” theory of autism (Baron-Cohen, 1995), while for the

blind children, my experiment showed that blind childrens’ pronoun reversal may be simply a direct

effect of their blindness, rather than being caused by a deficiency in “theory of mind” or perspective-

taking that is itself caused by blindness. This latter result is fairly important, as several researchers

had proposed theories that possibly underestimated blind childrens’ mental abilities, citing pronoun

reversal as their evidence (Andersen et al., 1984; Brown et al., 1997; Fraiberg and Adelson, 1977).

Another important result was the simulation performed on a transcript from the CHILDES

database, using real dialogue and a simulated complicated environment (Gold and Scassellati, 2006d).

This result showed that the system was feasible even for real, unstaged dialogue, and for large numbers

of variables – a good preliminary step before implementing a large-scale, real-world system. This

was to be my last experiment with data generated from real parent-child interactions, as my research

became more about developing a working robotic system and less about modeling human children’s

learning.

Despite these contributions, the most important developments were still to come. In Chapter

6, I shall describe how the system was extended to use logical semantics and sentence parsing.

Instead of assuming one “referent” for the entire sentence, the system would now be able to find
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reference for each part of the sentence, and logically solve for the reference of new words. In Chapter

7, I will describe a refinement that allowed the system to learn definitions involving conjunction,

disjunction, and thresholds on continuous values. This would allow the system to learn complex

meanings assembled from various sensory inputs and values, rather than requiring definitions to be

drawn from existing concepts. These important differences would result in a system that was much

better equipped to learn a variety of words besides “I” and “you” and use them in well-formed

sentences.
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Chapter 6

TWIG Part I: Using Formal Semantics to

Understand and Create Sentences

The previous chapter introduced a simple setup by which the robot could infer the meanings of “I”

and “you,” but its treatment of language was quite basic. A sentence was assumed to have a single

referent, and words were assumed to refer to true properties of that referent. Such a treatment

of language was not very general, as it could not learn words for relations between things; nor

could it transform language into a representation that could be judged true or false. This chapter

shall describe how I added parsing and formal semantics to the system, so that it could parse full

sentences.1

I dubbed this new system TWIG, for “Transportable Word Intension Generator”: “transportable”

because it should ideally work with any robot that produces predicate-logic representations of its

world, and “word intension generator” because I was now fully aware of the extension/intension

distinction I was making in meaning, and I realized that the idea of an “intension” captured the real

essence of what I wanted the system to learn (see Chapter 3). More than a simple association, an

intension allows the system to judge the truth or falsity of a sentence that contains the word. Of

course, in some ways the associations of “I” and “you” are at least as interesting as their intensions,

1This chapter borrows much of its material from Gold and Scassellati (2007a).
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but the criteria for success are much more nebulous there. Formal intension-based meanings would

allow the system to not only understand and produce full sentences, but would also allow the system

to make inferences about reference in a much more principled way. For example, the system would

actually understand that “got” did not mean hasBall, but that “got the ball” meant got(X, b) ∧

ball(b) for whatever X was the subject of the sentence.

The mechanism by which intensions were learned, and the space of possible intensions, were not

fully developed yet in the experiments described in this chapter. The space of possible meanings was

limited to variants on relations and predicates already present in the system, and learning was still

accomplished by finding the highest chi-square value for a word-property pairing (see Chapter 5).

In the next chapter, I will describe a more sophisticated learning mechanism for the intensions that

allows definitions to include conjunctions, negations, and thresholds on continuous values.

Nevertheless, this system was sufficient to learn “I” and “you” in a more principled manner than

before, and would also achieve two things that the previous system had not: it would use its new

words to learn still more words, and those new words would refer to a relation. More specifically,

once the system had learned “I” and “you,” it could use evidence such as “I am Kevin” and “You

are Eli” to infer that “am” and “are” referred to the identity relation.

6.1 Parsing and Finding the Extension

TWIG uses Prolog to parse the sentence into logical form and infer the extensions of any new words.

The TWIG system adapts the following definite-clause grammar from Pereira and Shieber (1987):

s(S, W) --> np(VP^S, W), vp(VP, W).

np((E^S)^S, W) --> pn(E, W).

np(NP, W) --> det(N2^NP, W), n(N1).

vp(X^S, W) --> tv(X^IV), np(IV^S, W).

vp(IV, _W) --> iv(IV).
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Figure 6.1: Parsing a sentence with an undefined word, “I.” The parse partially succeeds on the
right, and the system finds that the whole sentence can be grounded if “I” refers to person P1, who
has the ball. The missing definition, that “I” refers to whoever is speaking, can only be learned over
time.

The abbreviations on phrase types are typical: np for “noun phrase,” iv for “intransitive verb,”

and so on. pn covers both proper nouns and pronouns. Thus, the grammar allows parsing of simple

sentences of the form Subject Verb or Subject Verb Object. W is a pointer to a list of predicates

indicating the state of the world, which must be passed around so that words and phrases can be

grounded in the world state as they are parsed.

A term in the form X^Φ is shorthand for the lambda expression λX.Φ, the notation for a function

Φ with an argument X. This notation is drawn from formal semantics (see Chapter 3), and represents

the idea that a word corresponds to a fragment of a logical formula that can be combined with

similar formulas to produce a statement that has a truth value. The verb “has,” for instance, could

be expressed as λX.λY.possesses(X, Y ), indicating that “has” refers to a function possesses(X, Y )

that takes two arguments, a possessor and possessed. In the Prolog language, these terms can be

used inline in definite-clause grammars, and the arguments of the functions are substituted as the

parse provides them: see Figure 6.1.
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In the case of verbs and nouns, words at the lowest level are associated with their lambda calculus

definitions:

tv(LF) --> [TV], {tv(TV, LF)}.

tv(Word, X^Y^pred([Word, X, Y])).

iv(LF) --> [IV], {iv(IV, LF)}.

iv(Word, X^pred([Word, X])).

n(LF) --> [N], {n(N, LF)}.

n(Word, X^pred([Word, X])).

During parsing, these expressions simply create logical forms with the same names as the corre-

sponding words, and the correct number of arguments: one for intransitive verbs and nouns, two for

transitive verbs. The predicate pred[P, ...] represents the predicate P (...) in the robot’s sensory

representation; we shall see below that it is useful to treat the predicate P as a variable.

Proper nouns, pronouns, and noun phrases beginning with “the” are immediately grounded in

the robot’s environment. In Prolog, this is expressed as follows:

det(the, W, (X^S1)^(X^S2)^S2) :- contains(W, S1).

pn(E, W) --> [PN], {pn(PN, W, E)}.

pn(PN, W, X) :- contains(W, pred([PN, X])).

The predicate contains(W, X) is true if the world W includes the fact X. On parsing a proper

noun or definite article, the contains clause effects a search for the extension, and the symbol for

that extension takes the place of the corresponding predicate. For instance, on parsing “the ball,” the

system searches the world W for a symbol X such that ball(X). If ball(b) is found in W , X^ball(X)

is replaced with b. (In the case of multiple possible extensions, the system chooses one arbitrarily.)

If the robot knows enough to understand the sentence S, the end result when the robot hears a

sentence is that it is transformed into either the form pred[P, X] or the form pred[P, X, Y], where
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X and Y are symbols that correspond directly to known objects and P is a sensory predicate. If the

robot’s world W contains this fact as well, nothing further happens. If W does not contain P (X, Y ),

but there is some fact in W that contains P , the sentence is understood as new information, and is

added to the knowledge base.

If the parse fails, the system is allowed to guess one word extension that it does not actually

know. An unconstrained variable A is appended to the world W before passing it into the parser,

and the parser solves for A. This effectively allows the robot to hypothesize a fact of the form

pred(Word, Object), where Word is the new word and Object is the object to which it refers.

Figure 6.1 illustrates how this works. Suppose the robot hears the statement “I got the ball.” It

does not know who “I” is, but it sees girl a holding a ball b and girl e holding nothing. The parse fails

the first time because the robot does not know the word “I.” It does, however, know that “got the

ball” parses to λY.has(Y, b). On retrying with the free variable, the robot finds that hypothesizing

I(a) allows it to match the sentence to got(a, b), a fact it already knows. Thus, “I” is assumed to

refer to a: the system has successfully inferred the extension.

6.2 Finding the Intension

This section describes how the system learned intensions for the experiments in this chapter.

On inferring an extension for a word, the system next formed hypotheses about the intension of

the word. The system searched its knowledge about the world W for all facts about the extension.

This included single-argument predicates as well as relations: for example, the facts retrieved if the

ball b were the extension could include both ball(b) and got(a, b).

A new intension consisted of two parts: a predicate P and an argument number i. The define

operator has the following semantics:

define(w, P, i) ⇐⇒ P ( . . .
︸︷︷︸

i−1

, o, . . .) |= w(o) (6.1)
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Let the shorthand [[w]] = P@i be equivalent to define(w, P, i). (The bracket notation is adapted

from Dowty et al. (1981).) In the case of single-place predicates, this has the intuitive definition of

words being defined by already existing single-place predicates – for example, [[ball]] = ball@1. In

the case of predicates of higher arity, this allows us to define words in terms of an object or person’s

relation to something else. For example, given a predicate tells(X, Y, Z) that holds if X is speaking

to Y and saying Z, it is possible to define [[I]] = tells@1 and [[you]] = tells@2, corresponding to the

notion that “I” is the speaker and “you” is the person being addressed.

Once these possible intensions had been generated, the system used the chi-square comparison

method described in Chapter 5 to decide which intension-word pairing was most significant (i.e., least

likely to have occurred due to chance). For each possible definition Φip, corresponding to predicate

p and predicate argument i, the system counted the number of times φip that any word’s extension

had fit the definition. For each word Wj , the system counted the number of times wj the word

had been used, and the number of times it had been used for each predicate-place pair, wijp. In

addition, the system tracked the total number of words σ that have referred to extensions so far.

Using these quantities, it is straightforward to show that the system can compute chi-square values

for each word-definition pair.

As before, chi-square values could be high for word-definition pairs for which the word appeared

less often than expected, which is not generally helpful for a word definition. Thus, the cases where

wijp < wjφip/σ were excluded. Otherwise, the system estimated the best intension for a word to be

the definition with the highest chi-square value of all that word’s definition pairs.

If the program was halted, the word, property, and collocation counts were written to a file. This

data was sufficient to resume learning where TWIG had left off. In addition, on restarting, TWIG

asserted define(w, p, i) for any word-definition pair that was higher than all other chi-square values

for the same word and exceeded a threshold of significance of p < 0.05 (χ2 > 3.84). This definition

was then available for parsing sentences normally or making inferences about other words.
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6.3 Learning Transitive Verbs

The explanations above focused on the case of words that are interpretable as single-place predicates,

such as nouns, pronouns, and intransitive verbs. Transitive verbs were learned in almost the same

way. On encountering a new transitive verb v, the system’s parse would fail the first time. On

the second pass, the free variable A was appended to the world description W , and on reparsing it

would bind with pred([v, s, o)], where s and o were the extensions of the subject and object of the

sentence. The hypothesized definition would then be of the form define(v, p, i, j), where i and j

were both places of a predicate that relates s to o. For example, “addresses” might be defined with

define(addresses, tells, 1, 2) to treat it as a synonym to “tells,” while “listens” could be (loosely)

defined as define(listens, tells, 2, 1). Counts and chi-square tests proceeded as normal for each

such definition found.

6.4 Robotic Implementation

The robot used the face detectors, color blob detector, sound localization, and speech recognition

described in Chapter 4. The input from the robot’s sensory systems was then converted into the

following symbols and logical predicates before being passed to the TWIG system.

Symbols were created for each face, and also for the ball; below, I shall refer to these symbols as l

and r for the person on the left and right, respectively, and b for the ball. The system also possessed

a symbol n for itself. Each face and the ball received a predicate that uniquely identified it; I shall

refer to these as lprop(X), rprop(X), and ball(X). If the ball was within a threshold distance of a

face, the predicate has(P, b) was true, where P was the symbol for that person.

On detecting speech, the audio system produced the predicate tells(X, Y, Z), where X is the

speaker, Y is the person being addressed, and Z is the word segmentation produced by Sphinx. The

person being addressed was inferred to be either the other face if the speaker was viewed in profile,

or the robot itself if the speaker was looking toward the camera. (This decision of facing was made
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Figure 6.2: Sample chi-square values over time for one subject (M.D.) in experiment 1, for the word
“I.” The correct definition is tells@1, corresponding to the speaker.

using the forward-algorithm-based face decision process described in Chapter 4.)

The system also had access to the identity predicate; ident(X, X) was true for all objects X.

6.5 Experiment 1: “I” and “You”

For our first experiment, I followed the experimental setup of Gold and Scassellati (2006e) (described

in the previous chapter) using the new Prolog-based TWIG system to learn the words “I” and “you.”

Two people passed a bright yellow ball back and forth in front of the robot, using the phrases “I got

the ball,” “You got the ball,” and “[name] got the ball” to comment on the action. Subjects were

instructed to look at the other person when saying “you” and to look at the robot when saying the

other person’s name. (I was always one of these speakers, as pairs of subjects left to their own devices

tended to speak and act too quickly for the speech recognition to catch up.) All of the words were

contained in a small context-free grammar for the purposes of segmentation, but the Prolog system

originally only contained the definitions define(got, has, 1, 2) and define(ball, ball, 1).

The experiment continued for 40 recognized utterances, and was repeated from the beginning with

3 different pairings of people.
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Subject A B C
Facing errors 22.5% 22.5% 30%
Ball location errors 22.5% 17.5% 17.5%
Sound localization errors 2.5% 2.5% 0%
Recognition errors 0% 0% 2.5%
“I” consistent, utterance # 2 17 4
“You” consistent, utterance # 30 36 7

Table 6.1: Comparison of “I” and “you” learning with different sensory error rates for subject
facing, ball location, sound localization, and speech recognition. Most sensory errors were caused by
asynchrony between the speech and sensory modules.

6.5.1 Results

For each pair, the words “I,” “you,” and the names of the two individuals received the correct

definitions by the end of the final trial: [[I]] = tells@1, [[you]] = tells@2, and [[(name)]] = lprop@1

or rprop@1, as appropriate. Figure 6.2 shows the progress of the definition of “I” for subject C,

while Table 6.1 compares the results across subjects, based on error rates. Across subjects, “you”

was the most difficult word for the system to learn because it required the correct facing information,

correct sound localization, and correct recognition; “I” was much easier to learn because the facing

of the subject did not matter. The high number of sensory errors were found to have been caused by

timing disparities between the robot’s sensory modules and the speech system, but they were not so

numerous as to overwhelm the word learning. Errors were classified post hoc based on transcripts,

with recognition errors assumed only if another kind of error could not explain the data. The high

error rates also caused a high variance among the subjects in when the correct hypothesis was

achieved.

6.6 Experiment 2: “Am” and “Are”

For each subject in Experiment 1, the data accumulated in the first experiment was used to initialize

the system in the second phase. In this experiment, subjects simply alternated between “I am
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Subject A B C
Facing errors 7% 0% 7%
Sound localization errors 7% 7% 7%
Recognition errors 3% 3% 13%
“Am” consistent, utterance # 1 1 1
“Are” consistent, utterance # 21 2 23

Table 6.2: Comparison of “am” and “are” learning with different sensory error rates for subject
facing, sound localization, and speech recognition.

[name]” and “You are [name].” A ball was again passed back and forth, but this time passing the

ball only served to force subjects to pause between utterances. For each subject, the system used only

the definitions it learned during the corresponding trial of Experiment 1. The experiment continued

until 30 utterances were recognized.

6.6.1 Results

In all three runs, “am” and “are” were paired with the correct definition of ident@1, 2. “Am” was

apparently easier than “are” because learning it did not require interpreting “you,” which involved

potentially error-prone facing information. Neither had a particularly high error rate, and the slow

learning of “are” for subjects A and C occurred mostly because they often spoke this utterance

immediately after “I am [name],” while the speech recognition software was still processing the first

utterance, making “you are [name]” the more rare utterance in the data. Table 6.2 compares the

results and error rates across subjects. (Facing errors were less common in Experiment 2 because

the speakers consistently faced each other.)

6.7 Discussion

The ability to parse sentences into logical forms is a huge advance over the approaches described

in the previous chapter. There, the results depended on some rather large assumptions built into

the experimental setup, such as the fact that “got” was always used in the context of having the
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ball, or the fact that each sentence only included one referent of real interest. Without grammar,

the semantics of the previous chapter could only convey vague associations, instead of propositions

about the world. The addition of formal semantics greatly increased the validity of the claim that

the system was learning the meanings, or intensions, of words.

The power of this formal semantics was showcased in the second experiment, in which the system

learned that “am” and “are” refer to the identity relation. The previous system could not have

learned these meanings, because no reasonable representation could include the identity relation as

a single boolean property of an object. The ability to learn the meaning of a relation was new to

TWIG.

The ability to use the newly learned word meanings to learn more words could have been imple-

mented in the previous, simpler semantics – but it was not, and the demonstration of this ability

in TWIG was important for conveying the idea that this system could bootstrap its way into larger

and larger vocabularies. I have argued elsewhere (Gold and Scassellati, 2007a) that it is better to

focus in a word-learning system on the “inductive step” of using language to learn more language,

rather than the “base case” of learning first words. A starting vocabulary is easily programmed into

the system; it is the process of going from a size n to size n + 1 vocabulary that deserves the focus

of research. As I demonstrated in these experiments, it only takes a few definitions to begin to grow

the system’s vocabulary.

The intension representations and learning mechanism used here were not too bad, and it is

worth pointing out some of the strengths and weaknesses of this approach before moving on to the

“definition trees” of the next chapter. Though the choice of predicates was limited to the existing

predicates of the system, the ability to treat any slot of an n-ary predicate as a potential definition

has more versatility than there might appear at first glance. Consider a predicate representation of

a car that includes as an argument where the car is parked; hypothetically, this kind of system could

learn that anything occupying this slot is a “garage.” More generally, if predicates represent frames

(Minsky, 1974) for common actions or scripts, this kind of representation would enable the system
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to learn names for each slot of the predicate, or for relations between the various slots.

This representation and learning process for intensions also does not require that words be mutu-

ally exclusive in their definitions, unlike the definition trees of the next chapter; this will be discussed

in more detail in the next chapter. Overall, however, the inability to learn conjunctions or predicates

involving numerical thresholds severely limits the intensional representation of the present chapter.

One weakness of the present chapter’s experiments is that there were not very many possible

predicates available for definitions. In the second experiment, the only predicates with more than

one place were got\2, identity\2, and tells\3, which did not leave very many possible interpreta-

tions for “am” and “are” (though variants on tells were possible when speech localization failed).

Even though the system could use the new words it had learned as predicates, its inability to form

conjunctions and disjunctions meant that these new predicates would always be highly constrained

by the predicates that the system started with. The experiments in the next chapter significantly

improve this situation.

Another weakness of these experiments is that they did not demonstrate the robot’s ability to

generate sentences about its environment, though this would have been a natural extension of the

new formal semantics. This was implemented with the definition-tree based intensions of the next

chapter, but it could have been implemented with these simpler intensions as well.

The addition of formal semantics to unsupervised learning put TWIG in an interesting position,

as previously robotic word-learning systems had avoided full-sentence parsing and semantics, while

word-learning systems that did use such semantics were not well-suited to implementation on real

robots (see Chapter 2). The fact that TWIG combined these approaches made it promising not only

as a system for learning deictic pronouns, but for learning words in general. Nevertheless, the case

of pronouns would play a large role in motivating the innovation to be described in the next chapter:

that of using “definition trees” for intensions.
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Chapter 7

TWIG Part II: Finding the Intension

with Definition Trees

“So, how would you learn the meaning of ‘he’?” This question, which Drew McDermott had asked

after a talk about some of my earlier results, motivated the approach to intension that I will present

in the present chapter. My previous methods had required that definitions be constructed from true,

single-term predicates. It seemed somewhat perverse to construct a single predicate that meant

“male, but not the speaker, and not the person being addressed.” Clearly, any reasonable system

of intension learning should be able to construct definitions that include conjunction and negation.

But how could I do this in a manner that would plausibly scale? Testing an exponential number of

conjunctions as if they were single predicates did not seem reasonable.

A solution came to me when I realized that the meanings of the pronouns I was interested in

could be arranged into a tree structure, in which the interior nodes were predicates that could be

either true or false (Figure 7.1). What if such trees could be constructed using a standard decision

tree creation algorithm (Quinlan, 1986)? The definitions could then be read off the tree by following

a path from a leaf containing a word back to the root. This solution was elegant enough that I was

finally satisfied that I had created a word-learning mechanism that was not particular to the words
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ident(S, X)

     person(X)

thislookingAt(S,X)I

thatheyou

dist(S, X) <= 28.8cm

dist(S,X) >= 31.2cm

Figure 7.1: An example of a definition tree, taken from the experimental results to be described.
Branches to the left indicate that a predicate is satisfied.

“I” and “you,” but was powerful enough to include them.

As an additional advance over the previous methods, I introduced the ability to deal with numer-

ical values, reducing the system’s need for predicates tailored to the learning problem at hand. This

allowed the system to create its own threshold on distance to define the difference between “this”

and “that,” rather than requiring a Boolean predicate close(X,Y) to exist prior to learning.

In this chapter, I will first describe the structure of definition trees in more detail. I will then

describe the details of how they are learned, followed by a specific experiment in which meanings

for the words “I,” “you,” “he” “this,” “that,” “above,” “below,” and “near” were learned. After

that, I will present the culmination of this thesis: I show that the definitions learned using this

method, combined with the extension-finding of the previous chapter, allowed the robot to form

new sentences about its environment that correctly made use of the new words; and that TWIG’s

combination of extension-finding and definition trees resulted in more correct utterances and fewer

incorrect utterances about various scenes than variants that lacked these features.
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7.1 The Interpretation of Definition Trees

Definition trees1 reconstruct the speaker’s decision process in choosing a word for a referent or a

relation. They are essentially decision trees, but they are built for use in both comprehension and

production, rather than simply being used as classifiers. The words are stored at the leaves, and a

word’s definition is given by the path from the root to the word’s leaf. The interior nodes can be

decisions about the referent’s properties itself, or relations to other objects or people, particularly

the speaker. When TWIG learns the meanings of new words, it does so by constructing definition

trees that include the new words. The structures of these trees implicitly define the words.

Figure 7.1 shows an example of a definition tree. A branch to the left after a decision indicates

that the predicate is satisfied, while the right branch indicates that it is not. Each decision consists

of attempting to satisfy a logical predicate with at most one threshold on a numerical argument to

the predicate. We follow the additional convention that S always refers to the speaker, X always

refers to a referent, Y is an optional second referent for the purpose of defining relations, and V is

a numerical threshold. For example, one decision might be dist(S,X,V) & V ≤ 28.8, indicating

whether the distance between speaker S and referent X is less than 28.8 cm. (We will sometimes

use the shorthand dist(X,Y) <= V, or omit mention of the threshold entirely if the attribute is

boolean.) In choosing a word to describe X, the system would decide whether speaker S and X

satisfy this predicate and threshold. If the predicate is satisfied, the path on the left is followed; if

they do not, the path on the right. This process continues until a leaf is reached, at which point the

most common word at the leaf would be chosen.

The structure of a definition tree implies the logical definitions of the words it contains. Each

word is defined as the conjunction of the predicates that lie on the path from the root to the leaf,

with a predicate negated if the “no” path is followed. For example, the tree in Figure 7.1 implies

that the logical definition of “you” is

1This chapter covers very similar material to Gold et al. (2007), which called these structures “word trees.” I have
since decided that the term “definition trees” is a less vague word for these structures, since “word trees” could be
confused with parse trees.
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you(X) :- person(X) & \+ident(S,X) & lookingAt(S,X)

indicating that “you” is a person who is not the speaker (\+ is the Prolog negation operator), but

whom the speaker is looking at. (I shall continue to use ident to refer to the identity relation, which

holds true for each object only with itself.)

If the rightmost path of the tree is followed to its end, the system realizes that it does not know

enough to describe the item in question; this is indicated by a dot in Figure 7.1. The decision

just before this final check is depicted in dotted lines to indicate that it is constructed in a slightly

different manner from the other decisions. The system there is no longer contrasting words against

other words, but choosing whether it knows enough about the referent to say anything at all.

The goal of the system is to construct such trees automatically from data, as the example in

Figure 7.1 was. We turn now to the algorithm for constructing these trees.

7.2 Constructing Definition Trees From Data

Definition trees are constructed and updated using the output of the extension finding module.

The mechanism is essentially a variant on Quinlan’s ID3 algorithm (Quinlan, 1986): the available

evidence is split into two groups based on the decision about the referent that is most informative

to word choice, with one group satisfying the condition and the other not. This process then occurs

recursively until no further decisions are statistically significant. The tree can be updated online,

though the “batch” case shall be described first because it is simpler, and in some cases it must be

called as a subroutine to the online version.

The output from the extension finder for a given utterance, and thus the input to the definition

tree generator, is a 6-tuple (Wi, Ti, Xi, Yi, Si, Ωi), where Wi is the new word, Ti is the inferred part of

speech (“type”), Xi is the literal determined to be the referent, Yi is an optional second referent (or

null), Si is the literal that was the speaker, and Ωi is a list of predicates from the world that contain

literals Xi, Yi, or Si as arguments. The second referent is non-null if the word was determined to
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refer to a relationship between two referents, instead of to a particular referent.

TWIG generates a separate decision tree for each part of speech, where the part of speech is

inferred from parsing. The use of separate trees is necessary because during language generation, the

system should not attempt to use a noun as an intransitive verb, for instance, even though both have

the same basic logical form and arguments. The rest of the exposition will assume we are dealing

with the tree for a single part of speech.

Let t be an evidence 6-tuple; the following is the description of D(t), the function that generates

the set of possible decisions implied by the tuple. A decision here is a triple (P, V0, σ), where P

is a predicate with its arguments drawn exclusively from the set of variables {X, Y, S, V, }, V0 is a

threshold value, and σ is a sign indicating whether the direction of inequality for the threshold is ≥

or ≤. For each tuple, all instances of object Xi are replaced with the variable name X; all instances

of object Yi are replaced with variable name Y ; instances of the speaker Si are replaced with the

variable S; and one numerical constant can be replaced with variable name V . All other arguments

to the predicate are replaced with the anonymous variable “ ”, which can bind to anything and thus

serves a similar role to existential quantification. The threshold V0 becomes the constant value that

was replaced with the variable V , or 1 if there was no constant value. Then, two decisions are added

to the set: one for σ = “ ≤′′ and one for σ = “ ≥′′. If a single literal plays more than one role,

by being both speaker and the referent, then all possible decisions that can be generated by these

substitution rules are added to D(t). For example, if Bob was both the speaker and the sole referent

of the new word, the term inchesTall(bob, 60) would generate four decisions: two decisions for

whether the speaker (S) was at least or at most 60 inches tall, and two decisions for whether the

referent (X) was at least or at most 60 inches tall. D(t) consists of the union of all such sets generated

by each predicate in Ωi.

The algorithm must decide which of these decisions is most informative as to word choice. For

each decision, a 2 × |W | table is maintained, where |W | is the number of unique words. This table

maintains for each word the number of times the decision was satisfied by the referents of the word,
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and the number of times the decision was not satisfied. Note that this requires attempting to satisfy

each decision with the variables X, Y, S and V bound to their new values for each tuple.

From this table, one can easily calculate the information gain from splitting on the decision. Let

W be the set of all words wi, and let wi ∈ Wd if it was used under circumstances when decision d

was satisfied, and wi ∈ W¬d otherwise. Then

Gain(d) = H(W ) − |Wd|
|W | H(Wd) −

|W¬d|
|W | H(W¬d) (7.1)

where

H(W ) =
∑

i:wi∈W

−|wi|
|W | log

|wi|
|W | (7.2)

Readers may recognize H(W ) as the entropy of W , characterizing the average amount of information

in a single word. Gain(d) is the expected reduction in entropy on learning the truth or falsity of

decision d. The decision with the most information gain is thus the fact about the referent that

maximally reduces the “surprise” about the choice of word (Hamming, 1986). This is the criterion

used by Quinlan for the original ID3 decision tree algorithm (Quinlan, 1986). If two decisions are

tied for informativeness, TWIG breaks the tie in favor of non-numerical predicates, thus penalizing

the numerical predicates for complexity.

The maximally informative decision is added to the tree, so long as the decision and word choice

are determined to be highly unlikely to be independent. A chi-square test can be computed using

the same 2 × |W | table to test for significance. TWIG uses Yates’ continuity-corrected chi-square

test (Yates, 1934):

χ2
Y ates =

N∑

i=1

(|Oi − Ei| − .5)2

Ei

(7.3)

where the sum is over the cells of the table, Oi is the observed value in that cell, and Ei is the expected

value in that cell under the assumption of independence. (Yates’ corrected chi is a compromise

between the normal chi square test, which is misleading for small sample sizes, and Fisher’s exact
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test, which would take too long to compute for large numbers of decisions to be evaluated.)

Because the chi-square critical value depends on the number of degrees of freedom, which in turn

depends on the number of unique words, a single critical value can’t be used. Instead, the critical

value τ is approximated using the following equations (Law and Kelton, 2000):

τ = (1 − A +
√

AP−1(1 − α))3(|W | − 1) (7.4)

A = 2/(9(|W | − 1)) (7.5)

Here P−1(φ) is the inverse normal distribution, |W | is the number of distinct words in the table, and

α is the desired significance level. In the experiments to be described, p < 0.001 was set to be the

threshold for significance, so that even with hundreds of possible decisions, the chance of at least one

of them reaching accidental significance remained less than p < 0.05.

With the decision added to the tree, the set of evidence tuples T is partitioned into two subsets

– one subset consisting of the examples in which the decision was satisfied, and one in which the

decision was not. These subsets are used at the left and right branches of the tree to generate

subtrees, following the same procedure as outlined above. The process is then repeated recursively

for each branch of the tree, until no more decisions can be added in which there is significant deviation

in the data from chance (using the p ¡ 0.001 chi-square test). The most common word among all the

tuples at a leaf is chosen as the “correct” word for that leaf. (Irrelevant words at a leaf are often the

result of sensor noise or speech recognition error.)

Once the basic tree has been recursively built, one more operation needs to be performed, in order

to make the rightmost branch meaningful. Unmodified, the rightmost path in a basic definition tree

always corresponds to a failure to prove anything about a referent, since the right path must be taken

when a value is unknown. Though there exist some words that describe items about which nothing

is known (e.g., “it,” “thing”), they do not exist for all parts of speech; for example, there is no

“default” transitive verb that implies nothing about its referents. Thus, some meaningful words may
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be assigned to this branch simply because there are no further distinctions to be made. Unmodified,

this leaves the word mostly meaningless to the robot. Moreover, if the robot ever moved to a different

environment or context, it would be constantly failing to prove anything, but then would mistakenly

use its “default word” to describe every new situation.

For these reasons, the definition corresponding to the rightmost path is always augmented with

the single non-negated decision that produces the highest information gain when contrasting the

rightmost word with all other words in the tree. (This decision is represented in the decision tree

diagrams with a pair of dotted lines.) The calculation uses all the evidence available at the root of

the tree, but the 2 × |W | table for each decision is collapsed into a 2 × 2 table, so that only the

rightmost word vs. non-rightmost word decision is taken into account for informativeness. With this

final check added, the system has a means of extracting slightly more information out of the evidence

that falls into the rightmost classification, and it also has a way of determining whether it does not

know enough to have a good word for a new situation.

7.3 Optimizations for Online Learning

The batch mode for tree generation is useful for reconstructing a tree from a datafile of evidence

6-tuples; most of the time, however, the tree is updated online in response to an utterance. If the

2 × |W | tables for each decision (including decisions not chosen) are maintained at each node in

the tree, a node update usually need only consist of updating these tables and added the few new

decisions implied by the new tuple t. This update is performed first at the root, and then, if the

root decision is unchanged, the new tuple is passed recursively down the tree to whichever branch it

satisfies. The tree’s structure only changes if, after updating the existing decision tables and adding

the new decisions, the most informative decision at a node changes. In this case, the batch algorithm

must be called for the entire subtree. While the worst-case running time for this online version is the

same – theoretically, every update could change the most informative decision at the root, requiring
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the whole tree to be rebuilt – in practice, most updates do not change any decision nodes, and the

update is fast because it only updates tables down a single path to a leaf.

With these optimizations in place, a Java-based implementation running on a 3.4 GHz Pentium

4 could typically update a tree with 100-200 evidence tuples in 1-2 seconds, with a worst case of

about eight seconds. The implementation used no optimizations besides those described here, and

probably could have been further sped up with a better optimized proof mechanism for checking the

truth or falsity of decisions. (See also “Complexity,” below.)

Note that despite these optimizations for online performance, the order in which evidence is

received does not matter in determining the final state of the definition tree. The inputs could be

shuffled, and the final tree would remain the same, because the structure of tree n − 1 has no effect

on the structure on tree n; it merely affects the time necessary to compute the nth tree. The table

of evidence stored at the root contains all the information necessary to rebuild the tree from scratch.

If new data is received that makes different decision at the root more informative than the current

root decision, the entire tree is rebuilt using this data; if a new decision is more informative at a

different interior node, the subtree stemming from that node is rebuilt. The online optimizations are

efficient under the assumption that these are rare occurences, but when the tree must be remade to

better accomodate the data, it changes its structure to do so. TWIG makes use of its existing tree

and data tables to avoid repeating calulations it has already made, but no decision is permanent.

This also means that bad decisions introduced due to sensory error can be fixed or eliminated if the

system is given more input.

7.4 Conversion to Prolog

After each definition tree update, the definition tree can be converted into Prolog, sent back to the

extension generator, and asserted, so that the word meanings can be used for parsing immediately.

For example, the meaning of “got” as implied by the definition tree in Figure 7.2b becomes the
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   obj1(X)

pig           obj2(X)

ball

   is

   ident(X,Y)

   dist(X,Y) <= 38.0cm

got

lost

   dist(X,Y) >= 40.0cm

          (a)                                             (b)

Figure 7.2: The definition trees available to the system at the start of the experiment of section 7.7
for (a) nouns and (b) transitive verbs.

following Prolog statement:

contains(W, pred([got, X, Y])) :-

member(W, pred([_P1, X])),

member(W, pred([_P2, Y])),

\+(contains(W, pred([ident, X, Y]))),

(contains(W, pred([dist, X, Y, V0])), V0 <= 38.0).

The “member” statements are necessary so that X and Y are instantiated before entering negated

clauses. Prolog’s negation-as-failure operator would otherwise dictate that got(X,Y) was false if

ident(X,Y) held for any choice of X and Y in the environment – which is obviously not what is

desired. If this definition had referred to the speaker, the clause member(W, pred([says, S, _])

would perform the necessary binding.

A depth-first traversal of each definition tree can create an explicit list of valid words for each

part of speech in the grammar. Since the language system treats internally defined predicates and

words as nearly identical, explicit lists of defined words are necessary to prohibit the robot from

using its internal sensory predicates as words.
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7.5 Complexity

The time to build the tree is the time to evaluate a single decision set, multiplied by the number

of nodes in the tree. This includes leaves, since decisions are evaluated at the leaves but ultimately

discarded. The maximum number of leaves in the tree is |T |, the number of evidence tuples; the

maximum number of total nodes in the tree is therefore still O(|T |). The number of decisions to

be evaluated at each node is at most O(|P |V ), where |P | is the number of different predicates and

V is the number of different values encountered for each predicate. (Despite the fact that there

are several permutations of variables permissible for each predicate, that number is still bounded

by a small constant.) Evaluating a decision requires in the worst case examining every fact in the

environment, or |E| steps. Thus, the complexity for the batch algorithm is O(|T |2V |P ||E|). V

typically will be linear in |T ||E|, creating a running time of O(|T |3|P ||E|2); however, sampling a

constant number of values for each predicate would bring the complexity down to O(|T |2|P ||E|).

As mentioned previously, the worst case for the online version is a reorganization of the entire

tree at each step, resulting in O(|T |2V |P ||E|) steps for each new tuple. However, the more common

case of an update that does not change the tree structure requires only O(d|E|(|P |+ |T |)) operations

to update, where d is the depth of the tree; the two added terms come from the time to update

existing decisions at a node, O(|E||P |), and the time to generate and evaluate new decisions from

the new tuple, O(|E||T |).

The linear dependence on the number of predicates and the size of the world means that the

algorithm would scale well with the addition of a large factual database, containing information

that the robot cannot directly perceive. However, if extended chains of inference are necessary to

prove certain facts, the |E| term would need to be replaced with the running time of whatever proof

mechanism is used to evaluate the truth or falsity of decisions. Efforts at code optimization would

be best directed at this proof procedure, since it is effectively the innermost loop of the tree update.

Practically speaking, most robots will probably have a small number of predicates, and the

dominant terms will be the number of tuples observed so far and the size of the environment. In
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the online case, the time to update is usually linear in both of these quantities. Furthermore, as the

number of examples increases, the chance of a major reorganization of the tree decreases, so that

in the limit the updates will almost always be O(d|E|(|P |+ |T |)), assuming value sampling. Thus,

the algorithm should scale well in the long term to more words and more examples, as long as the

number of numerical values is kept in check through sampling.

The complexity analysis above assumes that the new words that are learned are not introduced

into the system as possible predicates for decisions. Doing so would replace —P— in the above

running times with O(|N |) in the worst case. It is unclear whether this would be a helpful thing to

do; on the one hand, it would increase the running time without actually expanding the hypothesis

space (since the new predicates would necessarily be redundant), but on the other, it might allow some

decisions to be represented more concisely and allow structure to be shared across parts of speech.

In any case, the present experiments only used the system’s basic predicates (those contained in

the description of the environment) in generating decisions, and so did not suffer the running time

penalty.

7.6 Starting Trees

Clearly, if the algorithm is to understand all but one of the words in the sentence, it needs some

word definitions to begin with. This implies that the algorithm needs some definition trees from the

outset in order to use its word extension finder. Unfortunately, merely specifying the structure of a

starting tree is insufficient; the algorithm must have access to the data that generated a tree in order

to update it.

For the initial vocabulary, the algorithm must therefore be initialized with some sensory data in

which the words are directly paired with their referents, circumventing the word extension finder.

The starting vocabulary can be fairly minimal; the implementation for the experiment to be described

began with five words, “ball,” “pig,” “is,” “got,” and “lost.” The definition trees generated for these
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words (using 45 labeled examples) are shown in Figure 7.2. Importantly, the data used to generate

these trees must be generated under fairly similar conditions to the real online environment, or

any consistent differences will be seen as highly informative. Ideally, the robot would be able to

use pointing gestures or gaze direction to find these extensions without the extension finder, as

this would presumably be most similar to how children learn these first examples in the absence

of grammar; Yu and Ballard’s gaze tracking word learner provided an excellent system for doing

this, albeit not in a predicate logic framework (Yu and Ballard, 2004). In practice, it is not too

difficult to manually provide words and referents for 45 different environment descriptions pulled

from the robot’s sensors, and this is what was done; environment descriptions from previous learning

experiments were manually inspected, and the starting words were given appropriate bindings to

referents in the environment.

An alternative, which TWIG used previously (Gold et al., 2007), is to have the starting defini-

tions exist outside the definition tree structure, rendering their definitions unalterable and moot for

the purposes of definition tree construction. This approach is less elegant, however, as the known

definitions should ideally always inform the definitions of new words, and vice versa.

7.7 Decision Tree Learning Experiment: I, You, He, This,

That, Above, Below, and Near

In this experiment, the robot used the Cricket indoor location system (Priyantha, 2005, (see Chapter

4)) to sense the positions of two objects, a stuffed pig and a tennis ball. In addition to the pronouns

“I” and “you,” now familiar to the reader, this experiment was also designed so that the robot could

learn the third-person “he,” proximal and distal pronouns (“this” and “that”), and some simple

prepositions (“above,” “below,” and “near”).
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7.7.1 Setup

Cricket beacons (Priyantha, 2005) were attached to the stuffed pig and tennis ball. The robot used

its face/facing detection system to determine subject facing, but did not use the now redundant

color blob detection system. Sound localization used overall loudness instead of time-of-flight, and a

context-free grammar containing only the target phrases was used for speech recognition.

The grammar used for parsing in Prolog was as follows:

<s> = <np> <vp>;

<np> = (this | that| the ball | the pig | i | you | he);

<vp> = (is <np> | is <p> <np> | got <np>);

<p> = (near | above | below);

The robot’s sensory information was changed into the following logical predicates. person(X) was

true of the robot and all faces detected. The distance V between each pair of entities X and Y (where

an entity is a ball, pig, person, or robot) was stored in the predicate dist(X,Y,V). The predicate

relHeight(X,Y) was also calculated as the difference between each pair of entities’ Z-coordinates.

ident(X,X) held for each object with itself. lookingAt(X,Y) was true if X was a person and Y was

an entity in the halfspace 30 cm away from X that was normal to X’s facing direction. Each entity

also had a predicate unique to itself to identify it. The speaker was denoted by a special variable S,

instead of a predicate.

7.7.2 Procedure

For 200 utterances, the experimenter and another subject moved the stuffed pig and ball to different

locations in the room, and then spoke one of the following utterances ([noun] should be understood

to be “ball” or “pig”):

This is a [noun] ; That is a [noun] ; I got the [noun] ; You got the [noun] ; He got the [noun] ; The

[noun] is above the [noun] ; The [noun] is below the [noun] ; The [noun] is near the [noun].
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Sentence Type Example TWIG Reaction Proportion
Understandable, accurate I got the ball (true) Accept 48%
Understandable, data mismatch I got the ball (wrong speaker) Accept 5%
Understandable, ambiguous reference That is that Accept 0.5%
More than one new word He got that Discard 28.5%
No extension produces valid fact He got he Discard 10.5%
Misheard as question That is what Discard 7.5%

Table 7.1: TWIG’s reaction to various speech recognition outcomes encountered during the experi-
ment.

The locations for the items included next to the robot, on the steps of a ladder, in the hands of

one of the experimenters, on various tables situated about the room, and underneath those tables.

The experimenters remained roughly 60 cm in front of the robot and 50–70 cm away from each other,

and faced the appropriate individual (or robot) when saying “you” or “he.” 2

7.7.3 Results

Many utterances were incorrectly recognized by Sphinx: at least 46%, based on a review of the

system’s transcripts. But because these false recognitions typically either included too many unknown

words (e.g., “He is near the pig”) or resulted in utterances with no possible new extension (e.g., “He

got he”), the system usually made no inferences from them. A recognition error only affected tree

development when it resulted in a sentence that contained exactly one unknown word. Table 7.7.3

lists the frequencies with which various errors occurred, and TWIG’s reactions to them.

Figure 7.3 shows the state of the pronoun tree at the 27th, 40th, and final updates to the tree.

The person(X) distinction remained the most informative attribute throughout the experiment, as

it served to classify the two pronoun types into two broad categories. The proximal/distal distinction

of “this” versus “that” was the next to be discovered by the system. The difference between “I,”

“you,” and “he” remained unclear to the system for much of the experiment, because they relied on

two unreliable systems: the sound localization system and the facing classifier, which had exhibited

2This experiment was first reported in Gold et al. (2007), but the decision tree algorithm has changed, and the
comparison under “Evaluation” is new to this thesis.
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error rates of roughly 10% and 15%, respectively.

The final definitions learned by the tree can be rendered into English as follows: “I” is the person

that is the speaker. “You” is a person whom the speaker is looking at. “He” is a person who is not

the speaker, and whom the speaker is not looking at. “This” is a non-person closer than 30 cm, and

“that” is anything else.

The words “above,” “below,” and “near” were stored in a separate tree, shown in Figure 7.4,

because the system inferred that they were a different part of speech. Because there were no con-

trasting examples for “near,” and in fact only four recognized utterances including the word, it did

not receive its own leaf. However, the system did learn that “above” and “below” referred to the

appropriate differences in relative height.

7.8 Evaluation

In addition to evaluating the TWIG system by the qualitative goodness of the definitions it produces,

I examined the number and accuracy of the sentences it was able to produce about its environment,

compared to similar systems.

7.8.1 Evaluation method

The data generated by our experiment (described above) was used to train four different word

learning systems, each a modification of the core TWIG system. In one variant, TWIG’s extension

inference system was disabled, so that the words were not bound to any particular object or relation

in the environment. The definition trees were created under the assumption that a decision was

satisfied if any object in the environment satisfied the decision. For example, dist(S,X) <= 30.0cm

was satisfied if the speaker was closer than 30cm to any object. I call this strategy of associating

everything in the environment with each word “associationist,” after Bloom (2000).

As another variant, extension inference was allowed, but the system did not use definition trees.
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dist(S, X) <= 27.3cmI

this

ident(S, X)

27th Update

dist(S,X) >=27.3cm

dist(S, X) <= 26.3cm

this

that

you

     person(X)

40th Update

ident(S, X)

you he

     person(X)

dist(S, X) <= 28.8cm

thislookingAt(S,X)I dist(S,X) >= 31.2cm

that

Final Pronoun Tree

Figure 7.3: The state of the pronoun tree at the 27th, 40th, and final updates.
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above

relHeight(X,Y) >= 70.6cm

relHeight(X,Y) <= −52cm

below

Figure 7.4: The definition tree created to define prepositions.

Instead, the system only used the single most statistically significant predicate to define each word,

as measured by a chi-square test. This is the system that TWIG used prior to definition trees (Gold

and Scassellati, 2007a), and demonstrates the behavior of systems that attempt to learn each word

as a separate learning problem, rather than treating all of word learning as a single decision problem.

Toggling whether extension inference was allowed and whether full definition trees were created

resulted in four system variants, including TWIG itself. Each system was presented with four test

environments, taken from actual robot sensory data. For each environment, each system produced all

of the sentences that were true of that environment, according to the semantics it had learned. For

evaluation, the systems were each provided with valid Prolog definitions for the words “is,” “got,”

“ball,” “lost,” and “pig.”

7.8.2 Evaluation results

Figure 7.5 shows the results of the evaluation test. The associationist best-predicate system produced

nonsensical definitions for every new word, but by chance managed to produce a fair number of correct

sentences. The associationist tree-based system was more conservative and did not produce any more

correct sentences than the tautologies implied by the definitions given to the system (“the pig is the

pig”). The extension-finding best-predicate system was much closer to the performance of TWIG, as

it produced all the correct sentences that applied to each scene that TWIG did. However, because
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AssociationistAssociationist Extension−Finding  Extension−Finding
 Best Predicate  Word Decisions  Best Predicate  Word Decisions

(TWIG)

Figure 7.5: Sentence production across four variants of TWIG. Disabling TWIG’s ability to find
word extensions generally results in incorrect definitions, while using single predicates instead of
definition trees tends to result in less nuanced definitions, and hence, overproduction.
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Figure 7.6: A diagram of the test environment that produced the utterances in Table 7.2. The robot
has the pig toy and is addressing the person on the left, who has the ball.

Associationist Associationist Extension-Finding TWIG
Best Predicate Word Decisions Best Predicate (Extension Finding, Word Decisions)
*I lost the pig. *I is above I. I got the pig. I got the pig.

*That got the ball. *I is above the ball. You got the ball. You got the ball.
I lost the ball. The ball is the ball. *That lost he. He lost the ball.
That is that. *The pig is I. *That got the ball. You got that.

*That lost the pig. *The pig is above the pig. This is the pig. This is the pig.

Table 7.2: Sample sentences produced by each system to describe the situation in Figure 7.6. An
asterisk indicates a statement counted as incorrect.

it could not represent conjunctions, its definitions of “this” and “that” omitted the requirement of

being a person, while its definition of “he” was based purely on distance to the speaker. This resulted

in sentences such as “that got the ball” (instead of “he got the ball”) and “he is the ball.”

TWIG’s only errors in production were in the sentences “I is I” and “You is you” for each test

environment, since it did not know the words “am” and “are.” (Grammatically correct tautologies

such as “he is he” were counted as valid across all four conditions.) Other utterances it produced

that it had never heard before included “I got this” and “That is below the ball.”

Table 7.2 shows some sample utterances that each system produced about the situation shown

in Figure 7.6.
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7.8.3 Discussion of evaluation results

First, it is interesting that TWIG can produce this kind of result at all, given that almost all previous

learning systems had no means of producing language, but could only generate representations of

their classifiers (Bailey, 1997; de Marcken, 1996; Regier, 1996; Roy and Pentland, 2002; Yu and

Ballard, 2004). It is important to point out that this comparison is between reasonable variants of

TWIG, but that in terms of production, TWIG and its variants are doing something that most other

word learning systems cannot do at all.

Without extension inference, the system is unable to generate workable meanings for the words it

sets out to learn, and its performance is more or less at chance levels. This supports the arguments of

Bloom that “associationist” models of word learning, in which words are associated with everything

that happens to be in the environment, are unlikely to be correct models of childrens’ word learning

(Bloom, 2000). It also places a heavier burden of proof on researchers who argue that children can do

this kind of association, because usually their experiments have assumed that all words are concrete

nouns, spoken in the presence of only a few possible referents, each of which shares no obvious

properties with any others (Smith and Yu, 2006). This experiment suggests that in situations of any

complexity, ambiguity in the extension begins to destroy any hope of learning the new words.

The definitions that the system produced under the “single best predicate” scenario were not as

complex as the definitions produced by definition trees, which led to overproduction. For example,

the definition of “that” could refer to distance or personhood, but not both, leading to a system

that called people “that.” This demonstrates that definition trees are a useful advance beyond the

intensions described in the previous chapter and in Gold and Scassellati (2007a).

7.9 Discussion

Much of the discussion of the system as a whole will be reserved for the final chapter; here I will

discuss some of the successes and failures of definition trees in particular.
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Definition trees are a useful new approach to word learning because they reframe what was

previously treated as a collection of individual concept learning problems into a single decision

problem. As such, they accomplish much more than one might think possible with only “positive

examples” and no negative feedback. They allow the learning of concepts that include conjunction

(through consecutive positive branches), disjunction (through words appearing at different leaves),

and negation (via the negative branches). The algorithm can also learn multiple meanings for the

same word, because the same word can appear at different leaves with radically different meanings.

The algorithm does not remain too conservative in its definitions from positive examples because

the tree partitions the space of objects completely, and because items that exceed the threshold for

a numerical property continue to satisfy the relevant property. Nico has never seen an object a mile

away, but it would still know to call it “that,” not “this.”

The ability to learn logical conjunctions and thresholds is especially important, because it allows

definitions that are more complex than the predicates which the system begins with. Learning new

meanings would be a hopeless task if every word essentially already had to have a predicate built

specifically for it; yet this is the assumption made in much word-learning work that uses logical

semantics (Kate and Mooney, 2007; Siskind, 1994). Conjunctions and thresholds leave open the

possibility that new concrete nouns or adjectives could be learned by chaining low-level sensory

predicates.

Some of the definitions may seem too simple, but it is worthwhile to keep in mind that the system

is built to learn intensions, or the facts that must be true of a referent for the word to pertain to

it, and not associations, or what Frege called the “idea” of a word (see Chapter 3). “I” has more

connotations to a human than it does to Nico, but Nico’s definition is sufficient to interpret nearby

speakers’ sentences or produce its own. Still, the definitions of “this” and “that” are not as general as

one might like, since they cannot capture reference to abstractions (“this idea”) or take into account

relativity of scale (“this great country”).

The addition of the speaker variable S may have seemed an ad hoc solution to the problem of
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deixis, but it should prove useful even for words that aren’t deictic pronouns. For example, it can

allow the learner to take a speaker’s attitude toward a referent into account: one can imagine a

system in which likes(S,X) distinguishes the words “good” and “bad.” The case of interjections

is also interesting, because they have no extension at all; yet every language has words that convey

angry(S).

The experiments here did not involve trees that could refer to variables that were neither an

extension nor the speaker. Such a feature would allow the system to learn definitions such as “an

object that is being looked at by A, for some person A.” Early experiments did include this feature,

but I eventually cut it. The system would often choose the splitter dist(X,A) <= V for some V

and then never add any restrictions on A, because there was generally some distance for which this

predicate split the examples best. I do not know whether this is an unavoidable problem with this

kind of variable, or if it is fixable by introducing some kind of complexity penalty. I could not think

of an application for this capability that was realizable with the sensors at hand, and so did not

pursue the matter.

Another system which did not work, oddly enough, was using chi-square values instead of in-

formation gain as the splitting heuristic for the decision trees. Though some sources suggest that

using chi-square values to decide when to split should be as good as information gain (Bremer, 1985),

this was not at all true for these experiments. Chi-based trees tended to produce many unnecessary

branches in the trees; even after pruning for high significance, the word “you” could be located

at several spots in the tree, each corresponding to a different distance or some other irrelevant at-

tribute. Statistical significance, it seems, can quite often signify a not very interesting or important

distinction.

In Chapter 3, I discussed the Principle of Contrast, which states that young children tend to

overextend words until they receive contrasting examples (Clark, 1987), and the Principle of Mutual

Exclusivity, which states that children tend to accept only one word for a given object at first

(Markman and Wachtel, 1988). I did not intentionally attempt to model these effects when designing
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my definition trees; as I related at the beginning of this chapter, I came up with the idea of using

definition trees primarily to solve the problem of how to learn the definition of “he” in a natural

manner. So it is rather exciting that these effects naturally fall out of the definition tree approach. It

suggests that one can gain insight into human development by attempting to solve the same problems

as infants; and vice versa, that attempting to solve things in a human-like manner might generally

be a good heuristic for design. Nevertheless, definition trees might implement these heuristics a bit

too strongly, as children eventually do learn that multiple words can refer to the same object, but

these definition trees currently do not.

It is tempting to give a developmental interpretation to the order in which the words were learned

in the experiment, but this is probably fallacious. The order in which words are presented to the

system matters a great deal to the order in which they are learned, and this was fairly arbitrary in

the experiment presented here. Word tree development could be treated as a model of human word

learning only if one took into account grammatical, conceptual, and perceptual development. To be

used as a predictive model, word trees would need to be presented with realistic word and property

frequencies, with certain properties becoming available to the system only at certain developmental

milestones.

In the next chapter, I will summarize the contributions and shortcomings of the TWIG system.
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Chapter 8

Conclusions

The TWIG system grew out of a simple puzzle: how could a robot learn the meanings of the words

“I” and “you” from the evidence of its senses? Recall that the state of the art for robotic word

learning was to associate words with fairly raw visual information (Roy and Pentland, 2002; Yu

and Ballard, 2004), while the state of the art in simulation was to leave the production of possible

meanings to a mysterious “black box”(de Marcken, 1996; Kate and Mooney, 2007; Siskind, 1994).

Not only did TWIG answer the question of how a robot could learn the meanings of “I” and “you,”

but it could learn several other pronouns besides – “he,” “this,” and “that” – as well as, with a

few simple modifications, some basic prepositions and even some transitive verbs. As I had hoped,

answering the question of how to learn personal pronouns led to techniques that were useful across

several kinds of words.

Below, I will outline some of the technical advances of the TWIG system, followed by the ways

in which it informs our understanding of human development. I will then go on to point out some

of the limits of the system and my findings, followed by a section on some of the ways in which the

system might expand.
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8.1 Technical Advances of the TWIG System

8.1.1 Full sentence production and comprehension

TWIG can create and understand full sentences composed of the words it knows. No other word

learning system does this with words learned in an unsupervised manner. (SHRDLU allowed the

user to give the definition of a new word explicitly (Winograd, 1971).)

This is not a trivial extension of the previous robotic work, but the result of a whole different

attitude toward word meaning. The idea of evaluating the truth value of a whole sentence stems

from much earlier work in language processing, which used formal semantics to change natural lan-

guage into logical statements. Robotics has typically taken a different attitude about word meaning,

treating it as the statistical association of sensory data and word (Roy and Pentland, 2002; Yu and

Ballard, 2004). This is in fact the method of Chapter 5, and it makes some amount of sense for real,

unconstrained speech, simply because vocabularies are so large and speech is rarely grammatical.

(The CHILDES transcript of the game of catch (Bohannon, 1976) which was used in the simulations

of Chapter 5 was no exception.) Even text processing has mostly moved toward statistical methods

that look only for co-occurence of words instead of logical semantic structure (Manning and Schütze,

1999a).

But where is the system that can use these statistical associations to create a meaningful sentence?

Though systems that rely on logical semantics to parse meaning may be more brittle than systems

that do not particularly care about word order, in the end, grammar contributes to semantics.

Systems that attempt to find the meaning of transitive verbs and prepositions will fail unless they can

infer which two actors or objects are being related by the word; and the best way to do that is through

grammatical inference. Thus, though TWIG currently would not work well with unconstrained

speech, I believe its approach to grammar is a more solid foundation on which to build such a

system.
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8.1.2 Learning word meaning for multiple parts of speech

TWIG has inferred meaning for verbs, pronouns, and prepositions, and should be able to infer

meaning for some kinds of nouns. Most systems equipped with sensors only attempt one part of

speech (Bailey, 1997; Regier, 1996; Roy and Pentland, 2002). Again, this difference stems from a

fundamental attitude difference when approaching word meaning.

When a system is build to only learn words within a particular part of speech, it can assume that

the relevant features will remain roughly the same across all the words, and that all features will

contribute in some degree to the meanings of all words. In Roy and Pentland (2002), for instance,

a built-in assumption was that every word would have something to do with the shape in front of

the camera. In Bailey (1997), the verb learner assumed that every definition would include some

description of force. If Bailey’s system had produced meanings for verbs that included Roy and

Pentland’s shape histograms, the result would have been a kind of type error, as shape cannot apply

to an action.

It is exactly this dependence on all features that could not work for “I” and “you,” for which most

noun features would only be misleading. This is why TWIG creates definitions that only contain the

smallest number of features necessary to differentiate words within the same part of speech. While

it might have been possible to achieve the same effect with weights for all features, some of which

tended toward zero, it is likely that some erroneous features would have remain in the definitions by

virtue of the limited test environment, and that any sufficiently complex environment would produce

some erroneous associations that might take thousands of trials before they were driven to zero. As it

is, TWIG learns its meanings on a timescale that is much more acceptable in the realm of real-world

online learning.

TWIG also uses grammatical inference to separate words that belong to different parts of speech,

so that decisions do not refer to the wrong number of referents. This allows transitive verbs and

prepositions to include decisions based on the relationship between their two referents, while keeping

such decisions out of the pronoun decision tree, where such decisions would be nonsensical.
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8.1.3 Complex meanings: negation, conjunction, numerical values, re-

lations

TWIG can represent complex word meanings, including several boolean logical operators (not, and,

or), thresholds on numerical values, and relations to other objects. In particular, including both

numerical values and logical operators is somewhat rare in this line of research, as typically systems

employ only one or the other (for example: Kate and Mooney, 2007; Roy and Pentland, 2002; Siskind,

1994; Yu and Ballard, 2004). The fact that meanings can be assembled from component predicates

means that the system can learn new concepts even as it is learning the words for those concepts.

This is an improvement over systems that assume each word corresponds to a single predicate that

already exists in the robot’s reasoning, which would limit the possible definitions to those explicitly

anticipated by the programmer. TWIG is unique in that it learns numerical thresholds on sensor

values, but can still produce and comprehend full sentences.

8.1.4 Passive learning without feedback

One of the reasons that children are such quick language learners is that they can learn without being

explicitly taught (Bloom, 2000; Heath, 1983). As a result, children learn far more words than their

parents would ever have time to explicitly teach them. It is an example which robot designers should

heed. Any system that requires the user to explicitly train it will receive fewer training examples

than one which can simply make use of the language it happens to observe.

Passive learning without feedback was critical for learning the meaning of “you,” because at some

point the robot had to observe someone speaking to somebody else. But speech that is not didactic

is much more likely to be composed of complete sentences instead of isolated words, and is much

less likely to be illustrated with helpful pointing gestures. The answer to these problems was to

assume some limited vocabulary and grammar, and use sentence context narrow down which word

was new and infer its extension. Though the experiments conducted here were obviously for the
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robot’s benefit, and the small speech recognition vocabulary limited what the participants could say,

in theory passive learning should be much more useful than any method requiring explicit feedback.

Note as well that sentences which TWIG cannot comprehend do not adversely affect the learning;

if a sentence contains more than one word that is not understood, it does not affect the definition

trees, but is simply tossed out. Thus, the method is in theory usable as-is to learn from real speech,

though in practice one could desire a better ability to make use of malformed sentences or more

complex grammatical structures.

8.1.5 Learning in the presence of noise

Real systems must contend with faulty sensor readings and error-prone speech recognition, a fact

that limits the utility of the cognitive modeling work that assumes noise-free input (e.g., Bailey, 1997;

Regier, 1996). TWIG deals with noise by using information gain instead of strict logical inference as

its means of determining which definition to use for a word. This approach is arguably cleaner than

Siskind’s simulated annealing-like process for dealing with noise (Siskind, 1994), since information

gain is an exact calculation from the data, while Siskind’s method includes more parameters that

must be tuned.

TWIG is also robust to noise because recognition errors will typically result in sentences that

do not make sense, and which therefore cannot be matched to anything in the robot’s environment.

Sentences that cannot be matched to the environment are discarded and do not affect learning. This

is one of the major reasons which TWIG was able to function despite the very high error rate of

the Sphinx speech recognition system. Though a single recognition error might result in the robot

attempting to learn a new word definition for the erroneously recognized word, two errors, or an

error and a new word, will typically result in the system discarding the sentence. One can think of

this effect as being somewhat similar manner to that of error-correcting codes (Hamming, 1986).
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8.1.6 Correct generalization of potentially infinite quantities

Many words refer to quantities that can be nearly infinite – for example, “far,” “hot,” “bright,” and

so on. Word learners will probably never experience these extremes themselves, and yet children

correctly generalize these words to include extreme cases. How do they do that without any extreme

examples?

Using the threshold generating method of TWIG produces the desired results. By giving each

word the maximum coverage of the hypothesis space possible until it competes with another word,

TWIG guarantees that some word will always apply to a situation, no matter how extreme, and

that it will be the closest word learned so far. Using this method, Nico learned that “that” refers

to anything farther than about 30 cm, whether it is a mile or a million miles away, despite the fact

that it never observed examples that were much farther than a few meters.

By contrast, Roy and Pentland (2002) created audio-visual templates with strictly limited bound-

aries, Bailey (1997) avoided the problem by assuming that quantities only assume a small number

of discrete values, Regier (1996) used a neural network to classify only objects within its finite field

of vision, and Siskind (1994) does not handle scalar quantities at all.

8.1.7 Dealing with deixis and pronouns

This system is the first to learn meanings of words that involve deixis, or reference to the speaker’s

situation. As such, it can be seen as a novel contribution in the same way that Bailey’s system

was novel for learning verbs (Bailey, 1997) and Regier’s was novel for learning prepositions (Regier,

1996). Unlike those systems, TWIG has advanced beyond its starting word category. In fact, the

ability to handle this class of words is probably not nearly as important as the way in which solving

the problem of learning deictic pronouns shaped the rest of the system to be more general.

Deixis is not limited to the deictic pronouns, since many words depend on the speaker’s point

of view for reference. As I point out in Gold et al. (2007), interjections are an excellent example.

Rather than assume that swearing is mere verbal behavior without any semantics, it is probably
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more useful to treat such words as having a speaker-centric, extensionless semantics, i.e., angry(S).

Words involving value judgments, such as “good,” are another example. Being able to learn and

use deictic definitions is an important step toward being able to reason more generally about the

speaker’s point of view.

8.2 Contributions to Other Disciplines

8.2.1 Pronoun reversal as lack of linguistic evidence

The phenomenon of pronoun reversal, in which children misuse “I” and “you,” has previously been

thought to be caused by social disorder, such as an inability to take another person’s perspective

(Andersen et al., 1984; Brown et al., 1997) or a lack of self-concept (Fraiberg and Adelson, 1977).

My early research into “I” and “you” (see Chapter 5) suggests a different hypothesis: that this is

fundamentally a linguistic rather than conceptual error, caused by a lack of linguistic evidence.

In some cases, such as autistic pronoun reversal, the linguistic error may indeed stem from a

conceptual problem, though whether that conceptual problem is an inability to reason about other

minds (Baron-Cohen, 1995) or a more general learning disability (Minshew and Goldstein, 1993)

remains unclear. It is possible that autistic pronoun reversal may be the result of an inability to

shift perspective and use speaker-relative words; certainly, removing the “S” symbol from TWIG

would be one way to cripple it in learning “I” and “you.” It is difficult to make any conclusions

about normal development from autism, because the symptoms of autism are numerous and poorly

understood (Bailey et al., 1996).

But in the case of blind children, I have shown that it is a mistake to think that some additional

social deficit is necessary to explain pronoun reversal. The mere fact of blindness is sufficient to

cause a lack of sensory evidence with which to learn the words “I” and “you,” with no intervening

causal explanation necessary. It is a mistake to assume that an error with words betrays an error in

underlying ability to conceptualize. Occam’s Razor dictates that in this case, that proposed social
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disability should be discarded. Though it is conceivable that a lack of sensory evidence might lead

to deficits in social cognition, the researchers that take pronoun reversal as evidence of such a deficit

(e.g. Andersen et al., 1984; Brown et al., 1997) are mistaken to do so. The ability to infer reference

is critical to learning “I” and “you,” and without an ability to see pointing or the other objects

mentioned in a sentence, it should come as no surprise that blind children learn these words later

than others.

This explanation perfectly coincides with the finding that pronoun reversal tends to occur with

children that are precocious language users (Dale and Crain-Thoreson, 1993). Why are otherwise

advanced children making “I” and “you” mistakes? I posit that it is because they simply lack

experience. Again, it is possible to hypothesize an intermediate cause, and think that these children

lack perspective-taking ability because they are young, and so fail to learn deictic pronouns correctly

– but the mere fact of being young and inexperienced with the use of these words seems itself a

sufficient explanation.

8.2.2 Evidence for the importance of inferring reference

There is disagreement in the psychology community about whether children associate the words they

hear with everything in their environment, or associate words more specifically based on the meaning

of the sentence. Some researchers have shown statistical evidence that, given a series of collections

of objects described by isolated words with no cues to reference, children will still look longer at

the correct object when they hear a word during testing (Smith and Yu, 2006). On the other hand,

the fact of this statistical evidence does not necessarily prove that this is the normal state of affairs,

especially since a real environment typically contains many more than the four or so objects used

in those studies. Young children often hear new words while not attending to the objects to which

they refer (Harris et al., 1983), leading Bloom (2000) to argue that children must have some means

of narrowing down the possible meanings of a word besides sheer statistical association.

The evaluation study presented in the previous chapter provides some proof that the latter camp
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is correct: statistical association of every word with every possible referent is probably just not very

effective. Neither implementation of the system that excluded extension inference produced correct

definitions. On reflection, it should be obvious that it is impossible to learn the correct definitions of

“I” and “you” without finding their extensions, since all words are used in the presence of a speaker

and a person being spoken to, and the only difference in the case of these words is that they refer

to the speaker or the person spoken to. But an actual implementation carries more weight than a

logical argument.

8.2.3 A decision tree model of the Principle of Contrast

The Principle of Contrast has not previously been modeled as a decision tree.Yet the decision tree is

a perfect data structure for this purpose: it builds models of increasing complexity for each concept,

is resistant to noise, does not require constant iteration over “epochs” to reach its final state, has an

easily specified mathematical relationship to the information available in its input, and is transparent

to analysis of its structure. Though neural networks remain by far the most popular computational

models among psychologists, I hope that the elegance of the decision tree model might encourage

psychologists to consider higher-level representations of knowledge, leaving the details of neural

implementation for later.

8.2.4 The semantics of deixis

Pronouns are sometimes called “indexicals” because, philosophically, they are sometimes thought to

require an “index” into an array of possible worlds for their truth value to be ascertained (Dowty

et al., 1981). My research shows a different way of thinking about these words: namely, they do not

require dealing with a “possible worlds” framework at all, but only require checking facts about the

speaker in the real world.

The “possible worlds” framework for semantics is problematic, because the idea that a speaker

must cognitively deal with possible worlds when constructing a perfectly innocent sentence about

116



the state of this world makes little sense for such simple words as “I” and “you.” While it is

possible to argue that semantics need not be entirely represented in the brain – that the semantics

of a sentence could be instead an abstraction describing a sentence which its speaker need not

understand – it is probably more elegant to keep the philosophical semantics of a sentence and its

speaker’s internal representation of the sentence as closely matched as possible. Otherwise, we would

require an additional explanation for how people manage to successfully create sentences with truthful

semantics without actually being able to manipulate faithful representations of the semantics.

To delve completely into the philosophical literature about this issue would take this thesis some-

what far afield from its primary purpose and findings, and I have no doubt that my understanding

of the philosophical treatment of possible worlds in semantics is somewhat superficial. Nevertheless,

it seems odd to posit computationally intractable entities when dealing with the semantics of deictic

pronouns, and I believe my method of dealing with indexicals here is one step toward a more sane

deictic semantics.

8.3 Intentional Omissions

Having briefly gone over some of the ways in which this work is a novel contribution, I will now

review some of the issues which this project did not address and explain why they were omitted.

8.3.1 Word discovery and the segmentation of language

Some of the most noteworthy robotic word-learning projects also solved the problem of word discovery

and segmentation: finding word boundaries when the words were previously unknown (Roy and

Pentland, 2002; Yu and Ballard, 2004). Unlike those projects, TWIG assumes access to speech

recognition technology sufficient to noisily transcribe the utterance into words. In fact, the speech

recognition module even included an explicit grammar that included the words that were “new”!

This no doubt must seem like cheating to researchers most familiar with these other projects, but
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there are good reasons to treat segmentation as a separate problem from semantics, particularly in

TWIG.

First, there is evidence that infants can find word boundaries in a nonsense language that lacks

any semantics (Saffran et al., 1996). This suggests that the processes of learning semantics and

segmentation are separable in humans, and that segmentation may even precede semantics, since the

infants in Saffran et al. (1996) were preverbal. This would make sense, since there are undoubtedly

many situations in which infants do not have sensory access to the referents of speech, and they would

be wasting information if they ignored the speech entirely for this reason. Thus, from a modeling

point of view, leaving segmentation as a separate problem is entirely justifiable.

Second, speech recognition software already exists as a commercial technology. It would be

somewhat quixotic to attempt to rebuild a speech recognition engine from scratch with the additional

requirement of lacking a language model unless one specifically wanted to model human development.

A module that can make use of this existing technology is presumably more useful to roboticists,

as it allows them to choose their own speech recognition technology and upgrade it at will as new

commercial software is released. Building a homegrown system that learns to segment requires more

effort on the part of researchers attempting to replicate the work, and is more likely to vary from

lab to lab.

Third, TWIG makes the assumption that all of the words but one are understood in a sentence,

so in the cases where TWIG can succeed at all, segmentation should theoretically be straightforward.

In theory, one should be able to modify Sphinx to allow for out-of-vocabulary utterances, and save

a best-guess phonemic representation for the segment that is most likely to be out-of-vocabulary. In

practice, I had to use a specific context-free grammar with no out-of-vocabulary utterances in order

to get decent recognition performance in our lab environment, but this was probably partly because

my “I” and “you” work required speaker independent speech recognition, which generally has worse

recognition accuracy than speech recognition that can be trained to an individual speaker (Jurafsky

and Martin, 2000).
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For these reasons, TWIG treats segmentation and semantics as separate problems, and the former

is outside the scope of this thesis. I have, however, done some work on segmentation without any

language-specific knowledge; see Gold and Scassellati (2006a).

8.3.2 Learning concrete noun representations

In the end, I never found a representation of shape and appearance that I was entirely satisfied with,

and certainly not one that was better than the existing work. It was unclear how even the existing

work on concrete nouns could be integrated into TWIG; the decision tree algorithm currently only

finds a threshold for a single scalar when creating a split, making the exact basis for the representation

more important than it might be otherwise. One could add features for length, width, height, and

various spatial moments; but then what? And how would visual segmentation work without a blue

screen background (Roy and Pentland, 2002) or a head-mounted eyetracker to find the object (Yu

and Ballard, 2004)?

TWIG’s ability to create definitions based on conjunctions and thresholds on real values suggests

that there is probably some way to integrate a complex representation of shape into its decision

process. But ontology becomes all-important when building decision trees that hinge on single scalars.

It is possible that the decision tree algorithm itself needs to be modified so that it can create its

own multidimensional thresholds, rendering the choice of basis less important; but a computationally

tractable method of finding the surface of maximal information gain is an area for future study.

Despite this, it may be incorrect to attempt to shoehorn shape into the current word learning

system, when shape is usually only a cue to whether a word belongs to a particular category. For

example, a black plastic box may be decorated to look more or less like a desktop computer, but it

will not qualify as a computer unless it functions as one. It is possible that appearance is usually

better thought of as belonging to the associations with a word (what Frege called its “idea”; Frege,

1892/2003) instead of its intension.
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8.3.3 “She”

As an altogether different kind of conspicuous omission, technical hurdles prohibited me from includ-

ing “she” in the pronoun learning, when TWIG did include “he.” Though using average voice pitch

as a feature on which to split in the decision tree might have produced this decision, in the end,

implementing this feature would require a significant amount of time without actually addressing

a new conceptual problem, since it is clear that TWIG could make this split given an appropriate

feature.

8.3.4 Proper nouns and definition trees

It is very difficult to deal with proper nouns in the definition tree schema. Proper nouns are gram-

matically treated as if they were pronouns, but if they are forced to contrast with other pronouns

in a definition tree, the pronouns and proper nouns begin to warp each other’s definitions to each

include the other’s negation. It then becomes impossible to form the sentence “I am Kevin,” because

“Kevin” may include “not speaker” in its definition (which is normally correct). It is possible that

proper nouns obey their own rules and do not use the Principle of Contrast at all, or perhaps they

are best thought of as being purely extensional. On the other hand, perhaps the statement “I am

Kevin” is an example of a word becoming acceptable once the better word has already been used

(“Kevin am I” sounds strange).

Note that the problem is not with learning “am”; in unpublished data, I have found that definition

trees can handily learn that “am” means ident(X,Y) & ident(X, S) – not only replicating the

result of Chapter 6, but taking its first-person aspect into account as well.

8.3.5 Using real open vocabulary speech

The experiments to use completely open vocabulary speech that appear in this these were the initial

experiment in simulation (Gold and Scassellati, 2006d) using the CHILDES corpus (Bohannon, 1976;
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Bohannon and Marquis, 1977; MacWhinney, 2000). For implementation on Nico the robot, all of my

experiments required the subjects to utter statements that belonged to a small context-free grammar,

even though this sometimes seemed absurd (“I am Kevin, you are Justin!” “I am Kevin, you are

Justin!”) In fact, the difficulty of dealing with unrestricted language is one of the main reasons

why grammatical parsing has given way to less grammatically based statistical methods (Manning

and Schütze, 1999a). It therefore behooves me to explain why I believe this kind of grammar-based

parsing will eventually be able to handle unrestricted speech, despite the fact that the present system

can only handle a tiny fraction of grammatical utterances, let alone ungrammatical utterances.

Ultimately, grammar is a way of encoding relationships between words over time. To understand

the semantics of a complete sentence, there must be some way to bind adjectives to their correct

nouns, and verbs to their correct subjects and objects. Any model that does not capture the actual

rules of composition of a language is probably not going to do well in the long term. The use of

bigrams and trigrams to capture similar information strikes me as a temporary fix, a way of making

current technology suffice, since it cannot capture some of the long-range dependencies that are

actually observed in language. Bigram and trigram models will not result in human-level language

understanding, any more than current chatterbot technology will result in an A.I. that can pass the

Turing Test with full generality. Sometimes performance must be temporarily sacrificed to make real

advancements.

To add the ability to deal with arbitrary speech in a grammar-based manner would be no small

feat. Not only would the basic grammar need to be huge, but there would also need to be some kind

of edit-distance-like procedure for determining what grammatical parse is closest to the speaker’s

undoubtedly ungrammatical utterance. Opening up the vocabulary would also require very good

speech recognition performance, something I was unable to squeeze out of the speaker independent

Sphinx 4 platform. Still, TWIG’s limited grammar is ultimately a stronger foundation on which to

build than the grammarless statistical methods of Chapter 5.
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8.4 Criticisms

The previous section dealt with features that are not a part of TWIG; this one discusses valid

criticisms of the system as implemented.

8.4.1 Problems with mutual exclusivity

The system currently assumes not only that every word must vary somewhat in meaning, but that

each word implies the negation of the others. This is particularly problematic for prepositions; why

should “above” imply not “near,” as it must under the assumptions of definition trees?

This is an entirely valid criticism which may prove deadly to the whole idea of using definition

trees. There are three possible solutions that I can see. One is that definition trees simply do not

work for certain categories of speech. Some other representation might be better for adjectives and

prepositions, which sem to usually lack the kind of complex structure that would necessitate the

use of definition trees. “Above,” “blue,” “long,” and so forth do not seem to require conjunction

or negation, and it is possible that words that modify other words obey their own rules and involve

much simpler definitions.

Another possibility is that definition trees determine what the best word is for a given referent or

pair of referents, but that some rule ought to be invoked that modifies subsequent words’ meanings

so as not to negate any part of the original word. For example, an adjective definition tree that

includes both “giant” and “red” might dictate that using “red” implies not “giant” (but not the

reverse, if giant is higher in the tree). The proposed modification to TWIG would dictate that once

“giant” has been spoken, then the speaker is free to use “red” without implying that the extension

is not large. Thus, it is possible that definition trees would not completely exclude multiple words

from referring to the same object, but would only encode a requirement for using particular words

first. Such a system might also allow salience or novelty to alter the hierarchy of words in the tree.
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8.4.2 Problems with hard thresholds

The present system uses step-function thresholds for its numerical values, creating precise and sudden

shifts in which word to use. This is clearly incorrect in the long term. It makes little sense to define

an exact distance cutoff for a word such as “near,” and even less for a word such as “this.” Ideally,

meanings should allow for variation in the goodness of fit of a particular word, rather than introducing

artificial discontinuities.

This is not a problem which most other word learning systems have been able to solve, either, as

most introduce some kind of discontinuity in defining their words (Bailey, 1997; Roy and Pentland,

2002, e.g.,). It is particularly difficult to solve in the context of a system that produces logical form

semantics, in which statements are either true or not. A system that could produce compositional

meanings that also include “fuzzy” or probabilistic truth would be a significant advance, but it is

worth keeping in mind that other systems do not use numerical values in producing compositional

semantics at all. TWIG is clearly a first step here rather than the last word.

8.4.3 The importance of context

Many words have intensions that depend on context – for example, “hot” can refer to different tem-

peratures depending on whether it refers to an apple pie or a summer day. TWIG could conceivably

capture some of this information by including separate branches in its tree for each possible context.

For instance, food(X) could determine whether “hot” should use a threshold appropriate to food or

for weather. Still, it is not clear that this approach could work with “this” and “that,” for which

the context is the general scope of the conversation, a context not easily made discrete. Clearly, the

absolute distance thresholds for these words generated in the experiments of Chapter 7 are not the

last word on learning these words; those results were merely a demonstration that the system could

generate its own numerical thresholds from sensory data.
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8.4.4 Problems with learning from descriptive sentences alone

TWIG only learns from sentences that state facts, and in these experiments, it only used sentences

that described the immediate environment. However, Bloom (2000) argues that this kind of learning

is still falling into a trap of “associationism,” since children can often learn the meanings of words

from contexts besides being in the immediate presence of the referent. For example, if the speaker

asks the learner, “Do you want a macaroon?” the learner should be able to say yes, receive the

treat, and thereby learn what a macaroon is, even though the speaker never uttered a declarative

sentence. A world in which speakers only tell each other things that are immediately obvious by

looking around is admittedly not very realistic.

The experiments leading up to TWIG did incorporate a heuristic for learning words from questions

about wants (see Chapter 5), but it was not very general or principled and was not incorporated

into the full system. There is clearly room for improvement here in making use of utterances that

are not statements of fact. The process of making inferences from questions and imperatives should

be quite similar to the process for declaratives, besides needing some extra set of facts to match the

utterance to (a model of speaker motivation?), though admittedly this is not proven here.

TWIG at least provides a foundation for a system that could use questions and imperatives as

sentence context, and that this is good enough for the time being.

8.4.5 The generative lexicon

Placing every word type in its own tree means that the system does not possess a “generative lexicon,”

in which learners use words in novel ways that sometimes cross type boundaries (Pustejovsky, 1995).

For example, one can speak of “LaTeXing” a file despite the fact that “LaTeX” is a noun.

Though some kinds of compositional grammar allow for a fairly fluid mingling of nouns and

verbs – for instance, nouns and intransitive verbs could theoretically be treated as belonging to the

same category, since they each only require one referent – it is not at all clear to me how to design

a system that would include this kind of freedom while still producing grammatical utterances.

124



(TWIG originally only created two trees, one for two-argument words and one for one-argument

words, but the resulting “verbing” of pronouns into intransitive verbs produced some decidedly

strange sentences.) It also seems as though a system that knows a noun meaning for a word should

have some advantage in learning a related verb meaning, and that is not something that TWIG can

do. In general, a system that could creatively extend words across type boundaries seems so far

removed from TWIG, I cannot even begin to describe how to get from here to there; but this is not

a problem that earlier robotic word learning systems have addressed, either.

8.5 Extensions and Future Directions

This section will describe some of the ways in which TWIG can be extended, the outstanding research

problems that would need to be solved to implement these extensions, and some sketches of possible

solutions.

8.5.1 Learning the meanings of phrases and morphemes

Ideally, one would like TWIG to not only learn the meanings of words, but also learn the meanings

of larger or smaller units, such as phrases (“kick the bucket”) or suffixes (“-ed,” “-s”). If TWIG

could do this, then it could also abandon the one new word per sentence limit; parts of sentences

could be learned holistically at first, and broken down into their constituent parts later.

To accomplish this, TWIG could abandon its classic parts-of-speech classifications in favor of a

categorial grammar (Dowty et al., 1981; Tellier, 1998). In a a categorial grammar, words are not

classified by meaning, but by the parts that are necessary to be added to make a complete sentence.

For instance, an S\NP fragment is anything that requires exactly one noun phrase to make a complete

sentence; this could be an intransitive verb, or a transitive verb with an object, or a verb modified

by an adverb. In this way, words in different parts of speech may end up in the same tree, but all

members of a tree would have the same number of referents and rules of combination with other
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parts of language.

The ability to learn the meanings of phrases and morphemes would make the system more versatile

in its productive abilities, and would allow it to infer the meanings of new words and phrases more

often.

8.5.2 Relation of phrase learning to grammar learning

Pursuing the speculations of the previous section: Once a definition tree that can learn phrases

contains a certain amount of repetition in its structure, this may be a cue that its phrases can be

broken further into their constituent parts. For example, if several branches of the tree all contain

meanings that have to do with talking, and the phrases at the leaves all begin with “talk,” this could

be a cue that the remaining parts of these phrases are actually smaller units – “-ed” and “-ing,” for

example. Trees might be checked periodically for such repetition, and reorganized if the resulting

representation is more concise.

Such a strategy might allow the system to create new grammatical categories, though it is honestly

unlikely that things would be this simple. One difficulty with this approach might be that the

system would create too many categories. This appears to be a common problem in systems that

rely on compression for learning (e.g. de Marcken, 1996; Solan et al., 2005): far more categories

tend to be created than the familiar noun, verb, and so on. Such systems tend to create far more

specific categories, such as “food,” “animal,” and “things that can be thrown,” and then fail to

realize that these things can generally be used in the same structures. Still, this is a speculation

worth pursuing, especially since Montague-like semantics has previously been shown to be useful in

learning grammatical categories (Oates et al., 2004; Tellier, 1998).

8.5.3 Greater flexibility in recognition and segmentation

The Sphinx 4 language model assumes that there is some fixed transition probability of using word

B after word A, and uses this assumption to aid language recognition. Besides being somewhat
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misleading even in the limit, since word choice has more to do with intended meaning than the

previous word, it is probably not a good assumption that we possess reliable transition probabilities

for a new or uncommon word. Certainly it is nonsensical to model children’s language acquisition

with a built-in language model. This makes it desirable to find some way of using the system

without incorporating prior knowledge of words and their probabilities – perhaps working with a

noisy phoneme stream instead, as done in other work (de Marcken, 1996; Roy and Pentland, 2002;

Yu and Ballard, 2004). But this increases the likelihood that the words themselves will be noisy,

and we would like similar words to be classified together in the decision tree. In other words, during

learning, “this” should be treated as very similar to “thith” for the purpose of decision tree creation,

instead of being treated as a completely different arbitrary symbols.

Though removing the language model can make a speech recognizer’s performance drastically

worse, the decision trees might be able to cope with this noise if the entropy they use is the entropy

of all the phonemes at a node, rather than simply the words. The entropy calculation would calculate

the entropy of the phoneme sequence rather than treating each word as an atomic symbol. This would

clump words with similar phoneme sequences together, since this would produce a lower entropy than

grouping words with very different phoneme sequences. Ideally, the computation would produce a

smaller entropy for sequences of phonemes that share articulatory features.

Such a procedure might help clump together words that share prefixes, suffixes, or roots, increas-

ing the effectiveness of any modifications designed to deal with phrases and find repeated structures

(see above). This would also be a necessary step in moving toward a system that could perform word

segmentation and semantics learning at the same time, if that is desirable.

8.5.4 Learning action verbs

Emily Bernier and Lance Cai, two undergraduates at Yale, have shown in unpublished work how

TWIG might be used to learn words for verbs having to do with relative motion. In their experi-

ments, two subjects equipped with Cricket beacons enacted one of four patterns, which they called
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Figure 8.1: The tree generated in the experiments of Emily Bernier and Lance Cai, using the decision
tree component of TWIG, from their unpublished project report.

“meeting,” “chasing,” “wandering,” and “bothering.” (They did not use the extension inference part

of TWIG or speech recognition, but provided the word pairs directly to the definition tree genera-

tor.) As features, they included the relative speed, relative distance, and relative heading of the two

referents, averaged over the whole period of observation, as well as the standard deviations of the

speed and distance. The tree that was generated is shown in Figure 8.1.

Though this tree seemed fairly accurate in its classification performance, incorrectly labeling only

two of their test trials drawn from the same four categories, there is probably a better way to char-

acterize movement patterns, since these definitions do not actually capture the temporal structure

of each action. “Meeting,” for instance, consisted of the two actors converging and then proceeding

to travel as a unit, while “bothering” consisted of the first agent repeatedly approaching the second,

only to have the second agent move away. Ideally, one would like a movement representation that

can capture these changes over time.

A related issue is that by bypassing the extension inference module, these students have also

bypassed a key conundrum in learning verbs: how can the system determine over what timespan a

verb is meant to refer? Though the extension inference system is capable of determining the agents

to which these verbs refer, it is not currently capable of making inferences about temporal reference,

and it is not clear how it would produce the action endpoints that the students assumed in their

experiment. Thus, while Bernier and Cai have made a valuable first pass at this problem, there are
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interesting outstanding problems here.

8.5.5 Learning plurals, nouns, and superordinate categories with sets

Plurals and the plural pronouns (e.g., “we”) are interesting from a theoretical perspective because

their referents are collections of people or objects instead of individual objects. It thus becomes

necessary to rethink the assumption that the extension is a single entity, representable by a single

symbol.

It seems to make the most sense to revise the language system to allow words to refer to sets,

instead of individual symbols, and to include the number of elements in a set as a possible prop-

erty to split on in the definition tree. But this raises some subtle issues in deciding the truth or

falsity of other properties when they are applied to sets; for instance, when computing the dis-

tance dist({kevin, eli}, ball)), should the distance be the minimum, maximum, or average

of dist(kevin, ball) and dist(eli, ball)? In general, it seems safest to explicitly specify how

each property should apply to a set on a case-by-case basis, and allow properties to hold of the sets

themselves rather than assume that they are true of any members of the set.

Adding sets as referents would also add a layer of referential ambiguity, since any time the speaker

could be referring to an individual, the speaker may instead be referring to a member of the set that is

the referent. For example, any time “I got the ball” was true in the experiments described previously,

“We got the ball” would have also been a valid utterance. It therefore would be necessary to deal

with referential ambiguity before tackling this problem; TWIG currently requires the extension to

be deduced from sentence context, but this would be difficult when every utterance could refer to

either an individual or a set.

If a set can be the extension of a word, it might also be possible to learn noun intensions in which

the noun is treated as a heterogenous set, and the components of the intension refer to different

components of the set. For example, the intension of “face” might include that it has two eyes, a

nose, and a mouth; this might translate into a representation where “face” is assumed to refer to a
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set, with the eyes and so forth as necessary members of the set.

Another interesting observation here is that young children tend to assume that words for su-

perordinate categories, such as “toy,” must refer to collections of objects instead of single objects

(Markman and Wachtel, 1988). It is possible that all such words are learned by first learning the

plural word and associating it with a heterogeneous set, and only later realizing that when the form

of the word demands a singular referent, only one element of the set is intended.

Sets as extensions therefore have the potential to add quite a bit of power to this framework for

learning meaning, and I intend to pursue this line of research further.

8.5.6 Visual information, shape bias, and affordances

Another unresolved question is how exactly shape, as opposed to functionality, contributes to a word’s

meaning. Though some psychologists have reported a bias in infants for using shape as a component

of word meaning (Landau et al., 1988), others have argued that this effect is only observed when the

affordances (Gibson, 1977) and function of an object are obscured, and that shape bias goes away if

the shape can be explained by an object’s function (Bloom et al., 1998, cited in Bloom, 2000).

If affordances are quantified in an appropriate way, such that predicates exist that apply to

an object iff it possesses a particular affordance, then TWIG could naturally use these affordances

as components of intension. Once affordances are accounted for, it is possible that the remaining

components of shape that are meaningful will also be relatively simple (size, height to width ratio,

roundness, etc.).

Another possibility is that shape is relatively important, but only insofar as it contains quite a

bit of information (in the information theoretic sense). Studying how the complexity of an object’s

shape influences the priority of shape in the definition tree formation could provide a model for how

shape influences object classification in infants.
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8.5.7 Learning subjective words and interjections

Because TWIG automatically checks all relations to the speaker as possibilities for intensions, it could

naturally include the speaker’s attitude toward the referent in the meaning of a word, as long as the

underlying representation of the world contained some way of representing such subjective relation-

ships. For example, as long as the underlying world description contained the relation likes(X,Y),

then whether a word had positive or negative connotation could be added to its intension with the

decision likes(S,X). Such a decision would only be added, of course, if the system were exposed to

a word which lacked the connotation, since no branch is added to the tree unless there is a contrast

involved.

Interjections might also be thought of as referentless predicates on the speaker: “Damn!” conveys

the intension frustrated(S), “Ouch!” conveys hurt(S), and so on. TWIG could do this in its

current form, as long as interjections were added to the grammar and the robot were given some way

to detect such states.

8.5.8 Learning “want” and “know”

Between the time of my early experiments described in Chapter 5 and my development of the logical

extension inference and definition trees that would become TWIG, I thought that this thesis would

be about learning the meanings of the words “want” and “know.” These words are a bit more

complicated than the subjective words discussed in Section 8.5.7, since they may require dealing

with whole logical propositions as their content.

There may be some interesting research problems in adding these abilities, but I became reluctant

to pursue this line of inquiry because all the scenarios I could think of for dealing with “mental facts”

seemed overly simplistic. For instance, at one point, I implemented a simple rule in Prolog stating

that if person A said something to person B, and B handed an object O over to A in response, then

A must have been stating a desire for O. It all seemed a bit too artificial, and I decided I would

prefer to wait until I had something genuinely interesting to say about learning “want,” rather than
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solving a toy problem.

With the addition of new channels for inferring the speaker’s mental states – prosody, for instance,

or facial expression, or more precise gaze direction – a wealth of interesting words might be learned.

However, unless the representation of mental states is relatively rich, the associated word learning

problem may not be very interesting, since the primary puzzle – namely, how words are learned for

non-visible states – can be easily solved by TWIG as long as there is some module providing the

facts pertaining to those states in predicate form.

8.5.9 Salience and other aids to reference

Introducing a larger environment or more referential ambiguity may necessitate adding some notion

of salience into the system. Currently the system chooses an arbitrary referent when there is more

than one possibility. When ambiguity is uncommon, the few times that reference is incorrectly

inferred can be treated as noise.

It is unlikely that this approach would survive the introduction of the ability to refer to the past.

When learning a new transitive verb, the possibilities would include every relation that ever held

between the two referents; when learning a new noun, the possibilities would include everything that

ever participated in the action described by the verb. The system currently implicitly assumes that

everything in the immediate environment is equally salient, and everything not in the environment

is not at all; obviously, some amount of fine-tuning could be done here.

If a notion of salience were added, care would need to be taken to ensure that evaluation of the

salience function were done in such a way that it was computationally tractable. Placing it at the

wrong level of the search for a valid parse might result in its being evaluated for many irrelevant cases.

It may be interesting to investigate how the extra ambiguity introduced by new words influences these

concerns, which exist for parsing even with full knowledge of the vocabulary.

Though this dissertation has emphasized the importance of sentence context for finding reference,

the use of pointing gestures, gaze direction, dialog structure, internal motivation, and perceptual

132



salience could all be used to aid reference finding, and integrating these methods with the use of

sentence context would be a worthwhile endeavor.

8.6 Final Thoughts

Though there are plenty of ways that TWIG could be extended and improved, TWIG is a significant

advance in the way word learning is implemented on a robotic platform, and presents a more nuanced

view of learning new words in general. It is the first system implemented on a robotic platform to

generate a complete compositional semantics for each word that can include conjunction, negation,

numerical thresholds, multiple meanings, and deixis, all without supervised feedback and in the

presence of noise. Its contributions include a proper treatment of extension and intension in word

learning, a reframing of the word learning problem that results in more appropriate definitions, and

a demonstration of how grammar and logic can work in conjunction with machine learning methods

to produce a more nuanced semantics than would be possible with either methodology alone.

Perhaps most importantly, TWIG points the way toward a kind of word learning system that

can use its linguistic knowledge effectively to bootstrap an ever-improving knowledge of language.

The case of learning first words is interesting from a cognitive science perspective, but it seems as if

infants learn far more words once they already know a few words. The theorist in me suggests that

the “inductive step” of how to go from a vocabulary of n words to n+1 words is far more important

than the “base case” of first words, if the number of words the system will learn is to be unbounded.

When I set out on this research project, I had no particular plan to build a general word learning

system, capable of learning prepositions and “this” and “that” and embodying a Principle of Contrast

while using compositional grammar. TWIG is the result of two puzzles to which I genuinely did not

know the answer when I began: how could a robot learn the meanings of the words “I” and “you,”

if it never received an example in which it was the speaker? And, how could the same system learn

the meaning of “he,” conjunctions and negation and all, with no negative feedback? I count myself
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lucky to have stumbled upon puzzles that provided such a useful perspective on the word learning

problem.
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