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 Abstract – We demonstrate the utility of speech prosody as a 
feedback mechanism in a machine learning system.  We have 
constructed a reinforcement learning system for our humanoid 
robot Nico, which uses prosodic feedback to refine the 
parameters of a social waving behavior.  We define a waving 
behavior to be an oscillation of Nico’s elbow joint, parameterized 
by amplitude and frequency.  Our system explores a space of 
amplitude and frequency values, using q-learning to learn the 
wave which optimally satisfies a human tutor.  To estimate tutor 
feedback in real-time, we first segment speech from ambient 
noise using a maximum-likelihood voice-activation detector.  We 
then use a k-Nearest Neighbors classifier, with k=3, over 15 
prosodic features, to estimate a binary approval/disapproval 
feedback signal from segmented utterances.  Both our voice-
activation detector and prosody classifier are trained on the 
speech of the individual tutor.  We show that our system learns 
the tutor’s desired wave, over the course of a sequence of trial-
feedback cycles.  We demonstrate our learning results for a 
single speaker on a space of nine distinct waving behaviors. 
 
 Index Terms – speech prosody, human-robot interaction, 
reinforcement learning, socially-guided machine learning. 
 

I.  INTRODUCTION 

A. Socially-Guided Machine Learning 
 As robots increasingly appear in human environments, we 
must equip them with the power to adapt in response to new 
information about these environments.  Humans modify their 
behaviors in response to sensing a host of cues, including 
social cues from other humans.  If a robot cannot 
appropriately respond to human social cues, it will tend to 
disrupt a human environment, in conflict with its presumably 
assistive purpose in being among humans. 
 One important response to a social communication is to 
adjust one’s behavior.  This process can be viewed as learning 
in response to feedback.  Besides being important for adapting 
to new information in the environment (e.g., avoiding danger, 
keeping a secret upon a stranger’s entrance to the room), 
learning in response to human social cues is important for 
human-robot cooperative tasks. 
 A recent exploration into human-guided machine learning 
has revealed that a simulated robot can learn a simple 
sequential task, such as a cleaning up a virtual kitchen, given 
feedback from a human tutor.  In Sophie’s Kitchen, a tutor 
communicates using a mouse to scroll a feedback meter 
between extremes of strong approval and strong disapproval 
[1]. 
 The present work extends the exploration of human-
guided machine learning into the physical world, where a 

robot learns to modify its behavior, given a more naturally 
social human communication:  speech prosody. 
 
B.  Communicating Prosodic Affect to Robots and Computers 
 Speech prosody is essentially “tone of voice.”  It is 
comprised of the highness or lowness, the scratchiness or 
smoothness, the loudness or softness, and the quickness or 
slowness, with which a speaker can alter their pronouncement 
of an utterance.   Functionally, while prosody also 
communicates syntactical and pragmatic information, in the 
present work we are concerned with its function as a mode for 
communicating emotions and attitudes, or affect. 
 Humans modulate their tones of voice to communicate 
affect.  We raise our voices in frustration, or comfort small 
children using hushed speech.  We use consistent tones of 
voice to indicate displeasure or joy to our pets. 
 In the last decade, numerous studies have shown that, 
with varying degrees of constraint and accuracy, affect can be 
classified automatically from recordings of speech [2, 3, 4, 5]. 
 Among these recent studies, Breazeal and Aryananda 
developed a prosodic affect recognition system on the 
humanoid robot Kismet, which classified praise, prohibition, 
attention, and comfort in the speech of a human tutor, and 
responded by assuming a corresponding, hard-coded 
expressive posture, for instances, hunching over and frowning 
in response to detected prohibition, or perking its ears and 
raising its eyebrows in response to approving speech [3].  
Breazeal and Aryananda suggested that speech prosody serve 
as a training signal for a robotic learning system, but they 
stopped short of implementing a learning system.  Kismet’s 
hard-coded expressive posture was displayed to provide the 
tutor with feedback on the robot’s classification of the tutor’s 
prosody, but the classification was not used to drive a learning 
system. 

In the present work, in response to affective prosody, we 
extend beyond hard-coded expressive postures to using 
prosodic affect recognition to drive a system which learns to 
refine the social behavior of waving. 
 

II.  REFINING BEHAVIOR USING PROSODIC FEEDBACK 
 
 We have implemented our prosody-driven learning 
system on our humanoid robot Nico, within Nico’s lab 
environment.  Our learning system is trained using an 
interaction loop, shown in Fig. 1.  For each iteration of the 
interaction loop, Nico performs a waving behavior, after



 
 
Figure 1.  Interaction loop flow for prosody-driven learning.  This loop iterates until Nico selects the same waving behavior a pre-determined number of cycles in 
a row, at which point it declares that behavior of fixation to be the goal behavior.  Nico’s estimate of prosodic affect takes the form of a binary approval/not-
approval signal.   

 
which it waits a pre-determined amount of time for a possible 
utterance of feedback.  If the tutor utters a response, the affect 
of the utterance is calculated, producing a binary 
approving/not-approving result.  This binary approval signal is 
the feedback which drives the q-learning system.  Nico iterates 
through the interactive loop until the q-learner fixates for 
some pre-selected number of cycles on a single waving 
behavior, which Nico estimates to be the goal behavior.   
 
A. Robotic Embodiment 

Nico, shown in Fig. 2, is an upper-torso robot, built in the 
proportions of a one-year-old infant.  Nico is equipped with a 
seven degree-of-freedom neck and head assembly, and a six 
degree-of-freedom arm.  Nico wears a fixed smile and infant 
clothing, encouraging humans to interact with it socially.  

We make a fundamental assumption regarding human 
interaction with Nico:  we assume that people will interact 
with Nico as though it is a small child or an infant, speaking to 
it using exaggerated prosody.  Whereas even human listeners 
struggle to identify prosodic affect in utterances spoken to 
adults, it is easier to classify affect in the prosody of infant-
directed speech [6].  Psychologists have observed that 
speakers tend to use exaggerated prosody with infants, in a 
speaking style called “Motherese” [7].  Breazeal and 
Aryananda observed that people tend to extend their use of 
Motherese to their robot Kismet, a humanoid with facial 
features designed to appear childlike [3].   

Breazeal and Aryananda, and Robinson-Mosher and 
Scassellati’s prosody classification results are based on robot-
directed speech and assume that humans tend to speak to 
infantile or childlike humanoid robots, using Motherese [2, 3]. 
   
 
B. Interaction Environment and Audio Capture 

Nico’s tutor’s utterances are recorded in a real-time 
interaction loop, coupled with Nico’s actions, within our lab 
environment.  Acoustically, the lab environment is extremely 
noisy, given the unavoidable proximity of a rack of computers 
controlling Nico’s motor and visual systems.  

The tutor’s speech is recorded using a mono-input 
microphone clipped to the tutor’s clothing, within six inches 
of the tutor’s mouth, to increase signal energy, given high 
environmental noise. 

Following acknowledgement that Nico has finished 
performing its waving behavior, three seconds of audio are 
recorded, within which time the tutor has presumably 
responded to Nico’s movement. 

 

 
Figure 2.  Our humanoid robot Nico, waving.  Nico is built with the 
proportions of a one-year-old human infant. 



C. Overview of Prosody Estimation 
We estimate prosodic affect within each audio response 

clip as follows:   
1.  We first cut the response clip into overlapping, short-

time windows, each 25ms long.  The start times of 
neighboring windows are separated by 10ms.  Short-time 
windowing is necessary for spectral analysis of auditory data, 
in order to employ notions of stationarity in frequency for any 
temporal segment.  These short-time windowing values are 
standard in speech recognition [8]. 

2.  We perform voice-activation detection (VAD), 
checking each short-time window for speech.  We then 
concatenate consecutive windows to form continuous speech 
segments, smoothing over brief inconsistencies in VAD 
output. 

3.  We estimate the prosodic affect in each speech 
segment, and send this estimate to the waving behavior 
learner. 
 
D. Speech Segmentation 

We use a VAD to segment this three-second response clip 
to isolate short-time (10 ms-separated, 25 ms-long) windows 
containing speech.  For each window, our voice-activation 
detector conducts maximum-likelihood detection over three 
features calculated over a short-time window of the acoustic 
signal [ ]Ix n :   

1. total energy over the window 
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2. variance of the log-magnitude-spectrum 
 

 var(log( ( ( )))Ivlms abs X jω=  (2) 
 
3. variance of the log-spectral-energy.   

 
 2var(log( ( ) )Ivle X jω=  (3) 

 
 The VAD is trained on auditory data recorded from the 
tutor’s voice before the interaction loop begins.  For our 
learning system, we trained on 15 seconds of continuous, 
ambient noise, and 8 seconds of continuous, uninterrupted 
speech from the speaker.  Voice-activation detection results 
are presented under Experimental Results. 
 
 
E. Classification of Prosody by k-Nearest Neighbors 

Our prosody classifier decides whether or not an utterance 
indicates approval.  We choose to map utterances to a simple, 
binary approving/not-approving signal because such a binary 
signal can apply to various machine learning contexts, and to 
simplify affect classification. 

Previously we described prosody as “tone of voice.”  
Others have called it the “melody and rhythm” of speech.  
More precisely, prosody is described psychoacoustically in 
terms of pitch, volume, timbre or voice quality, as well as 

temporal features such as frequency of consonants.  In this 
paper, we are concerned only with pitch and volume, as we 
presume that for the purposes of providing approving and 
disapproving feedback, the tutor will tend to produce 
consistently short utterances in a consistent tone of voice.  
Physically, pitch and volume have correlates in measurements 
of fundamental frequency—f0—(for periodic signals) and 
acoustic energy [8].   

We have designed our classification features based on 
those used by Robinson-Mosher and Scassellati in the same 
noisy lab environment.  Our 15 features are comprised of 
statistics derived from estimates of from pitch, energy, and 
energy-weighted pitch.  Each of these measurements is 
estimated for each short-time window in the speech segment.   

We estimate f0 using a Noll’s cepstral method [9, 8].  We 
post process f0 estimates by applying a temporal smoothing 
filter, which averages each window’s f0 estimate with those of 
its two immediate neighbors.   

We estimate energy for each speech segment window 
according to Eqn. 1.  Finally, we derive a new measurement, 
for each short-time window, of energy-weighted pitch by 
taking the product of the pitch and energy estimates. 

From these three measurements of pitch, energy, and 
energy-weighted pitch, we calculate the mean, variance, non-
zero minimum, maximum, and range (or maximum-minimum) 
values over the speech segment.  This gives us our 15 
classification features. 

We presume that our binary classes of approval and not-
approval will separate well and cluster within each class.  
Therefore, we use k-Nearest Neighbors, to classify novel 
utterances.  High accuracy in preliminary trials led us to select 
k=3. 

The prosody classifier’s training data is acquired from the 
individual tutor, in an interaction loop similar to the final 
learning interaction loop.  To generate training examples of 
approving and not-approving prosodic affect, the tutor is given 
a simple, interactive training game, in a similar style to the 
interaction sequence used to train Nico.  This training game is 
designed to elicit prosody similar to that elicited during Nico’s 
waving training, and to provide automatic labeling for the 
prosody classifier’s training data.   

In the prosody classifier’s training game, the tutor is told 
to train a remote robot on how far it must travel from a hazard 
to reach safety.  The tutor is given the threshold of safe 
distance from a practice hazard.  The tutor is allowed only to 
provide the remote robot with information via tone of voice.  
Training involves presentation to the tutor of a sequence of 
distances traveled by the remote robot.  In response to each 
distance reported, the tutor must give the robot prosodic 
feedback.  These feedback utterances form the corpus of 
training examples to the prosody classifier.  Because the 
robot’s performance and the threshold are known before the 
tutor produces each training example, the examples are easily, 
automatically labeled. 

 
F. Reinforcement Learning of Waving Behavior Parameters 



 We demonstrate prosody as a feedback mechanism for the 
problem of refining Nico’s social waving behavior.   
 We define a waving behavior to be an oscillatory motion 
at Nico’s elbow joint, around a fixed raised arm and hand 
position.  A waving behavior can be parameterized by the 
amplitude (measured in joint angle degrees) and frequency of 
oscillation. 
 In this paper, Nico is presented with a space of nine 
waving behaviors, combining three amplitudes ranging from 
small to large, and three frequencies ranging from slow to fast.  
The space of waving behaviors is organized as shown in Fig. 
3.  Each box in the figure represents a single waving behavior.  
During each trial-feedback cycle, Nico can transition to a new 
waving behavior if it shares an edge with its most recent 
waving behavior’s box, or Nico can choose to repeat the same 
waving behavior. 
 Before beginning an interactive tutorial with Nico, the 
tutor chooses a goal for what kind of waving behavior she 
would like Nico to perform.  Nico initiates the tutorial by 
arbitrarily selecting a waving behavior and performing it.   
 Nico uses q-learning to discover the tutor’s desired wave 
state.  Therefore, Nico maintains an internal estimate of the 
utilities or q-values, Q(s,a), for the transitions between each 
waving behavior.  Here, s is a waving behavior state, and a is 
an action or transition from s to Nico’s next waving behavior 
state s’ [10].  

Following each transition and its demonstration of its 
newly selected waving behavior, Nico’s q-learner receives 
prosodic feedback, R(s,a) {0,1}∈  which it treats as a q-
learning reward signal and uses to update the q-value for its 
most recent transition between waving behaviors: 
   

'
Q(s,a) <= (1- )Q(s,a) + ( ( , ) max ( ', '))

a
R s a Q s aα α γ+   (4) 

where s’ is the next waving behavior, which transition a leads 
to, from previous waving behavior s, and a’ is a transition 
leading from waving behavior s’ [10].   

The q-learning parameters α and γ influence the 
sensitivity of q-values to changes in the q-values of successor 
states and transitions, and the number of predecessor states 
and transitions, whose values will be affected by updates to q-
values, respectively [10].  

As for Nico’s choice for its next action, we have selected 
the following action policy:  from its current waving behavior, 
with some probability (1-p) Nico selects the transition with the 
highest q-value.  However, with probability p, Nico instead 
uniformly randomly selects a transition.   

Random exploration of the state space is important for 
two reasons.  First, in the case where Nico misclassifies the 
prosodic affect, it can update its q-values to incorrectly prefer 
an undesirable transition.  In such a case, random exploration 
can give Nico a new opportunity to correct its error or return 
to an optimal path to goal.  Secondly, if the state space of 
waving behavior should contain a local maximum, and if Nico 
finds itself performing the locally optimal waving behavior, a 
random transition away from the local maximum can give 
Nico an opportunity to seek the global optimum. 

In order to allow Nico to finally converge on some 
waving behavior, we allow the probability p of random 
exploration to decrease geometrically with each trial-feedback 
cycle: 

p <= p* nξ   (5) 
where n is the number of cycles 

For our waving behavior refinement problem, we select α 
= .5; γ = .8; p = .7; ξ = .95.  We arbitrarily choose to let Nico 
start with a small, slow waving behavior, and we assign the 
tutor to prefer a big, fast waving motion. 
 

III.  EXPERIMENTAL RESULTS 

A. Experimental Parameters 
 The following sections present the results of a wave 
behavior learning demonstration, which uses prosodic 
feedback to drive a q-learning algorithm.  Results are 
presented for a single tutor, the first author of this paper.   
 Voice-activation detection was trained on 15s of 
background noise and 8s of continuous speech.   

Prosody classification was trained on 19 approving and 
disapproving feedback utterances, captured and labeled using 
the remote robot safety scenario.   
 Q-learning was performed using parameters α = .5; γ = .8; 
p = .7; ξ = .95, where the learner’s action-selection policy was 
to choose, with probability 1-p* nξ , the behavior transition 
having maximal q-value, and, with probability p* nξ , to select 
a transition uniformly at random.  
 
 
B. Voice-Activation Detector Performance 
 The maximum-likelihood voice-activation detector 
exhibited only 3.4% error, including both false positives and 
negatives, when tested over the VAD training corpus itself.  
We did not measure VAD error for any live interaction data, 
as we do not have a means to automatically acquire true voice-
activation labels in during tutorial.  Fig. 4 shows  
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Figure 3.  A space of nine distinct waving behaviors.  Each box 
represents one waving behavior state.  In our experimental state space, 
waving behavior states are ordered from left to right with increasing 
amplitude, and from bottom to top with increasing frequency. 
   

distributions of background noise and speech training samples, 
for energy, the decision feature exhibiting the best separation 
between the noise and speech distributions.  The background 



noise distribution is shown in the top plot, and the speech 
distribution is shown in the bottom plot. 
 
C.   Prosody Classification 
 The prosody classifier was trained on a corpus of 19 
utterances, including 10 of approving and 9 of disapproving 
affect.  Leave-one-out cross-validation over training data 
results in false positive and miss rates both of 5.3%. 
 Fig. 5 shows the training utterances’ distributions over f0-
mean and energy-range features.  Over these two features, the 
training data shows clear separation. 
 Prosody classifier performance was measured over the 
particular tutoring interaction sequence presented in Fig. 5.  
Presuming that the author’s prosody was consistent with the 
desirability of each tried transition, the true prosodic values 
were estimated from Nico’s sequence of transitions.  For every 
transition which brought Nico closer to the desired waving 
behavior, the true prosody was estimated to be approving, and 
for transitions that brought Nico farther from the goal 
behavior, the true prosody was estimated to be not-approving.  
A comparison of these estimated true prosody values with the 
actual output of the prosody classifier showed that the prosody 
classifier made 0 false positive errors and missed two, or 
8.3%, of all  approving utterances, falsely classifying them as 
not-approving.   
 
D.  Learning the Tutor’s Goal Behavior 
 Fig. 6 shows Nico’s approach to the desired waving 
behavior, over the course of an interactive tutoring sequence.  
The plot shows the cumulative distance, measured in 
transitions, between Nico’s current behavior and the goal 
behavior.  The cumulative error curve has steep slope for trials 
during which Nico’s waving behavior is very different from 
the goal behavior.  On the other hand, the cumulative error 
curve is horizontal for those trials during which Nico is 
performing the goal behavior.   
 Fig. 6 indicates that Nico performs the goal behavior five 
times in a row, from the 12th-17th trials, and then transitions 
away from the goal behavior, exploring behaviors which are 
far from the goal, until finally returning back to the goal 
behavior.   
 If Nico found the goal behavior, why did it later switch to 
another behavior?  The answer is that Nico’s action policy 
calls for it to select the transition with optimal q-value most of 
the time, but with some probability to select, uniformly at 
random, any transition, regardless of q-value.  In Fig. 7, 
circles mark the trials during which Nico randomly selected its 
next behavior.  Note that from the beginning through the 
middle of the sequence, when Nico selects a transition at 
random, this results in the accumulation of error, as Nico 
explores far from the goal behavior.  However, near the end of 
the sequence, Nico recovers to the goal behavior rapidly, as 
indicated by the horizontal cumulative error curve.   
 

 
Figure 4.  Training background (top) and speech (bottom) histograms over 
energy measurements, one of three voice-activation detection (VAD) features.  
The VAD derives Gaussians probability distributions from these sample 
distributions, and performs maximum-likelihood detection on novel short-
time audio windows.   
 

 
Figure 5.  Prosody classifier training data distributed over f0-mean and 
energy-range features.  Utterances featuring approving prosody are marked by 
“+”s and utterances featuring disapproving prosody are marked by “o”s.  For 
these two features, the training data shows clear separation. 
 
 In general it is safe to expect that as the number of trials 
increases, Nico will find and stay fixated on the goal behavior.  
This is because the probability of randomly exploring away 
from the goal behavior decreases geometrically with time, and 
because as time passes, Nico enriches its model for the space 
of behaviors.  For example, Nico’s path indicates that during 
trials 25-33, Nico explored previously unvisited behavior 
states, causing it to learn q-values over these novel states.   
 This knowledge allowed Nico to recover immediately to 
the goal state, following random explorations away from it in 
trials 35 and 40.  After 47 trials within this sequence, the 
probability of randomly choosing an action was only 6.3%.   
 



 
Fig. 6.  Convergence of waving behavior q-learner onto desired waving 
behavior.  This plot shows cumulative error versus number of trials in the 
tutorial sequence.  Horizontal slope in the cumulative error curve indicates 
transition to the goal behavior, producing no additional error.   
 

 
Figure 7.   Another view of the learning sequence.  In this plot, “o”s 
demarcate the trials during which Nico chose its next waving behavior 
uniformly at random, and also showing the declining probability (scaled by a 
factor of 100) of such random exploration , scaled by a factor of 100. 
 

IV.  DISCUSSION 

A.  Prosody as Feedback to Drive Machine Learning 
 We have demonstrated that speech prosody can drive a 
physically embodied machine learner.  We have shown that it 
is possible to recognize affect in prosody in a real-time, 
interactive loop, with a high level of accuracy that makes 
possible its usage in a real-time learning system.   
 
B.  Extension to Other Subjects 
 Initial explorations using other subjects to tutor Nico have 
confirmed the importance of affective response from the 
robot, as previously demonstrated by Breazeal and Aryananda 
on Kismet [3].  Even mothers of infants and highly expressive 
caretakers of pets, who are accustomed to speaking Motherese 
with their children or animals, indicate reluctance to express 

exaggerated affect to Nico, in the absence of affective 
feedback from the robot. 
 
C.  Extension to Larger Learning Problems 
 A pilot study into more complicated learning problems, 
for instance exploration to a social waving behavior within a 
space of 500 distinct arm-oscillation behaviors, a subset of 
which appear to express social waving, suggests that 
convergence on the goal state is highly sensitive to the balance 
which the action policy gives to exploration over exploitation, 
depending on the recent reward history. 
  
D.  Extension to More Affects 
 Previous work in prosody classification has successfully 
classified over other affects, besides approval and disapproval.  
Thomaz, Hoffman, and Breazeal showed that humans often 
prefer to give guidance, which may be viewed as attentive 
affect, as well as positive or negative reinforcement, which 
may be viewed as approving or disapproving affect [1].  It’s 
possible that other prosodic affects may enrich a tutoring 
interaction with a robot, by providing feedback other than 
positive and negative reinforcement.   
 
E.  Extension to Other Learning Problems 
 The present work should extend to other learning 
problems for which a human can judge whether a change in 
state is going “in the right direction.”  Essentially, a binary 
approving/not-approving signal can be used to indicate 
positive gradient over utility.   
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