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Given evidence that some individuals with autism spectrum disorders (ASD) have 

greater interest or facility in interacting with mechanical than social elements o f everyday life, 

there has been much interest in using robots as facilitators, scaffolds, or catalysts for social 

behavior within interventions. This dissertation presents evidence toward the clinical utility 

o f interaction with robots for communication and social skills therapies for children with 

ASD. Specifically, we present novel, group-based, well-controlled observations o f social 

behaviors produced by populations with ASD and with typical development (TD), during 

brief interactions with social robots. Importandy, we present evidence that a robot can elicit 

greater social interaction with an interventionist than can an asocial engaging technology, or 

another adult, suggesting that the appeal o f a technology cannot alone mediate or elicit social 

behavior in children with ASD; rather, sociality must be entwined with interaction with the 

technology. In addition, we present evidence validating novel technologies and interaction 

designs that support the application o f social robots to the specific domain o f speech 

prosody therapy. Finally, this dissertation suggests systematic design guidelines promoting 

clinically effective collaborations between human-robot interaction scientists and clinical 

researchers and providers who support individuals with ASD.
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Chapter 1

Introduction

Difficulties with social interaction and communication are among the core deficits in autism 

spectrum disorders (ASD; American Psychiatric Association, 2000). This dissertation 

establishes the feasibility o f using social robots for communication and social skills therapy 

for children with ASD, by demonstrating spontaneous social engagement with robots, by 

sample populations o f children with ASD, in a clinical setting.

1.1 Autism

Autism spectrum disorders are complex disorders o f brain development, characterized by 

difficulties in social interaction, communication, and repetitive behaviors (American 

Psychiatric Association, 1994, 2000).1

Among individuals with ASD, deficits manifest heterogeneously (Volkmar & Klin, 

2005). Social deficits are among the primary characteristics associated with autism spectrum 

disorders (American Psychiatric Association, 2000; Carter, Davis, Klin, & Volkmar, 2005; 

Joseph & Tager-Flusberg, 1997; Kanner, 1943; Mundy, Sigman, & Dawson, 1989). As many

1 In May 2013, the American Psychiatric Association released the Diagnostic and Statistical Manual of Mental 
Disorders, S'1' Edition (DSM -5), changing the definition o f  autism by eliminating subclassifications such as 
Asperger’s Syndrome, and by collapsing the communication and social interaction categories o f  behavior

16



as half o f all affected children do not develop functional speech (Tager-Flusberg, Paul, & 

Lord, 2005). Even for individuals who develop strong mechanical language skills, difficulties 

persist in conversational interactions (Mesibov, 1992; Paul, 2008; Tager-Flusberg et al.,

2005). For example, common deficits in conversational skills include difficulty managing 

turn-taking and topics o f discourse, using inappropriate style of speech to fit conversation 

partners and settings, and trouble inferring what information is relevant or interesting to 

others (Paul, 2008). Production and perception o f affective expressions, as well as eye 

contact and other nonverbal attentional cues, can also be inappropriate, unconventional or 

deficient in individuals with autism (Mundy, Sigman, Ungerer, & Sherman, 1986). Restricted 

and repetitive behaviors can also be extremely disruptive in some individuals (Turner-Brown, 

Lam, Holtzclaw, Dichter, & Bodfish, 2011).

Deficits associated with ASD impact individuals’ abilities to function independently in 

social, occupational and other important areas o f life (American Psychiatric Association, 

2000). Many individuals need high levels of support and care throughout their lives, and 

early intervention is considered critical (American Psychiatric Association, 2000; Klin, Lang, 

Cicchetti, & Volkmar, 2000; Mullen, 1995; Sparrow, Cicchetti, & Balia, 2005; Volkmar, Lord, 

Bailey, Schultz, & Klin, 2004).

1.1.1 Social skills and communication therapies

Diverse intervention approaches seek to ameliorate functional difficulties brought on by

repetitive and restricted behaviors, and also seek to improve social and communication skills

in children with ASD (reviewed, for example, in Paul, 2008; and Volkmar et al., 2004).

With the goal o f improving individuals’ ability to function, communication and social

skills therapies range correspondingly with the heterogeneity impairments and abilities
17



exhibited by individuals with ASD. Interventions tend to vary with respect to (1) the 

behaviors targeted; (2) the extent to which targeted behaviors are naturalistically elicited (e.g., 

by tempting a child to ask for help by keeping a toy out o f reach), or are explicitly elicited 

through instruction (i.e., through highly structured repetition); and (3) the setting in which 

training or reinforcement takes place— anywhere from highly controlled clinical settings to 

naturalistic environments such as the child’s home or classroom.

For pre-verbal children, didactic therapies are highly structured, passive for the children 

and initiated by the clinician, and rely on external reinforcers like food. More naturalistic, 

contemporary adaptive behavioral analysis techniques, like milieu therapy, reward children by 

giving them access to intrinsic reinforcers when they initiate requests to interact with these 

rein forcers.

Among verbal individuals with ASD, their speech prosody (that is, their tone of voice, or 

the “melody” and rhythm o f their speech) often sounds odd (Diehl & Paul, 2011; Mesibov, 

1992; Paul, Augustyn, Klin, & Volkmar, 2005; Shriberg et al., 2001), for example atypically 

flat or sing-song (Nadig & Shaw, 2012; Tager-Flusberg & Caronna, 2007). Atypical prosody 

production is a primary marker by which neurotypical individuals single out those with ASD 

as different (Mesibov, 1992; Van Bourgondien & Woods, 1992).

Problems with pragmatic language use are pervasive, including “use o f irrelevant detail; 

inappropriate topic shifts; topic preoccupation/perseveration; unresponsiveness to partner 

cues; lack o f reciprocal exchange; inadequate clarification; vague references; scripted, 

stereotyped discourse; excessively formal style (for speakers with Asperger syndrome only)” 

(Paul, Orlovski, Marcinko, & Volkmar, 2009).
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Interventions for children with ASD target foundational social skills like joint attention, 

eye contact, and cooperative play and problem-solving; verbal production and 

understanding, and pragmatic language use and appropriate prosody production; and the 

reduction o f maladaptive behaviors, including repetitive and repeated behaviors and 

circumscribed interests.

Many interventions are based on an applied behavior analysis paradigm, in which the 

provider or interventionist entices children to practice targeted behaviors, and then 

reinforces the performed behaviors (Paul, 2008). Reinforcement can be manifested in the 

delivery of preferred edibles, providing access to preferred toys or objects, or by allowing the 

child to engage in a preferred activity (for instance, watching a favorite television program).

For even slight improvements in any targeted behavior, therapy tends to require regular, 

repeated lessons and practice, over the course of months or years. For instance, Handleman 

(1979) taught four boys (with chronological ages o f 6 to 7 years) “described as ‘autistic’ by 

various agencies” who “could produce and imitate sounds and words but did not use 

language as a spontaneous interpersonal communication skill” to respond to simple 

questions (e.g., — What do you smell with? -Nose, or, —What do you sit on? -Chair). Participants 

trained three times a day, on five specific questions, four times each, with their mother or a 

tutor. The tutor or mother would ask one o f the five questions, and if the child responded 

correctly within 10 s, would reinforce the response with praise and food; if the child 

responded incorrectly, the tutor or mother would say, “no,” and then speak the correct 

response. Treatment for each child continued until that child answered correctly 75% of the 

time on two training sessions in a row. Treatment took between 100 and 1740 trials (25-435 

sessions over 9-145 days). A survey (Goldstein, 2002) o f a wide variety o f communication
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treatment studies revealed broadly ranging treatment durations, most ranging over 24-36 

sessions, at intervals ranging from daily to weekly, with one intervention requiring weekly 

home visits for 6 months, followed by bi-monthly home visits for an additional 12 months 

(Howlin & Rutter, 1989). It is notoriously difficult for children with ASD to generalize the 

skills they develop through intervention to environments, social partners, and scenarios 

different from those on which they specifically train (Prelock, Paul, & Allen, 2011).

1.2 Robot applications for autism

1.2.1 Special interests in technology motivate HRI applications to 
autism intervention

Evidence suggests that in children with ASD, more so than in children with typical

development (TD), circumscribed interests are frequently focused on nonsocial objects,

activities, and phenomena (Turner-Brown et al., 2011). Such nonsocial objects include

devices, mechanical items, and physical systems; telephone pole insulators, lawn sprinklers,

cranes, trains, and Legos are common objects o f circumscribed interests (South, Ozonoff, &

McMahon, 2005; Turner-Brown et al., 2011). One parent observed:

Our son Tom, who has a diagnosis of autism, developed an intense 
interest in trains at around age 2. This intense level o f interest caused some 
friction in our family. For example, whenever we visited a local zoo, he was 
only interested in riding on the zoo trains. At first, this “obsession” seemed 
typical until we found ourselves planning all o f our family vacations around 
opportunities to see or ride on trains. At the age of 3, he had only 14 
vocabulary words and “train” was one o f them. Any conversation we held 
revolved around trains, and this interfered with his relationships with peers, 
and even his sister. He wouldn’t play with or talk about anything else.
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Eye-tracking studies also show a perceptual bias for looking at physical objects, rather 

than social actions or people, in ASD more so than in TD  (Sasson, Elison, Turner-Brown, 

Dichter, & Bodfish, 2011).

Before nonsocial interests had been established as common among children with ASD, 

anecdotal evidence o f circumscribed interest in devices and mechanical objects motivated 

parents and researchers to explore robots as potential supplements to therapy and education 

for children with ASD. For example, in 2000, Sun Microsystem sponsored a contest to hack 

Tiger Electronics’ Furby toy, after the mother o f a child with ASD contacted them, saying 

that her four-year-old son’s interactions with the toy taught him to speak about himself and 

expanded his vocabulary by at least 6 words (Fleishman, 2000; Kahney, 1999).

1.2.2 Scaffolding theory

The goal o f HRI research for children with autism is to use robots to improve therapies,

most often those targeting communication and social skills. There tend to be two theories

for how robots can contribute to therapy. The first is to view robots as customizable

scaffolds (as in Robins, Dautenhahn, te Boekhorst, & Billard, 2005): Robots can serve as

social practice partners for children with ASD. Therapists can scale down the complexity or

diversity o f the robot’s behavior to facilitate practice for children who have high social

anxiety or who tend to be overwhelmed by more sophisticated or unpredictable interactions.

As a child improves in skills, the interventionist can gradually increase the complexity of the

interactions, and begin to incorporate practice with people, to generalize the child’s gains to

ecologically functional (that is, real world) interactions. This thrust within HRI for autism is

motivated by the pedagogical theory scaffolding, which suggests that educators should

structure lessons to support (that is, provide scaffolding) for underdeveloped skills on which
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the targeted skill depends. This allows the student to focus on the targeted skill at hand 

(Vygotsky, 1978; W ood & Middleton, 1975).

1.2.3 Embedded reinforcers: a novel theory

This dissertation suggests a second, novel theory o f robots’ utility in autism intervention: as 

reinforcers that catalyze social interaction with other people. There is evidence that the use 

o f  child-preferred, or intrinsic, reinforcers leads to improvements in social engagement 

(reviewed in Paul, 2008). Furthermore, embedding social interaction into the delivery o f a 

child’s preferred reinforcer (for example, singing a child’s favorite song, rather than playing a 

video recording o f the song) elicits greater social initiation, increased non-verbal (bodily) 

orientation to face an interaction partner, and more positive affect (L. K. Koegel, R. L. 

Koegel, Harrower, & Carter, 1999; R. L. Koegel, Dyer, & Bell, 1987; R. L. Koegel, Vernon, 

& L.K. Koegel, 2009).

The long-term aim o f our research is to evaluate and fulfill the potential o f social robots 

as embedded reinforcers, which elicit and reward social behavior in interventions for children 

with autism. Although there is ample evidence that children with ASD (as well as children 

and adults with typical development) will engage socially with robots, our long-term aim 

focuses on the ways social robots may support therapies that improve social interaction with 

other people (Duquette, Michaud, & Mercier, 2008; Feil-Seifer & Mataric, 2009; Kozima, 

Michalowski, & Nakagawa, 2009; Robins et al., 2005; Stanton, Kahn Jr., Severson, Ruckert, 

& Gill, 2008). Social robots are robots that are designed to evoke social behaviors and 

perceptions in the people with whom they interact. There is promising case study evidence 

that robots, both socially evocative and not (discussed below), can elicit social engagement
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between children and the robots themselves, and can mediate social engagement between 

children and adults. Whereas Koegel et al. (2009) have shown that embedding social 

interaction, within the delivery o f preferred reinforcers, increases production o f target 

behaviors, we are interested in further embedding social interaction, within the reinforcer or 

motivator itself. It is our eventual hope that social robots can translate children’s interest in 

novel technologies into increased motivation for participating in social interactions and 

social partnerships with people. Such an approach, if effective, could provide new methods 

to facilitate and augment behavioral, communicative, and social therapies that improve 

interactions between individuals with ASD and with other people (Scassellati, 1996).

Both scaffolding and embedded reinforcement theories suggest that some children with 

ASD may find robots especially motivating. Over the last 10 years or so, numerous studies 

have observed that children with autism seem to enjoy interacting with robots which imitate 

their movements (Dautenhahn & Billard, 2002); robots that bounce to express positive 

affect in response to children’s gaze, or turn their heads back and forth to make eye contact 

with a child and a caregiver (Kozima, Nakagawa, & Yasuda, 2005); and robots that blow 

bubbles when a child pushes a button on the robot (Feil-Seifer & Mataric, 2009).

1.2.4 A brief history of HRI explorations in autism intervention

Socially assistive robotics, a recently emergent field, has, over the last decade or so, 

investigated social robots as assistive tools for elderly, or physically or cognitively impaired 

individuals (Scassellati, Admoni, & Mataric, 2012; Tapus, Mataric, & Scassellati, 2007), and 

as supportive tools for social and communication skills therapy in children with ASD 

(Duquette et al., 2008; Feil-Seifer & Mataric, 2009; Kozima et al., 2009, 2005; Robins et al.,
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2005; Scassellati, 2005; Stanton et al., 2008; Werry & Dautenhahn, 1999). Multiple studies 

have shown that children with ASD will interact with robots using social behaviors, e.g., by 

directing speech to the robot (Duquette et al., 2008; Feil-Seifer & Mataric, 2009; Kozima et 

al., 2009; Robins et al., 2005; Stanton et al., 2008). Several o f these studies have further 

demonstrated that children with ASD will interact with a parent, caregiver, or another 

human while engaged with a robot partner (Feil-Seifer & Mataric, 2009; Kozima et al., 2009; 

Robins et al., 2005), for instance, by expressing excitement to a robot, and then turning to 

express this excitement to a parent (Kozima et al., 2009).

Previous demonstrations o f the benefits o f robotic interaction on social behaviors were 

demonstrated over case studies o f three or four individual children. However, there have 

been few demonstrations over larger samples (Diehl, Schmitt, Villano, & Crowell, 2012; 

Scassellati et al., 2012). It thus had remained an open question whether the beneficial effects 

o f social robots extend more broadly across the autism spectrum. This dissertation presents 

the first large, group studies (N = 24, Chapter 3; n -  18, Chapter 4) o f human-robot 

interaction in children with ASD. We specifically focus on interventions targeting atypical 

prosody, a domain o f atypical social functioning that has been identified as functionally 

impactful and an important target for intervention (Paul, Shriberg, et a l, 2005).

1.3 Making robots useful for interventions for ASD

Here we describe the technologies and investigations needed to support a robotic 

intervention for speech prosody in children with ASD. Many o f the technologies apply 

broadly to diverse human-robot interactions. Many o f the investigations we describe here 

also apply broadly to HRI, as well as to interventions for ASD.

24



In general, the engineering scientific discipline o f human-robot interaction (HRI) seeks 

to understand people’s behaviors, and to build technologies that can recognize and respond 

to them, in ways that support the goals o f the application in question. HRI for a special 

population requires models o f human behavior specific to that population, and technologies 

tailored to that population’s idiosyncrasies. Autism is characterized by social and 

communicative impairments, and therefore observations and descriptions o f typically 

developing populations’ social behaviors will not generalize wholesale to children with ASD. 

However, it is more feasible and perhaps ethically responsible to begin HRI investigations 

with typically developing adult populations because children’s participation in experiments 

requires parental support, greater ethical consideration, and support specific to 

developmental vulnerabilities, especially for participants with ASD, who themselves and 

whose families may be under exceptional strain. From studies with typically developing 

adults, we can develop approximations from which we can prepare to investigate an ASD 

population’s behaviors.

A handful o f empirical questions and corresponding automating technologies inform and 

support our pursuit o f clinically helpful robots. We suggest that beneficial interactions 

require our understanding four aspects o f human-robot interaction:

Question 1: How engaged and motivated are participants?

Question 2: How do participants behave during and after human-robot interaction? 

Question 3: What design elements support interaction?

Question 4: How should a robot adapt to maintain a long-term relationship?

These questions and this dissertation’s contribution to each will be discussed in greater detail 

below.
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In this dissertation, we begin in Chapter 2 with an examination o f the typically 

developing adults’ use o f affectively expressive speech prosody, while teaching robotic 

learners a toy (i.e., easy) learning task. The study described in Chapter 2 demonstrates that 

neither prior training nor prior knowledge o f the learners’ capabilities, (1) adults easily and 

readily use speech to instruct robodc learners; (2) infuse their speech with intensely 

affectively expressive speech prosody; (3) provide spoken instruction before the learner 

completes a trial action, not only in response to completed actions, suggesting that 

traditional interactive machine learning algorithms, which are designed to learn from passive 

environmental state changes, do not adequately model the rich, social input sources provided 

by human instructors; (4) human instructors vary the amount o f instructive feedback they 

provide, depending on the learners’ path or history, contradicting an assumption made by 

classic interactive machine learning algorithms, which model reward functions as path- and 

history-independent, that is, depending only on the learner’s present state within the learning 

task (E. S. Kim, Leyzberg, Tsui, & Scassellati, 2009). This study demonstrates the feasibility 

o f eliciting natural social behaviors from typically developing adults, within human-robot 

interaction, suggesting the possibility of eliciting natural social behaviors from children with 

ASD. O ur findings also suggest the need to reconsider the application o f classic machine 

learning algorithms to human social behavioral input.

Chapter 3 describes the most impactful and innovative contributions o f this dissertation: 

(1) the unique ability o f social robots to facilitate spoken interaction between children with 

high-functioning ASD2 (HFA) and an adult clinician or educator, and (2) evidence

2 High functioning with A SD  is typically defined as full-scale IQ above 70. More detailed characterization o f  
participants is provided in Chapter 3.
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supporting a theory that social robots uniquely embed sociality into reinforcing interactions. 

The chapter details a study in which children with HFA briefly interacted with an adult, 

robot, and computer game (E. S. Kim et al, 2013). All interactions were semi-structured and 

guided by a single confederate, who was constant for all participants and interactions, and 

who fulfilled the role o f an interventionist (that is, a therapist or educator). In between 

interactions, participants completed brief interview and play sessions, with each participant 

interacting with a constant interviewer. Adult and robot interactions were designed to 

emulate communication or social skills intervention sessions, and were highly parallel in 

structure to each other, to establish a contrast between an optimally capable social 

interaction partner (the adult) and a social robot. The computer game was designed to be 

similar to the robot interaction with respect to spatial and physical challenges, but included 

limited structured social interaction. O ur intent was to contrast the robot’s and computer 

game’s asocial and technological appeal. In short, the social robot was designed to present an 

intersection o f the computer game’s mechanical and technological appeal, with the adult 

interaction partner’s social engagement. Participants spoke more while interacting with the 

robot than while with the adult or computer game interaction partners. They directed the 

same amount of speech to the robot and adult (and little to the computer game). Most 

interestingly, participants directed more speech to the confederate during the robot 

interaction than during the other two. This finding indicates a social robot’s unique ability to 

motivate and mediate social interaction between children with HFA and other people. It also 

supports a view o f social robots as socially embedding reinforcers.

Chapter 4 further establishes the feasibility o f using social robots to elicit and reinforce 

engagement in tasks like those used in communication therapies. The study described in this

27



chapter specifically targets production o f affective expression in speech prosody, in school- 

aged children with HFA (E. S. Kim, Paul, Shic, & Scassellati, 2012). This study also provides 

opportunities to compare responses with those from an age- and IQ-matched sample of 

children with TD. The study shows that (1) both children with ASD and those with TD 

enjoy and engage with a robot-directed, repetitive prosody production task; (2) children with 

ASD, more so than those with TD, increase their social engagement with a clinician after 

interacting with the robot; (3) that children with ASD appear to more motivated to interact 

with the robot than those with TD; and (4) that motivation for post-intervention human and 

robot interaction correlate positively with verbal ability and enjoyment o f the therapeutic 

robot interaction, and inversely with severity o f autistic symptoms. In sum, Chapter 4 further 

establishes the feasibility o f using a robot in a behavioral communication intervention, 

indicates greater reinforcement in children with ASD than in children with TD , and begins 

to explore neuropsychological characteristics of participants who might especially benefit 

from social robot interaction.

In Chapter 5 we present two novel prototypes of automated systems that recognize the 

expression o f affective (E. S. Kim & Scassellati, 2007) and shared-belief-modifying (E. S. 

Kim, Gold, & Scassellati, 2008) intents in speech prosody. The first system also uses the 

output o f its affective prosody classifier as feedback for an interactive learning system, which 

is validated over for a single instructor, on a toy, trivial learning problem. Despite the 

methodological limitations o f the affective classification and learning system, and the modest 

accuracy o f the shared-belief-modifying cues recognition system, these two systems offer 

proof o f concept that social behavioral recognition can be automated and applied to 

relatively unconstrained contexts. Automatic recognition and response within flexible
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interaction conditions will make social robots increasingly affordable and reliable, both o f 

which will be essential to the uptake of robots therapeutic applications.

Chapter 6 describes interdisciplinary collaborative challenges and solutions that we have 

observed and developed, respectively, over the course o f the studies presented in this 

dissertation (previously published in E. S. Kim et al., 2012). While there are research fields 

dedicated to the study o f interdisciplinary scientific research collaboration, this chapter 

discusses challenges and strategies unique to robotics and autism research, with the goal o f 

improving human-robot interaction scientific methodology to the influential and highly 

rigorous scientific standards o f evidence-based medical and psychological intervention.

The descriptive, technological, theoretical and methodological contributions offered by 

these chapters advance our understanding along all four o f the research questions we have 

outlined above and now detail below.

Question 1: How engaged and motivated are participants?

Do participants want to interact with the robot? How motivated are they, and how well

do they focus, on completing tasks during the interaction? Readers familiar with human-

computer interaction methodology will recognize this as a question o f acceptability and

usability. Clinically, motivation to engage in teaching interactions has been described as

fundamentally underlying the learning and improvement o f other communication, social, or

academic skills (R. L. Koegel, L. K. Koegel, & McNerney, 2001). Finally, motivation to

engage in an interaction indicates reinforcement. Reinforcers are used both to entice

participants into performing a target behavior, and to reward them after they have

performed it. Therefore, the question o f the extent to which participants are motivated to

engage is triply fundamental to socially assistive robotics applied to autism intervention,

29



informing us of whether participants will use a particular technology, the general pedagogical 

potential o f a particular interaction with the technology, and the specific reinforcing 

potential of that interaction.

The question o f engagement directly bears on embedded reinforcement theory. 

Engagement can be measured in terms o f compliance and affect.

In this dissertation, we describe three original studies o f human-robot interaction, which 

were the first large group studies to establish that untrained adults with TD (Chapter 2), 

children with ASD (Chapters 3 and 4), and children with TD (Chapter 4), will readily use 

speech to interact with a robot. Furthermore, In Chapter 3, we find they speak more to an 

interventionist while interacting the robot than while with another person. This suggests that 

in comparison with another adult person, the robot better motivates participants to interact 

with a clinician, educator, or healthcare provider (henceforth, we will sometimes refer to a 

person fulfilling the therapeutic role as an interventionist).

We also quantitatively established that children with ASD and TD enjoy these 

interactions, establishing our robot interactions as intrinsically reinforcing (Chapter 4).

Question 2: How do participants behave during and after human-robot interaction?

What communicative and social behaviors do participants perform during or following 

interaction with a robot? Does the quality or frequency improve as a result o f interaction 

with the robot? D o participants perform behaviors that have been identified as important 

targets for improvement? Can these behaviors form the basis for therapeutic interactions? 

Are they performing adaptive or maladaptive behaviors? (This question checks that 

engagement in a robot interaction does not reinforce behaviors that will actually diminish
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participants’ functioning. For example, if a participant becomes addicted to a video game, 

this may actually further isolate him socially, rather than improving his daily functioning.)

Exploration o f this question provides us with information about which behaviors may be 

reasonable to target using robot interaction, as well as what kinds o f interactions (e.g., 

spoken, non-verbal) we can expect participants to engage in. On a scaffolding theory view, 

they tell us what behaviors participants lack, which a robot or interaction design may be able 

to compensate for, to facilitate the practice o f a target behavior. O n an embedded 

reinforcement view, this question asks whether participants will engage socially with the 

reinforcer, and whether the types o f behaviors participants exhibit will be therapeutically 

beneficial.

In addition, our understanding of participants’ behaviors during human-robot interaction 

can inform and also benefit from the development o f automatic behavior-recognition 

technologies. Characterizing participants’ behaviors and motivations, and helpful robotic 

behaviors and adaptations, allows us to design useful human-robot interactions. These also 

inform the design o f automatic recognition o f participants’ behaviors, and control o f robotic 

behaviors. The more accurately we can automate the above four recognition and action 

processes, the more we can automate control o f the interaction, reducing some o f the 

enormous human labor involved in autism therapy. In addition, automating perception o f 

human behaviors and control o f robotic responses deepens and expands our understanding 

o f these processes.

We suggest that automation will play a crucial role in the successful deployment of 

socially assistive robots. The labor required to manually operate a robot can overwhelm 

limited resources available to healthcare providers, educators, and interventionists. In
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addition to saving labor, automatic perception o f social behavior reciprocally utilizes and 

deepens our psychological understanding of these behaviors. Data collected through 

neuropsychological or therapeutic interactions can be used to train automatic perception 

systems; and in return the statistical models that underlie automatic perception systems can 

reveal or deepen or understanding o f commonalities and differences among presentations of 

behavior (Campbell, Shic, Macari, Chang, & Chawarska, 2012). Automated robotic 

perception dovetails with improved psychological models.

In addition, the more we can automate these aspects o f interaction, the more flexibly we 

can deploy them (for instance, for practice outside the clinic and in children’s homes), and 

the more we can relieve therapists’, educators’, and clinicians’ labor over the course o f what 

tend to be time- and labor-intensive interventions.

In Chapter 3 we present observations that children with ASD verbalize more toward an 

interventionist while with the robot than while with another person, and as much toward the 

robot as toward a person. This finding supports the feasibility of using a robot in a speech- 

based clinical interaction. We also found that participants speak more to an interventionist 

while interacting with a robot than they do while interacting with another person or an 

engaging computer game. This suggests that social robots may make uniquely helpful 

reinforcers.

In Chapter 4 we contrasted IQ- and age-matched TD  and ASD children’s social 

behaviors toward a robot and their reactions following immediately afterward. We observed 

that in comparison with the TD  group, the ASD group spent longer in free playtime with 

the robot, following semi-structured interaction and interviews, and increased more the 

amount o f time during which they participated in post-interaction interviews. This confirms
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our intuition that behaviors observed in children with TD do not strictly hold for children 

with ASD.

In Chapter 2 we found adults spontaneously use affectively expressive speech prosody to 

communicate with a robot. Surprisingly, we also found that they do so in ways that classical 

machine learning models do not sufficiendy use. This suggested that children with ASD 

behave similarly, motivating us to do the experiment described in Chapter 4. This also 

provides us with data from which to begin to try to automate perception o f robot-directed 

speech prosody, which may be useful in general, but also in prosody interventions for 

children with ASD; for even if their prosody is different from typical adults’, from 

automating perception o f TD adult robot-directed prosody, we may develop some 

technologies and models which will may help us eventually automatically evaluate children’s 

production o f target behaviors in prosody interventions.

In Chapter 5, we present novel technologies that automate perception of certain aspects 

o f speech prosody. First, we present an automatic recognition system and the learning 

system that uses the output o f recognition as feedback. Although this system is 

demonstrated only for a single speaker (myself), learning the admittedly trivial task o f 

identifying a goal state within a 9-state finite state machine, nevertheless our demonstration 

establishes a proof o f concept that affective prosody recognition can be performed 

automatically, in real time and used to drive robotic behavior selection. This supports future 

research in automatic perception o f intervention target behaviors. O ur other system, which 

identifies prosodic shared belief cues suggests, also gives proof o f concept o f  automatic 

perception o f these communicative intents. Our validation study o f this system sheds new 

light on the presence o f such cues in infant-directed speech.
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Question 3: What design elements support interaction?

What aspects o f an interaction and a robot’s form or behavior elicit, motivate, or 

reinforce targeted behavior and sustain interaction? What kinds of responses are legible and 

reinforcing to children with ASD? To what extent, and for whom, are robots better than 

other reinforcers? This is a design question.

In Chapter 2, we found that robot-directed prosody changes with robot behavior, 

exposing one way by which a robot’s behavior may elicit different kinds of social behavior. 

Based on pilot observations, we chose to emphasize real-time, Wizard-of-Oz-controlled 

responses to participants’ communications to the robot, as well as a seamless familiarization 

protocol, allowing us to examine participants’ naive, intuitive selection o f ways to 

communicate to the robot in the face of minimal explanation o f the robot’s perceptive and 

productive capabilities, and highlighting typically developing adults’ spontaneous 

anthropomorphization o f the robot’s behaviors. In addition, we carefully designed 

transparent (that is, easily legible) communication o f the robot Pleo’s behaviors (Thomaz & 

Breazeal, 2006b). This last design consideration was motivated by Chapter 5’s study of 

prosodic input to instruct the humanoid robot Nico how to refine its waving movements, in 

which we discovered that it was difficult, even for the experimenter, to distinguish between 

the slight adjustments the robot made from one trial to the next.

Chronologically, the experiment that followed is the one described below in Chapter 4, 

in which we observed that the Pleo robot’s slow locomotion bored participants, who waited 

sometimes 10 seconds at a time for the robot to approach each next challenge. We also 

observed that several participants were eager to pet and touch Pleo. In the experiment that 

chronologically followed (described in Chapter 3) we thus removed any need for the robot’s
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locomotion. We also found in the study in Chapter 4 that several participants were eager to 

touch Pleo, and so we added an opportunity for participants to touch the robot in the 

experiment in Chapter 3, and opportunities for participants to do as they pleased, after the 

completion o f semi-structured protocols in both studies. Just as we emphasized transparent 

communication o f the Pleo robot’s intentions and affective states in Chapter 2, we sought to 

make all behaviors even more obviously comprehensible for use with children with ASD in 

Chapter 3 and 4. However, knowing that individuals with ASD sometimes struggle in 

perception of others’ mental states, and because o f participants’ relatively earlier 

developmental states, we also carefully designed opportunities for the confederate to 

seamlessly repair misunderstandings o f the robot’s behaviors. Finally, we were careful in 

both Chapters 3 and 4 to design errorless interactions, so that participants were always 

rewarded for engaging, whether or not their answers or actions were correct; that is, they 

were neither chastised nor penalized for incorrect responses throughout the interactions.

Question 4: How should a robot adapt to maintain a long-term relationship?

How should the design of an interaction with a robot, and the robot itself, adapt in order 

to sustain participants’ engagement and maintain reinforcement potency for targeted 

behaviors, over the course of a therapeutically effective timescale (generally, months of 

weekly or more frequent visits)? Like Question 3, Question 4 investigates design, though on 

a much longer time scale.

In Chapter 5 for various communicative intents, we acoustically described prosodic

behaviors and automatically recognizing them. First, we built online recognition (similar to a

previous online recognition system described by Breazeal & Aryananda, 2002) and added

online learning from prosodic input from humans. We proved that it could be done, but that
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this wasn’t sustainable: the pace is too slow to maintain a human teacher’s engagement. Also, 

the grain o f adaptation was too fine for a human to reliably judge and give feedback on.

In Chapter 2 we learned that people’s feedback depends on history, and that human 

teachers provided input o f different types than post-action feedback. We see that machine 

learning from human input has a ways to go to understand a human teacher’s strategies, 

expectations o f a learner. These are structured at a higher level than just positive/negative 

feedback. They are more nuanced and organized according to a longer-time structure.

In Chapter 2 we found that robot-directed prosody changes with robot behavior exposes 

changing expectations o f  a learner, which informs the way a robot should adapt throughout 

an interaction, and perhaps beyond a single interaction. This motivates further exploration 

into people’s expectations o f adaptation throughout a relationship o f repeated interactions.

In Chapter 5, we develop a system that refines a physical behavior depending on affective 

prosodic input. The goal o f socially guided machine learning systems (SGML) is to 

understand how robots can adapt to people automatically. Chapters 2 and 5 explore the ways 

that a machine learner can learn use social inputs from typically developing adults, a basis for 

further exploration into social inputs from children with ASD.

The state o f the art may be years from systems that efficiendy use human input to learn. 

This indicates the value that socially assistive robots can contribute to machine learning, by 

establishing the social behaviors humans use to interact with robots. In the mean time, while 

we actively develop adaptive systems, we can continue to deploy socially assistive robots, 

operating them manually.

Clearly, while the application o f socially assistive robots to autism intervention engenders 

its own particular research questions, investigations for this particular application tend to be

36



mutually supportive o f research in human-robot interaction more generally, o f machine 

learning from human input, o f developmental psychology. Knowledge travels between 

socially assistive robots for autism and these other lines o f inquiry, in both directions.
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Chapter 2

How People Talk When Teaching a 
Robot

The study presented in this chapter was the first group demonstration o f untrained people’s 

spontaneous use o f affectively expressive speech prosody directed toward a social robot (E. 

S. Kim et al., 2009). The primary motivations for this work were two-fold, (1) to describe the 

(a) way naive people with TD use affectively expressive prosody when teaching, and to 

describe in detail (b) whether and (c) how they modulate these expressions depending on the 

learner’s performance; (2) to establish the feasibility o f using robots to elicit affectively 

expressive prosody in a special population, such as children with ASD. We created a 

teaching interaction for adults with TD, in which they were instructed to help a small 

dinosaur robot, walking down a miniature street, learn which toy buildings should be 

knocked down. We examined affective vocalizations provided by untrained human teachers 

to robotic learners. In unscripted one-on-one interactions, adult participants with typical 

development provided vocal input to a robotic dinosaur as the robot selected toy buildings 

to knock down. We found that (1) people vary their vocal input depending on the learner’s 

performance history, (2) people do not wait until a robotic learner completes an action



before they provide input and (3) people naively and spontaneously use intensely affective 

vocalizations. We established that a statistical sample o f adults easily and spontaneously use 

affectively expressive speech prosody to instruct robotic learners, suggesting the feasibility of 

testing robots’ ability to elicit affectively expressive prosody from children with ASD. Our 

results also suggest that machine learning from human social input may require the 

modification o f classical machine learning algorithms. Our findings suggest modifications 

may be needed to traditional machine learning models to utilize human interactive input in 

ways that are richer, more accurate, and more acceptable to users.

2.1 Motivation

We wanted to see if untrained, typical adults would use affectively expressive prosody when 

talking with a socially engaging robot, in a teaching task. We wanted to first establish the 

acceptability and ease o f socially interacting, particularly with speech prosody, with a robot, 

and the technical feasibility o f producing an interaction with the robot over a large group. 

Though our ultimate aim is to develop socially assistive robots for children with ASD, we 

chose to work first with typically developing adults, whose participation entails fewer ethical, 

developmental and logistical constraints than a special needs population o f children. Our 

tests o f  acceptability, usability, and feasibility over a large group were fundamentally 

important, because prior to this study, there existed evidence only o f trained individuals’ 

production o f affective prosody with robots.

At the same time we were interested in learning what kinds o f spoken input people give 

to a robotic learner. This study was largely exploratory in nature: if untrained, neurotypical
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adults wouldn’t use expressive prosody while interacting with a robot, there would be no 

sense in trying to get kids with ASD to do it.

We also recognized the opportunity to explore how we might computationally model 

human social behaviors as inputs to a machine learning system. Robotic and computational 

systems that learn from human input have included those that learn from demonstration or 

by imitating a human instructor (Argali, Chernova, Veloso, & Browning, 2009; Breazeal & 

Scassellati, 2002; Schaal, 1997); methods that learn the salience o f an object or task based on 

observations o f a human’s affective expressions or attention (Breazeal & Thomaz, 2008; 

Lockerd & Breazeal, 2004; Nicolescu & Mataric, 2001; Thomaz, Berlin, & Breazeal, 2005); 

and systems by which a human shapes behavior using methods inspired by operant 

conditioning (Blumberg et al., 2002; Kaplan, Oudeyer, Kubinyi, & Miklosi, 2002; Knox, 

Glass, Love, Maddox, & Stone, 2012; Knox, Stone, & Breazeal, 2013; Thomaz & Breazeal, 

2006b). Among these systems are efforts to learn from untrained behavior performed by 

non-expert humans. Generally, this emergent field could be described as socially guided 

machine learning (SGML), including both behaviors that people might typically use to 

interact with other people— like speech— as well as behaviors that people might use to 

interact with anything they consider to have a mind— such as clicker training with dogs. 

Explorations into interactive machine learning have observed the need to modify classical 

machine learning models to fit natural human teaching preferences (e.g., Thomaz & 

Breazeal, 2006b). Likewise, we in this study, we shaped our experiment design in order to 

facilitate exploration o f human interactive behaviors with respect to commonly used 

interactive machine learning algorithms.
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Specifically, we were motivated to explore the applicability o f human prosodic input to 

reinforcement learning algorithms, as these algorithms have been popularly used in learning 

from human interaction (Blumberg et al., 2002; Broekens, 2007; Isbell, Shelton, Kearns, 

Singh, & Stone, 2001; Kaplan et al., 2002; A. Stern, Frank, & Resner, 1998; Thomaz & 

Breazeal, 2006a). Reinforcement learning has classically been viewed in two senses, (1) as a 

broad framework o f the problem of learning from rewards in an environment, and (2) as a 

collection o f specific techniques (Sutton & Barto, 1998). Classical reinforcement learning 

techniques are based on Markov Decision Processes, such that the feedback or rewards a 

learner will encounter depend only on the current and past (or perhaps a small number of 

recently past) states in the learner’s recent history (Russell & Norvig, 2003, pp. 763-784). 

Otherwise (and generally) reinforcement learning algorithms assume that the feedback or 

rewards a learner receives are independent o f the learner’s history. Intuitively, however, this 

contradicts human expectations that learner’s won’t make the same mistakes multiple times 

in a row, and human emotional responses to progress or apparent mastery in learning. We 

designed our interactive study to explore these expected contradictions.

2.2 Hypotheses

Hypothesis 1

Naive instructors will provide affective guidance and feedback. Explorations into interactive 

machine learning have observed the need to modify classical machine learning models to fit 

natural human teaching preferences (e.g., Thomaz & Breazeal, 2006b). We hypothesized that 

naive speakers, given the opportunity to comment on a robotic learner’s intended action,
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would vocalize about the intended action before the action is completed. We expected less 

intensity in affect expressions voiced before an action is completed then those voiced after.

Hypothesis 2

Naive instructors will use affective vocalizations without explicit instruction. In previous 

studies o f naive speakers talking to robots, affective prosody has been elicited only when 

participants were explicitly “instructed to express each communicative intent (approval, 

attention, prohibition, and soothing) and signal when they felt that they had communicated 

it to the robot” (Breazeal & Aryananda, 2002); they were instructed to act as though talking 

to a child or pet. Based on our own anecdotal observations o f naive people interacting with 

Pleo robots, we hypothesized that naive people would use affective prosody when talking to 

a robot without explicit instruction.

Hypothesis 3

Vocalizations will vary with respect to the history o f a robotic learner’s performance. 

O ur predictions fell into two categories, (a) We expected differences in comparing a 

consistently successful learner with one that initially struggled. Specifically, we hypothesized 

that naive speakers would produce more intensely positive prosody in response to a robotic 

learner’s correct choice if it followed a series o f wrong choices, then if it followed a series of 

correct choices, (b) We expected that people would speak less, and with weaker affective 

prosody, as a robotic learner consistently succeeded. We hypothesized that, for a robot that 

made a series o f correct choices, both the amount o f vocalization and the strength o f affect 

in prosody would fall as its successful streak continued.
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2.3 Methods

To investigate these hypotheses, we designed an experiment in which participants were 

asked to help two robot dinosaurs pick the right buildings to demolish as they walked 

through a model city. Unbeknownst to the participant, the dinosaur robots were being 

controlled by a remote operator; this experiment model is called “Wi2ard o f O z” (WOz; 

Dahlback, Jonsson, & Ahrenberg, 1993; Riek, 2012; Steinfeld, Jenkins, & Scassellati, 2009).

2.3.1 Participants

We recruited 27 participants, 9 male and 16 female, 18 years o f age and above, from the Yale 

University and New Haven communities. O ur exclusion criteria were based on English 

proficiency and previous research or coursework experience in artificial intelligence. We 

excluded data from three participants from post-experiment data analysis, due to technical 

failure of the robot or recording devices for two participants, and gross non-compliance of 

protocol by one participant (he deliberately instructed the robot to make mistakes).

2.3.2 Experiment design and procedures

2.3.2.1 Interaction protocol

A testing session lasted approximately 30 minutes. Participants gave informed consent to be 

recorded. The participant was brought into the room containing the two dinosaurs and the 

demolition training course. The participant stood at the edge o f a table and clipped a lapel 

microphone to his/her shirt collar. The two robots, which we introduced as “Fred” and 

“Kevin,” stood in front of the demolition training course, close to and facing the participant. 

The participant was told the following:
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These are our dinosaurs; their names are Kevin and Fred. Kevin is the 
one with the red hat with the “K” on it. Fred is the one wearing a bandanna.
Today they’re going to train to join a demolition crew. They’ll be knocking 
over buildings with their heads. Behind them is the training course that 
they’ll be running today. They’ll go one at a time: Fred will be first and I’ll 
take Kevin and leave the room. When Fred’s done, then it’ll be Kevin’s turn.
(The ordering o f the dinosaurs varied per participant.)

You are going to help them pick the red “X”-marked buildings in the 
training course to demolish. In the training course, you’ll see there are three 
pairs o f colored buildings standing across from one another -  the purple pair 
at the far end, the silver pair in the middle, and the orange pair closest to us.
The robots will do the training course sequentially, starting at the purple 
buildings and walking towards us. For each pair, you’ll see that one is marked 
with an “X.” Kevin and Fred can see the “X”s too. For each pair o f buildings 
it’s important that they knock down the building with the “X” and that they 
don’t knock down the unmarked building.

They already know how to knock down buildings. We want you to help 
them understand that they should only knock down the buildings with the 
red “X”s and all o f the ones with the “X ”s. You’re going to help them by 
talking with them. We encourage you not to make any assumptions about 
how this might work. Just act naturally and do what feels comfortable. Please 
stay in this area [demarcated by caution tape]. The training is complete when 
an orange building falls.

The experimenter then engaged the participant by asking him /her to say hello to the 

robots and explain to them the task, in his/her own words. The robots returned the 

greetings with growls and acknowledged the receipt o f instructions by looking and vocalizing 

at the participant in time with his/her words. The experimenter then solicited questions or 

provided additional clarification for the task from the participant.

Once the participant was comfortable with the task, the experimenter placed one o f the 

robots at the start position, between the first pair o f buildings, facing the participant. The 

experimenter left the room with the other robot. Then the participant guided the first robot 

in training. The first robot gave a “Charge!” vocalization indicating the start o f the trial. The 

robot slowly (over 4 seconds) communicated its intent to topple one building in the first 

pair, by slowly turning its head towards it while vocalizing a slowly increasing growl. If the
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participant did not vocalize negatively towards the robot, it continued to push the building 

over, realizing its communicated intent. Otherwise, the robot discontinued its 

communication of intent-to-knock-down. It then turned its head towards the other building 

in the pair, communicating its intent to knock down it down. After the building fell, the 

robot walked forward to the next pair o f buildings and repeated the sequence for the second 

and third pairs o f buildings. The experimenter returned to the training room when the 

participant verbalized (to the robot) that it had completed the training course, or after a 

period o f time elapsed (approximately 30 seconds) after a building in the final pair collapsed, 

whichever came first.

When the training was complete, the participant was given a few minutes’ break while 

the experimenter reset the demolition training course (set the buildings upright). The 

participant then engaged in a training session with the other dinosaur while the experimenter 

and the first robot waited outside. The second training session proceeded identically to the 

first, except in the robotic learner’s predetermined sequence o f communicated intents. One 

robotic learner, Fred, initially chose the correct building for every pair, whereas the other 

robotic learner, Kevin, communicated intent to topple the wrong building in the first and 

second pairs, and then communicated intent to topple the correct building in its third trial.

Once the second training session was complete, the participant completed a survey.

Then the experimenter debriefed the participant by showing him /her the WOz control 

room, explaining the technology, explaining the purposes o f the study, and answering any 

questions.
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Figure 2.1 A participant talks to one o f two robotic learners, as it completes the demolition 
training course. (Best viewed in color.)

2.3.2.2 Interaction environment

Pleo is an 8-inch tall, 21-inch long dinosaur robot, sold commercially as a toy by UGOBE 

Life Forms (UGOBE Life Forms, 2008). In this experiment, we endowed our robotic 

learners Kevin and Fred with distinct recorded “voices” designed to distinguish them as 

individual social actors (Nass, Steuer, & Tauber, 1994). Although we intended to exactly 

counterbalance the order in which participants interacted with the two robotic learners, Fred 

completed the training course first in 33% of the testing sessions. This imbalance was due to
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Figure 2.2 The overhead view used for Wizard o f Oz control o f the robot’s locomotion. 
North o f this frame, a participant is standing at the end of the table. Pairs o f identically 
painted and sized buildings lined the road, down which the robotic learner walked. Each 
building was placed on the opposite side o f the road from its pair. One building within each 
pair was marked with red “X”s, indicating it should be toppled; the other building was 
unmarked. For each pair, the robot first walked forward until its head was between the two 
buildings. It then communicated its intent to knock down one o f the two buildings, and then 
fulfilled its intent or corrected itself, depending on the human tutor’s communications to it. 
After toppling a building in a pair, the robot walked forward until its head was between the 
next pair. The three pairs o f buildings were separated from each other along the road by 
spaces o f 3 inches. From the robot’s perspective, the “X”-marked buildings were right, right, 
and left buildings, in the successive pairs.

the exclusion o f 3 participants’ data from analysis, as well as an accounting error during data 

collection.

The robot’s “demolition training course” sat on a large table top, 3 feet off the ground, 

comprised o f 8- to 12-inch tall toy, cardboard buildings (shown in Figure 2.2). The buildings
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were arranged in a series o f identical pairs, each straddling a double-yellow-lined “road” (that 

is, a raised, 30-inch-long track along which the robot walked). One building in each pair was 

marked with red “X”s on all sides, indicating that it should be toppled. The distribution of 

marked buildings was controlled to be constant for all participants.

Participants stood about three feet from the nearest point o f the training course 

throughout their entire interactions with Kevin and Fred, to prevent physical manipulation 

o f the robot or training course. Each robot and the training course’s road faced the 

participant, so that as the robot walked through the series o f buildings, it approached the 

participant.

2.3.2.3 Robot control

The WOz design was necessary to ensure a real time interaction between the participant and 

the robot dinosaurs. Autonomous robot control may not have provided a fluid interaction 

because we did not construct narrowly defined expectations o f participants’ interactions with 

the robot. Thus, WOz control allowed us to simulate the application domain. Each robot 

was alone with the participant, so the participant spoke directly to the robot, and not to the 

person operating the robot. The deception entailed by WOz was approved by Yale’s 

Institutional Review Board. None o f the participants guessed, in the survey or debriefing, 

that a human had secretly controlled the robots.

For W Oz supervision, we used an overhead webcam for accurate estimation o f the 

robot’s range to strike buildings (shown in Figure 2.2) and a video camera aimed at the 

participant for viewing facial expression (shown in Figure 2.1). The wizard was also able to 

hear the participant through the clip-on lapel microphone.
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The robot dinosaurs were controlled using infrared (IR) signals. The IR receiver was 

located in the dinosaur’s nose. IR signals were sent from long distance IR beacons through 

an IguanaIR USB-IR transceiver (IguanaWorks, 2008), controlled in Linux using LIRC 

(Linux Infrared Remote Control) software (Bartelmus & Scheibler, 2008).

The wizard controlled the robot dinosaur’s motions and vocalizations using a 

combination o f scripted behaviors, which were mapped to inputs on a USB handheld 

gaming pad. For example, pressing the joystick forward caused the robot dinosaur to walk 

forward, and pressing to the left or right caused the robot to move his head in the respective 

direction. These scripts were created and modified using UG O BE’s software development 

kit and MySkit (DogsBody & Ratchet Software, 2008).

To appear autonomous and life-like, the robot dinosaurs were programmed with idling 

behaviors. Affective vocal and motor responses provided a heightened sense of 

communication. For example, the dinosaur would put his head down and make a sad “oh” 

sound when reprimanded. To ensure responsiveness, the walk and idle behaviors were short. 

Also, the intention script (dinosaur moving head towards a building and roaring) was 

interruptible, in the event that the participant reprimanded or corrected the robot.

2.3.3 Analysis of vocal input

2.3.3.1 Three types of vocalizations

Each participant’s interaction was both video and audio recorded. The resultant audio

recordings were segmented and analyzed. We noted participants’ vocalizations fell into three

cycling phases based on the robot’s progress in each trial. All three phases occurred for each

trial: direction, occurring before the dinosaur picked a building; guidance, occurring while

the dinosaur swung its head to knock over a building; and feedback, occurring after the
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building fell or the dinosaur abandoned his effort. We segmented our audio data along this 

dimension.

For each robot, the first o f the three trials began with the robot placed between the first 

pair o f buildings, where he would indicate his readiness by vocalizing. He would then signal 

his intent, lasting a few seconds. Then, if he was not reprimanded or corrected, he knocked 

over the building he intended to. In this case, the first sentence describes the direction phase, 

the second describes guidance and the last is feedback.

In this manner, phases cycled from direction to guidance to feedback, then back to 

direction. By design (and expectation o f participants’ behaviors) each trial included one or 

two cycles: either the robot arrived between the pair o f buildings, motioned towards the 

correct building, and knocked it down; or after arriving at the pair, the robot motioned 

towards the wrong building (and received reprimand, which we categorized as guidance), 

then replied to the reprimand (we categorized speech produced during this action as 

direction), then motioned towards the correct building (guidance), and knocked it down 

(feedback).

We performed the audio segmentation according to these guidelines and exported them 

to our raters. The segmentation was performed by recognizing the dinosaur sounds we heard 

on the recording that uniquely identified the phases of each trial. The only phases for which 

that rule did not apply were between trials: separating the last phase o f one trial (feedback) 

and the first o f the next trial (direction). We waited for a two-second pause in our 

participants’ vocalizations, and if there was none, we divided based on the transcription of 

the words used such that once they stopped using disparaging words (e.g. “no,” “stop”), that 

moment divided the trials.
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2.3.3.2 Annotating affect

For each audio clip which was segmented by phase, we analyzed word counts, prosody 

ratings, prosodic intensity ratings, and post-experiment survey responses. Our raters were 

not informed o f the content o f the audio nor the experimental design. We randomized our 

audio files split by phase (average length approximately 20 seconds) and asked two raters 

separately to rate each audio clip’s prosodic affect as either positive, negative, or neither. 

Positively affective prosody was described to the raters as sounding “encouraging,” 

“approving,” or “pleasant,” whereas negative affect was described sounding “discouraging,” 

“prohibiting,” or “disappointing.” We also asked the raters to rate the intensity o f the affect 

on a differential semantic scale (Osgood, Suci, & Tannenbaum, 1967) from 0 (neutral or no 

affect) to 2 (very strong affect), and their respective confidences for each judgment on a 

differential semantic scale from 0 (not sure) to 2 (quite sure). Word count was also extracted 

from the audio clips.

The ratings o f two naive raters o f affective prosody (prosody ratings and prosody 

intensity ratings) showed high agreement (K= 0.84 using Cohen’s quadratically-weighted 

(1968), normalized test).

2.4 Results

Most phase durations were short and contained few words (M = 7.71 words/phase or 1.26 

words/sec; SD -  8.43 words/phase or 1.36 words/sec).
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2.4.1 Instructors vocalize before, during, and after a learner’s actions 
(Figure 2.3)

We hypothesized that participants would provide affective guidance and feedback 

(Hypothesis 1). We found that participants provided an almost equal number o f words while 

a learner performed an action (guidance) and after the action was completed (feedback). In 

addition, we found that participants provided a similar number o f words well before the 

learner communicated any intent to act (direction). (See box-and-whisker plots in Figure 

2.3.) Over all phases, the frequency o f words spoken was on average 1.26 words/sec, with a 

standard deviation o f 1.36 words/sec.

2.4.2 Instructors express affect during and after a learner’s actions 
(Figure 2.4)

We hypothesized that naive instructors would use affective prosody when speaking to a 

robot (Hypothesis 2). Although we did not specifically instruct participants to use affectively 

expressive prosody, they vocalized with intensely affective prosody during guidance 

(affective intensity, M  = 1.28, SD  = 0.93) and feedback (M — 1.89, SD = 0.78; see Figure 

2.4). Participants showed no positive or negative affect during direction (affective intensity 

M  = 0.47, SD — 0.68). One-way ANOVAs and affective intensity were both significant (p < 

0.001 for both ANOVA tests, F(2) = 58.2,19.2).

2.4.3 Instructors say less as a learner continually succeeds (Figure 2.5)

During all phases o f interaction with Fred, the robot who consistently moved to topple only

correct buildings, participants spoke less from one trial to the next {p -  0.002, linear

regression, see Figure 2.5). Speech rate dropped during the guidance (p = 0.018) and

feedback instruction phases (p = 0.038), but not the direction phase (p > 0.1).
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D istributions o f V ocalization

Direction

Guidance

Feedback

Figure 2.3 Rates o f speech (number o f words/sec) are similar across all three instruction 
phases.3 We verified that these trends could not be explained by the order in which 
participants interacted with the two robotic learners. In a two-way ANOVA (trial number x 
learner-order), we found a highly significant main effect for trial number (p = 0.0018, F(l) = 
10) and for leamer-order (p -  0.0004, F(l) = 13), but no effect of interaction (p -  0.38, F(l) 
= 0.7). A similar test for Kevin (the learner who in three trials selected wrong, wrong, and 
finally

0 1 2 3 4 5

Words /  Second

3 Box-and-whisker plots provide a snapshot o f  a distribution: the bold line marks the median; the left and right 
edges o f  the box mark the medians o f  the lesser and greater halves o f  the distribution, and also define the 
lower and upper bounds o f  the second and third quartiles, respectively; the least and greatest whisker ends 
(bars) denote the minimum and maximum values in the distribution.
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Distributions of Prosodic Intensity

Direction -

Guidance -

Feedback -

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Prosodic Intensity Rating
Figure 2.4 The distributions o f the intensity o f the affective prosody during each phase 
demonstrate that people use prosodic reinforcement as feedback on an ongoing or 
previously finished behavior. Affective prosody intensity ratings ranged from 0 (neutral or 
no affect) to 3 (intense affect).

correct buildings) showed no trend o f decreasing w ord/sec over trials (p = 0.57, F(l) = 

0.38).

2.4.4 Instructors say more after a new breakthrough (Figure 2.6)

We compared direction, guidance, and feedback phases during the third trial for Kevin 

against those for Fred. Recall that in the first two trials, Kevin initially communicated intent
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G uidance V ocalization on th e  Third Trial

Kevin

Fred

0.0 0.5 1.0 1.5 2.0 2.5

Words /  Second

Figure 2.5 Distributions o f the number of words spoken per second during the third trial’s 
guidance phase. One robotic learner (Fred) consistently communicated intent to topple only 
correct buildings, while the other (Kevin) at communicated intent to topple the wrong 
buildings in its first two trials. In the third trial, shown here, both robotic learners selected 
the correct building, representing consistently correct behavior in the case o f one robot (top, 
Fred), and an indication o f improvement, or progress in learning, in the second robot 
(bottom, Kevin). During the guidance period (during which the robot communicates its 
building selection but has not yet toppled it) in the third trial, the improving robot (bottom, 
Kevin) received more utterances than the consistendy correct robot (top, Fred), with 
marginal significance {p — 0.051).
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to topple the wrong buildings, while Fred only communicated intent to topple correct 

buildings in the first two trials. In the third trial, both Kevin and Fred initially communicated 

intent to topple the correct building.

We hypothesized that prosody would be more intensely positive in response to Kevin’s 

than to Fred’s third trial intent (Hypothesis 3), since this would showcase the participants’ 

relative excitement at Kevin’s improvement. Considering only guidance and feedback phase 

audio clips, we found that participants voiced marginally significantly more words/sec to 

Kevin than to Fred (p = 0.089, F(l) = 3). We found neither a main effect o f learner-order 

nor an interaction between learning condition with learner-order. Figure 2.6 shows the trend 

for participants to give more guidance and feedback to Kevin than to Fred. We found no 

such difference for affect or affective intensity ratings.

2.5 D iscussion

This study provided the first large group-based evidence that untrained, typically developing 

adults will spontaneously direct affectively expressive prosody to a robot. We hypothesized 

that participants would provide affective guidance while a learner was carrying out trial 

actions, as well as feedback after actions were completed (Hypothesis 1). We found that in 

addition to providing guidance and feedback, participants provided direction— verbal 

instructions spoken before the learner communicated any intent to act— and that 

participants spoke an almost equal amount throughout all three phases (i.e., direction, 

guidance, and feedback) of the learning trials (see Section 2.4.1).
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Distributions of Vocalization to Fred

Trial # 1

Trial # 2  -

Trial # 3  -

0 1 2  3 4

Words /  Second

Figure 2.6 These are the distributions o f the number o f words spoken per second during the 
third trial’s guidance phase. In the first two trials, Fred has consistendy intended to topple 
only correct buildings, while Kevin has intended to topple the wrong buildings. In this third 
trial, both dinosaurs initially intend to knock down the correct building. In guidance during 
intent in the third trial, Kevin receives more utterances than Fred, with marginal significance 
ip — 0.051).We also hypothesized that naive people would use affective prosody when 
speaking to a robot (Hypothesis 2). Participants used affectively expressive prosody during 
guidance (while the robot expressed its intent) and feedback (after the robot had completed 
an action) phases o f learning trials but not during direction (before the robot had indicated 
its selection). These distinct amounts of affect intensity are consistent with the intuition that 
positive and negative affect are used to provide reinforcement as guidance for an ongoing 
behavior; or as feedback for a finished action; whereas reinforcement is not given during 
direction, before a behavior begins.
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Participants spoke less, from one trial to the next, for the learner who always made 

correct selections. This was not true for the improving learner, which initially made two 

incorrect selections, before finally making a correct selection. This was true, regardless o f the 

order in which they interacted with the two learners. This indicates that a human teacher’s 

spoken inputs to a learner should not be modeled as independent from one trial to the next, 

that teachers’ inputs depends on the learner’s performance history.

Finally, we had hypothesized that prosody would be more intensely positive in response 

to the initially-incorrect learner’s final, correct selection, than to the always-correct learner’s 

final correct selection. Considering only utterances produced during guidance and feedback 

phase, because the direction phase precedes the robot’s selection, we found that participants 

voiced marginally significantly more words/sec to the initially-wrong-but-finally-correct 

robot than to the always-correct robot’s last selection.

2.5.1 Implications on machine learning

O ur results suggest that spoken inputs on learning trials should not be modeled as path- 

independent, but rather spoken reward signals depend on the history o f intentions shown by 

the learner, even if the learner’s ultimate performance (or path) is identical (all the same 

buildings were knocked down by both learners; the difference is that the struggling learner 

twice initially indicated incorrect selections, before being corrected and ultimately 

demolishing correct targets). This finding contradicts an assumption required by classical 

reinforcement learning models, that rewards can be considered independent. Algorithms 

using human social inputs as rewards should take into account the rewards’ dependence on 

the learner’s history o f communicated intent, or history o f dependence on guidance, not only 

the learner’s history o f performance.
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Specifically, we found that human teachers tailor their feedback to account for the 

history o f the learner’s performance. In terms o f a machine learning model, we view the 

affective vocalization reward signal as neither stationary nor path-independent, two 

assumptions made by standard algorithms. We found this to be true in two ways. First, the 

robotic learner that performs the correct action in a third trial will receive significandy more 

guidance and feedback if it previously made wrong choices then if it has been consistendy 

correct. This shows that human feedback to a robotic learner is not path-independent. 

Second, for a learner who is consistendy successful, guidance and feedback wane.

We suggest to HRI researchers interested in implementing machine learning from 

human vocalization that they model human reinforcement signals as dependent on the 

progress o f the learner. Furthermore, we suggest that machine learning from human teaching 

should make use o f currendy neglected vocalizations giving direction to the robot before it 

acts as well as guidance to the robot as it indicates its intent to act. Direction has 

traditionally been ignored, and guidance has only recendy been explored in machine learning 

from human input (e.g., Thomaz & Breazeal, 2006a).

O ur findings bear on the application o f reinforcement learning algorithms to human- 

robot and human-computer interactions. First, our results suggest that applications based on 

classical reinforcement learning algorithms (which utilize only feedback arriving after actions 

are completed) should be extended to take advantage o f non-reward inputs arriving before 

learning-task-specific actions are taken. Such flexibility has been demonstrated in the form o f 

guided action selection, utilizing naive people’s guidance input to a learner which 

communicates its consideration o f action options (Thomaz & Breazeal, 2006a). Further, our 

results suggest that assumptions o f path- and history-independence in Markov-decision-
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process-based reinforcement learning algorithms are violated in the contest of rewards 

supplied by human affective expressions. We suggest that reinforcement learning techniques 

should be adapted or that human-interactive learning tasks should be modeled differently 

than they historically have been, in order to account for human instructors’ adaptations to 

their sense o f the learner’s progress or mastery.

2.5.2 Implications on autism research

This study established the feasibility o f eliciting affectively expressive speech from typically

developing adults, encouraging us to try developing speech-based human-robot interactions

for children with ASD. Further, our examination o f variations in amount o f speech and

intensity o f prosody, depending on the phase o f instruction within each trial, and depending

on the history o f the learner’s communicated intentions, give us insight into how to design

machine learning systems that use human input, but also reveal the kinds o f robotic

behaviors which might better elicit affectively intense prosody or more speech, from

typically developing adults and potentially from individuals with ASD. Specifically, we

observed that a learning robot that makes mistakes is likely to receive more intensely

affective prosodic feedback from typically developing adults; and so we can seek to elicit

more intensely affective prosodic feedback from individuals with ASD under similar

circumstances. The project o f improving a robot’s ability to learn from human input may

also eventually improve human-robot interactions with individuals with ASD, by allowing us

to make robots more adaptive to spoken feedback. Although studies o f long-term

relationships between robots and humans are limited, evidence suggests that any human-

robot relationships, as we might intuit any relationships, will fail if either party fails to

remember and adapt to shared knowledge and experiences (Kozima et al., 2009). Finally, this
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study provides us with a sample o f affectively expressive prosody, from which we may be 

able to train automatic systems to recognize and classify affect.

2.5.3 Limitations

Manual robot control, such as Wizard o f Oz presents a potential weakness in experimental 

validity: if the robot controller is not blind to the hypotheses, she or he may influence the 

robot’s behaviors to disadvantage the null hypothesis. In this case, the wizard could 

introduce bias by, for instance, making the robot behave with greater uncertainty, or respond 

to instructors’ vocalizations more frequently or emphatically before the buildings collapsed, 

in order to elicit more vocalizations during these Direction and Guidance phases of 

interaction. Better experimental control would be achieved by blinding the robot controller 

to our hypotheses. However, due to limited resources, we chose instead to operate the robot 

ourselves, though we had designed the experiment. To some extent we ask our readers to 

trust that we remained faithful to our experimental protocol, which strictly states when the 

robot should respond and with which behaviors. However, an additional validation step can 

be taken: a rater, who is blind to the hypotheses, can measure the fidelity robot’s behavioral 

fidelity to the experimental protocol. We did not perform these measurements in this or the 

other experiments described in this dissertation. This is a limitation to the validity of all the 

Wizard-of-Oz-controlled interactions described in this dissertation (see also Chapter 3 and 

Chapter 4). However, we can make video recordings o f all of our data samples available to 

such validation, and we may undertake such fidelity measures ourselves at a later date.
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2.6 Conclusions

We designed and conducted an experiment in which naive teachers helped a dinosaur robot 

learn to topple marked buildings in a demolition training course. Our goal was to investigate 

how people intuitively talk without explicit instruction when teaching robots. We found that 

naive vocalizations during human-teacher/robot-leamer interaction appear to segment into 

three distinct phases, providing different kinds o f input to the learner. These three phases 

are direction (before the learner acts), guidance (as the learner indicates intent) and feedback 

(after the learner completes a task-action). We observed that naive human teachers vocalize 

readily throughout all three phases. O ur experiment showed that people are affectively 

expressive as they direct the robotic learner well before it approaches the learning task, as the 

learner communicates its intention to act (effectively querying the teacher), and in giving 

feedback for actions the learner has taken. Thus, we have affirmed an intuition held by 

human-robot interaction (HRI) researchers that naive speakers do spontaneously use 

strongly positive and negative affective prosody when talking to a robot. We have also found 

that some human teaching behaviors do not fit well within classical machine learning models 

o f interactive learning. Finally, our results are consistent with previous observations of 

human teachers’ behaviors toward fellow-human learners, showing a correlation between 

children’s improving language skills and declines in feedback from their parents (Chouinard 

& Clark, 2003). As they do for infant learners, our findings suggest that people modify 

feedback for a robotic learner, depending on the learner’s progress. This may suggest that 

typical adults will teach a robotic learner similarly to the ways they would teach a human 

learner. This also supports an interesting line of inquiry: in what other ways will people
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afford social expectations and behaviors toward a robot similar to those they would afford to 

another person?
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Chapter 3

Social robots as embedded 
reinforcers of social behavior in 
children with autism

In the previous chapter, our study o f a group of adults with TD  had established that they 

spontaneously used affectively expressive prosody when speaking to teach a robot. This 

encouraged us to extend our test o f social acceptability to children with ASD. In addition, 

we compared social behavior while interacting with the robot against that while interacting 

with another person and with another attractive device, a touchscreen computer game.

In this chapter we present a study o f 4- to 12-year-old children with autism spectrum 

disorders (ASD; N=24) during triadic interactions with an adult confederate and an 

interaction partner, varying in randomized order, among (1) another adult human, (2) a 

touchscreen computer game, and (3) a social dinosaur robot (E. S. Kim et al., 2013). 

Children spoke more in general, and directed more speech to the adult confederate, when 

the interaction partner was a robot, as compared to a human or computer game interaction 

partner (E. S. Kim et al., 2013). Children spoke as much to the robot as to the adult 

interaction partner.
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This study provides the largest demonstration o f social human-robot interaction in 

children with ASD to date. We find that o f the three interaction partners tested, the robot 

best motivates or facilitates interaction with another person— not just social interaction with 

objects. This is strong evidence that robots may be developed into useful tools for social 

skills and communication therapies, specifically by embedding social interaction into intrinsic 

reinforcers and motivators. This study also indicates, importandy, that the appeal of a 

technology cannot alone mediate or elicit social behavior in children with ASD; rather, 

sociality must be entwined with interaction with the technology.

3.1 Methods

We designed a randomized, controlled, crossover experiment to compare the effects of 

interactions with a social dinosaur robot (Figure 3.1) against the effects of interactions with a 

human or an asocial novel technology (a touchscreen computer game). Each participant in 

our study completed a sequence o f three 6-minute interactional conditions, in random order: one 

in which the interaction partner was a dinosaur robot, another in which the partner was an 

adult, and a third in which the partner was a touchscreen computer game. All interactional 

conditions were guided and facilitated by a human confederate (different from the adult 

interaction partner) and took place in a standard clinical observation room.
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Figure 3.1. The socially expressive robot Pleo. In the robot condition, participants interacted 
with Pleo, a small, commercially produced, toy dinosaur robot. Pleo is about 21 inches long,
5 inches wide, and 8 inches high, and was designed to express emotions and attention, using 
body movement and vocalizations that are easily recognizable by people, somewhat like a pet 
dog. For this study we customized Pleo’s movements, synchronized with pseudo-verbal 
vocalizations, to express interest, disinterest, happiness, disappointment, agreement, and 
disagreement.

Before the first, after the final, and between interactional conditions, each participant 

also completed 6-minute, semi-structured interview-and-play sessions, which we will also refer to 

as interviews. Interview-and-play sessions gave participants rest from the more structured 

interactional conditions. They were conducted in another clinical observation room, 

different from the room where interactional conditions were administered. The interactional 

conditions and interspersed interviews are described in greater detail below (see Section 3.2).

We expected that children with ASD would find (1) the robot interactional condition

social and engaging; (2) the human adult interactional condition social but less engaging; and

(3) the computer game interactional condition engaging but not social. Thus we

hypothesized that children with ASD would verbalize more while interacting with a social

robot than while interacting with either a human adult or a computer game. Given evidence,

from case studies (Kozima et al., 2009) and from our own pilot studies, that interaction with
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a social robot motivates high levels o f curiosity and increases social behaviors such as 

sharing and excitement with an adult, we also hypothesized that children would direct more 

speech toward an adult confederate when the interaction partner was a robot rather than 

when the partner was another adult or a computer game. These hypotheses were intended to 

support our ultimate goal— to understand the utility o f social robots as reinforcers o f social 

interaction with people (as opposed to robots).

3.1.1 Participants

Participants were recruited from two ongoing studies at a university-based clinic specializing 

in assessment, intervention, and educational planning for children with ASD. These included 

a multi-site comprehensive study o f families in which one child is affected by autism, and a 

longitudinal study o f language development in children with ASD. Inclusion criteria 

included a chronological age o f 4- to 12-years and a previous diagnosis o f high-functioning 

ASD (defined as full-scale IQ > =  70 and verbal fluency with utterance production o f at least 

3 words).

O f the 30 initial volunteers for the study, two were excluded from participation due to 

below-threshold IQ  measurement. O f the remaining 28 participants, four were excluded 

from analysis: one participant withdrew before completing the procedure; one was excluded 

for failing to meet ADOS criteria for ASD; and two were excluded due to technical 

recording problems that precluded speech annotation.

In the 24 participants that ultimately constituted our analytical sample, ages ranged from

4.6 to 12.8 years (M  = 9.4, SD  = 2.4). IQ  eligibility was confirmed within one day of

participation in this study using the Differential Abilities Scale (DAS-II: M  -  94.2, SD =

11.7, Min = 72, Max =119; Elliott, 2007). Similarly, within one day o f participation in this
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study, all participants completed the Autism Diagnostic Observation Schedule— Module 3 

(ADOS— Module 3; Lord et a l, 2000a) with an experienced clinician and diagnosis was 

confirmed by a team of clinical experts. Twenty participants met ADOS criteria for autism, 

and four for autism spectrum disorder. O f the 24 participants for whom analysis is presented 

in this article, three were female.4 Twenty participants were white (and not o f Hispanic 

origin), two were black (and not o f Hispanic origin), and two were Hispanic or Latino.

3.1.2 Materials

3.1.2.1 Video recording

All interactional conditions and interviews were recorded using Mini-DV video cameras on 

stationary tripods from distances o f six feet and four feet from participants in the 

interactional conditions and interviews, respectively.

3.1.2.2 Robot, robot behavior, and robot control

The Pleo robot was used in the robot interactional condition because previous investigations 

have shown that healthy adults (E. S. Kim et al., 2009) as well as children with autism (pilot 

studies) readily engage socially with this robot. Pleo (Figure 3.1) is an affectively expressive, 

toy dinosaur robot, recommended for use by children three years and older. It was formerly 

commercially produced and sold by UGOBE LifeForms; a larger, different model is now 

produced and sold by Innvo Labs (Innvo Labs, 2012). Pleo measures approximately 21 

inches long, 5 inches wide, and 8 inches high. It is untethered, battery-powered, and has 15 

degrees o f mechanical freedom. We extended UGOBE software to render Pleo controllable 

by a handheld television remote control, which communicates with Pleo via a built-in infra-

4 This gender ratio is roughly consistent with reported gender ratios o f  prevalence o f  A SD  in the United States, 
o f  between 4- and 5-to-l (CDC, 2012).
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red receiver on the robot’s snout, allowing us to instantaneously play any one o f 13 custom, 

pre-recorded, synchronized motor and sound scripts on the robot. Pleo plays sounds 

through a loudspeaker embedded in its mouth.

We pre-programmed Pleo with 10 socially expressive behaviors, including a greeting, six 

affective expressions, and three directional (left, right, center) expressions o f interest (to be 

directed towards nearby objects). All socially expressive behaviors were made up o f motor 

movements synchronized with non-speech vocal recordings. We also pre-programmed three 

non-social behaviors: a bite (for holding blocks), a drop from the mouth (for letting go of 

blocks), and a forward walking behavior used when the robot interactional condition called 

for Pleo to interact with an object that was beyond its reach. Each o f these 13 triggered 

behaviors each endured for less than 2 seconds, and were initiated with the push o f Pleo’s 

remote control.

When not executing one o f the 13 triggered behaviors, Pleo continuously performed a 

background behavior' designed to maintain the appearance o f its animacy. In the background 

behavior, Pleo periodically shifted its hips, bent and straightened its legs, and slighdy nodded 

its head up and down, or left and right. Robot behaviors, and their carefully matched adult 

counterparts, are detailed in Table 3-1.

We used hidden, Wizard-of-Oz-style, real-time, human remote control o f the robot, a 

popular design paradigm in human-robot interaction research (Dahlback et al., 1993; Riek, 

2012; Steinfeld et al., 2009), in order to elicit each participant’s belief that Pleo was behaving 

and responding autonomously. In truth the adult interaction partner, who remained present 

for all interactional conditions, secretly operated the robot using a television remote control, 

hidden underneath a clipboard. The Wizard o f Oz paradigm affords a robot with the

69



Table 3-1 Pleo’s pre-programmed behaviors. Ten behaviors were socially expressive, 
including a greeting, six affective expressions, and three directional (left, right, and straight 
ahead) expressions o f attention, and were carefully matched with vague verbalizations in the 
adult interaction partner. In addition to the ten social behaviors, Pleo had three non-social 
behaviors (walk, bite, drop), and a “background” behavior to express animacy (i.e., that Pleo 
takes note o f its environment and experiences feelings of boredom or interest). All behaviors 
were carefully designed to be expressed multi-modally, through vocal prosody, and body and 
head movement.

Social intent 
expressed , 

o r non-social 
activity

Robot Adult
Movements P seudo

verbal
vocalization

Movements Vaguely verbal 
vocalization

Greeting and 
satisfaction

Tail w ags, head raises. “Heee!" Sm iles and looks at 
participant.

An enthusiastic “Hi, 
p a r tic ip a n t’s name>!”

Selection of or 
interest in an 
object (in one 
of directions 

for robot)

Head lowers toward left, 
right, or center.

A prolonged, 
enthusiastic 

“Ooh!”

Looks in direction of 
object, points from afar.

“Oooh!” or “That one.”

Yes Head nods up and down. “Mm hmm!” Looks at participant, 
nods.

“Mm hmm!” or “Yes!”

Enthusiastic
Affirmative

Head raises, tail w ags 
briefly, hips wiggle briefly.

“W oohoo!” Lifts head  slightly or 
sits m oderately upright 
and sm iles moderately 

at participant.

A slightly m oderated 
“Nice!” or “All right!”

Elation A dance: head s raises 
and m oves left and right, 
hips wiggle, knees bend 

and straighten.

An extended 
victory song.

Sits upright 
energetically, smiles 
widely at participant, 
claps hands or puts 

hands in air.

An extended and 
exaggerated 
“Woohoo!" or 

"Awesome!” or 
“Fantastic!”

No Head sh ak es side-to-side. “Unh unh.” S hakes head back and 
forth and frowns 

slightly.

“Unh unh” or “No.”

Dissatisfaction H ead and tail lower, 
mouth opens.

“Ehhh.” Frowns m oderately, 
looks slightly 

downward, and hangs 
head slightly.

“Ehhh.”

Intense
Disappointment

Head and tall lowers, 
head sh ak es slowly from 

side to side.

A prolonged 
audible sigh, 
followed by a 

whimper.

Slum ps in chair or puts 
chin in hands, hangs 

head, looks downward.

An audible sigh, 
followed by an 

extended, exaggerated  
“Awwww,” or “Oh 

m aan .”
Bite Head raises, mouth 

opens for several 
seconds, then closes.

“A aaaahhhh...ch
omp."

Drop from 
mouth

Head lowers, mouth 
opens widely.

<silence>.

Walk Pleo takes four very short 
(0.5-inch) s tep s forward.

“Hup, hup, hup. 
Hup!”

Background
Animacy

Head occasionally m oves 
up and down, and left and 

right; hips wiggle 
occasionally; knees bend 

and straighten 
occasionally.

<silence>.
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appearance o f autonomous perception and behavior, with an accuracy and flexibility that 

currently only humans can produce. Under Wizard o f Oz control, the Pleo robot has been 

shown to successfully impart an appearance o f autonomous social interaction, both to adults 

with typical development (E. S. Kim et al., 2009) and to school-aged children with ASD 

(pilot testing).5

The adult interaction partner was present for all three interactional conditions. In order 

to obscure the adult interaction partner’s manual control o f the robot, the confederate 

explained to participants that the adult partner would remain present for the robot 

condition, for the purpose o f observing the robot’s behavior. To maintain consistency with 

the robot condition, the confederate explained that the adult partner would remain present 

during the computer game, as well, for the purpose o f ensuring that the computer worked. 

Throughout the robot and computer game conditions, the adult partner stood apart from 

the participant, confederate, and interaction partner, pretending to read papers on a 

clipboard and remaining silent unless addressed by the participant (see Figure 3.2). In the 

robot condition, the adult partner hid the robot’s television remote control beneath the 

clipboard.

It is important to note that most children, including those with typical development, 

largely or entirely ignored the adult interaction partner during the robot and computer game 

conditions. Only one participant voiced suspicion that the adult controlled the robot, and 

subsequently discovered the television remote beneath the clipboard at the end o f the robot

5 Please see our discussion (Section 2.5.3) o f  challenges to experimental control introduced by our use o f  
manual robot control by Wizard o f  O z paradigm.
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Figure 3.2 Three interactional conditions: adult (top), robot (middle) and touchscreen 
computer game (bottom). The confederate sits to the participant’s right.

interactional condition. We included this participant in analysis nonetheless, because his 

discovery was made too late to affect his behavior while interacting with the robot.



3.2 Procedures

3.2.1 Adult and robot interactional conditions

The adult, robot, and computer game interactional conditions were semi-structured and were 

completed by all participants in randomized orders. Interactional conditions took place on a 

3-foot square table, with the participant and confederate sitting at adjacent sides. During the 

adult condition, the adult interaction partner sat to the other side o f the participant, opposite 

the confederate. For the robot and computer game conditions, the adult’s chair was left 

empty, and the adult stood several feet away from the table with clipboard in hand.

The adult and robot interactional conditions were designed to elicit social interaction, 

and were semi-structured closely in parallel to each other. The touchscreen computer game 

interaction was not designed to elicit social interaction, and thus did not match the 

interactional structure o f the adult and robot conditions. In all three conditions, children 

manipulated blocks: multi-colored, magnetically linking tiles in the robot condition; multi

colored, interlocking blocks in the adult condition; and tangrams, which the participant 

could move and turn by dragging or tapping the touchscreen with his finger (or a stylus, if 

preferred) in the computer game condition.

The adult and robot interactions were designed to elicit a host o f social perception, 

reasoning, and interactive behaviors from participants. These included taking turns with the 

interaction partner; identifying the interaction partner’s emotions or expressions of 

preference for one particular block or another; and shared, imaginative, and tactile play. The 

confederate’s role was to guide the participant through an ordered, standard set o f activities 

and cognitive probes, by subtly directing the adult or robot partner when to deliver pre

scripted cues or affirmations, and by asking increasingly restrictive questions of the
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participant. In the robot and adult interactional conditions, one o f each o f the following 

probes and activities were completed, in order:

(1 -  Probe) The participant presents blocks to the robot or adult interaction partner, and 

then is asked to identify whether the partner likes or dislikes their colors.

(2 -  Activity) The participant assembles the blocks into a structure of his or her own 

choosing. The participant and partner take turns selecting each next block to add to the 

structure.

(3 -  Probe) During their turns, the adult and robot interaction partners do not 

manipulate their chosen block directly. Instead, to indicate choice, the adult vaguely points at 

a block, saying, “That one;” while the robot turns its head to look at a block, saying,

“Oooh!” to choose a block. The participant is asked to identify which block the adult or 

robot has chosen, and then adds the block to the structure.

(4 -  Probe) When the structure was completed, the adult or robot interaction partner 

expressed elation pseudo-verbally (“Woohoo!”) and bodily (clapping hands or wagging tail, 

respectively), as further described in Table 3-1. The participant was asked to identify the 

partner’s emotional state. Next, the confederate removed the blocks from the table, and the 

adult or robot interaction partner expressed disappointment (as described in Table 3-1). The 

participant was again asked to identify the partner’s emotional state.

(5 -  Activity) Pet the robot freely, or invent a secret handshake with the adult partner. In 

the robot condition, petting was included to give participants an opportunity explore the 

robot, while in the adult condition the secret handshake game was included to match the 

robot condition’s tactile, interactive, and inventive petting activity. In the secret handshake 

game, participants were instructed to tap or shake the adult partner’s hand in any way they
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chose. The adult partner then presented his or her right hand as though to shake hands until 

the participant made contact, after which he or she exclaimed in delight, and then presented 

his or her hand open-palmed as if to give a high-five and again expressed delight when the 

participant made contact a second time. With the robot, participants were offered a chance 

to guess the robot’s favorite spot to be petted. The robot exclaimed in delight after first 

contact, and participants were then told that the robot had another favorite spot. After being 

petted a second time, the robot expressed elation (happy dance).

Items 1, 3, and 4, above, probed participants’ perception and understanding o f the robot 

and adult interaction partners’ expressions of affect and preference. Each probe was 

delivered through a series of increasingly restrictive cues or presses. First the interaction 

partner would express an emotion or preference (e.g., lowering the head and sighing with 

prosody expressing disappointment), after which the partner and confederate waited silently 

for two seconds, giving the participant an opportunity to respond or comment 

spontaneously. Some participants immediately comforted the robot or adult interaction 

partner, while others did not respond to the emotional or preferential expression. If 

participants responded appropriately, the confederate guided the interactional condition to 

the next activity or probe. Otherwise, the confederate delivered a press, asking the child to 

interpret the behavior (e.g., “Why do you think Pleo/Taylor said that? How do you think he 

feels?”). If the participant did not appropriately respond to the confederate’s first press, the 

confederate delivered a second, more restrictive press, offering optional interpretations (e.g., 

“Do you think he’s happy? Do you think he’s sad?”). If the participant still did not respond 

appropriately, the confederate resolved the probe, stating the correct interpretation (e.g., “He 

seems sad.”). Finally, in response to the participant’s or confederate’s identification o f the
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interaction partner’s emotional or preferential intent, the partner would affirm the correct 

interpretation by nodding and saying, “Mm hmm!”

The robot and the adult stimuli’s social expressions were conveyed using body language, 

pseudo-verbal or verbal (respectively), and vocal prosodic indications. The adult interaction 

partner was careful not to explicitly declare his or her communicative intent; for instance, 

rather than saying, “I feel disappointed,” she or he would sigh and say, “Oh, man.” (See 

Table 3-1).

3.2.2 Computer game interactional condition

At the time o f this study’s data collection (Spring through Fall 2010), touchscreen

technology was relatively novel, only having recently emerged in consumer products. For

instance, the first Apple iPad touchscreen computer was released in April 2010, and by

November 2010, there only were an estimated 15.4 million iPhones (all touch-enabled) in

use in the United States, out o f a total o f at least 234 million mobile phones in the U.S.

(Dediu, 2011). We structured the computer game condition stimulus to involve little social

interaction, in order to evaluate our hypothesis that despite its relatively novel, sophisticated

technology intended to match the novelty and sophistication o f Pleo’s technology,

participants would be more socially engaged due to interaction with Pleo than with the

touchscreen computer game.

In the computer game condition, the confederate explained the goal o f the tangrams

game, and showed the participant how to manipulate the tangram objects using his finger, or

the touchscreen’s stylus if the participant requested, and then stopped initiating interaction,

allowing the child to play the game at his or her own initiation and pace. If  the participant

asked for assistance, the confederate responded verbally or with minimal demonstration to
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answer the participant’s question. Also, even if the participant did not ask for help but 

apparently struggled to understand the puzzle, to strategize about a particularly challenging 

portion o f the puzzle, or to manipulate a tile, then the confederate verbally offered 

assistance. All children were presented with the same three puzzles, in consistent order of 

increasing difficulty, but were allowed to select alternate puzzles if they requested.

3.2.3 Interview-and-play sessions

We interleaved a total o f four interviews before, after, and between the interactional 

conditions, beginning with an interview preceding the first interactional condition. Each 

participant interacted with a single experimenter, who was different from the adult 

interaction partner and the confederate, for all four interviews. Interviews maintained 

consistent, loose structure, and concluded with imaginative play with miniature wooden dolls 

or with stuffed animal toys, and allowed participants rest from interactional conditions.

3.2.4 Dependent variables

We counted the number o f utterances participants produced during the interactional 

conditions, and judged to whom each utterance appeared to be directed. Number of 

utterances has been shown to be a useful metric in tracking the effects o f social and 

communicative therapies (R. L. Koegel, O ’Dell, & L. K. Koegel, 1987; Maione & Mirenda, 

2006). An utterance was defined as a verbal production that either expresses a complete 

proposition (subject + predicate) or is followed by more than 2 seconds o f silence. 

Utterances were transcribed from video recordings by me, and then were confirmed by an 

independent rater. Following transcription we judged the intended audience or recipient of 

each utterance to be the confederate, the adult partner, the robot, the computer game, some



combination o f the previous, the participant him- or herself, or indeterminable. Judgments 

o f all utterances’ recipients were confirmed by an independent rater (agreement was 96%, K  

=  0.88, / )  <  0.0001).

3.3 Results

3.3.1 More speech while interacting with robot (Figure 3.3)

A repeated-measures two-factor ANOVA (interactional condition x order) revealed a main 

effect o f interactional condition (robot, adult, or touchscreen computer game) on the total 

number o f utterances produced by each participant within each interaction condition, F  (1.9, 

33.4) = 8.13,/> < .001, but no main effect o f order of presentation o f interactional 

conditions, F  (5,18) = 0.46, and no interaction effect between interactional condition and 

order, F  (9.3, 33.4) = 1.12.

One-tailed paired t-tests showed that participants produced more utterances during the 

robot (M  = 43.0, SD  = 19.4) than the adult condition (M = 36.8, SD  = 19.2), /  (23) = 1.97,/) 

< .05), and more in either the robot (t (23) = 4.47,/) < .001) or adult conditions (/ (23) = 

3.61,/> < .001) than in the touchscreen computer game condition (M = 25.2, SD  = 13.4).

3.3.2 More speech directed toward the confederate, when interacting 
with the robot (Figure 3.4)

The number o f utterances directed toward the confederate varied with interactional 

condition, F  (1.8, 33.0) = 3.46,/) < .05. There was no main effect of order (F (5, 18) = 0.48), 

or o f interaction between interactional condition and order (F (9.2, 33.0) = 0.967).
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* * *

45  -

Adult Robot Computer 

Interactional condition

Figure 3.3 Bars show means, over distributions of 24 children with ASD, o f total number of 
utterances produced in the adult (left), robot (center), and computer game (right) conditions. 
Error bars are ±1 SE. */><.05; **/)<.01; ***/)<.001.

Children with ASD directed a higher number o f utterances to the confederate in the 

robot (M = 29.5, SD  = 16.6) than in the adult condition (M — 25.5, SD  — 15.5), (/ (23) — 

1.87,/) < 0.05) and more in both the robot (t (23) = 3.05,/) < .01) and adult (/ (23) = 2.15,/) 

< .01) conditions than in the touchscreen computer game condition (M — 20.5, SD — 10.1).

3.3.3 More speech directed to robot and adult than to computer game 
interaction partner; amount of speech directed to robot 
comparable to amount directed to adult (Figure 3.5)

A repeated-measures two-factor ANOVA, with interaction partner repeating, revealed that

the number o f utterances directed toward the interaction partner (robot, adult, or

touchscreen computer game) varied with interactional condition (F (1.5, 26.9) = 15.20,/) <

.001). However, there was no effect o f order o f condition presentation (F (5, 18) = 0.86, p >

.05), or o f the interaction between condition and order (F (7.5, 26.9) = 0.50, p > .05).
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* *

Adult Robot Computer 

Interactional condition

Figure 3.4. Bars show means, over 24 children with ASD of number o f utterances directed 
toward the confederate, in the adult (left), robot (center), and computer game (right) 
conditions. Error bars are ±1 SE. */><.05; **/><.01; ***/><.001.

There were significandy more utterances directed toward the robot (t (23) = 5.40,/) < 

.001; one-sided t-test), and toward the adult (/ (23) = 8.22,/) < .001; one-tailed t-test) than 

toward the touchscreen computer game (M  = 0.5, SD  = 0.8). There was no difference (t (23) 

= 0.02) in the number o f utterances directed towards the interaction partner in the robot 

condition (M = 13.5, SD  = 12.0) as compared to the adult condition (M = 13.5, SD  = 7.8).

3.4 D iscussion

We found that children with ASD spoke more, in general, while interacting with a social 

robot than with another adult or a novel, touchscreen computer game. It should come as no 

surprise that the robot and adult elicited greater verbal interaction than the computer game, 

given that the computer game interaction condition was not designed to encourage social
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Adult Robot Computer 

Interactional condition

Figure 3.5. Bars show means, over 24 children with ASD, o f number o f utterances directed 
toward the adult (left), robot (center), and computer game (right) conditions. Error bars are 
±1 SE. * p<.05; **p<.01; ***^><.001. Participants directed a comparable number of 
utterances to the adult partner as they did to the robot partner.

interaction. What is most interesting is our finding that a social robot elicits more speech 

than another human.

Between the adult and robot conditions, we found no difference in the amounts of 

speech children directed to the adult and robot interaction partners, respectively, and no 

difference in the number o f utterances not directed to anybody. Rather, the increase in total 

speech found in the robot condition can be attributed to an increase o f speech directed 

toward another adult, the confederate. One possible explanation for the absence of 

difference in the amount o f speech to the robot and to the adult may be that the structure of 

the associated interactional conditions severely limited the speech the adult was allowed to 

produce as it was designed to match the limited verbal capabilities o f the robot. In this sense, 

the protocol was designed to support more verbal interaction with the confederate than to 

the interaction partners.
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The robot’s greater efficacy in eliciting utterances toward the confederate appears to be 

due to the excitement and interest (that is, preference) children spontaneously expressed for 

it over the adult interaction partner. Qualitatively we observed that participants verbalized 

conjectures and asked questions about how the robot works, whether or not the robot “is 

real,” and what the robot was doing throughout the robot condition. The children also 

spontaneously asked for permission to, or stated their interest in, touching or playing with 

the robot. In short, we attribute the robot’s greater facilitation o f utterances to the 

participants’ greater curiosity about the robot than about the adult interaction partner, during 

respective conditions.

Heightened verbalization during the robot condition may also reflect the effects o f the 

robot’s embedding o f social interaction into engagement with it. Our protocol was designed 

to reinforce interaction with both the confederate and the interaction partner, but as 

explained previously, the controlled structure o f the protocol allowed the confederate greater 

flexibility in speaking with participants than it did the adult or robot interaction partners. In 

this sense, this design better reinforced verbal interaction with the confederate than with 

interaction partners. This may explain why we saw a difference in the amount o f speech to 

the confederate, between adult and robot conditions; and why we did not see any difference 

in speech to the respective interaction partners.

O ur findings suggest potential utility in communication and social skill interventions for 

children with ASD. The ultimate goal of such interventions for children with ASD is to 

improve their ability to interact socially. We have shown that interaction with a social robot 

elicits speech directed socially toward an adult confederate, not just toward the robot itself, 

and not undirected speech. In other words, o f the three interaction partners tested, the robot
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best motivates or facilitates an ecologically useful social behavior— interaction with another 

person— not just social interaction with objects.

This is the first controlled study, over a statistical sample, to demonstrate a social robot’s 

ability to facilitate social interaction with another person. This is also the first study to show 

this effect for older and higher-functioning children with ASD, whereas previous 

demonstrations have been presented in small number case studies o f younger children with 

lower functioning (Feil-Seifer & Mataric, 2009; Kozima et al., 2009).

Social robots may draw a comparison with assistive animals, which also elicit social 

behavior during interaction. It is worth noting that robots have a unique advantage over 

trained animals in that robots can (1) be highly customizable in form and behavior, (2) 

therapists and parents can control or (if need be) stop a robot instantly and with ease, and (3) 

robots can be produced in volume at potentially far smaller cost than that required to train 

assistive animals.

Previous studies o f embedded reinforcers have demonstrated social improvements over 

the course o f lengthy therapy sessions, repeated over several weeks(R. L. Koegel et al., 2009). 

It is remarkable that the observed increases in verbal interaction afforded by a social robot 

occur immediately, during interaction with the robot. Further research must be conducted in 

the long-term durability o f social robots’ embedded reinforcing effects.

The near absence o f participants’ speech during the computer game interaction seems 

obvious and perhaps evokes a straw man, but it demonstrates an important design lesson: an 

appealing and engaging technology will not elicit social behavior, unless sociality is designed 

into interaction with that technology.
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3.4.1 Limitations and future directions

O ne limitation o f this study is that we examined only the quantity, and not the semantic 

content or communicative function, o f utterances under different conditions. A cursory 

examination suggested that the content of utterances varied across participants. For example, 

the number o f spontaneous comments and questions about the robot (e.g., “Is he real?”

“Did you build it?” “Does it have a battery?” “If  there was another robot, they would be 

friends.”) ranged from zero to twelve. We plan more sophisticated pragmatic and semantic 

analyses in the future to better understand the nature o f the increases in verbal production 

that we have observed in the robot over the adult condition.

It is also important to note that short-term effects o f interaction with a robot do not 

necessarily predict long-term effects. This was demonstrated, for instance, in a two-week 

field trial o f school-aged, typically developing children’s daily interaction, over with a social 

robot, in which most children’s interactions with the robot declined in the second week 

(Kanda, Hirano, Eaton, & Ishiguro, 2004). Because any effective therapy requires repeated 

opportunities to practice target behaviors, our study o f short-term effects cannot alone 

indicate the utility o f a social robot a therapeutic tool. Long-term study o f motivation, 

reinforcement, and pedagogical impact are required. While our study cannot speak to long

term effects, our encouraging short-term findings motivate investment in longitudinal 

studies. We are hopeful that as technology improves, social robots’ interactive behaviors will 

become increasingly complex and adaptable to relationships with individuals. Kanda et al. 

suggested that children who shared more “common ground” with their robot sustained 

interaction over time with the robot (Kanda et al., 2004).
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O ur original intent in comparing a robot with an adult was to compare the robot against 

an agent operating at the upper limit o f social capability. However, the adult interaction 

partner was unfamiliar to participants. A familiar adult might be considered even more 

capable socially, with respect to individual participants. Small numbers of children with 

autism have been observed to prefer interaction with a robot to that with an unfamiliar adult 

behaving like a robot (Dautenhahn & Werry, 2004; Robins, Dautenhahn, & Dubowski,

2006), and children with autism have also been shown to prefer interacting with their 

caregivers, to interacting with strangers (Sigman & Mundy, 1989). O ur work compared 

triadic therapy-like interactions with an unfamiliar adult and unfamiliar robot, and with an 

unfamiliar therapist-like confederate. O ur study cannot speak to differences between a robot 

and a familiar adult, or to triadic interactions with a robot and a familiar therapist. Therefore, 

the effects o f familiarity on interaction with an adult merit future investigation.

We chose the Wizard o f Oz robot control paradigm in order to examine responses to a 

social robot operating at the upper bounds o f its social interaction capabilities. We share an 

aspiration— with many contemporaries in human-robot interaction research— of eventually 

developing technologies that give social robots truly automatic perception of, and response 

to, their environments and interaction partners’ behaviors. At present, however, Wizard o f 

Oz remains a standard design paradigm, given that state-of-the-art technologies do not yet 

afford highly reliable automatic speech recognition or other socially important perceptual 

capabilities, especially not for individuals with widely varying verbal and social abilities and 

behaviors. Currently, training any automatic perceptual system would be especially difficult, 

given the vastly heterogeneous presentations o f social behaviors we expect to encounter 

among children with ASD; automatic perception must wait for advances in our
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understanding and description o f typical and atypical social behaviors (Volkmar & Klin, 

2005). Another limitation, as discussed in Section 2.5.3, is that Wi2ard of Oz control 

introduces a potential confound if the robot controller is aware o f the hypotheses, which 

was the case in this study. Although not performed, it is possible to validate this 

methodology, by letting an independent rater examine the robot’s behavior for fidelity to the 

interaction protocol (that is, the script).

O ur choice to design the computer game interaction without the social structures built 

into the adult and robot conditions may evoke a straw man. We chose to contrast the level 

o f sociality, in order to highlight that engagement and motivation to interact with a novel 

technology cannot in itself support social interactions, unless interaction with the technology 

specifically delivers sociality.

Previously the benefits had been shown (in small numbers o f children with ASD) of 

using social interaction to deliver a preferred reinforcer (R. L. Koegel et al., 2009). We 

suggest that social robots may additionally enable a unique type o f beneficial embedding, by 

which social interaction not only delivers the preferred reinforcer (e.g., a person presents a 

child with a robot), but also that the preferred reinforcer is itself the object and source of social 

interaction, not requiring an external social agent to deliver the preferred reinforcer. Social 

robots may bridge interest in novel technology with motivation for social interaction: if 

interaction with a social robot itself is rewarding to an individual child, then social interaction 

more generally may become more rewarding for that child. As technology develops to allow 

social robots greater and more flexible range o f interaction, further research should explore 

whether they can elicit improved social behavior in children with low social motivation, and 

can then transfer this behavior to human social partners. Our sample population included
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only highly functioning individuals; future research should examine whether social robots 

offer a unique therapeutic support to children with lower functioning.

Finally, our work is just a first step in the larger goal o f providing new tools for clinicians 

to use in interventions for individuals with ASD, not as alternatives to clinicians or trained 

peers, but as supplements. The true test o f the efficacy o f social robotics in facilitating social- 

communicative improvements in children with ASD will require larger field studies 

comparing long-term learning and skill generalization in the presence and absence of social 

robots. These studies are ongoing.

3.5 Conclusions

We have demonstrated that a group o f school-aged children with ASD are motivated to 

engage with a social robot, using speech and touch. Further, we have shown that the robot 

can elicit greater verbalization than a social (but less preferred) interaction partner, an adult 

human. We have shown that a robot elicits greater verbalization than a preferred but asocial 

interaction partner, a computer game. More importantly, a social robot increases social 

interaction with another person, more so than an adult or a computer game. This is the first 

large group study to show that a robot can mediate social behavior with another adult; 

previous demonstrations o f robot’s mediation o f interpersonal social interaction have been 

presented in small-number case studies of younger children with lower functioning (Feil- 

Seifer & Mataric, 2009; Kozima et al., 2009).

This study’s findings suggest that robots may uniquely facilitate social interaction 

between children with ASD and adults interventionists. They also support the theory that
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social robots may provide this support by uniquely embedding sociality into interaction with 

a powerful rein forcer.



Chapter 4

Affective Prosody in Children with 
ASD and TD toward a Robot

In this chapter we present an original study that demonstrates a quantitatively measured 

improvement in motivation for human-human social interaction, in a group o f school-aged 

children with ASD, effected by social interaction with a robot, in comparison with a sample 

o f age- and IQ-matched typical controls. We also found that children with ASD and peers 

with TD  enjoy and engage in an interaction structured around the repetitive production o f 

encouraging prosody (E. S. Kim et al, 2012). Our findings show children’s motivation to 

interact vocally with a social robot, suggesting social robots’ potential as practice partners in 

autism interventions. Children with ASD and TD also willingly, repetitively directed 

affectively expressive speech prosody toward the robot, suggesting that affective prosody 

may be a viable target behavior in robot-based interventions for children with ASD.

4.1 Motivation and research questions

Studies showing successful therapy with visual biofeedback from surface muscular sensors

for communication disorders (Andrews, Warner, & Stewart, 1986; Gentil, Aucouturier,

Delong, & Sambuis, 1994) initially motivated us to consider using other technology-based
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feedback for therapy-like vocal prosody practice. Atypical prosody has frequently been 

reported as one o f the telltale indicators o f odd social behavior in individuals with ASD 

(Paul, Augustyn, et al., 2005). With a goal o f determining the viability and utility of 

incorporating a robot into ongoing experimental interventions and assessments for affective 

expression in prosody production, we pilot tested a robot interaction in which four school- 

aged children (two females and twin males, ages ranging from 4.9 to 10.1 years) repeatedly 

practiced using encouraging prosody to help the Pleo robot (described in greater detail in 

section 4.1.1) complete a task.

In pilot tests, three participants appeared to exhibit more positive affect during and 

immediately following interaction with the robot. They also verbally engaged with the robot 

in repeated trials, producing prosodic and verbal expressions of encouraging affect when 

interacting with the robot. Two pilot participants also spoke more and engaged in more eye 

contact with the members o f our experimental team, following interaction with the robot. 

The same two pilot participants also spoke to the robot with heightened variation in 

prosodic expression o f affect. In addition, these participants seemed to make more eye 

contact and orient themselves to face experimenters more after interaction with the robot. 

These encouraging social improvements motivated us to examine the statistical stability of 

such effects, during and immediately after interaction with the robot.

We formulated two hypotheses. First, we expected that children with ASD and those 

with typical development (TD; that is, a control sample) would equally (a) engage in, and (b) 

enjoy, interaction with a social robot in a brief, repetitive verbal task. Second, we 

hypothesized that, more so than controls, children with ASD would show the following 

improvements in interpersonal social behavior following interaction with the robot: (a)
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higher levels o f participation in pre-scripted one-on-one interviews, and (b) increased time 

spent facing the interviewer.

Though our pilot studies suggested improvements in eye contact, we did not measure 

this behavior due to technical limitations: manual eye-tracking was not possible because of 

insufficient video recording resolution. Initially we planned a third measure of change in 

interpersonal social behavior, namely that more so than participants with TD, participants 

with ASD would increase the variety of types o f prosodically expressed affect after 

interacting with the robot. We have not completed analyses o f affective prosody. The 

differences we observed in pilot testing were remarkable but subtler than can be captured by 

established five-emotion-category coding. We continue to work to establish stable, reliable 

measurements to describe the subtler affective variations we initially observed.

To address our two hypotheses, we recruited two comparison groups o f school-aged 

children, a group with ASD and a control group with TD. We designed a three-part 

protocol, beginning with (1) a semi-structured interview to establish individualized baseline 

social behaviors, followed by (2) interaction with the robot, and ending with (3) a post-robot 

interview, used to gauge changes in each participant against his or her own baseline.

Primary dependent variables included Likert ratings of affective valence and engagement 

with the interviewer or task during robot interaction; and total duration, time spent speaking, 

and time spent orienting to face the interviewer, in the pre- and post-robot interviews. These 

measurements are described in greater detail in Section 4.2.4.
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4.2 Study design and methods

Given our long-term aim to explore robots as intervention supplements for atypical prosody, 

we designed a robot interaction to provide opportunities for participants to practice 

encouraging prosody. To test our hypotheses regarding immediate effect following robot 

interaction, pre- and post-robot interviews were designed to balance natural conversation 

with controlled parallel structure to allow comparison between the two interviews.

Each participant interacted with the socially expressive robot Pleo (Figure 4.1) for 4 to 8 

minutes. Before and after robot interaction, participants completed two brief (3- to 16- 

minute), parallel, semi-structured interviews.

The interviews and robot interaction all were conducted in a therapy and research 

examination room, in the presence of an interviewer (a clinically trained research assistant) 

and another adult who secretly operated the robot (me or another, trained robotics graduate 

student). Following the final interview, children were offered optional, unstructured time 

(henceforth, free play time) to interact with Pleo.

The interviews and robot interaction were video recorded, and behavioral observations 

were annotated, following interaction, from these video recordings. When he or she would 

tolerate it, each participant also wore a lightweight head-mounted boom microphone for 

future analysis o f speech prosody production.

4.2.1 Participants

We recruited participants (ages 9 to 14 years) with and without a recent autism spectrum 

disorders diagnosis, and established two comparative groups o f participants, ASD and 

control, respectively. The ASD group included 18 participants (15 male and three female;



ages ranging from 9.1 to 14.97 years, M  -  10.9, SD  = 1.7). This gender ratio is roughly 

consistent with reported gender ratios o f prevalence o f ASD in the United States, o f 

between 4- and 5-to-l (CDC, 2012). A 19th participant was excluded from analysis because 

the robot interaction was interrupted by battery malfunction. The control group (ages 

ranging from 10.0 to 13.7, M =  11.7, SD  = 1.3) included 11 participants (five female) with 

typical development and one (male) participant with specific language delay but no ASD 

diagnosis.

Diagnoses o f children with a previous ASD diagnosis were confirmed (or ruled out in 

the case o f the participant with specific language delay), using Module 3 o f the Autism 

Diagnostic Observation Schedule (ADOS; Lord et al., 2000b), by two experienced 

psychologists at the Yale Child Studies Center, within one day o f participating in the present 

study. Typical development diagnoses were confirmed using clinical judgment the lifetime 

Social Communications Questionnaire (SCQ; Rutter, Bailey, & Lord, 2003). All participants 

with typical development scored 8 or lower on the SCQ.

IQ was evaluated for the ASD group using the Differential Abilities Score (DAS; Elliott,

2007) and the Wechsler Intelligence Scale for Children-4th Edition (WISC-IV; Wechsler, 

2003); and for the control group, the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999). The ASD and control groups were well matched on verbal and cognitive 

abilities, with all participants having Verbal and Performance (or nonverbal) IQ  above 70 

(ASD VIQ, M  = 102.6, SD  = 21.4; ASD PIQ, M  = 107.8, SD  = 19.5; control VIQ, M  = 

109.7, SD  = 17.6; control PIQ, M  = 111.7, SD  = 14.2).
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Figure 4.1 In our human-robot interaction study, participants spoke to Pleo, a small, 
commercially produced, toy dinosaur robot. Pleo was designed to be expressive o f emotions 
and attention.

4.2.2 Robot, robot behavior, and robot control

The Pleo robot was used in the robot interaction portion o f the study. We were motivated to 

use the Pleo platform by our past observation that adults with typical development 

spontaneously use intensely affective prosody when instructed to speak to the Pleo robot (E. 

S. Kim et al., 2009). Pleo (Figure 4.1) is an affectively expressive, commercially produced, toy 

dinosaur robot, recommended for use by children ages 3 and up, and measuring 

approximately 21 inches long by 5 inches wide by 8 inches high. It was formerly produced 

and sold by UGOBE LifeForms. It is untethered, battery-powered, and has 15 degrees of 

freedom. We extended third-party software to make Pleo controllable by a handheld
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television remote control, through the built-in infra-red receiver on its snout, allowing us to 

playback any one o f 13 custom recorded, synchronized motor and sound scripts. Pleo plays 

sounds through a loudspeaker embedded in its mouth.

We pre-programmed Pleo with eight socially expressive and three walking behaviors 

(forward, left, and right). Each behavior included synchronized motor and nonverbal vocal 

recordings (performed by me). Social behaviors are described in Table 4-1. When Pleo was 

not executing one o f these 11 behaviors, it performed an idling behavior to maintain the 

appearance o f animacy. Pleo’s idling behavior included occasional slight hip wiggling, head 

turning or raising, and subde tail wagging, all o f which were performed randomly in time.

We used Wizard-of-Oz style robot control (Dahlback et al., 1993; Steinfeld et al., 2009), 

allowing participants to believe that Pleo was behaving autonomously, while an investigator 

secretly manually operated the robot. We chose Wizard-of-Oz style control to fulfill our 

design objective that the robot should express reliable, contingent social behavior in 

response to speech. We did not expect that speech recognition technology would be 

sufficiently reliable with this population to afford highly reliable perception. This is especially 

the case for the heterogeneous presentations o f social behaviors we expected to encounter 

among children with ASD (Volkmar & Klin, 2005).

In order to obscure the true role o f the robot controller to participants, the interviewer 

instead introduced the robot controller as “Pleo’s trainer,” who would observe the protocol 

in order to take care o f Pleo and to gauge its progress in overcoming its fear.6 The robot 

controller sat in between and about two feet behind the interviewer and the participant.

6 The role o f  robot controller was filled by a member o f  the research team, and was not blind to the hypotheses 
o f  the experiment. Please see our discussion (Section 2.5.3) o f  challenges to experimental control introduced 
by our use o f  manual robot control by Wizard o f  Oz paradigm.
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Throughout the protocol, the robot controller sat silently, watching the interview or 

interaction between the robot and participant, occasionally glancing down at papers on a 

clipboard. Very infrequently, if the participant or interviewer addressed the robot controller, 

she or he would respond. During the robot interaction segment, the robot controller used a 

handheld television remote control, hidden beneath the clipboard, to operate Pleo. The 

robot controller left her or his seat only to set up or remove Pleo for the robot interaction 

segment, and freely answered the participant’s questions during optional, post-protocol 

playtime with Pleo.

It is important to note that most children, including children with typical development, 

entirely or largely ignored the robot controller during the interviews, robot interaction, and 

optional following playtime. In addition, only one o f 31 experimental participants and 5 pilot 

participants asked whether Pleo was controlled by remote, and neither that participant, nor 

any other, guessed that Pleo’s trainer was in fact controlling the robot.

4.2.3 Experimental protocol

We designed our robot interaction protocol to provide opportunities for children to speak to 

the robot using affectively expressive prosody, with the objective o f examining effects on 

affective prosody toward another person following robot interaction. We were also 

interested in gauging the effects o f social interaction with the robot on other social behaviors 

that are commonly problematic for speaking children with ASD. These include face-to-face 

orientation to another person; spontaneous production o f topically relevant utterances; 

indication o f interest, or relevant response to, a story told by another person; unusual focus 

on a topic o f special interest; and appropriate expression o f emotion using vocal prosody.



Table 4-1 Pleo’s eight pre-programmed affectively expressive behaviors. Pleo also was pre
programmed with a forward, left, and right walking behavior, and with an idling behavior to 
maintain the appearance o f animacy.

A ffect expressed M ovem en ts N on-verbal vocalization  sounds  
roughly lik e ...

Greeting or Affirmatiie Tail wags, head raises. a prolonged, enthusiastic “ I li!”

iatigue Legs bend, head lowers, tail lowers. an extended, relaxed yawn.

lixcitement Tail wags vigorously, head rises high, hips 
wiggle.

“W oohoo!”

/ :ear and Surprise Tail rises rapidly. T hen  tail lowers, hips quiver 
rapidly, head lowers.

a high-pitched abrupt “O h!” followed by a 
quavering “O h h h .. .”

I 'ear and I Uncertainly Tail raises, then hips and shoulders quiver, and 
head lowers.

“ Lech!”

Boredom I lead and tail lower slightly and loll slowly, 
sidc-to-side.

a short, aimless, hum m ed melody.

I inthusiaslic Affirmative I lead raises quickly, tail raises and wags briskly. “ Aye aye!”

/ Hation I lead rises, tail raises and wags, hips shake, legs 
bounce.

a victory song.

Pre- and post-robot interviews in this protocol were designed to facilitate measurement over 

these various behaviors. Analysis o f these behaviors is ongoing.

Protocol environment and instructions

Experimental procedures took place in a clinical testing room roughly identical to rooms 

(or, in some cases, the very same room) in which the participant completed a battery of 

other assessments and research protocols preceding this experiment. For the entire protocol, 

including both interviews and the robot interaction, participants sat facing a long table, with 

the interviewer seated about two feet to the side o f the participant (during the robot 

interaction, the interviewer also served as a confederate, guiding the participant through the 

interaction.) The robot controller sat between the two, about two feet behind (farther from 

the table). Throughout the entire protocol, the tabletop was covered with a six-foot-long 

play-mat, illustrated with “Dino World,” a green- and brown-colored jungle scene, striped 

with a series o f four blue rivers. The protocol environment can be viewed in Figure 4.2.
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Prior to entering the protocol environment, the interviewer gave participants a brief 

overview o f the protocol’s interview-interaction-interview structure. The interviewer also 

gave detailed instructions for the robot interaction: “After we talk for a few minutes, Pleo 

will come out. He is a small dinosaur robot. We are training Pleo to get over his fear of 

water. He will walk across Dino World. But it has rivers, and he is afraid of them. You can 

help him when he’s scared, by talking to him in your encouraging voice. Pleo’s trainer will be 

there, to make sure he’s okay and to see how he does.” When each participant entered the 

protocol environment, the interviewer introduced him or her to Pleo’s trainer (whose role as 

the robot controller was kept secret from the participant).

During the interviews, the robot was hidden in an unmarked cardboard carrying case. In 

pilot testing we observed that the robot’s presence distracted children from listening to 

instructions, suggesting that it would distract them from engaging in interviews as well. We 

also kept Pleo hidden to control potential effects o f familiarization to the robot’s presence, 

between pre- and post-robot interview performance. For the post- robot interview, and if 

participants asked to play with the robot during the pre-robot interview, the interviewer 

explained, “Pleo is having a nap now.”

Pre- and post-robot interview protocol

Interviews were conducted in the same setting as the robot interaction, with the 

participant seated in front o f the play-mat used in the robot interaction. The interviewer sat 

two feet to the left o f the participant, and the robot controller sat between and slightly 

behind the participant and interviewer.

Pre- and post-robot interviews were semi-structured in the sense that the interview was

conversational and allowed the participant to introduce topics o f his or her own interest.
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However, the interviewer attempted to limit spontaneous discussion, in order to complete a 

pre-defmed series o f conversational objectives. As each objective was completed, the 

interviewer attempted to redirect the conversation to the next.

We designed the pre- and post-robot interviews to be almost entirely parallel in structure 

to each other, in order to facilitate comparison between the two and to control for 

confounding variations between the two. Each interview began with an opportunity for the 

participant to freely talk (for up to three distinct points o f new information) about two of 

three topics suggested by the interviewer (animals, pets, and hobbies in the pre-robot 

interview, and previous experiences with robots, dinosaurs, and favorite things to learn 

about in the post-robot interview); a story told by the interviewer about a time when she 

needed encouragement; and two opportunities for the participant to spontaneously ask what 

happened next in the interviewer’s narrative. The interviewer then asked the participant to 

discuss a hypothetical or remembered episode in which someone helped, or could help, the 

participant by encouraging him or her. Finally, the interviewer asked the participant to model 

or recall (produce) an example encouraging utterance that was, or might be, helpful. 

Abbreviated examples o f prompts delivered by the interviewer, in both the pre- and post

robot interviews are provided in Table 2. The scripts illustrate the parallel structure o f the 

interviews, which was designed to control for conversational content and turn-taking balance 

when comparing pre- and post-robot social behaviors with the interviewer.

Throughout the participant’s conversational turns in the first two interview tasks, the 

interviewer responded to the participant’s utterances. For example, one participant said, “I’m 

interested in history,” to which the interviewer responded, “Yeah, you had World War II 

history books with you yesterday.” To provide opportunities for the participant to show
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interest in the interviewer’s personal story, the interviewer first paused for three seconds, and 

if the participant did not comment or ask about the interviewer’s story, the interviewer 

asked, “Do you want to know what happened?”

All interviews were conducted by a research assistant with extensive clinical experience 

in conducting experimental language and communication protocols with children with ASD. 

Interviews were 3 to 16 minutes long. The few longer interviews stretched out because of 

the participant’s hesitations to respond or persistent redirection to topics of his or her own 

interest. A few interviews lasted slightly longer because the participant left his or her seat, at 

which point the interviewer had to coax the participant to be reseated before resuming the 

interview.

We controlled for effects o f novelty o f the first interview and increasing familiarity to the 

second interview in two ways. First, participants were familiar with the interviewer because 

our protocol concluded a one- to two-day battery o f assessments and experimental 

protocols, over which she hosted all participants. In addition, the interviewer conducted four 

o f these preceding protocols, including two with experimental protocols featuring brief 

interview components, the Gray Oral Reading Test (Wiederholt & Bryant, 2001), and an 

experimental protocol to assess theory o f mind.

We controlled for novelty and familiarization to the interview structure by designing our 

semi-structured interviews to roughly parallel the structure o f another longer (30- to 40- 

minute) experimental protocol, the Yale in vivo Pragmatic Protocol (YIPP; (Paul, 2005)), 

which all participants completed within one day of, and prior to, our study. The YIPP is 

designed for children ages 9 to 17 years, and like our interviews, provides opportunities for 

the child to spontaneously expound on a topic o f choice, and to indicate interest in the YIPP
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interviewer’s stories about herself. Although YIPP interviews were conducted by another 

clinician (not our protocol’s interviewer), the parallel interview structures were intended to 

control for novelty and familiarity effects o f the semi-structured interview format.

Robot interaction protocol

The robot interaction protocol was designed to provide the participant with 

opportunities to direct affectively and verbally encouraging utterances to the robot. The 

interviewer mediated the robot interaction by providing instructions to the participant, and 

by reminding the participant to speak, or clarifying Pleo’s affective communications to the 

participant, if he or she hesitated to speak to Pleo.

At the end o f the pre-robot interview, the robot controller or interviewer brought Pleo 

out from its unmarked cardboard carrying case to the start position on the far end o f the 

play-mat, with its face oriented approximately toward the participant. The robot controller 

or interviewer then sat again. The robot controller remained silent unless the participant or 

interviewer directly addressed her or him. Participants rarely addressed the robot controller, 

and the interviewer typically addressed the robot controller only occasionally, when Pleo’s 

feet became caught on the play-mat. While the robot controller placed Pleo at the start of 

play-mat, the interviewer briefly reiterated instructions to the participant: “Use your 

encouraging voice when Pleo gets scared o f crossing the rivers.” At this point, the 

interviewer introduced the participant to Pleo.
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Figure 4.2 Three still images, captured from a video recording o f a participant with ASD, 
showing the pre-robot interview (top), robot interaction (center), and post-robot interview 
(bottom) within our clinical testing environment. During robot interaction, the Pleo robot 
walked across the illustrated play mat, toward the participant. Pictured (from left to right) are 
a participant, the robot controller, and the interviewer. In the post-robot interview, this 
participant spent 11% more time facing the interviewer than he did in the pre-robot 
interview. In the ASD group, we found such the si2e o f such increases to be negatively 
associated with age.
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The robot interaction protocol opened with a brief introductory sequence to familiarize 

the participant with Pleo’s communicative capabilities, followed by Pleo’s walking across the 

play-mat toward the participant. For the familiarization sequence, the interviewer guided the 

participant through two tasks: a greeting to Pleo and a directive to begin crossing the play- 

mat. The interviewer first instructed the participant to greet Pleo. If after a second prompt 

the participant would not do so, the interviewer greeted Pleo: “Hi, Pleo!” Pleo responded to 

the participant’s or interviewer’s greeting by expressing the behavior Greeting or Affirmative in 

return, raising its head, nonverbally vocalizing a greeting, and wagging its tail (Table 4-1 

describes Pleo’s eight affectively expressive behaviors in detail). The interviewer then 

instructed the participant to tell Pleo, “Let’s get started!” Again, if after a second prom pt the 

participant would not tell Pleo to begin, the interviewer did so instead. Pleo responded to the 

participant or interviewer’s directive by expressing an Enthusiastic Affirmative.

At each blue river painted on the play-mat, Pleo stopped walking and expressed Fear and 

Surprise, to elicit robot-directed speech from the participant. At each river crossing, a series 

o f three increasingly restrictive prompts were delivered by Pleo and the interviewer, to 

encourage the participant to speak to Pleo. These prompts were structured in the style of 

errorless teaching, such that any speech toward Pleo was accepted. Following Pleo’s initial 

Fear and Surprise expression, after a 3-second pause, if the participant did not speak to Pleo, 

the robot then expressed Fear and Uncertainty. If after a 3-second pause, the participant still 

did not speak to Pleo, the interviewer told the participant, “I think Pleo is scared. You can 

help him by talking to him in your encouraging voice.” Finally, if after a third 3-second 

pause, the participant still did not speak to Pleo, the interviewer herself encouraged Pleo, for 

example, “D on’t be scared, Pleo. You can cross the water!” Once the participant or

103



Table 4-2 Prompts for parallel, semi-structured pre- and post-robot interviews.

O bjective or T ask P re-R obot Interview  Script P ost-R ob ot Interview  Script
Free exposition (two o f  three 

topics)
D o  you have any pets at home?
D o  you have a favorite animal?

I used to  collect h ippo toys. D o  you collect 
anything?

I lave you played with a robo t before? 
W hat do  you know  about dinosaurs? 

W hat do you like learning about?

Interest in interview er 1 W hen I was younger, I was afraid to learn to 
swim, and it caused me trouble. Pause jor 3 

seconds.

I used to  love playing video games. O ne  time I 
go t in a bit o f  trouble because o f it. Pause for 3 

seconds.
Interest in interviewer 2prc My girl scout troupe was planning a canoeing 

trip, and I was the only one left w ho hadn’t 
passed the swim test. Pause for 3 seconds.

(Sec 2post below.)

N o  task (interviewer resolves 
her story)

My dad was really encouraging. I le’d say, 
“ D o n ’t worry! Y ou’ll be ok. Ju st give it a try!” 

T hat really helped me.

I stayed up past my bedtim e one night to beat the 
game. My b ro ther stayed up with me and 

encouraged me. I Ie said, “You can do  it! Keep 
going!” 1 got in trouble for staying up late, but I 

was happy I beat the game.
Interest in interviewer 2post (See 2pre above.) I d o n ’t really play video gam es anymore. Pause jor  

3 seconds.
N o  task (interviewer resolves 

her story)
In the end I got to  go  canoeing. My PlayStation broke.

D escribe encouraging situation If  you were scared to do  som ething, do  you 
think it would help if  som eone encouraged 

you?

D o  you think it would help if som eone 
encouraged you with som ething you had trouble 

with?
M odel encouraging statem ent W hat kinds o f  things d id /w ou ld  they tell you 

to help?
W hat kinds o f  things d id /w ould  they tell you to 

help?

interviewer had spoken to Pleo, whether encouraging or not (e.g., one participant expressed 

disgust at Pleo’s hesitation at the fourth river and said, “Come on, Pleo. It’s just water.”), 

Pleo expressed an Enthusiastic Affirmative, crossed the river, and then expressed Excitement. 

The interviewer then narrated, with a variation o f the phrase, “He did it! I think talking to 

him helped!”

After crossing the final river, Pleo stepped across a finish line marked with red tape, off 

the play-mat, and onto the end o f the table, inches away from the participant. Pleo expressed 

FJation (a victory song and dance), and the interviewer congratulated the participant on 

helping Pleo finish his task. The interviewer then explained that Pleo would rest while they 

spoke (for the post-robot interview), and the robot controller removed Pleo from the table 

and returned it to its carrying case.
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Free play protocol

Following the post-robot interview, the interviewer asked each participant if he or she 

would like to play with the robot. Three participants (all with ASD) were not offered free 

play, due to time constraints. In addition, all but three participants (two with ASD, and one 

with TD) who were offered free play accepted, and if parents were available, they were 

allowed to join the free play interaction. Free play was discontinued when participants or 

parents chose to stop, or when the interviewer determined that the participant was losing 

interest.

4.2.4 Social behavior measurements

The dependent variables in this experiment are measurements o f the quality o f participants’ 

social behavior. During the robot interaction portion o f the protocol we judged ratings of 

affective valence, and of engagement in the robot encouragement task (or engagement with the 

robot or other people). During the pre- and post-robot interviews we annotated, and 

summed the durations of, brief episodes during which the participant turns his or her head 

to face the confederate or the robot controller (face-to-face orientation)', and measured the 

interviews’ durations themselves (pre- and post-robot interview durations).

As part o f an exploratory analysis, we also measured the duration o f the optional free 

play session, which followed the post-robot interview free play duration).

Affective valence during the robot interaction

Two raters independently judged the valence of each participant’s affect, from video 

recordings, for 5-second intervals o f the robot interaction, judging one out o f every four 5- 

second intervals (or 5 o f every 20 seconds). Affective valence was rated on a Likert-type
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scale from 0 to 5; where 0 and 1 represented intensely negative and negative affect, 

respectively; 2 and 3, neutral affect with more negative than positive valence, or vise versa, 

respectively; and 4 and 5, positive and intensely positive affect, respectively. Inter-rater 

reliability was measured both as percent agreement and as weighted K, in both cases, 

allowing raters to disagree by one point. Agreement was 98%, and K  was .78.

Engagement during the robot interaction

Two raters independendy judged video recordings for engagement and compliance of

each participant’s engagement in the task, or engagement with the robot, the confederate, or

the robot controller. Again, these ratings were determined for one out o f every four 5-

second intervals (i.e., 5 o f every 20 seconds) o f the robot interaction. Engagement was rated

on a Likert-type scale from 0 to 5. Ratings o f 0 and 1 represented intense non-compliance

and non-compliance, respectively. For example if, during the 5-second interval in question,

the participant stood and walked away from the table on which the robot interaction took

place, this interval would receive a 0 rating for engagement; or if, in a 5-second interval, the

participant hung his head and refused to comply with the interviewer’s request to speak to

the robot, the interval in question would receive a rating o f 1. Ratings o f 2 and 3 indicated

neither non-compliance nor positive display o f interest in the task or with the confederate or

robot controller, with more or less reinforcement required on the part o f the confederate.

For instance, if the participant complied with instructions to speak to the robot, or answered

the confederate’s questions, but only after several prompts from the confederate, this would

warrant a rating o f 2; or if the participant required two to three prompts from the

confederate before responding or speaking to the robot, even if the reason was interaction

with the confederate, this warranted a rating o f 3. Ratings o f 4 and 5 indicated positive

106



expressions o f engagement with the task or other people. For instance, a rating o f 4 was 

given to intervals in which the participant complied immediately following the confederate’s 

request to speak to the robot or answer a question, or in which no request was made while 

the robot walked, and the participant maintained their gaze on the robot, or looked at the 

confederate or robot controller without disrupting the progress o f the task o f speaking to 

the robot. A rating o f 5 was given if the participant spontaneously engaged the confederate 

or robot (e.g., created encouraging phrases to the robot which had not been offered as 

examples by the confederate, or spoke to the robot spontaneously and not only when the 

confederate had instructed the participant to speak), or changed his or her posture (e.g., 

leaned forward) to nonverbally interact with the robot. Inter-rater reliability was measured 

both as percent agreement and as weighted K, in both cases, allowing raters to disagree by 

one point. Agreement was 95%, and K  was .67.

Face-to-face orientation during interviews

We did not plan to explore questions about eye contact because we did not expect 

participants to tolerate wearing automatic head-mounted eye tracking devices, or to remain 

stationary enough to facilitate automatic table-mounted eye tracking; and because our video 

recordings were not o f sufficient resolution to facilitate manual eye tracking.

Instead, we explored face-to-face orientation, the behavior during which a participant turned

his or her head to face the interviewer. (Given limited space, the participant’s and

interviewer’s chairs were typically left facing the play mat, roughly parallel to each other, and

never arranged such that an angle formed between their front edges would form an angle

smaller than 90 degrees). Face-to-face orientation appears to be a novel metric in autism

research. We initially considered face-to-face orientation as a surrogate for eye contact, as
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these two behaviors overlap in function (it is difficult to make eye contact with someone, 

without turning to face that person). However, there also appear to be some distinct 

functions, as well. For example, a listener or speaker may break eye contact in concentration 

or lower her eyes to reduce the affective intensity o f a conversation, but may still orient her 

face to face the other’s. Face-to-face orientation appears to give conversation partners access 

to one’s facial expression, for instance, of affect.

From video recordings, we used VCode software (Hagedom, Hailpern, & Karahalios,

2008) to mark the beginnings and ends o f episodes during which each participant angled his 

or her head such that he or she was oriented face-to-face with the interviewer. Face-to-face 

orientation was defined as occurring when the angle between the participant’s and the 

interviewer’s faces was smaller than 20 degrees in any direction. More specifically, this angle 

was defined at the intersection between two vectors, each parallel to the participant or 

interviewer’s line o f sight, if the eyes were looking straight ahead. Face-to-face orientation 

episode markings were verified in VCode, which can synchronize visualizations of episodes 

and video from which they are annotated. In this paper we analyzed the percent time spent 

in face-to-face orientation (as a sum over the duration o f all episodes, divided by the 

duration o f the video).

Face-to-face orientation was examined for children in the ASD group and a small subset 

o f children in the TD  group («—3) in both the pre- and post-interviews. Fewer children were 

examined in the TD  group because o f analysis time-constraints and expectations of a wide 

separation between the ASD and TD  group on this measure.
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Interview durations before and after robot interaction

We annotated the beginning o f the pre-robot interview to be the time when the 

confederate led the participant into the protocol setting (the clinic testing room) and 

introduced the participant to the robot controller. The post-robot interview began after the 

robot controller or confederate removed the robot from the table. Both pre- and post-robot 

interviews ended when the confederate delivered or reminded the participant o f instructions 

for the next segment o f the protocol (i.e., robot interaction or free play, following the pre- 

and post-robot interviews, respectively). The duration of the interview was largely controlled 

by the participant, and as such provides an easy to calculate surrogate for the child’s 

willingness to continue and elaborate upon the presented interview scenarios. Note that this 

measure is not without its complexities, a point we will return to in the discussion.

4.3 Results

Like typically developing controls, participants with ASD had no difficulties engaging with 

the robot as indicated by engagement ratings (TD: M  — 4.36, SD  = .50; ASD: M  = 4.27, SD  

=.62; /(27)=.39). Likewise, affective valence during the robot interaction was similar between 

groups (TD: M  = 3.68, SD  =.63; ASD: M  = 3.60, SD  =.69; <28)= 33).

There was also no difference in the amount o f time children with ASD spent in the pre- 

or post-robot interview (pre: TD: M  = 267s, SD  = 57s; ASD: M  = 286s, SD  = 108s; 

/(27.8)=.65; post: TD: M  = 312s, SD  = 72s; ASD: M  = 395s, SD  = 199s; <21.7)=1.6), nor 

any between-group differences in additional time spent in the post-robot interview as 

compared to the pre-robot interview (i.e. tim Mta = tim e^  - time^ )  {timeic,ta: TD: M  = 45s, SD  

= 85s; ASD: M  = 86s, SD  = 166s; /(25.1)=.85). However, within-subject, paired
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comparisons between the time spent in the pre- and post-robot interviews indicated a 

significant increase o f children with ASD (/(l 6)=2.13,/) =.05) but not for TD children 

(/(l 0)=1.7,/) =.11). The ASD group also spent significandy longer than the TD group 

playing with the robot during free play (TD: M  = 207s, SD  = 49s; ASD: M  = 307s, SD  = 

137s; /(20.3)=2.7,/> =.02, Cohen’s d=0.97).

Children with ASD, as compared to TD children, appeared to face the interviewer less in 

both the pre- (TD: M  =.76, SD  =.34; ASD: M  =.30, SD  =.26, d=1.52) and in the post-robot 

interviews (TD: M  =.85, SD  =.14; ASD: M  =.31, SD  =.23, d=2.84). Because of the small N  

o f the TD group for this measure, the group difference in face-to-face looking ratio was not 

significant (p =.14); even so the post-robot group difference was highly significant (p<.0\). 

Paired t-tests (that is, repeated measures) analysis among individuals in the ASD group 

showed no change in face-to-face looking ratios from the pre- to the post-robot interview.

An exploratory analysis o f the cognitive and behavioral associations with primary 

outcome variables in ASD indicated trends such that those participants, with smaller 

increases in pre- to post-robot interview duration (timeiAx.J, displayed more negative affect 

during the robot interaction (affect x r = .48,/) =.050), worse language skills (CELF

language standard score x timedc 1[a: r =.50,p  =.042), and greater levels o f social and behavioral 

impairments (ADOS total: r — -.49,/) =.055). In children with TD, the affect relationship 

was not observed (affect x timedclta: r =.14), but the same direction of the language 

relationship was suggested (CELF language standard score x timeMu: r =.48,/) = .14). No 

ADOS scores were available for the TD group. For time spent face-to-face in children with 

ASD, the change from the pre- to post-robot interview was negatively associated with
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chronological age (r = -.66,p  < .01); this relationship with age was not noted for either the 

pre- ( r— .33, p  =.25) or post-robot interview face-to-face ratios {r— -.22, p  =.45).

4.4 D iscussion

4.4.1 Summary of results and limitations

The results o f this study confirm our first hypothesis, that children with ASD and their 

typically developing peers engage and enjoy verbal interaction with the robot to similar 

extents. Our observations only partially support our second set o f hypotheses: a) compared 

to the TD  group, children with ASD spent more time in the post-interview process, but b) 

did not show a greater increase in face-to-face orientation. We will discuss the implications 

o f these findings in turn.

It is clear that children with ASD were motivated to interact with the robot, as indicated 

by their greater predisposition to spend time with the robot (compared with children in the 

control group) when given an option to play with the robot freely subsequent to the post

robot interview. Although two of the three participants who opted out o f playtime had an 

ASD, in one case it appears he exhausted himself by talking at great length during the post

interview about the robot with the interviewer. In a second case, the participant was 

suspected o f having comorbid diagnosis with oppositional defiant disorder, and was 

generally reluctant to participate in all phases o f this and other experiments during his visit.

In the case o f the one child with TD  who opted against free play, she simply seemed 

uninterested in playing with the robot. During free play, some participants in both the 

control and ASD group showed great ingenuity in understanding the robot’s “water”-sensing 

mechanisms or logic, or in exploring what the robot enjoyed, feared, or understood. For



example, participants frequently hypothesized that the robot was programmed to fear the 

color blue, which it sensed through the camera on its snout. Several participants tested their 

hypotheses by finding blue objects in the room and holding them up to Pleo’s snout.

The results o f our study, which confirm our first hypothesis, add to the mounting 

evidence that robots may be a highly tolerated, and even enjoyable, component o f 

intervention for children with ASD. It is important to note that during the robot interaction 

phase, children with ASD showed similar levels o f affective enjoyment and engagement as 

typically developing children. By comparison, in natural social situations and under 

laboratory testing conditions, children with ASD often exhibit limited affective response 

0oseph & Tager-Flusberg, 1997; Kasari, Sigman, Mundy, & Yirmiya, 1990; Yirmiya, Kasari, 

Sigman, & Mundy, 1989).

The observation o f an increased change in time spent in the post-robot interview session 

for children with ASD as compared to TD children (our second hypothesis) suggests that 

interaction with the robot may lead to greater verbal elaborations or increased verbal 

participation by children with ASD. However, it is important to note the limitations o f this 

very coarse measure. First, though the variability o f the interview duration is largely 

controlled by the participant, the interview itself is pre-scripted and pre-planned. For this 

reason, there is a limit to how much leeway each child can be afforded in terms o f true 

“back-and-forth” verbal exchanges with the interviewer. Second, many o f the questions can 

be answered quite succinctly (e.g. “Do you have any pets at home?”); to spend additional 

time in these phases o f the interview may suggest difficulty understanding the question or 

may result from the expression o f incoherent, meandering, or off-topic responses. Third, 

though the structure of the pre- and post-robot interaction interviews was designed to be
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parallel, we cannot rule out the possibility that specific tasks may be more accessible to 

participants in one group versus the other. For example, the “encouraging situation” 

question (Table 4-1) may require access to long-term memory in the pre-interview, but in the 

post-test an example might be readily accessible from the robot-interaction phase. O f 

course, the design o f conducting two parallel interviews sequentially over a short period of 

time may in of itself bias results, as participants may become more comfortable with 

increasing interactions to the interviewers. The measure o f “total interview duration” thus 

coarsely suggests the behavioral changes resulting from robot interaction may be found for 

individuals with ASD, but does not isolate the mechanism, nor provide an unambiguous 

description o f causal relationships or quality o f the responses. Further fine-grained analyses 

o f the video recordings will have to be conducted to decipher the underlying structure 

responsible for increased changes in pre- to post-robot interview duration; an expanded 

study, consisting o f repeated exposures over multiple sessions, would be necessary to gauge 

the generalizability and repeatability o f our observations.

Along these lines, a close examination o f the variability associated with the outcome 

measures examined in this study suggested a wide heterogeneity o f responses in the ASD 

group. In an effort to decode this variability, we examined correlations between clinical 

features and performance metrics. The results suggest that those children with fewer social 

and communicative deficits responded to the robot interaction with greater enthusiasm, as 

reflected by increased time in post-robot interviews and higher affect ratings while 

interacting with the robot. This suggests that while, as a group, children with ASD behaved 

similarly to those with TD for most aspects o f the robot interaction, responses to the robot 

interaction were modulated by the degree o f socio-cognitive impairments. However, these
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relationships may also suggest that floor effects could exist in the outcome measure o f total 

interview duration. In other words, the positive relationship between language skills and 

increases in interview duration post-robot interaction suggest that it is the more verbally 

capable participants with ASD who may be responsible for the observed between-group 

(I’D  vs. ASD) differences in increased interview time; conversely, the children with lower 

verbal ability may be stretched to their capacity in both the pre- and post-robot interviews. 

Again, these results highlight the need to carefully examine the relationships among 

hypotheses, outcome measures, and the individual characteristics o f participants in 

interpreting the results o f interactions between robots and children with ASD.

It is also clear, however, from our analysis o f face-to-face interactions, that interacting 

with the robot does not generally result in increased orienting towards the face for our 

participants with ASD. Though children with ASD exhibit the expected decreased orienting 

to the face before the robot interaction, the frequency of their decreased looking remains 

virtually unchanged post-robot interaction. Though from a certain point of view this result is 

disappointing, from another point o f view the result is quite understandable. In the state in 

which this study was conducted (Connecticut, US), the standard o f care for individuals with 

autism is quite high. In fact, a recent study o f community and standard care practices in 

toddlers with ASD suggests that treatment-as-usual now produces results that are 

competitive with more specialized intervention programs (Steiner, Goldsmith, Snow, & 

Chawarska, 2012). It may be optimistic to assume that an extremely brief guided interaction 

with a robot might be able to effect a change on one o f the most highly-targeted behaviors 

for individuals with ASD: eye-contact and natural conversation. However, examination of 

the relationships between change in face-to-face looking pre- to post-robot interview
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showed a prominent negative relationship with age, suggesting that the paradigm as a whole 

might be more suited, and more effective, for younger children with ASD.

While there are many other aspects of this data that can be examined, especially 

regarding the degree to which children utilized appropriate prosodic intonation and their 

production o f socially appropriate behavior, here we report only on a subset o f possible 

measures that 1) point towards potential effects that may be due to engagement with the 

robot, 2) further our understanding o f the applicability o f the design across the heterogeneity 

o f the autism spectrum, 3) are immediately available and accessible, and 4) illustrate points 

regarding clinical-HRI partnerships. In the case o f this study, the working agreement we 

have with our clinical partners is to first publish the results of the study here, within a 

robotics-oriented venue, while preparing for additional analyses that will clarify and solidify 

our understanding o f our data.

4.4.2 Summary of contributions

We found that school-aged children with high functioning ASD and with TD engage and 

enjoy verbal interaction in a repetitive task to produce encouraging prosody. Participants” 

enjoyment during this task indicates continued exploration o f social robotic applications to 

social skills and communication therapies for children with ASD. In the literature examining 

social human-robot interactions, this study represents the largest comparison between 

children with ASD and peers without ASD. This study is also the first group demonstration 

o f HFA children’s engagement in prosody-therapeutic interaction with a robot.

Additionally, compared to the control group, children with ASD spent more time

engaging with an examiner during a post-interaction interview. This may suggest that

interaction with a social robot helps to catalyze or promote immediately following
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interaction with other people, in a way that is uniquely heightened among children with 

ASD.

We also innovated face-to-face orientation as a novel measure o f social engagement, 

which we observed far less in participants with ASD than in their peers with TD. This 

measure may be useful for gauging and tracking social skills in future studies o f robot 

interaction and general social interaction among individuals with ASD.
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Chapter 5

Automatic recognition of 
communicative intentions from 
speech prosody

In this chapter we describe methods for automatic recognition o f communicative intentions 

in speech prosody, as well as a closed-loop system that uses affective prosody as an input for 

learning. We have shown in Chapter 2, Chapter 3, and Chapter 4 that a manually operated 

robot can elicit social behaviors, enjoyment and motivation from children with ASD. The 

participant’s experience o f a single, brief interaction with a robot is apparently unaffected by 

the fact that the robot’s perception and responses are not automated. However, automation 

o f  such perception and responses would afford several advantages. First, automation can 

relieve labor burdens, which will eventually be important in the successful deployment of 

socially assistive robots, particularly in behavioral interventions, which tend to require at- 

least-weekly, repeated visits over several months. A robot controller’s role could be 

eliminated by automating a robot’s perception and selection o f behaviors. Automatic 

perception could support clinicians’ and caretakers’ assessments and observations o f a child, 

reducing the amount o f time they spend assessing the child’s behaviors, allowing them, for
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instance, to move to successive trials more rapidly, to spend more energy on building 

rapport than on evaluating behaviors, or to spend less time reviewing intervention sessions 

to assess the child’s performance). Closed-loop automations that uses automatic perception 

to drive automatic response (i.e., behavior selection) could further reduce labor burdens by 

making robots available as practice partners outside the clinic or perhaps without little or no 

supervision. All these labor savings could make robots more accessible to clinicians and 

caretakers with limited resources. Second, computational modeling and automation tend to 

be mutually supportive endeavors. Such modeling may deepen our understanding the 

behaviors in question, contributing theoretical and practical insights. As described in 

Question 2, such insights may support the selection o f target behaviors for intervention or 

our assessment o f behavioral performance. Finally, investigations o f systems that learn from 

social behavioral input may inform us about the adaptations users expect from robotic 

partners. This knowledge may inform designs for extended human-robot relationships that 

can support long-duration therapies (see Question 4).

The systems presented in this chapter automatically recognize (1) affect and (2) shared 

belief management cues from speech prosody. The first system also integrates its prosody 

percept as an input for machine learning. It first recognizes the affective valence (positivity 

or negativity) expressed in motherese-like, robot-directed speech, and then uses this to drive 

a reinforcement learner. This system’s efficacy is demonstrated over a toy learning problem, 

for a single speaker (myself) who is knowledgeable o f the experiment’s goals and o f the 

prosody recognition and learning systems. Despite the obvious lack of experimental control, 

and the triviality of the learning task, the system we present here demonstrates a proof of 

concept o f an interface that learns from speech prosody.
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The second system we describe in this chapter identifies cues that speakers use to add 

new information, compare against previously stated information, or suggest questionable 

information shared between herself and the listener (E. S. Kim et al., 2008). The system uses 

acoustic rules originally described for adult-directed speech (Beckman & Elam, 1997; 

Pierrehumbert & Hirschberg, 1990) to identify the same cues in a corpus o f infant-directed 

speech. Blind human ratings o f the communicative intent o f utterances in the corpus 

validated the acoustic classification.

Given the challenges o f working with special needs populations and children, and the 

heterogeneity o f prosodic deficits found among individuals with ASD (for example, some 

speaking in a sing-song with others speaking in a monotone; Grossman, Bemis, Plesa 

Skwerer, & Tager-Flusberg, 2010; Paul, Augustyn, et al., 2005; Tager-Flusberg et al., 2005), 

the systems we present in this chapter automate prosodic expression recognition in the 

speech of typically developing adults.

In addition to describing both systems, we present demonstrations o f their perceptual 

performance and o f the first system’s learning performance, and we discuss implications on 

interventions for atypical prosodic production in ASD.

5.1 System 1: Learning from affective prosody

The first system recognizes affective valence from robot-directed speech prosody in real 

time. In E. S. Kim & Scassellati (2007) we showed that this affective valence signal can be 

used as a real-time feedback mechanism to a robotic learning system. Affective expression is 

among the communicative intents frequently abnormally expressed by some individuals with 

ASD (Paul, 2005; Tager-Flusberg et al., 2005), and has been targeted for intervention.
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We constructed a reinforcement learning system for our humanoid robot Nico (e.g., 

Doniec, Sun, & Scassellati, 2006; G. Sun & Scassellati, 2005), which uses prosodic feedback 

to refine the parameters o f a social waving behavior. We defined a waving behavior to be an 

oscillation o f Nico’s elbow joint, parameterized by amplitude and frequency. Our system 

explored a space o f amplitude and frequency values, using q-learning (Russell & Norvig, 

2003, pp. 775-777) to refine the wave behavior until it optimally satisfied a human tutor. To 

estimate the tutor’s affective valence as feedback in real-time, we first segmented speech 

from ambient noise using a maximum-likelihood voice-activation detector. We then used a 

k-nearest neighbors classifier (Russell & Norvig, 2003, pp. 733-736), with k=3, over 15 

prosodic features, to estimate a binary approval/disapproval feedback signal from segmented 

utterances. Both our voice-activation detector and prosody classifier were briefly trained on 

the speech o f the tutor. We showed that our system learns the tutor’s desired wave, over the 

course o f a sequence o f trial-feedback cycles. We demonstrated our learning results for a 

single speaker on a space o f nine distinct waving behaviors.

5.1.1 Introduction

5.1.1.1 Socially-guided machine learning

Evidence matches intuition that, as with people or pets, long-term relationships with robots

are best maintained if the robots adapt to their human counterparts. Even without human-

level knowledge or understanding, pets are able to maintain intimate relationships with their

human counterparts, probably in large part on the basis o f their responsiveness to social

information, including touch, speech prosody and spoken words, and body language and

nonverbal gestures. Beyond recognizing verbal and non-verbal communications, a robot

should respond, adapt to, learn from that which is communicated (it’s only so helpful for a
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dog to hear that his person is forbidding it; much more helpful if the dog can learn not to 

dig in the garbage can). Much work has been done to recognize communicative modalities, 

like speech, nonverbal gestures, gaze direction. And much work has been done in machine 

learning from physical environments, for example, to map a novel environment or to learn 

the affordance o f a tool or object.

Besides being important for adapting to new information in the environment (e.g., 

avoiding danger, keeping a secret upon a stranger’s entrance to the room), learning in 

response to human social cues is important for human-robot cooperative tasks.

A recent exploration into human-guided machine learning has revealed that a simulated 

robot can learn a simple sequential task, such as a cleaning up a virtual kitchen, given 

feedback from a human tutor. In Sophie’s Kitchen, a tutor communicates using a mouse to 

scroll a feedback meter between extremes o f strong approval and strong disapproval 

(Thomaz, Hoffman, & Breazeal, 2006).

The present work extends the exploration o f human-guided machine learning into the 

physical world, where a robot learns to modify its behavior, given a more naturally social 

human communication: speech prosody.

5.1.1.2 Communicating prosodic affect to robots and computers

Speech prosody is essentially “tone o f voice.” It is comprised o f the highness or lowness, the 

scratchiness or smoothness, the loudness or softness, and the quickness or slowness, with 

which a speaker can alter their pronouncement o f an utterance. Functionally, while prosody 

also communicates syntactical and pragmatic information, in the present work we are 

concerned with its function as a mode for communicating emotions and attitudes, or affect.
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Humans modulate their tone o f voice to communicate affect. We raise our voices in 

frustration, or comfort small children using hushed speech. We use consistent tones o f voice 

to indicate displeasure or joy to our pets. In the last decade, numerous studies have shown 

that, with varying degrees o f constraint and accuracy, affect can be classified automatically 

from recordings o f speech (Breazeal & Aryananda, 2002; Liscombe, Venditti, & Hirschberg, 

2003; Robinson-Mosher & Scassellati, 2004; Slaney & McRoberts, 2003).

In the present work, in response to affective prosody, we extend beyond hard-coded 

expressive postures to using prosodic affect recognition to drive a system, which learns to 

refine the social behavior o f waving.

5.1.2 Refining behavior using prosodic feedback

We have implemented our prosody-driven learning system on our humanoid robot Nico, 

within Nico’s lab environment. Our learning system is trained using an interaction loop, 

shown in

Figure 5.1. For each iteration o f the interaction loop, Nico performs a waving behavior, 

after which it waits a pre-determined amount o f time for a possible utterance o f feedback. If 

the tutor utters a response, the affect o f the utterance is calculated, producing a binary 

approving/not-approving result. This binary approval signal is the feedback that drives the 

q-learning system. Nico iterates through the interactive loop until the q-learner fixates for 

some pre-selected number of cycles on a single waving behavior, which Nico estimates to be 

the goal behavior.
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H um an instru c to r 
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Figure 5.1 Interaction loop flow for prosody-driven learning. This loop iterates until the 
robot selects the same waving behavior a pre-determined number o f cycles in a row, at 
which point it declares that behavior to be the goal behavior. Nico’s estimate o f prosodic 
affect takes the form o f a binary approval/not-approval signal.

5.1.2.1 Infant- and robot-directed speech

Nico, shown in Figure 5.2, is an upper-torso robot, built in the proportions o f a one-year-old 

infant. Nico is equipped with a seven degree-of-freedom neck and head assembly, and a six 

degree-of-freedom arm. Nico wears a fixed smile and infant clothing, encouraging humans 

to interact with it socially. We make a fundamental assumption regarding human interaction 

with Nico: we assume that people will interact with Nico as though it is a small child or an 

infant, speaking to it using exaggerated prosody. This is because it is easier to classify affect 

in the prosody o f infant-directed speech (Liscombe et al., 2003).

Speakers tend to use prosody with exaggerated features when speaking to infants. This 

speaking style is frequendy termed Motherese (Fernald, 1989). Compared with adult-directed
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Figure 5.2 O ur humanoid robot Nico, waving. Nico has a torso built to the proportions o f a 
50th-percentile, one-year-old human infant.

prosody, infant-directed prosody features higher pitch and wider pitch range (Fernald & 

Simon, 1984; Garnica, 1977; Menn & Boyce, 1982; D. N. Stern, Spieker, Barnett, & 

MacKain, 1983), and longer vowels at phrase (Morgan, 1986) and clause boundaries (Ratner, 

1986). Breazeal and Aryananda observed that people tend to extend their use o f Motherese
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to their robot Kismet, a humanoid with facial features designed to appear childlike (Breazeal 

& Aryananda, 2002).

5.1.2.2 Interaction environment and audio capture

Nico’s tutor’s utterances are recorded in a real-time interaction loop, coupled with Nico’s 

actions, within our lab environment. Acoustically, the lab environment is extremely noisy, 

given the unavoidable proximity o f a rack o f computers controlling Nico’s motor and visual 

systems. The tutor’s speech is recorded at a sampling frequency o f Fs =  220 5 0Hz,  using a 

mono-input microphone clipped to the tutor’s clothing, within six inches o f the tutor’s 

mouth, to increase signal energy, given high environmental noise.

Following acknowledgement from the robot’s motor controllers that Nico has finished 

performing its waving behavior, three seconds of audio are recorded, within which time the 

tutor has presumably responded to Nico’s movement.

5.1.2.3 Overview of affective prosody recognition

We estimate prosodic affect within each audio response clip as follows:

1. We first cut the response clip into overlapping, short-time analysis windows, each 

25ms long. The start times o f neighboring windows are separated by 10ms. Short-time 

windowing is necessary for spectral analysis o f auditory data, in order to employ notions of 

stationarity in frequency for any temporal segment. These short-time windowing values are 

standard in speech recognition (Quatieri, 2002).

2. We perform voice-activation detection (VAD), checking each short-time window for 

speech. We then concatenate consecutive windows to form continuous speech segments, 

smoothing over brief inconsistencies in VAD output.
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3. We estimate the prosodic affect in each speech segment, and send this estimate to the 

waving behavior learner.

5.1.2,4 Speech segmentation

We use a VAD to segment this three-second response clip to isolate short-time (10 ms- 

separated, 25 ms-long) analysis windows containing speech. Windows are derived by 

multiplying each three-second response clip x[n] by a Hamming windowing function:

where Nw is the number o f samples in the window (Quatieri, 2002, p. 62). At a recording 

sampling frequency o f 22050 Hz, Nw =  551. For each window, our voice-activation 

detector conducts maximum-likelihood detection over three features calculated over a short- 

time window of the acoustic signal X ,  [n]:

1. total energy over the window

x,[n] = x[n]w[n, r] (5.1)

defined as

for 0 < n < Nw -  1

otherwise

N

energy, (5.3)
i

2. variance o f the log-magnitude-spectrum

vims, = var (log(abs(X(/oj » ) )
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3. variance o f the log-spectral-energy

vie,  =  var(log(A(/w)2)) (5-5)

where X( ja j) is the discrete-time Fourier transform o f X ,  [n].

The VAD is trained on auditory data recorded from the tutor’s voice before the 

interaction loop begins. For our learning system, we trained on 15 seconds o f continuous, 

ambient noise, and 8 seconds o f continuous, uninterrupted speech from the speaker. Voice- 

activation detection performance is described in Section 5.1.3.

5.1.2.5 Functional, perceptual, and acoustic properties of speech prosody

Prosody is the music o f speech. It is manifested in variations of psychoacoustic percepts of 

pitch, loudness, duration o f syllables and pauses, and voice quality (e.g., hoarseness or 

voiceless whisper). In English prosody is somewhat determined by linguistic considerations, 

such as stress on syllables within words, and question versus non-question information. 

Otherwise, English prosody flexibly conveys paralinguistic or nonlinguistic information, 

such as the speaker’s intention or attitude, and mood or affective state (Mixdorf, 2002).

Pitch is the highness or lowness o f the voice, sometimes called the tune or melody o f an 

utterance. Pitch is a percept that roughly correlates acoustically with the fundamental 

resonant frequency JO o f voiced phonemes, including vowels, nasals (the sounds of the 

letters “m” and “n”), voiced obstruents (e.g., “b”) and approximants (e.g., “1”). Most adult 

male voices vary in pitch over frequencies from 50 to 300 FIz. The pitch o f adult females 

and children can range from 150 to 1000 Hz (Quatieri, 2002). The physical correlate o f pitch 

is the fundamental frequency (JO) o f a periodic signal, and the physical correlate o f volume is 

acoustic energy (Quatieri, 2002).
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5.1.2.6 Classification of prosody by ^-nearest neighbors

O ur prosody classifier decides whether or not an utterance indicates approval. We choose to 

map utterances to a simple, binary approving/not-approving signal because such a binary 

signal can apply to various machine learning contexts, and to simplify affect classification.

This system uses pitch and volume features, as we presume that for the purposes o f 

providing approving and disapproving feedback, the tutor will tend to produce consistendy 

short utterances in a consistent tone o f voice. We have designed our classification features 

based on those used by Robinson-Mosher and Scassellati in the same noisy lab environment. 

Our 15 features are comprised o f statistics derived from estimates o f from pitch, energy, and 

energy-weighted pitch. Each o f these measurements is estimated for each short-time window 

in the speech segment.

We estimate f t  using a cepstral method (Noll, 1967; Quatieri, 2002). We post-process f t  

estimates by applying a temporal smoothing filter (uniformly average, over three windows), 

which averages each window’s f t  estimate with those o f its immediately preceding and 

following neighbors.

We estimate energy for each speech segment window according to Eqn. 1. Finally, we 

derive a new measurement, for each short-time window, of energy-weighted pitch by taking 

the product o f the pitch and energy estimates.

From these three measurements o f pitch, energy, and energy-weighted pitch, we 

calculate the mean, variance, nonzero minimum, maximum, and range (or maximum- 

minimum) values over the speech segment. This gives us our 15 classification features.
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We presume that our binary classes o f approval and not-approval will separate well and 

cluster within each class. Therefore, we use /c-nearest neighbors, to classify novel utterances. 

High accuracy in preliminary trials led us to select k  =  3.

The prosody classifier’s training data is acquired from the individual tutor, in an 

interaction loop similar to the final learning interaction loop. To generate training examples 

o f approving and not-approving prosodic affect, the tutor is given a simple, interactive 

training game, in a similar style to the interaction sequence used to train Nico. This training 

game is designed to elicit prosody similar to that elicited during Nico’s waving training, and 

to provide automatic labeling for the prosody classifier’s training data. In the prosody 

classifier’s training game, the tutor is told to train a remote robot on how far it must travel 

from a hazard to reach safety. The tutor is given the threshold o f safe distance from a 

practice hazard. The tutor is allowed only to provide the remote robot with information via 

tone o f voice. Training involves presentation to the tutor o f a sequence o f distances traveled 

by the remote robot. In response to each distance reported, the tutor must give the robot 

prosodic feedback. These feedback utterances form the corpus o f training examples to the 

prosody classifier. Because the robot’s performance and the threshold are known before the 

tutor produces each training example, the examples are easily, automatically labeled.

5.1.2.7 Reinforcement learning of waving behavior parameters

We demonstrate prosody as a feedback mechanism for the problem of refining Nico’s social 

waving behavior. We define a waving behavior to be an oscillatory motion at Nico’s elbow 

joint, around a fixed raised arm and hand position. A waving behavior can be parameterized 

by the amplitude (measured in joint angle degrees) and frequency o f oscillation.
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Figure 5.3 A space o f nine distinct waving behaviors. Each box represents one waving 
behavior state. In our experimental state space, waving behavior states are ordered from left 
to right with increasing amplitude, and from bottom to top with increasing frequency.

In this system, Nico is presented with a space o f nine waving behaviors, combining three 

amplitudes ranging from small to large, and three frequencies ranging from slow to fast. The 

space o f waving behaviors is organized as shown in Figure 5.3. Each box in the figure 

represents a single waving behavior. During each trial-feedback cycle, Nico can transition to 

a new waving behavior if it shares an edge with its most recent waving behavior’s box, or 

Nico can choose to repeat the same waving behavior. This space can be thought o f as a 

finite state machine with 9 states, and the learning task as the problem of identifying the goal 

state.

Before beginning an interactive tutorial with Nico, the tutor chooses a goal for what kind 

o f waving behavior she would like Nico to perform. Nico initiates the tutorial by arbitrarily 

selecting a waving behavior and performing it.

Nico uses q-learning to discover the tutor’s desired wave state. Therefore, Nico 

maintains an internal estimate o f the utilities or q-values, Q(s, a),  for the transitions between
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each waving behavior. Here, S is a waving behavior state, and a is an action or transition 

from s to Nico’s next waving behavior state s ’ (Russell & Norvig, 2003, pp. 763—784).

Following each transition and its demonstration o f its newly selected waving behavior, 

N ico’s q-learner receives prosodic feedback, R(s, a) E {0,1}, which it treats as a q-learning 

reward signal and uses to update the q-value for its most recent transition between waving 

behaviors:

<20, a) = (1 -  a )Q (s ,a )  +  a(R(s,  a ) +  y  max Q(s’, a')) (5.6)
a'

where s’ is the next waving behavior, which transition a leads to, from previous waving 

behavior S,  and a’ is a transition leading from waving behavior s ’ (Russell & Norvig, 2003, 

pp. 763-784).

The q-learning parameters CL and y  influence the sensitivity o f q-values to changes in the 

q-values o f successor states and transitions, and the number o f predecessor states and 

transitions, whose values will be affected by updates to q-values, respectively (Russell & 

Norvig, 2003, pp. 763-784).

As for Nico’s choice for its Zth action, we have selected the following action policy: from its 

current waving behavior, with some probability (1 — p[Z]) Nico selects the transition with 

the highest q-value. However, with probability p[Z], Nico instead uniformly randomly selects 

a transition.

Random exploration o f the state space is important for two reasons. First, in the case 

where Nico misclassifies the prosodic affect, it can update its q-values to incorrectly prefer 

an undesirable transition. In such a case, random exploration can give Nico a new
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opportunity to correct its error or return to an optimal path to goal. Secondly, if the state 

space o f waving behavior should contain a local maximum, and if Nico finds itself 

performing the locally optimal waving behavior, a random transition away from the local 

maximum can give Nico an opportunity to seek the global optimum. In order to allow Nico 

to finally converge on some waving behavior, we allow the probability p [/] o f random 

exploration to decrease by a factor that grows geometrically with the number o f trial- 

feedback cycles:

p[l] =  p , ( ‘ (5.7)

where I is the number o f cycles.

5.1.3 Validation experiment

We tested the recognition and learning systems in a closed, interactive feedback loop with a 

single human tutor (myself). Voice-activation detection was trained on 15s o f background 

noise and 8s o f continuous speech. Prosody classification was trained on 19 approving and 

disapproving feedback utterances, captured and labeled using the remote robot safety 

scenario.

For our q-learning system, we used the parameters a  = .5; y = .8; p , = .7; £ = .95. We 

arbitrarily choose to let Nico start with a small, slow waving behavior, and we assign the 

tutor to prefer a big, fast waving motion.

5.1.3.1 Voice-activation detector performance

The maximum-likelihood voice-activation detector exhibited only 3.4% error, including both 

false positives and negatives, when tested over the VAD training corpus itself. We did not
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Figure 5.4 Training background (top) and speech (bottom) histograms over energy 
measurements, one o f three voice-activation detection (VAD) features. The VAD derives 
Gaussians probability distributions from these sample distributions, and performs 
maximum-likelihood detection on novel short-time audio windows.

measure VAD error for any live interaction data, as we do not have a means to automatically 

acquire true voice activation labels in during tutorial. Figure 5.4 shows distributions of 

background noise and speech training samples for energy, the decision feature exhibiting the 

best separation between the noise and speech distributions. The background noise 

distribution is shown in the top plot, and the speech distribution is shown in the bottom 

plot.
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Figure 5.5 Prosody classifier training data distributed over /9-mean and energy-range 
features. Utterances featuring approving prosody are marked by “ +”s and utterances 
featuring disapproving prosody are marked by “o”s. For these two features, the training data 
shows clear separation.

5.1.3.2 Prosody classification

The prosody classifier was trained on a corpus o f 19 utterances, including 10 o f approving 

and 9 o f disapproving affect. Leave-one-out cross-validation over training data results in 

false positive and miss rates both o f 5.3%.

Figure 5.5 shows the training utterances’ distributions overy0-mean and energy-range 

features, two o f the 15 training features consisting o f simple statistics derived from acoustic 

measurements of JO, signal energy, and energy-weighted-/!. Over these two features, the 

training data shows clear separation.
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Prosody classifier performance was measured over the particular tutoring interaction 

sequence presented in Figure 5.6. Presuming that the tutor’s prosody was consistent with the 

desirability o f each tried transition, the true prosodic values were estimated from Nico’s 

sequence of transitions. For every transition (including random, as opposed to step-wise) 

which brought Nico closer to the desired waving behavior, the true prosody was estimated 

to be approving, and for transitions (including random, as opposed to step-wise) that 

brought Nico farther from the goal behavior, the true prosody was estimated to be not- 

approving.

A comparison o f these estimated true prosody values with the actual output o f the 

prosody classifier showed that the prosody classifier made 0 false positive errors and missed 

two, or 8.3%, o f all approving utterances, falsely classifying them as not-approving.

5.1.3.3 Learning the tutor’s goal behavior

Figure 5.6 shows Nico’s approach to the desired waving behavior, over the course o f an 

interactive tutoring sequence. The plot shows the cumulative distance, measured in 

transitions, between Nico’s current behavior and the goal behavior. The cumulative error 

curve has steep slope for trials during which Nico’s waving behavior is very different from 

the goal behavior. On the other hand, the cumulative error curve is horizontal for those 

trials during which Nico is performing the goal behavior.

Figure 5.6 indicates that Nico performs the goal behavior five times in a row, from the 

12th-17th trials, and then transitions away from the goal behavior, exploring behaviors 

which are far from the goal, until finally returning back to the goal behavior.

If  Nico found the goal behavior, why did it later switch to another behavior? The answer

is that Nico’s action policy calls for it to select the transition with optimal q-value most o f
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Figure 5.6 Convergence o f waving behavior q-learner onto desired waving behavior. The 
blue line shows cumulative error versus number o f trials in the tutorial sequence. Zero slope 
in the cumulative error curve indicates transition to the goal behavior, producing no 
additional error. Circles demarcate the trials during which Nico chose its next waving 
behavior uniformly at random. The red line indicates the declining probability (scaled by a 
factor o f 100) o f such random exploration, scaled by a factor o f 100.

the time, but with some probability to select, uniformly at random, any transition, regardless 

o f q-value. In Figure 5.6, circles mark the trials during which Nico randomly selected its next 

behavior. Note that from the beginning through the middle o f the sequence, when Nico 

selects a transition at random, this results in the accumulation of error, as Nico explores far 

from the goal behavior. However, near the end o f the sequence, Nico recovers to the goal 

behavior rapidly, as indicated by the horizontal cumulative error curve.
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In general it is safe to expect that as the number o f trials increases, Nico will find and 

stay fixated on the goal behavior. This is because the probability o f randomly exploring away 

from the goal behavior decreases geometrically with time, and because as time passes, Nico 

enriches its model for the space of behaviors. For example, Nico’s path indicates that during 

trials 25-33, Nico explored previously unvisited behavior states, causing it to learn q-values 

over these novel states.

This knowledge allowed Nico to recover immediately to the goal state, following random 

explorations away from it in trials 35 and 40. After 47 trials within this sequence, the 

probability of randomly choosing an action was only 6.3%.

5.1.4 Discussion

This system automatically recognizes positive and negative affect in a teaching interaction 

with a robotic learner. In Chapters 2 and 4, we described human-robot interactions over 

groups o f adults with typical development, children with typical development, and children 

with ASD, in which participants directed affectively expressive prosody to robotic learners. 

Although we have not yet automated recognition o f those participants’ affective prosody, the 

system described in this chapter lays out a possible solution for that automation. Speech 

prosody is often observed to be oddly monotonic or inappropriately sing-song in individuals 

with ASD (Nadig & Shaw, 2012; Tager-Flusberg & Caronna, 2007), and has been cited as 

functionally detrimental to social interaction, and an important target for intervention (Paul, 

Shriberg, et al., 2005). Automation o f affective expressions in prosody would allow users to 

practice speech prosody with an automatic judge outside the clinic, reducing labor in 

interventions.
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5.1.4.1 Prosody as feedback to drive machine learning

In addition, this system allows a person to use real-time speech prosody to drive a physically 

embodied machine learner. We have shown that it is possible to recognize affect in prosody 

in a real-time, interactive loop, with a high level o f accuracy that makes possible its usage in a 

real-time learning system.

5.1.4.2 Extension to other individuals

Initial explorations using other participants to tutor Nico have confirmed the importance of 

affective response from the robot, as previously demonstrated by Breazeal and Aryananda 

(2002). Even mothers o f infants and highly expressive caretakers o f pets, who are 

accustomed to speaking Motherese with their children or animals, indicate reluctance to 

express exaggerated affect to , in the absence o f affective feedback from the robot.

5.1.4.3 Extension to other affective states

Previous work in prosody classification has successfully classified over other affects, besides 

approval and disapproval. Thomaz, Hoffman, and Breazeal (2006) showed that humans 

often prefer to give guidance, which may be viewed as attentive affect, as well as positive or 

negative reinforcement, which may be viewed as approving or disapproving affect. It’s 

possible that other prosodic affects may enrich a tutoring interaction with a robot, by 

providing feedback other than positive and negative reinforcement. Following the work 

described in this chapter, we studied the affective prosody that untrained adults directed 

toward a robotic learner and found that people provide affectively expressive prosody before 

the learner completes a trial action, and that the intensity and quantity o f the affective 

expressions vary depending on the learner’s performance (Chapter 2).
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5.1.5 Implications for socially assistive robots

This system is a closed looped, using automatically recognized affective prosody to drive a 

learning algorithm. O ur demonstration over a toy learning task and a user with expert 

knowledge has obvious methodological limitations. Nonetheless, the study proves the 

concept that we can close the loop on automated response to recognized social behavior.

As our understanding o f the behaviors children with ASD use while interacting with 

robots we are simultaneously enriching the foundations for automating recognition o f these 

behaviors. v is a target for active research in intervention. Our proof-of-concept 

demonstration o f a closed-loop, automatic recognition and learning system presented here 

endorses future work in the investigation and development of affective prosodic targets in 

robot-based intervention.

5.2 System 2: Recognition of mutual belief cues in 
infant-directed prosody

Deficiencies in theory of mind are thought to underlie many of the social difficulties 

experienced by individuals with ASD. Pierrehumbert and Hirschberg (1990) described 

prosodic expressions used by speakers to modify the information they share with listeners, 

that is, to manage mutual belief. These cues may be an important target for intervention, or a 

useful diagnostic indicator, in autism. Here we describe a novel system that classifies mutual 

belief management from infant-directed prosody. This investigation demonstrates the 

feasibility o f automatic recognition o f mutual belief management communications in 

prosody, and also suggests these as a behavior which deserves exploration among children 

with ASD, both within interactions with robots and generally.
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We examined whether evidence for prosodic signals about shared belief can be 

automatically identified within the acoustic signal o f infant-directed speech (E. S. Kim et al., 

2008). We examined infant-directed speech because it is known to have exaggerated acoustic 

features and because studies have shown that some robots can elicit speech that is similar to 

Motherese, making Motherese a good match for human-robot interaction applications. Two 

transcripts o f infant-directed speech for infants aged 1;4 and 1;6 were labeled with distinct 

speaker intents to modify shared beliefs, based on Pierrehumbert and Hirschberg’s theory of 

prosodic expression o f mutual belief cues. Acoustic predictions were made from intent 

labels first within a simple single-tone model that reflected only whether the speaker 

intended to add a word’s information to the discourse (high tone, H*) or not (low tone, L*). 

We evaluated whether we could acoustically identify such cues in infant-directed prosody. 

We also predicted pitch within a more complicated five-category model that added intents to 

suggest a word as one o f several possible alternatives (L*+H), a contrasting alternative 

(L+H*), or something about which the listener should make an inference (H*+L). The 

acoustic signal was then manually segmented and automatically classified based solely on 

whether the pitches at the beginning, end, and peak intensity points o f stressed syllables in 

salient words were closer to the utterance’s pitch minimum or maximum on a log scale. 

Evidence supporting our intent-based pitch predictions was found for L*, H*, and L*+H 

accents, but not for L+H* or H*+L. No evidence was found to support the hypothesis that 

infant-directed speech simplifies two-tone into single-tone pitch accents. O ur system and 

demonstrations establish the feasibility o f automatically recognizing mutual belief cues in 

infant-directed prosody, and also suggest future exploration in the production of such 

prosodic cues among individuals ASD.



5.2.1 Introduction

Prosody, or the melody of an utterance, can contain information about what the speaker 

thinks the listener knows (or does not yet know) about an utterance. For example, when 

introducing herself for the first time, a speaker might say “Hello, Pm Eli Kim” in a high 

pitch, indicating that she is communicating new information to the listener. When giving a 

talk before an audience that already knows her, however, she might instead begin with a 

desultory “Well, as you know, Pm Eli Kim” with low instead o f high pitches on the name to 

indicating that she is reiterating information the audience already knows. Our system uses 

acoustic information to automatically detect prosodic signals o f new or old information in 

infant-directed prosody.

The literature on adult-directed prosody has produced a rich classification scheme to 

associate acoustic cues in speech with specific intents to modify the listener’s and speaker’s 

shared beliefs (Pierrehumbert & Hirschberg, 1990). Children with autism frequently fail to 

produce prosodic signals that adequately differentiate between old and new information 

(McCaleb & Prizant, 1985), another deficient communication skill which marks prosody, and 

thus the speaking individual, as atypical or odd (Mesibov, 1992; Shriberg et al., 2001; Van 

Bourgondien & Woods, 1992).

As mentioned previously, infant-directed speech has exaggerated prosodic features. 

Investigations o f infant-directed speech have focused on the use o f these exaggerated 

features to emphasize turn-taking signals (Snow, 1977), speech stream segmentation (Fernald 

& Simon, 1984; Thiessen, Hill, & Saffran, 2005), and signals to attract and maintain an 

infant’s attention and communication o f affect. There has also been investigation o f infant- 

directed prosodic signals o f new versus old information (Fernald & Mazzie, 1991). However,
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there has not been any investigation o f whether infant-directed prosody contains the same 

breadth o f shared belief modifying signals as does adult-directed prosody. Does infant- 

directed speech contain the same signals about mutual belief, or do parents simplify infant- 

directed prosody by reducing their selection o f prosodic signals? The experiment described 

in this paper examines the prosodic patterns of infant-directed speech taken from the 

CHILDES database (MacWhinney, 2000) in order to determine whether infants as young as 

16 months receive the full variety o f pitch accents that signal, in adult-directed speech, 

speaker intent to modify shared knowledge.

Below, we provide background about prosody, including Pierrehumbert and 

Hirschberg’s (1990) theory o f the acoustic correlates o f mutual belief cues, which our system 

semi-automatically recognizes. Section 5.2.2 describes our acoustic classification method. 

Section 5.2.3 will describe our experiment in which audio data from the CHILDES corpus 

was analyzed to determine whether the infant-directed speech matched the predictions 

implied by Pierrehumbert and Hirschberg’s system. Section 5.2.4 will include our analysis of 

the data, and our conclusions in Section Error! Reference source not found, will discuss 

implications on socially assistive robots for autism interventions.

5.2.1.1 Recognition of infant- and robot-directed prosody

In the robotics and cognitive science literature, previous computational research on infant-

or infant-like, learner-directed speech has largely focused on communication o f mood or

affective intent. Systems have been built to recognize or describe the prosody o f speaker

approval (with sustained pitch peak intensity) and prohibition (with low, staccato tones)

(Breazeal & Aryananda, 2002; E. S. Kim & Scassellati, 2007; Robinson-Mosher & Scassellati,

2004; Roy & Pentland, 1996; Slaney & McRoberts, 2003), bids to attract attention (with
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rising pitch contours) (Breazeal & Aryananda, 2002; Ferrier, 1985; Robinson-Mosher & 

Scassellati, 2004; Slaney & McRoberts, 2003), and soothing intent (with falling pitch 

contours) (Breazeal & Aryananda, 2002; Papousek, Papousek, & Bornstein, 1985; Robinson- 

Mosher & Scassellati, 2004). Infant-directed prosody has also been investigated for cues to 

turn-taking (Snow, 1977), speech stream segmentation (Fernald & Simon, 1984; Thiessen et 

al., 2005), and new versus old information (Fernald & Mazzie, 1991).

There has been limited investigation into shared belief cues in infant-directed prosody. 

Adult-directed prosody is thought to convey information about what is mutually believed 

between speaker and listener (see Section 5.2.1.1). Whether such signals exist in infant- 

directed prosody has not been previously studied in the framework we discuss below, but 

there might be good reason to think that adults might modify their prosody to make it less 

complex. It is known that parents tend to speak to their children in exaggerated prosody, 

known as “Motherese” (Fernald, 1985). Infant-directed prosodic exaggeration has inspired 

some builders of robotic prosody classifiers to attempt to elicit Motherese-like speech with 

infant-like robots (Breazeal & Aryananda, 2002; E. S. Kim & Scassellati, 2007).

Whereas investigations o f Motherese have suggested that infant-directed pitch contours 

are characteristic o f specific affective intents, an alternative view may be that these contours 

are determined by the informational content o f the speech. Pierrehumbert and Hirschberg 

have argued that the tune o f adult-directed prosody cannot be explained either in terms of 

the speaker’s speech acts or emotion alone, since the mapping from tune to speech act or 

emotion is at best one-to-many (Pierrehumbert & Hirschberg, 1990). Instead, to describe 

adult-directed prosody they proposed the system described below, in which prosody signals 

each word’s relation to the speaker’s intended modification o f shared beliefs. To our
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knowledge, before we commenced our own study, there had been no investigation o f the 

extent to which Pierrehumbert and Hirschberg’s (1990) model for adult-directed mutual 

belief cues also holds for infant-directed speech, though some similar observations about 

novelty affecting pitch have been made in the infant-directed literature (Fernald & Mazzie, 

1991).

5.2.1.2 Prosody, shared beliefs, and discourse structure

The following exposition of the shared belief information in prosody is based closely on that

o f  Pierrehumbert and Hirschberg (1990), which has been empirically supported to some

extent (Krahmer & Swerts, 2001). The labeling scheme summarized here is the basis for the

popular ToBI representation of prosody (Beckman, Hirschberg, & Shattuck-Hufnagel, 2005;

Silverman et al., 1992).

In English a speaker produces a pitch accent for at least one word in each utterance,

marking it as salient. A high or low pitch on the stressed word conveys whether the speaker

intends for the listener to add the word’s information to their mutual beliefs (Pierrehumbert

& Hirschberg, 1990). Accented words are perceived by listeners to be prominent, or

stressed, with relation to other words. In English, every word has at least one stressed

syllable; however, accented words receive an additional stress over other words. Stress of

one word over others is conveyed though a combination o f greater loudness, longer

duration, and hyperarticulation o f that word’s stressed syllable. There are two simple pitch

accents, H and L, and three two-tone pitch accents, which combine H and L pitches.

The H* pitch accent is used to convey the speaker’s intent for the listener to add the

accented information to their shared beliefs. Perceptually, an H*-accented word will feature a

relatively high pitch at the perceptually prominent syllable in the prominent word. The **’
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diacritic indicates temporal alignment with the stressed syllable. This accent is commonly 

used when introducing new information, and frequently appears in declarative statements. 

For instance,

Alice likes Bob
H* H* L L%

Here, the speaker S  intends for the listener R to add the fact o f Alice’s liking and the fact 

that Bob is liked to R ’s beliefs. This utterance thus would be appropriate if, for example, 

neither person had been mentioned in the conversation previously. (The L L% at the end 

refers to the pitch o f the phrase and whole utterance, respectively; we include these markings 

for completeness but will not discuss them.)

H* can be used to add connoted rather than denoted information to R ’s beliefs. For 

instance, in this example, 5  tells R what R has done (and thus presumably already knows). 

Here S  uses an H* accent to convey that R should add knowledge o f S ’s awareness to R ’s 

beliefs.

You ate my cookie on purpose
H* H* H* H* L L%

The IT simple pitch accent is perceptually indicated by a prominent word that is close to 

the baseline pitch for the speaker. It indicates the speaker’s intent for the listener not to add 

the accented item to his beliefs. This accent is commonly used when 5  is uncertain, such as 

in yes or no questions:

Did our paper get rejected 
L* L* H H%
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L* can indicate S ’s belief that the expression is incorrect:

I guess our paper just isn’t good enough 
L* L* L* L* L* L L%

or when uttering information believed already known by R:

I’d like coffee and I think I’ll have a muffin 
L* L* L* H H%

In all these cases, S does not intend for R to add the L* accented information to their shared 

beliefs, since the L* accented items are uncertain, false, or previously added.

In two-tone, as in single-tone, pitch accents the **’ indicates temporal alignment with the 

stressed syllable. The L*+H pitch accent perceptually is perceived as a low frequency on a

stressed syllable, followed immediately by a rising pitch contour to a higher pitch. L*+H

pitch accents indicate uncertainty in an implied comparison o f scale. For example,

A: This talk is terrible.
B: The paper was good

L*+H L H%

The L*+H accent on good indicates S ’s uncertainty as to the relevance of the paper’s quality 

to the quality of the talk.

Likewise, L+H* pitch accents also signal an intended comparison o f scale, but are 

instead conveyed with certainty, expecting the listener to add the accented item to S  and R ’s 

shared beliefs. For example,

A: This paper is awfully informal.
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B: It’s even chatty for a conference paper
L+H* L L%

The H*+L accent signals that the listener should infer support for the accented items 

from previously existing beliefs. Like the H* accent, H*+L signals that R should add the 

accented item to their beliefs, but also should make an inference based on the new 

information and existing beliefs, such as an implied course o f action:

Your dinner’s getting cold
H*+L L* H*+L H L%

Pierrehumbert and Hirschberg suggested that H+L* possessed a similar meaning to 

H*+L, but was used to convey information already known to the speaker (Pierrehumbert & 

Hirschberg, 1990). However, (Pierrehumbert & Hirschberg, 1990) also noted that “there is 

some difficulty in separating the meaning o f H+L* from that o f H*+L, because in many 

cases the phonological analysis is unclear” (p. 300). Moreover, in modern labeling 

conventions, the H+L* notation has been superseded with H+!H*, to note that this contour 

usually remains higher than other low tones (Beckman & Hirschberg, 1994). For these 

reasons, this tone was not predicted for any utterances in our experiment, though we did 

check for acoustic evidence of it.

5.2.2 Shared belief cue recognition algorithm

Usually pitch accents are manually classified by trained specialists using acoustic recordings 

and graphical representations of the pitch contour over time (Beckman et al,, 2005). Manual 

classification tends not to produce high amounts o f agreement among experts (Syrdal & 

McGory, 2000).
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Attempts to automate pitch accent labeling from acoustic features have tended to focus 

on locating, rather than classifying, pitch accents (Ananthakrishnan & Narayanan, 2008; 

Hasegawa-Johnson et al., 2005), have classified only a very limited subset o f pitch accents for 

adult-directed speech (L. X. Sun & Sun, 2002), or have classified pitch accents for languages 

beside English (B. Kim & Lee, 2006). Pitch accents have been statistically clustered with high 

agreement (78%) with listeners’ judgments, suggesting acoustic regularities distinguishing 

pitch accent categories (Levow, 2006).

We have designed a partially automated method that allows American English pitch 

accents to be acoustically, quantitatively classified. This allows our hypothesis-testing to be 

free o f bias introduced by our knowledge o f the semantic content o f  the speech, and also is a 

step toward the fully automated classification o f pitch accents. (The reader may find it useful 

to refer to Figure 5.7).

To begin, intensity and f t  contours over time are estimated using Praat phonetic 

software (Boersma & Weenink, 2010). Utterances in the CHILDES transcripts are linked to 

their temporal positions in the recordings. CHILDES’ CLAN software links text to Praat. 

Next, utterance-minimum and -maximum f t  are extracted, using Praat, giving a baseline 

pitch and pitch range for the speaker at the time o f utterance. Measuring pitch range locally 

within each utterance, instead o f over the speaker’s entire history, allows the range to adapt 

to the speaker’s current affect and immediate auditory conditions, though it has the 

disadvantage o f sometimes producing an falsely small range for utterances having no H* 

pitches. During this stage utterances within which f t  estimation software clearly fails, are 

manually discarded: failures include sudden pitch drops below 75 Hz, sudden jumps to
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Did you finish your bot tie a gain 
H* L*+H H*

Figure 5.7 A sample utterance from MacWhinney’s CHILDES corpus, with intensity (top) 
and JO (middle, dashed) extracted using Praat phonetic analysis software. The minimum and 
maximum JO o f the utterance establish the baseline and range, and their average on a log 
scale gives the dividing line between L* and FI* pitches. For two-tone classifications, the JO 
at the beginning of the stressed syllable (A) gives the first tone, and the end of the syllable 
(B) gives the second; the stress is placed based on the syllable’s point o f maximum intensity 
(*). Though the statement is phrased as a question (suggesting L*), in fact the speaker is 
essentially telling the infant that he is aware that the infant is done (H*) but is unsure 
whether the whole bottle is gone (L*+H).

overtones (doubling or halving errors), or misclassification o f unvoiced noise as pitch. 

(Section 5.2.4 describes how frequently this occurred in our experiment.)

The next step is the segmentation o f the stressed syllables in the selected words. 

Segmentation was done manually by listening to the audio and using cues from the intensity 

curves (e.g., “stops” such as “p” and “k” literally stop the air momentarily, and thus are 

clearly marked by low intensity). The stressed syllable o f a selected word is the relevant part 

o f the audio signal for pitch accent classification.

To classify a pitch accent as a single tone, JO at the point o f maximum audio intensity 

within the syllable is compared to the baseline minimum and maximum JO over the whole 

utterance. After taking the logarithm o f all three fundamental frequencies-minimum, 

maximum, and JO at time of maximum intensity-whether the maximum-intensity^/O is closer 

to the baseline minimum or maximum determines whether it is L* or H*. This comparison is 

done on a log scale, a method we introduce here for pitch accent classification because just-
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noticeable differences for pitch are logarithmic in frequency in the 50-5000 Hz range (Clark, 

2003), which covers the range o f human speech, and because H* pitch accents are thought 

to actually be medium to high pitches within the speaker’s range (Beckman & Hirschberg, 

1994), which intuitively fits well with a log-scale model.

To classify a pitch accent as two-tone, our method examines JO at the beginning and end 

o f the syllable as well. These points, which were manually identified for syllable 

identification, are subjected to the same logarithmic transformation, and classified as L or H 

based on whether they are above or below the log-transformed midpoint o f the speaker’s 

range. If the two endpoint classifications are the same, the pitch remains classified as a 

simple L* or H*. If they are different, then the pitch is classified as a two-tone accent, L+H 

or H+L. In the L+H  case, the location o f the accent mark is determined by the classification 

o f the maximum intensity point. If the pitch at the time of maximum intensity is closer to 

the log-transformed pitch baseline, it is L*+H; otherwise, it is L+H*. The maximum 

intensity classification is similarly used to distinguish between H*+L and H+L*.

Both the acoustically simple one-tone method and the two-tone method were used and 

compared to our theoretical predictions in the experiments to be described below.

5.2.3 Experiment

Two transcripts o f infant-directed speech from the CHILDES database (MacWhinney, 2000)

were examined: one o f a father speaking to his 16-month-old son (MacWhinney, 2000) and

another o f a mother speaking to her 18 month-old-daughter (Ratner, 1987). 165 words from

these transcripts were chosen as targets for comparison o f the theoretical predictions o f the

Pierrehumbert and Hirschberg model (Pierrehumbert & Hirschberg, 1990) to the observed

acoustics. A word was chosen as a prediction target if it was central to the meaning o f its
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sentence, and if the transcript context made one pitch accent category seem more likely than 

the others. Single- and two-tone predictions were made for each selected word, given the 

conversational situation. In the forced two-choice prediction, pitch accent was predicted 

depending on whether the text suggested that the parent wished to introduce informational 

content with the word or not. In the five-category prediction, the experimenters made their 

predictions based on whether the word was being tentatively suggested as one o f several 

specific alternatives (L*+H), being specifically suggested in contrast to another alternative (L 

+ H*), was a reminder o f something that the child should already know (H+L), or was 

otherwise introducing new information (H*) or not (L*). Predictions were made based on 

the textual transcripts alone, without having heard the audio recordings.

We note that our predictions assumed neither an accurate representation o f the infant’s 

belief state on the part o f the speaker, nor expectations on the part o f the speaker o f adult

like belief state for the infant listener. Rather, we assumed that speakers tailor their 

representations o f the listener’s belief states to the individual listeners and conversations. 

Our predictions reflect only indications from local context in the transcripts (of up to a few 

preceding and following sentences) about the speaker’s intents to modify what they 

apparently conceived to be mutual beliefs.

We also distinguish between introduction o f a new word (for example, the naming o f a 

novel object) and new information, a broader act, which can include, for example, newly 

achieved certainty in interpreting an infant’s proto-linguistic requests for a botde. Our H* 

predictions are o f the broader sort.
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Following transcript-based predictions, the utterances containing the selected words 

were then analyzed using the acoustic method introduced in Section 5.2.2, and the 

quantitative results compared to the theoretical predictions.

5.2.4 Results

O f the 165 utterances, 30 utterances were discarded because o f auditory noise or incorrect 

segmentation within the corpus, leaving 135 data points for each o f the single-tone and two- 

tone classification schemes.

The single-tone predictions o f L* and H* coincided with the results o f our single-tone 

acoustic analysis method (see Section 5.2.2) for 87 o f the words, or 64% of the time; this was 

significantly more often than chance (X2 (1,135) = 8.61 ;p <  0.005). Though we had 

entertained the hypothesis that the difference might be attributed to whether the word was 

contained within a question or not, there was no evidence to support this idea (X2 (1, 135) = 

1.46,/) = 0.228).

56 o f the 135 two-tone predictions were correct, an occurrence highly unlikely to be due 

to chance because o f the five categories (X2 (20, 135) = 57;p <  0.001). Broken down into 

category-by-category comparisons, we found that the H*, L*, and L*+H predictions each 

produced significantly more correct responses than could be attributed to chance (p < 0.005; 

p  < 0.001;p  < 0.005, respectively), while the L+H* and H*+L predictions provided no such 

evidence o f accuracy {p -  0.656; p  -  0.561).

However, there was no evidence to support the hypothesis that parents tended to 

simplify their pitch accents toward their children, as there was no evidence that single tones
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were more likely to be observed in the place of two-tone accents than vice versa ( j f  (1, 135) 

= 0.459; p  = 0.498).

Qualitatively, H* and H*+L were common pitch accents for introducing or reinforcing 

labels for objects (annotations are those provided by our acoustic method):

CHILD: What’s that?
FATHER: Tape recorder over there 

H* H*+L

L* was most common in cases when the parent was offering an interpretation o f what 

the child was communicating:

FATHER: You like the soldiers?
L* L*

However, L* also occurred where we had predicted H* in cases where it seemed from the 

text that the parent was pointing out new information, but the parent was actually going 

through a ritual such as reading a familiar book:

MOTHER: And that’s a rabbit with no face.
L* L*

L*+H was often used in its adult meaning o f an alternative that the speaker was 

unwilling to support, but in cases where one might have expected L+H* to indicate 

correction, the speaker did not appear to follow through:

CHILD: dog? ...
FATHER: is that a doggy Honey ? ...

L*+H
FATHER: or is that [ //]  he’s a kitty?

L*
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H*+L was very occasionally observed in the role o f asking the child to make an 

inference, but this was not consistent:

M OTHER [pointing to mirror]: W ho’s in there? ...
H*+L

MOTHER: That’s Amelia!
H*

As these examples illustrate, the instances in which the predictions failed to match the 

observations were often explainable by the ambiguity o f the text, and not a failure of the 

theory or acoustic method.

5.2.5 Discussion

These results demonstrate that at least some o f Pierrehumbert and Hirschberg’s acoustic 

signals about shared belief, and our acoustic method for identifying pitch accents, hold for 

American English infant-directed prosody at ages 16-18 months. Our data shows strong 

evidence for H*, IT, and L*+H accents’ usage for conveying the same information about 

mutual belief proposed in the adult-directed case, at least for the two speakers whose 

prosody we investigated thoroughly. These differences in pitch are not determined by a 

word’s embedding in a question, but mark whether or not the speaker wishes to introduce 

new information with the word, or (in the case o f L*+H) whether the speaker offers the 

word as one of several possible alternatives.
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Table 5-1 Incidence o f predictions and observations for Pierrehumbert and Hirscberg’s six 
categories o f pitch accent.

0 b s
P r e t l^ ^ ^ H L L*+H L+H* H*+L H+L* Total

H 15 8 0 2 3 0 28
L 10 30 4 4 4 2 54

L*+H 8 6 7 2 0 2 25
L+H* 3 1 3 2 6 0 15
H*+L 5 3 1 0 2 2 13
H+L* 0 0 0 0 0 0 0
Total 41 48 15 10 15 6 135

O ur findings show that even when speaking to infant listeners, with immature cognitive

and linguistic capabilities, speakers signal their intent to modify listener’s beliefs, in ways

similar to those suspected to be used for adult listeners. In other words, infants are receiving

cues about what is shared information even at an age when they are unlikely to have a

concept o f distinct states o f knowledge between distinct individuals, which is demonstrated

considerably later (Gopnik, 2001). It is therefore possible that children use pitch accent

signals in learning to reason about shared and private information. Understanding the role

o f prosody in this process o f reasoning about shared knowledge may be critical to

understanding how theory o f mind develops, and also to understanding why and how

autistic children tend to demonstrate an impaired ability to reason about minds. A better

understanding o f how typical children integrate and react to infant-directed prosody may

help early diagnosis o f autism, which is known to include abnormal prosody as one o f its

symptoms (Shriberg et al., 2001). It is possible that among the prosodic difficulties found in
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ASD are these markers o f shared belief. And if so, these should also become a target for 

intervention, and the system for automatic recognition described here may facilitate robot-, 

or more generally, technology-based interventions.

The lack o f evidence for H*+L and H+L* supports a recent tendency to view these 

particular pitch accents as less well empirically supported than others in Pierrehumbert and 

Hirschberg’s scheme (Beckman & Elam, 1997), but it is somewhat unclear why L+H* 

poorly matched our predictions. There are several possible explanations. These accents may 

be particularly difficult to accurately predict from transcripts, since the difference between 

L*, L*+H, and L+H* might depend on how strongly the parent prefers an alternative. It is 

also possible that our acoustic method does not accurately describe L+H* accents. It is also 

possible that parents intentionally avoid this contour because o f its negative connotation as a 

correction. This is a good question for future study.

What is clear is that American English infant-directed prosody contains some of the 

interesting signals about shared information theorized to exist in adult-directed prosody, and 

that a relatively simple method-comparing the log o f the maximum intensity pitch to the 

speaker’s maximum and minimum pitches-can extract them.

It may therefore be useful for creators o f robotic systems to bear pitch accents in mind 

as an additional source o f speech information. Though we have not yet measured agreement 

between our acoustic method with trained listeners’ pitch accent judgments, our method 

offers quantitative, acoustic information about speaker intent. Automating the manual parts 

o f our method, namely stressed syllable segmentation and discarding noise, are areas for 

future work.
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5.3 Conclusions

In this chapter we have described a novel system that automatically recognizes affective, 

robot-directed prosody for use in a closed-loop machine learning system, and another novel 

system by which can recognize shared belief cues from infant-directed prosody. Production 

o f affective prosody is known to be atypical among many individuals with ASD, to alienating 

effect. Evidence o f theory o f mind and prosodic deficits among individuals with ASD 

suggests the investigation o f production o f prosodic shared belief cues. The systems and 

demonstrations we have described in this chapter deepen our understanding o f the 

production o f these prosodic behaviors, and also indicate the feasibility o f automatic 

recognition o f these prosodic expressions. Automatic recognition, as well as the automatic 

responses we have demonstrated in System 1, can improve the feasibility o f robot-based 

interventions targeting these behaviors.
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Chapter 6

Interdisciplinary methodologies

While there is a rich history o f studies involving robots and individuals with autism spectrum 

disorders (ASD), few o f these studies have made substantial impact in the clinical research 

community. In this chapter we present an examination of collaborative challenges and 

strategies between clinicians and roboticists (E. S. Kim et al., 2012). We first examine how 

differences in approach, study design, evaluation, and publication practices have hindered 

uptake o f these research results. Based on years o f collaboration, we suggest a set o f design 

principles that satisfy the needs (both academic and cultural) o f both the robotics and clinical 

autism research communities. We developed these principles in the course o f designing and 

executing the studies we described in Chapter 3 and Chapter 4.

6.1 A cultural divide

Any two distinct and mature research fields are likely to have substantially different 

methodologies and research cultures. In this section, we describe some o f the critical 

differences between the ways the HRI and clinical communities typically plan, carry out, and 

report experimental studies. For simplicity, we will refer to the robotics community to indicate 

the fields, groups, and venues within which most o f the extant findings on robotics and
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autism have previously been published. This group is primarily represented by roboticists 

with backgrounds in computer science or engineering. The clinical community will refer to the 

fields and groups who conduct research on the diagnosis and treatment o f autism, and the 

venues within which they share their findings. This group is represented by clinical 

practitioners, developmental psychologists, and social and behavioral therapists.

There is a growing body o f research in effective inter- and trans-disciplinary scientific 

research, which has revealed, for instance, that collaborations are influenced by whether 

participants have faculty appointments in related academic departments and geographic 

proximity o f collaborative partners (Stokols, Harvey, Gress, Fuqua, & Phillips, 2005; Stokols, 

2006). In this chapter we describe collaborative challenges and strategies that are specific to 

clinical autism research and robotics.

We emphasize from the outset that our purpose is not to cast doubt over the methods 

and practices o f either community. Rather, it is our position that to exclusively adopt the 

methods o f one community or another would hinder progress towards the ultimate goal of 

partnership between these communities: using robots to aid the diagnosis and therapy of 

individuals with ASD. To conduct research and development according to only one 

community’s standards would render results inaccessible to the majority of the other.

Instead, we propose collaborative solutions— ways to negotiate logistical compromises and 

to design to each community’s standards— that address some o f the most pressing concerns 

o f each group while making the results at least partially accessible to both. The following 

discussion organizes interdisciplinary differences into three critical areas: research approach, 

study design, and publication and dissemination.
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6.1.1 Research approach

Within this collaborative space, the ultimate aim o f both roboticists and clinicians is to 

determine the parameters within which, and the mechanisms by which, robots can improve 

interventions for, or assessment of, individuals with autism. Despite this shared ultimate 

goal, research approaches and motivations differ. While we sometimes loathe admitting it, 

research in robotics is often driven by the capabilities o f our robots rather than the needs of 

target users. Funding awards, and their sponsored research endeavors, tend to focus on 

technological innovation, and the demonstration o f feasibility o f use. Each time a robot 

acquires a new capability, a search for applications that can take advantage o f that new 

capability follows. The motivation for this approach is sensible: technological innovation can 

rapidly open new application areas and make fundamental changes to the kind o f services 

that can be provided. Clinical research, on the other hand, is primarily driven by the specific 

needs o f the target population. Funding and research efforts are directed toward questions 

that are most likely to reap substantial benefits for individuals with ASD. This fundamental 

and initiating distinction cascades into critical differences in the ways in which the two 

research communities approach collaborative works— as well as the ways funding agencies 

evaluate results. Clinicians have been hesitant to explore robotics technology in part because 

a clear case for the utility o f robots in this area has not been made. What needs o f a child 

with ASD does the robot fulfill, what support does it provide to the family, or what 

diagnostic value does offer to a clinician? To date there are no rigorous, controlled, sample- 

based demonstrations o f a robot’s improving symptoms, family support, or characterizations 

o f individuals with ASD. Unfortunately, it is often not possible to answer these questions in 

advance o f technology development. O n the other hand, because little is known both about
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how to design human-robot interactions for individuals with autism and about how these 

individuals will respond and benefit from interactions with a robot, technology cannot be 

developed strictly in advance o f deployment to address specific needs o f individuals with 

ASD. At best, contemporary research collaborations strive to utilize a design process that 

considers input from diverse stakeholders (including clinicians, families, and other users), 

and iteratively advances technology to meet needs that are, in turn, iteratively specified by 

the user community.

Differences in fundamental approach between robotics and clinical research 

communities lead, in turn, to differences in desired outcomes from studies. At present time, 

roboticists in clinical collaborations tend to seek proofs o f concept, that is, demonstrations 

o f a robot’s successful engagement in interactions that are pleasant or socially appropriate, or 

that resemble an assessment, therapeutic or educational scenario. While engaging 

interactions are fundamental to effective interventions or assessments, a proof o f concept 

alone will likely be insufficient to motivate clinical use. In clinical studies, research is 

validated only when a clearly specified benefit to the end user has been rigorously 

demonstrated. But demonstrations o f engaging interactions with a robot do not necessarily 

show any specific clinical or functional benefit for the end user with ASD. From a 

pessimistic view a critic might claim that all existing robot-autism studies to date show only 

the ability for children with ASD to adapt to interactions with a robot, and that effectively 

training children to engage with robots will have no benefits to their ability to interact with 

other children or adults.

The study o f HRI applications for autism is nascent. Given limited knowledge o f the 

beneficial combinations of robotic form, type o f interaction, and characteristics o f affected
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individuals, at present time research efforts necessarily tend to focus on proofs o f concept.

In addition, efforts to define a clear transition model between human-robot engagements 

and human-human engagements, plans for moving from dyadic child-robot interactions to 

triadic child-robot-adult interactions, or other structural mechanisms offer the possibility o f 

moving collaborations toward demonstrated clinical utility.

Collaborative studies can provide data to support investigation o f questions uniquely 

asked by each individual community, as well as questions shared by both. Roboticists seek to 

improve technologies, in order to better investigate the uses o f HRI in autism, and clinicians 

investigate behavioral or biological markers which may distinguish individuals with ASD 

from those with typical development, as well as cognitive mechanisms which may be 

activated during interaction with a robot (Diehl et al., 2012). All these are important 

questions to answer en route toward demonstrations o f the clinical utility o f robots. As this 

interdisciplinary field gains knowledge and data, both technologically- and clinically-focused 

investigations can be iteratively advanced and refined. Studies can simultaneously acquire 

clinical interaction data necessary for shaping robotics development while investigating the 

parameters facilitating clinical utility. For instance, roboticists are interested in fully 

automating robotic perception of, and response to, human actions. However, better 

understanding o f (and data from) heterogeneous behaviors among individuals with autism is 

needed, in order to inform and train such designs. In the mean time, robots often operate 

under secret, manual control which affords the (false) appearance o f autonomous robotic 

behavior (the Wizard o f Oz paradigm; Riek, 2012; Scassellati et al., 2012). While using 

Wizard-of-Oz-style control, clinicians can make detailed observations o f children’s responses 

to robots, roboticists can acquire data which can inform next-generation autonomous
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perception and behavior selection technologies, and both sides o f a collaboration can 

investigate proofs of concept.

6.1.2 Study design

A second set o f differences exists regarding the typical methodologies employed in each

discipline. Evaluations o f robotics technology often focus on proof-of-concept, that is, on

demonstrations o f a system’s effect for one or more people (often, n < 5). These small

numbers are typically constrained by the investigation’s focus on demonstrating the viability

of the design and implementation, and by the tremendous engineering effort required to

construct a robust, reliably functional device. Focus on the technology may initially cause

roboticists to overlook the significant resources required to test with specialized populations,

the difficulties associated with accessing the target population, and methodological rigor in

user testing. To date, clinical validity and applicability have been difficult to gauge in studies

o f robotic applications for autism. This is due to insufficient provision o f standardized

characterizations o f participants; or to insufficient control allowing comparison between a

robot’s effects on individuals with and without autism, or comparison between effects of

interaction with a robot and that with an alternative device or person (Diehl et al., 2012).

The gold standard for proving efficacy o f a medical or behavioral treatment is consistency in

findings from multiple, independently conducted, randomized, double-blind clinical trials,

each o f which requires experimenters blind to knowledge o f individual participants’

assignments to comparative groups, and participants blind to the parameters o f the

experiment. Practically, however, double blinding can be an extremely difficult standard to

meet in autism research, because the differences between participants with ASD and

controls is often apparent, and the nature and intention o f a given task or intervention can
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be obvious to participants and to the experimenter. For this reason, clinical research in 

autism frequendy uses alternative designs in order to evaluate the efficacy o f an intervention 

(or specificity and sensitivity o f an assessment). However it is necessary to approach these 

designs with appropriate levels o f clinical rigor. As discussed, for example, by Reichow, 

Volkmar, and Cicchetti (2008) the clinical autism research community has defined rubrics for 

evaluating the validity o f evidence from experimental interventions, for the purpose of 

practical dissemination and application. Such standards include using adequately powerful 

sample sizes for group designs, using appropriate control conditions in both group and 

single subject designs, and generally obtaining standardized characterizations o f participants 

which can be compared to other research (see Reichow et al., 2008). With respect to study 

design standards, robotics researchers face a long tradition and deeply ingrained 

methodology and must adapt to the practices o f the clinical community. Clinical standards 

are also not negotiable within the space o f collaboration with roboticists because clinical 

research standards impact legal, economic, educational, and medical decisions regarding the 

provision o f care to affected individuals (Reichow & Volkmar, 2011). HRI studies for 

autism, with larger, statistically valid, comparisons have recently begun to emerge (e.g., Feil- 

Seifer & Mataric, 2011) and the reporting mechanisms for single subject, or case study, 

designs (which must meet specific design considerations to achieve traction within the 

clinical community; see Kazdin, 2011; Reichow et al., 2008) have also begun to gain 

acceptance within the robotics community.

In moving to studies that adhere to clinical standards, more standardized mechanisms 

for participant recruitment, for reporting population statistics, and for the analysis o f data 

with respect to control groups will become necessary. Many current robot-autism studies
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recruit participants in an ad hoc fashion, as obtaining access to populations for many groups 

is non-trivial, even within collaborations with clinicians. In addition, clear inclusionary 

criteria and recruitment procedures are essential to ensure a representative sampling, which 

is the basis of any statistical conclusion.

Along similar lines, clear characterization, as mentioned above, is fundamental for 

comparison among disparate research findings. Such comparisons, in turn, make possible 

definition and refinement o f the parameters allowing effective application o f HRI in autism 

treatment or assessment and the investigation into the cognitive mechanisms which such 

applications might engage (Diehl et al., 2012; Reichow et al., 2008). Participants in existing 

studies often have been described using a flat diagnostic label (or even just as “autistic”). As 

the expression of symptoms within ASD are extremely heterogeneous and the level of 

impairment ranges from very mild to very severe, these simple labels are typically not 

sufficient for providing a clear picture o f the diverse abilities and selective deficits faced by 

these individuals (Diehl et al., 2012). In clinical autism research rigorous characterizations o f 

socio-cognitive abilities is performed for all study participants, using externally validated 

protocols (Reichow et al., 2008). For example, assessment tools include the autism diagnostic 

interview-revised (ADI-R; Lord, Rutter, & Couteur, 1994), the childhood autism rating scale 

(CARS; Schopler, Reichler, & Renner, 1986), and the autism diagnostic observation schedule 

(ADOS; Lord et al., 2000b). These standardized tools allow for comparison o f populations 

across research studies. These assessments can be lengthy and expensive, as each requires 

administration by a trained clinician, and each must have been performed close in time to 

the experimental study, as developmental changes in children with ASD can be substantial 

over short periods o f time. Finally, most proof-of-concept studies from the robotics
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community focus exclusively on children with ASD and do not provide a comparative 

sample o f typically developing children or children without ASD having other impairments 

which are frequently comorbid or symptomatic o f ASD, such as intellectual disabilities or 

specific language delays. A common objection to existing studies is that many of the effects 

seen when children with ASD interact with robots (especially increased attention, and high 

motivation) would be seen in any child when they are given a new robot toy to play with.

The use of control groups as described above is standard practice in the clinical community, 

but has only begun to have more widespread, and increasingly standard, usage in robotics. In 

these aspects, robotics groups will most likely need to adopt the more standardized reporting 

mechanisms o f the clinical community. However, some flexibility from the clinical 

community must be offered, as very few research groups have the resources to span the 

range o f assessment, engineering design, and large-scale testing required to study a large 

statistical sample. For those robotics groups lacking access to highly experienced clinicians 

who have been specifically and rigorously trained in administering ADOS or ADI-R, CARS 

may present a slightly more accessible alternative, administrable by physicians, special 

educators, school pathologists, and speech pathologists who may have little experience with 

individuals with autism. Another, even more accessible but clinically comparable alternative 

is the Social Communication Questionnaire (SCQ; Rutter et al., 2003), which can be 

completed by parents or primary caregivers, and which is frequently used in clinical studies 

to affirm control participants’ negative diagnoses.

Also frequendy important in clinical research are measures o f other kinds of cognitive 

development, frequently measured with IQ tests such as the Differential Abilities Scale 

(Elliott, 2007), Wechsler Intelligence Scale for Children (Wechsler, 2003), or with the Mullen
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Scales o f Early Learning (Mullen, 1995) where individuals may be too young for other tests. 

We advocate for the reporting of standardized IQ assessments, which we expect may be 

more readily available, given their utility in a broader range o f disabilities and our assumption 

that professionals trained in their administration may be relatively accessible, particularly 

through schools.

Clearly there is a tradeoff to be made between resources devoted to characterization and 

comparability and specificity o f characterization, and it is for each particular group of 

collaborators to negotiate this tradeoff.

6.1.3 Publication and dissemination

A final set o f cultural differences concerns the timing and location o f publication and

dissemination o f research results. Both the clinical community and the robotics community

have their own established publication standards and venues, and the differences between

these standards has implications for reporting results, for expectations of young researchers

regarding tenure and promotion, and the evaluation o f students. High-quality results in

robotics typically appear as shorter length papers (6 to 12 pages) in annual conferences,

many o f which are peer-reviewed, highly competitive venues and result in archival

publications. A robotics student might be expected to publish 1-2 such conference papers

each year, and a lengthier journal article that covers multiple conference publications

appearing every few years. In contrast, the clinical community typically publishes their

primary results as longer manuscripts (10 to 30 pages) in monthly or quarterly peer-reviewed,

and similarly highly competitive journals. A student in the clinical community might be

expected to publish one such paper every few years and to support that publication with the

presentation o f unarchived posters and talks, at conferences and meetings. These differences
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are perhaps the most difficult to overcome as they involve the expectations o f the entire 

research communities who evaluate the work o f these scientists, not just the researchers 

directly involved in the collaboration. An approach used in other interdisciplinary fields is to 

allow each collaborator to publish directly in their own preferred high-quality venue. This 

can be difficult in the case o f robot-autism research, as publication in an archived computer 

science conference proceedings can at times block publication in a high quality clinical 

journal, which expects all o f the data reported to be first-run material that has not appeared 

in other archived publications. It is our experience that publication challenges can be 

negotiated only by clear communication between the research collaborators about their 

expectations and needs regarding publication and clear communication o f the difficulties 

involved in these interdisciplinary research issues to reviewers of student performance, 

tenure and promotion committees, and project reviewers.

6.1.4 Suggested bridges for collaboration

Methods in each community are valid within each, and funding and other resources reflect—  

indeed determine— the expectations each community must satisfy in their research. We 

suggest ways to negotiate the cultural differences we’ve outlined above, to foster 

collaborations which can further efforts toward demonstrated utility o f robotic applications 

to intervention and assessment o f ASD.

Ultimately, to be successfully accepted as a diagnostic or intervention tool, a robot’s

utility must be demonstrated with statistical significance over a large sample. This standard is

generally required in the medical community to establish the evidence basis o f any diagnostic

tool or treatment’s efficacy. Obviously there are personally affective, cultural, and legal

implications to establishing any treatment as evidence-based. In the case o f communication -
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interventions, few treatments have met this rigorous standard, and typically only over 

narrowly targeted behaviors (Prelock et a l, 2011). Along the way to this gold standard, there 

are other effective ways to establish validity within a clinical community. The key here is 

control. Interventions with broader behavioral targets frequently employ single case 

experimental designs (for example, changing criterion, reversal, multiple baseline, or 

alternating-treatment designs; see Kazdin, 2011) to establish non-statistical control over the 

many other changes developing children with autism may experience at the same time during 

which they receive treatment. Roboticists facing limited access to clinical resources may wish 

to consider single subject designs with rigorous control, such as a reversal (ABA) design, in 

which each participant’s behavior is observed (A) before introduction o f treatment (e.g., 

interaction with a robot), (B) just after or while treatment is being applied, and then (A) 

again, well after treatment has been withdrawn.

With respect to characterization and participant selection, researchers in both fields often 

face logistical (and funding) limitations on the assessments they can provide, as well as the 

participants they can recruit. As our understanding o f the parameters allowing viable 

interactions between individuals with autism and robots improves, and as questions o f utility 

become thus more possible to answer, we expect funding to explore specific subpopulations 

will become increasingly available. In the meantime, often given limited funding, both 

roboticists and clinicians must collaborate with other ongoing clinical studies having funding 

which can support expensive assessments. Thus, access to experimental participants is 

limited to collaboration with existing assessments. Here we suggest a compromise to both 

communities: that they recognize the intent o f most current studies, in the application of 

robotics to autism, is to establish proof o f concept, and that they allow incremental
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evolution in the specification o f viable parameters; that is, that they forgive such proof of 

concept studies when their experimental samples are broader or slighdy different from what 

in principle may be the ideal population for the application in question. To make such 

proofs o f concept viable and useful, current research should seek as detailed a 

characterization as possible, to help further both communities’ understanding o f the 

technological and clinical parameters that allow individuals with autism to successfully 

interact with robots. Generally, we suggest that researchers from both communities recruit 

the largest number o f participants that their resources allow, from the subpopulation whom 

they anticipate will demonstrate the greatest utility of the robotic application. Where n is 

small, we suggest that researchers design according to well-established single-case 

methodologies (Kazdin, 2011).

Publication may be the most challenging arena in which to negotiate collaboration. 

Typically, funding agencies supporting each party will expect first-author publication. How 

can collaborators split results into two publications without compromising ethics by 

withholding results from the first publication? There is no perfect solution to this problem. 

Rather, it is our experience that pre-nuptial agreements can be made (and often require 

adjustment, depending on results o f primary and exploratory analyses), and will often be 

determined based on funding allocation and who is putting in the most effort and resources. 

Part o f this negotiation can be to identify which research questions are better suited to which 

community, and then to design experiments and plan analyses according to the planned 

order o f publication. Mechanistic or explanatory analyses tend to require much greater 

effort, which may be better supported by staff in larger clinical groups. Thus, proof of 

concept questions, which may require less effort to answer, may be better targets for
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robotics publications, especially because roboticists may be less interested in some of the 

finer analyses. O f course there is a lot o f overlap, so negotiation is needed.

As technologies and proofs o f concept evolve, collaborations between roboticists and 

clinicians may find greater opportunities to answer questions about the utility o f robots in 

intervention and assessment. We expect that both communities will find it increasingly 

useful, at this point, to publish such findings in clinical venues, while technical innovations 

will likely make a greater impact within robotics venues.

6.2 Our collaborative strategy

The studies involving children with ASD that we have presented in this dissertation (Chapter 

3 and Chapter 4) illustrate our approach to collaboration, which we hope will help other 

roboticists and clinical researchers to understand and navigate the cultural differences 

between their respective fields. Here we present our examination of specific points that we 

highlighted in our description o f differences in practice, using Chapter 3 as a case study o f a 

collaborative strategy, maximizing the advantages of both fields while eliminating the 

greatest barriers from collaboration and communication.

In terms o f our research approach, we chose to focus on proof of concept, that school- 

aged children with high functioning and ASD would engage and enjoy a verbal task with an 

inexpensive, commercially produced robot under seamless interactive control. Although we 

are interested in automating the robot’s perception and behaviors, we chose to focus on the 

proof o f concept by using Wizard-of-Oz-style control, and to use our investigation o f proof 

o f concept to gather data that may support future technological research into automation. 

We also furthered our clinical agenda by collecting copious speech data and interaction data,
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which we will continue to analyze, to understand in greater detail the ways that participants 

interacted with the robot and with people afterward.

O ur agreement was to publish results from our study (Chapter 3) first as a proof-of- 

concept manuscript in a robotics-oriented publication venue (E. S. Kim et al, 2012). This 

was acceptable, and necessary, for several reasons. First, as one o f the few larger-N studies 

o f robot-child interaction in autism research, the study in Chapter 3 highlights the 

applicability, acceptability, and potential o f social robots to effect meaningful change in 

children with ASD. Publishing sooner rather than later enables other researchers to see the 

advantages o f these larger designs and the advantages o f detailed clinical characterization in 

informing our understanding of what works and for whom. Second, it is important that 

roboticists, who will be on the front line o f implementing the technically challenging but 

critical elements o f HRI studies of autism, be given ample information regarding the details 

and hurdles that will help them design similar studies. Early dissemination o f the study 

protocols and provision o f usable (though not ideal) metrics o f evaluating change will help 

these researchers adapt their own platforms and speed up development and evaluation time. 

Third, and perhaps one o f the key issues informing our decision to publish these results in a 

robotics venue first, is that we estimated that the design, creation, implementation, 

verification, and evaluation of more detailed measures of interview dynamics, prosody, and 

semantic content could take approximately 3 months o f time at our available level of 

funding. Factoring in additional statistical analyses and rigorous accounting o f individual 

participant characterization variables, we estimate that the next iteration o f these study 

results could take 5 months.
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This decision did not come about haphazardly, but instead reflects our lengthy 

discussions and a priori agreements well in advance of the start o f the study. O f course, 

research is not a static process, and, when dealing with such a new field such as HRI studies 

o f autism, it is difficult to predict exactly what methods, techniques, protocols, and measures 

will bear fruit. Here we were guided by clinical insights that informed our study design in 

advance, and a long-term collaboration built around understanding each party’s expectations. 

We expected that it would be necessary to publish preliminary analyses and proof-of-concept 

before a final, more detailed examination could fully explore the space o f our results. The 

clinical members o f our research team, in turn, expect (and it is our expectation, will receive) 

our full support in the second iteration of analyses.

Such agreements come also with consequences. First, because we froze the current state 

o f analyses to publish the study in Chapter 3, the measures that we employ are necessarily 

coarse, and to an extent, incomplete. This study could benefit, for instance, by detailed 

ratings o f affect and engagement during the interviews. Consistent with validity standards in 

the field, this would also require a second rater to confirm the accuracy and reproducibility 

o f the more qualitative assessments. This study could likewise benefit from a careful 

transcription o f verbal exchanges during interviews, complete with timings o f utterances. We 

could then distill from these data sets measures relating to the frequency o f verbal 

production by the children, the semantic content o f their speech, and the dynamics o f the 

conversation between the child and the interviewer. Finally, difficulties in obtaining reliable 

operationalized protocols for evaluating prosodic quality in interviews for children with ASD 

suggest that standard approaches need to be adopted to capture more subtle prosodic 

differences between study participants with ASD and the control group.
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The second consequence o f our decision to publish these results in a robotics venue first 

is that it may make it more difficult to later publish results regarding the second iteration of 

analyses in a more clinically themed journal. It was the opinion o f the clinical members of 

our team that though this concern was valid, the more detailed and clinically-oriented second 

round o f analyses and interpretations should make the second manuscript quite distinct from 

the first. In other words, it was a risk that everyone was willing to take.

6.2.1 Understanding Differences in Approach

At the intersection o f robotics and autism research, differences in approach result in a

number o f potential pitfalls. Researchers in engineering fields typically focus on the

development o f methodologies, approaches, and processes. By contrast, researchers from

clinical fields focus on specific issues relating to clinical populations. While the robotics

community tends to focus on novel platforms for delivering treatment, the clinical research

community focuses primarily on the treatment itself. A researcher in the robotics community

gains greatly from expanding the vision o f the possible, and so a successful proof of concept

is in many ways a sufficient enterprise in and o f itself. Yet, applications tied only to proof-of-

concept studies, even though they may provide great benefits to a clinical population, may be

left languishing in the land of “potential ideas” for years without a direct translation o f those

ideas into clinical applicability. This is quite a dangerous position, because without feedback

from researchers focusing on clinical utility, the robotics community may drive novel

technologies in unproductive directions while neglecting application areas that may have

demonstrable clinical impact. Similarly, approaches that focus exclusively on tried-and-true

engineering tools and platforms may be left languishing in the equally perilous land of

“outdated technology” when more modern and capable technologies provide possible
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solutions that could not have been considered with more mature technologies. Without 

attending to the rapidly changing landscape o f technical advancement, clinicians face the 

difficult prospect o f struggling to adapt technologies that have already been replaced with 

more convenient, efficient, or capable solutions.

The study outlined in Chapter 3 illustrates a way in which healthy collaborations between 

robotics labs and clinical enterprises can be formed. Beyond the typical skills that are 

necessary for any collaboration to succeed (e.g. mutual respect, open dialogue, rapid 

feedback), it was necessary for both our groups to understand our respective differences at a 

much deeper level.

6.2.2 Understanding differences in study design

As mentioned above, the focus on technical novelty and innovation in the robotics 

community differs from the focus on clinical utility in the clinical research community. This 

also has implications for the methods that are the standard for each field. With respect to 

design, we chose to prioritize proof o f concept over technological development. For 

instance, we feel that speech recognition innovations will be required in order to replace 

Wizard o f Oz with automation, but we have decided to justify such an investment first with 

a demonstration o f a highly socially responsive robot, whether automated or manually 

operated.

6.2.2.1 Sample sizes

In the robotics community, a proof-of-concept paper may include 1-6 participants with 

developmental disabilities. This is sufficient to illustrate the technical advances o f the 

robotics platform, show feasibility, and provide a glimpse at the potential o f the advances.



However, studies that aim to demonstrate clinical utility involving just a few participants are 

often regarded by clinicians and developmental researchers as being questionable and 

insufficiendy powered to identify reasonable trends, even if effect sizes are large and results 

are statistically significant. A recent survey by Diehl et al. (2012) indicated in an extensive 

review o f robotics work in autism that only six studies have involved more than six 

participants with ASD, and in this context discusses the need for larger and more rigorous 

studies to better define the role robotics can play in autism research.

In Chapter 3's study, we collected data from nearly 20 participants with ASD and 10 TD  

controls. This represents the largest group o f participants with ASD in a robotics study to 

date. We should note that while a large sample size is advantageous for identifying robust 

positive findings, it is even more valuable in the context o f interpreting negative findings. In 

Chapter 3’s study, we found that TD  children did not increase in their post-robot interview 

time as compared to their pre-robot interview time, whereas participants with ASD did. We 

went so far as to mention that we may be less enthusiastic about the negative result 

identified in the TD  group, given the small sample size. However, it is important to note that 

this is still far larger than 90% of control groups employed in robotics papers reviewed by 

Diehl et al. (2012). In this fashion, our perspective on sufficient group sizes was heavily 

influenced by our clinical team members’ expertise, a perspective that helps us to strive for 

higher standards in robotics-autism research.

6.2.2.2 Clear characterization

One o f the most pressing challenges presented to researchers studying ASD is, as identified

by the Interagency Autism Coordinating Committee (2011), the heterogeneity present in the

disorder. While the definition o f autism spectrum disorders can be neatly summarized by a
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single reference to the DSM-IV (American Psychiatric Association, 2000)7, the complexity 

and heterogeneity o f the autism spectrum (e.g., see Happe, Ronald, & Plomin, 2006) is easily 

overlooked by researchers with limited autism experience. Characteristics o f individuals with 

ASD range from extremely high intelligence and relatively subtle communicative or social 

difficulties, to no language ability, comorbid and debilitating intellectual disabilities, and 

almost non-existing social function. Even within a relatively “high-functioning” group o f 

individuals with ASD, behavioral and cognitive characteristics can range widely: verbal 

communication can be difficult to elicit or flow unceasingly, visual-spatial competency can 

be average or remarkably superior, adaptive functioning can be well preserved or severely 

impaired. Understanding the nature o f these individual characteristics can often be a 

nuanced and subde process, requiring high levels o f clinical insight and care to decipher (e.g., 

see Karmiloff-Smith, 2006). In other words, knowing that the target population has ASD is 

necessary but not sufficient to understand all of the complexities o f an experimental 

interaction with robots. Ideally, we would know in advance which subpopulations to target, 

and the expected behaviors o f the targeted subpopulations on selected outcome measures. 

However, given the nascent state o f our interdisciplinary field, such knowledge, is often 

unavailable at the time o f experimental design. For this reason, larger-N proofs o f concept 

and exploratory investigations are critical for the understanding o f heterogeneity in 

behavioral responses among individuals with ASD, and thus essential to the advancement of 

robotics research in autism.

7 Again, please note that all participants with A SD  presented in this dissertation, including Chapter 3’s study, 
were diagnosed according to DSM-IV. D SM -5’s definition o f  autism spectrum disorders differs from that in 
DSM -IV.
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In Chapter 3’s study we collaborated with leading experts in speech and language 

pathology in ASD, coordinating with a team of expert clinicians and researchers in ASD. 

Their added insight was extremely valuable, and greatly enhanced the interpretability o f this 

study. For instance, the clear clinical guidelines they provided indicated that the individuals 

comprising the ASD group indeed were all affected by ASD. We were also able to establish 

that, despite the several negative findings involving between-group differences o f affect, 

engagement, and pre- and post-robot interview times, these results did not hold up for all 

individuals with ASD. Instead, we found that the higher-functioning participants with ASD 

responded more enthusiastically to the study, possibly suggesting that the particular 

paradigm employed in Chapter 3’s study might be most engaging for individuals with PDD- 

NOS or Asperger syndrome, who typically exhibit less severe autism symptoms than 

children with autism (Walker et al., 2004).

6.2.2.3 Rigorous metrics and statistical considerations

Data from HRI studies typically employ a structure that lends itself to standard statistical

analyses; participant groups are o f equal size, drawn from the same population and tested

under equal experimental condition. The standard statistical analyses conducted on these

studies (typically, t-tests and ANOVAs) are subject to assumptions based around this

standard format. Even within the clinical literature, standardized approaches rely on

statistical methods that provide value only when these assumptions hold. As studies at the

interface o f robotics and clinical research must often depart from these traditional formats,

whether due to the heterogeneity and availability of the target population or the experimental

and adaptive nature o f the technology, analysis and interpretation o f even large volumes of

data must be done carefully and with respect to these underlying assumptions.
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The study in Chapter 3, while somewhat elementary in its statistical needs, benefited 

from a careful examination of assumptions inherent in the selected statistical tests. In 

addition, the choice to use pre- and post-interview times as surrogates for self-motivated 

verbal elaborations, in the absence o f more refined measures on changes in behavior, was 

aided by perspectives provided by multiple investigators. As this study matures in its analysis, 

the benefits and interpretability o f the results will be gready aided by collective emphasis on 

rigorous statistical modeling and the selection of the most appropriate outcome measures for 

analysis. Similarly, the lessons learned from this study, in partnership with clinical experts, 

will help pave the way for the design of future studies aimed at isolating specific properties 

o f  robots that are most important to effecting change in children with ASD.

6.2.3 Understanding perspectives on publication and dissemination

At the fundamental level, researchers from the robotics community and clinical researchers 

have a lot in common. They share the same high levels o f inquisitiveness and curiosity, the 

same desire for rigorous truth, and the same goal of leveraging science to improve our 

understanding o f the world and the lives o f others. Yet, despite this, the language and 

perspectives o f robotics researchers and clinical scientists can be very disconnected and a 

concerted effort to educate our collaborators in both fields must be made regarding 

publication venues.

First, clinical researchers may not understand the scope and magnitude o f a robotics

conference paper. To gain that perspective, they sometimes have to be informed that high-

impact conferences may have similarly, or even more, competitive submission processes

than prestigious journals. Furthermore, it is often not clear to clinical collaborators the great

importance that conference publications have for career advancement among junior
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roboticists, engineers, and computer scientists. For this reason, clinical partners to robotics 

laboratories may question whether it is worthwhile to devote time and resources toward the 

development of a well-written conference paper; Patterson, Snyder, and Ullman (1999) 

provide a succinct discussion o f the impact o f conference publications on the evaluation of 

computer scientists.

Second, whereas publishing an abstract in a psychology or other social science 

conference typically will not hinder publication o f a corresponding journal article, in 

submitting a full-length, archived computer science conference paper that summarizes all 

clinical results may preclude publication in a peer-reviewed journal. The reason is that many, 

especially high-profile, journals have extensive requirements for innovation and novelty of 

work presented; that is, journals tend to actively prohibit the reporting o f results which have 

been detailed in print elsewhere, whether prior to, during, or immediately after submission of 

the journal manuscript.

There are several options joint robotics-clinical collaborations can choose when deciding 

where and when to publish. First, they can forego conferences altogether, in favor o f waiting 

to submit results to an appropriate journal. This has the advantage o f maximizing the 

chances that study will be able to be accepted to journals, but runs the risk in fast-paced 

technology research areas o f closing opportunities to be the first group in the field to publish 

concomitant technological advancements, while waiting for journal publication, which 

typically take longer than conference papers to submit, review, and publish. In addition, a 

publication in a journal with a clinical focus may not contribute to evaluations o f a robotics 

researcher, when competing for grants and positions, under evaluation by other computer 

scientists and engineers; these evaluators may prefer high-quality conference publications in
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technological fields. A second option is to publish the study in a conference first. This, of 

course, may raise problems concerning the novelty o f following journal submissions, which 

will likely impact clinical scientists most. A third collaborative solution, such as the approach 

that we took (E. S. Kim et al., 2012), is to publish work-in-progress that can document the 

sophistication and innovation o f the technical aspects of the study, over a preliminary 

population or analyses in progress; later, a following journal submission can represent results 

from a larger sample or more extensive analysis, either of which is likely to be considered a 

significant advance over— and thus a finding distinct from— the initial conference 

publication. In the case o f the study described in Chapter 3, we chose to present data most 

relevant to the robotics community (i.e., findings about gross engagement with the robot and 

about possible indicators for the most appropriate target population) within this robotics 

venue, while reserving additional analyses o f specific behavioral impact for a later publication 

in a clinical venue. Note, we do not advocate hiding, or “trimming” o f data to achieve this 

collaborative negotiation; such an approach could present ethical challenges, since scientists 

are expected to report results as fully as possible. Rather, as we did, we suggest targeting 

research questions to robotics and clinical publication venues during experimental planning, 

and, where necessary and possible, the freezing o f analyses while publications are pending.

In all cases, collaborators should establish a clear dialogue early, and should negotiate 

publication plans in advance, to best avoid conflict and to maximize the mutual benefits of 

the joint project. Roboticists’ careers, and their relationships with funders and other 

evaluators, could be injured by surprise decisions, at the conclusion o f extensive 

technological development and data collection, that results cannot be published for as long 

as a year. Likewise, clinicians who have heavily invested time and resources into a study
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would face problems with career development and evaluation, if faced with a surprise 

rejection from a journal due to previous technical conference publication.

6.2.4 Establishing common ground by minimizing risk

Collaboration can succeed only if involved parties communicate effectively; this, in turn, 

requires that each understand the others’ motivations, needs, and resources. A common 

ground, though perhaps not as noble as one would like, is mutual self-interest: the roboticist 

very much wants to see his or her platform used; the clinical researcher very much wants to 

provide new avenues for effecting positive changes in the population that is his or her 

expertise. It is important to consider that such a pairing poses significant risks to both sides 

o f the collaboration: by pairing with clinicians and developmental experts, the roboticist 

takes a chance that his or her proof o f concept may ultimately advance to a demonstration 

o f non-effectiveness; the clinical expert, by wagering on a new technology, risks spending 

valuable clinical resources (especially personnel time and access to participants from a small 

and specialized population) on the exploration o f nascent technology, instead o f on 

investigation of better understood, and thus less risky, paradigms.

It is useful to understand the risks each community faces from a financial perspective.

Robotics work is design- and development-heavy: much o f the costs associated with creating

a new robotics platform involve design work, machining, programming, and countless hours

of trouble-shooting. Clinical work, especially experimental trials, are delivery-heavy: much of

the costs associated with running a successful clinical research enterprise involve careful

study design, an extended period o f experimental delivery, and rigorous statistical analysis

and interpretation. Development time, in the robotics community, is measured in months,

and experiment delivery time is measured in weeks. In the clinical research community, these
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time frames tend to be reversed. This means that in robotics work, time is largely spent in 

the process o f rapid prototyping, deployment, and re-development. O n the other hand, 

clinical partners will spend most o f their time conducting the same trial over and over again.

O ur collaboration in Chapter 3’s study began with considerations to minimize risk to our 

clinical partners. First, this entailed ensuring that the robot platform was free from glitches, 

crashes, and other issues that might interfere with the delivery o f the experimental protocol. 

O ur debugging and testing phases were far more extensive than would have been usual for a 

non-collaborative proof-of-concept study. Second, interfaces between the robot and the 

experimenter controlling the robot were robusdy designed; guaranteeing that rapid response 

to the behaviors o f children could be accommodated. Roboticists without extensive clinical 

experience may overlook the potentially terrific expense required to conduct a rigorous 

experiment with special populations. Recruitment can be difficult, especially for less 

prevalent disorders. Access to a specific age-range or a subgroup o f individuals with specific 

characteristics in addition to the disorder itself (e.g. higher functioning 10- to 12-year-old children 

with A SD ), which is useful in controlling the experiment from a statistical vantage, can make 

recruitment even more difficult. Furthermore, clinical characterization requires both 

tremendous coordination o f staff and considerable personnel costs. In other words, even 

besides study and platform design costs, expenses per participant can be quite high (upwards 

o f several hundred dollars per participant). These costs, in addition to the importance of 

consistency, make mistakes in this work prohibitively expensive. Third, while roboticists 

often benefit from demonstrating innovation or proof-of-concept using expensive, one-of-a- 

kind prototypes, the potential cost for damage to or destruction o f these prototypes makes 

involvement in a clinical environment potentially prohibitively expensive. O ur efforts
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leveraged a commercially available robot platform that could be easily replaced with minimal 

cost when damaged during a clinical visit. While this risk analysis is particular to our two 

research groups, a similar analysis o f risk can be o f great benefit in advancing an initial 

interdisciplinary conversation to a long-term and viable collaborative effort.

6.3 Conclusions

In addition to the technological and experimental efforts described in this dissertation, we 

have found that robot-autism research requires thoughtful, systematic project management. 

In this chapter we have described observations and suggested resolutions, developed in 

collaboration with my advisor Brian Scassellati and our clinical partners Rhea Paul and 

Frederick Shic, to differences between roboticists’ and clinical autism researchers’ 

investigatory goals, approaches, and expectations. We share a hope that these novel analyses 

and guidelines will help accelerate future investigations o f socially assistive robots to toward 

clinical efficacy.
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Chapter 7

Discussion

We have been looking at HRI applications for autism intervention along four overarching 

research questions. We have presented five novel studies, which contribute new knowledge 

and techniques in all four o f these domains. In addition, we have described the complex 

challenges of interdisciplinary efforts shared between clinical and robotic researchers, and 

offered general solutions as well as two specific examples of successful collaborations.

Question 1: How engaged and motivated are participants?

A child’s motivation to engage in an intervention can influence the intervention’s 

efficacy (R. L. Koegel, O ’Dell, et al., 1987). Particularly for the behavioral therapies targeted 

by social robotics applications, participants learn by practicing the targeted behaviors. The 

more motivated a child is to perform a behavior, the more opportunities therapists have to 

help him or her improve. Given the high prevalence o f interest in machines and devices 

found among children with ASD, the use o f robots as a highly motivating object is the 

fundamental motivation o f HRI research autism interventions. In this dissertation we have 

presented a study (in Chapter 3) that shows, over large groups, that school-aged children
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with ASD (« =18) and children in a control group (« = 11) are motivated to socially interact 

direcdy with robots, which indicates the potential to use robots as developmental 

scaffolding, that is as practice social partners en route to improved social interaction with 

humans. Chapter 4 replicated this finding (though only for children with ASD). Both 

chapters also provide evidence that children with ASD also interact more with a confederate 

in a therapist-like role while or immediately after, respectively, interacting with a robot.

These findings, in turn, indicate the potential o f a social robot as an embedded reinforcer.

An embedded reinforcer can operate either by reinforcing children’s social interacting with 

other humans or with the robot itself, by being implicitly interesting and by interacting with 

them socially.

Evidence presented in Chapter 4 also indicated that children with ASD increased time 

spent speaking with an examiner, following the robot interaction, more so than did the 

control group, suggesting that interaction with the robot has slightly different effects on TD 

and ASD children’s affect or social motivation immediately following interaction.

Because children with ASD often face extraordinary challenges in daily living, because 

research with individuals having ASD requires additional ethical consideration and 

assessment, because children’s participation in research requires parents’ attendance, because 

the size o f the population having ASD is limited, and finally because it is more it is before 

examining them, we first sought to establish typical adults’ motivation to interact with 

robots. Chapter 2 presented new findings, over a group (N = 27) o f typically developing 

adults, that they spontaneously use speech, and express intense affect, to interact with a 

robot that they cannot touch. These findings indicated typical adults’ motivation to interact
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socially with a robot, and motivated us to pursue similar investigations with children with 

ASD and TD.

Chapters 2, 3, and 4, were all novel in their demonstration o f these phenomena over 

large groups. Chapter 2 provided the first group evidence, to our knowledge, that adults will 

spontaneously use speech to interact with a robot. Chapter 3 presented the first large, 

controlled, group study to demonstrate a social robot’s ability to facilitate social interaction 

with another person. This is also the first study to show this effect for older and higher- 

functioning children with ASD, whereas previous demonstrations have been presented in 

small-number case studies o f younger children with lower functioning (Feil-Seifer & Mataric, 

2009; Kozima et al., 2009). Chapter 4 presented the first large, controlled, group study to 

demonstrate a social robot’s ability to elicit robot-directed speech and social engagement 

over a large group o f children with ASD.

Chapter 3 also contrasted behavior with a robot against behavior with a computer game. 

Participants’ far-reduced speech toward both the therapist-like confederate and the device in 

the computer game, in comparison to the robot condition, affirms our theory that despite 

their interest in the video game, the interaction, designed without sociality, could not sustain 

social interaction with the device or mediate social interaction with another person. This 

design is limited in the sense that it cannot speak fully to the question o f robots as 

embedded reinforcers: a better test would pit a computer game against a robot in interaction, 

in parallel semi-structured interaction, as was enforced between the adult and robot 

conditions. A more parallel robot-computer game comparison would allow us to discern 

whether and to what extent a robot can afford an advantage in eliciting or mediating social 

interaction from children with ASD. That is a worthwhile question to answer because
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computer games may be easier and less expensive to maintain and modify than robots and 

their forms and behaviors. However, we have reason to believe that for some social 

behaviors, such tests will reveal that robots do pose a clinically important advantage over 

computer games. Our group has shown that a group o f typical adults is less willing to afford 

authority and personal space expected for an agent when interacting with a live, responsive 

video-feed o f a robot on a computer monitor than with a robot whose body is physically 

present, that is, collocated (Bainbridge, Hart, Kim, & Scassellati, 2011).

Question 2: How do participants behave?

Both this and the question o f motivation examine participants’ behaviors. Question 2 

describes what specifically participants do (toward the robot, other people, the environment, 

and generally, during therapy). Answers to this question can inform possible target behaviors 

in therapies, both in interventions which will use robot-directed behaviors as stepping stones 

toward improved human-directed behaviors, as well as on future interventions which will 

use the robot to mediate interaction with other people.

In Chapter 2, we observed that a large group o f naive typical adults spontaneously used 

speech and affective prosody to interact with a robot. This was the first group study to 

document untrained people’s spontaneous use o f either speech or affective prosody toward a 

robot. Whereas Breazeal and Aryananada’s investigation o f affective prosody in robot- 

directed speech was collected by explicitly directing two adult females to perform prosodic 

expressions o f five types o f affect to interact with a robot, in our study in Chapter 2, 27 

naive, untrained adults spontaneously directed affectively expressive prosody toward a robot. 

Also, the audio recordings in Chapter 2 provide a sample o f spontaneously produced,
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affectively expressive prosody, from which we may be able to train automatic systems to 

recognize and classify affect.

Chapter 3 presented results that for a group of school-aged children with high 

functioning ASD, a social robot can mediate greater verbalization than a social (but less 

preferred) interaction partner, an adult human. We have shown that a robot elicits greater 

verbalization than a preferred but asocial interaction partner, a computer game. More 

importantly, a social robot increases social interaction with another person, more so than an 

adult or a computer game. These findings suggest that robots, with appropriate clinical 

guidance, may make useful supplements to communication and social skills interventions by 

facilitating social interaction with an adult, and by eventually being developed into uniquely 

embedded social reinforcers. Children with high functioning ASD will speak to a robot 

without special training.

Chapter 4 contributed evidence that children with TD and with ASD will direct 

affectively expressive speech to a social robot. The study in Chapter 4 also contributes data 

which can be used in the future for explorations o f automatic affective prosody recognition 

in children with ASD. We also found that children with ASD extend their conversational 

engagement with a clinician following interaction with the robot, more than do their typically 

developing peers, and choose to freely play with the robot longer than their typically 

developing peers. Chapter 4 also introduced face-to-face orientation as a novel measure of 

social engagement, which we observed far less in participants with ASD than in their peers 

with TD.

In Chapter 5, we described two systems for analyzing speech prosody. The first, an 

online robotic learner uses real-time, automatic perception o f affective prosody as an input
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for online learning, the first system to learn from prosody. The system was demonstrated to 

refine a single-arm, social waving behavior, taught by a single user, distilling the human 

teacher’s speech into a binary valence signal, which it treated as a reward in reinforcement 

learning. Despite its limitations, this system demonstrated that is possible to recognize 

affective valence from speech prosody in real time, with minimal training data from the 

speaker. This indicates further exploration o f automatic, real-time recognition o f prosodic 

expressions.

In the second study introduced in Chapter 5, we describe a novel algorithm for semi- 

automatically recognizing a speaker’s prosodically expressed mutual belief signals. A speaker 

uses these to communicate whether the speaker intends the modulated utterance to 

contribute new information; to contrast with previously shared information; or to be 

considered sarcastically or doubtfully. The system’s modest success in identifying these 

shared belief cues in infant-directed speech suggests the possibility o f doing the same in 

robot-directed speech.

Both studies described in Chapter 5 indicate that spoken behaviors may be viable targets 

for robot-based interventions. In addition, these studies provide data that may provide the 

basis for automating recognition o f speech prosodic expressions.

Question 3: What design elements support interaction?

Whereas the previous two questions address human participants’ behaviors in HRI, this 

and the next question address elements important in robot and interaction design.

Chapter 2’s study revealed contradictions to assumptions made by classic machine

learning algorithms. When teaching, people provide other inputs well before feedback, which

is typically modeled as following the completion of a learning trial. People’s spoken input to
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a robotic learner decreases from one trial to the next, if a learner consistendy performs 

optimally. O n the other hand, if a poorly performing learner suddenly improves, people 

increase the amount o f input they provide to the learner. In other words, human teachers’ 

spoken inputs to a learner should not be modeled as independent from one trial to the next; 

human teachers’ spoken input depends on the learner’s performance history.

As we discussed under Question 1, the difference between ASD participants’ responses 

to the robot and video game conditions in Chapter 3 tells us that we must design sociality 

into any interaction with an engaging technology. And that we should expect that even with 

sociality designed into interaction with an engaging computer game, there will be some social 

behaviors that physical embodiment can elicit better than can two-dimensional graphics 

(Bainbridge et al., 2011).

In Chapter 5’s first study, we found that differences and improvements in our learner’s 

waving behaviors were hard for even an expert to discern. When designing a robot for 

human interaction, we must make the robot’s behaviors legible and possibly check for 

people’s understanding o f them.

Question 4: How should a robot adapt to maintain a long-term relationship?

Chapter 2 suggested that human expectations o f a learner’s behaviors depend on past 

performance. Ignoring or violating these expectations is likely to limit a robot’s ability to 

maintain a long-term relationship with a human partner. Also, if we do not develop our 

understanding o f such typical social expectations, then an intervention focused on 

interaction with a robot risks missing the opportunity to reinforce adaptive social behaviors, 

or worse, risks reinforcing maladaptive behaviors. Our findings, thus indicate a need to
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further explore and describe typical human expectations o f a social partner’s behaviors over 

the course o f a longer relationship.

Chapter 3 and Chapter 4 described experiments in which children with ASD (and TD  in 

Chapter 4) briefly interacted with a robot during a single visit. They do not provide much 

information about how robots must adapt to maintain long-term relationships. However, the 

engineering and personnel in delivering a single, brief robot interaction suggest the 

importance o f striving to develop greater reliability in the operation o f robots and longer 

battery life (for example, as the Pleo robot’s batteries aged, we could not reliably expect 

more than 30 minutes o f battery life), as well as the importance o f automating robot 

behaviors to reduce the training and time required to manually operate the robot. Both of 

these engineering endeavors will offer savings in labor that scale at least linearly over the 

course o f a treatment requiring many repeated interactions, and allow researchers to devote 

more resources toward adapting the robot’s behaviors to support a long-term relationship 

between participants and the robot. Unfortunately, o f course, both engineering goals extend 

along a distant horizon. In the meantime, our experience with single, brief robot interactions 

also indicate that careful protocol design can go a long way to smooth over minor technical 

failures. For instance, because we hid the television remote that controlled the Pleo robot, 

the signal occasionally failed to reach the robot’s infrared receiver, introducing a delay in the 

robot’s response to a participant’s action or utterance. In such cases, the confederate could 

ask the participant to repeat the action or utterance, or could provide an interpretation o f the 

robot’s delay to ameliorate disruption o f the illusion o f the robot’s autonomy (e.g., “Oops, 

Pleo must not have heard you!”). As we await each next update in the reliability and 

automation o f robotic technology, we can design interaction protocols that allow the
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interactions and robot behaviors to adapt and maintain a long-term series o f therapeutic 

interactions.

In the first study in Chapter 5, we learned that it is possible to learn from input 

prosodically expressed affective feedback. This proof o f concept motivated us to design the 

second study in Chapter 5, to better understand how people use prosody to teach a robotic 

learner. As described in greater detail, in Section 1.3, machine learning from human input 

may help us automate adaptive robotic behaviors to support long-term human-robot 

relationships

7.1 D esign and methodological contributions

In Chapter 6 we described methodological, funding, and publishing differences between the 

autism clinical research community and technological researchers, and suggested ways 

collaborations can work through them. Although all parties developing HRI for autism share 

a common, ultimate goal o f assisting individuals and families affected by autism, there are 

also fundamental differences, which lead to differences in approach: roboticists build their 

careers on innovating new technologies, while clinicians and clinical researchers build theirs 

on studying questions that are most likely to reap substantial benefits for individuals with 

ASD. This results in vastly different allocation o f resources and different publication 

timescales and priorities (rapid high-quality conference publications in robotics me, and 

journal publication which may take a year longer than in robotics to prepare and go to print). 

By understanding these differences, collaborators can negotiate each side’s contribution of 

resources and a publication schedule that serves both parties.
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7.2 Conclusions

This dissertation contributes behavioral observations, robotic and algorithmic designs and 

systems, theoretical frameworks, and collaborative strategies that develop the clinical utility 

o f socially assistive robots for autism interventions. In three well-controlled, large group 

studies, we have described a social robot’s elicitation and mediation o f social behavior, 

engagement in structured tasks, and enjoyment, among adults and children with typical 

development and among children with ASD. These are the first studies o f large groups to 

demonstrate these behaviors, whereas previous demonstrations o f such behaviors were 

limited to small numbers (N < 6). Our findings establish the acceptability and usability of 

social interactions with robots for these populations, and propel the feasibility o f clinically 

useful robots forward by a large, if still early, step. Engagement and enjoyment are 

indications o f motivation to participate. Motivation, in turn, is considered fundamental to 

social skills or communication interventions. Therefore, our findings suggest that robots 

reinforce communication and social engagement with other people, as well as with the 

robots themselves, all within structured interactions. Most importantly, we have shown, in 

comparisons against another person and another novel and engaging technology, that a 

social robot can facilitate greater communication with an interventionist. This suggests that 

social robots may be uniquely reinforcing o f social interaction with other people.

We have described four broad research questions whose investigations have and will

continue to underlie the development of clinically effective socially assistive robots. The

behavioral observations and robotic and algorithmic systems we have contributed further

our knowledge along all four of these questions. We have also described a novel theoretical

framework o f embedded reinforcement through which to understand and explore the
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therapeutic utility o f robots that elicit robot-directed communication and social behaviors, 

and that mediate or facilitate human-directed behaviors.

This dissertation describes two systems that automatically recognize prosodic 

communication and one that utilizes the output o f its prosody classifier as input for online, 

real-time learning from a human tutor. These systems provide proofs o f concept that 

prosodic communications can be automatically classified. The learning system provides 

proof o f concept that in real time, a robot can use automatic perception to drive behavior 

selection and response. Although these systems and demonstrations are limited and have not 

been extended to children with ASD, they suggest the feasibility and future exploration of 

such extensions and future exploration.

Finally, we present systematic suggestions, developed with my advisor Brian Scassellati 

and our collaborators at the Yale Child Study Center, Rhea Paul and Fred Shic, that address 

challenges in interdisciplinary collaboration, which we argue have historically slowed or even 

stymied clinical uptake o f assistive technologies. We have developed collaborative strategies 

over the course o f our investigations o f human-robot interaction among children with 

autism, which have progressively increased clinical interest in our research. We argue that 

consideration o f the parameters o f collaboration, which we have identified as particularly 

challenging, will help drive socially assistive robotics further toward clinical efficacy.
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