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Abstract— As research on robotic tutors increases, it becomes
more relevant to understand whether and how robots will be
able to keep students engaged over time. In this paper, we
propose an algorithm to monitor engagement in small groups
of children and trigger disengagement repair interventions
when necessary. We implemented this algorithm in a scenario
where two robot actors play out interactive narratives around
emotional words and conducted a field study where 72
children interacted with the robots three times in one of
the following conditions: control (no disengagement repair),
targeted (interventions addressing the child with the highest
disengagement level) and general (interventions addressing the
whole group). Surprisingly, children in the control condition
had higher narrative recall than in the two experimental
conditions, but no significant differences were found in the
emotional interpretation of the narratives. When comparing
the two different types of disengagement repair strategies,
participants who received targeted interventions had higher
story recall and emotional understanding, and their valence
after disengagement repair interventions increased over time.

I. Introduction

Student engagement is a key element for academic success
[1]. Maintaining engagement is particularly important in
learning situations in which constant practice is necessary
for students to achieve proficiency. In the past years,
virtual and robotic embodied tutors have become popular
tools to promote learning due to their ability to effectively
engage learners. Robotic tutors have shown to increase
learning gains [2] and elicit a higher sense of presence [3]
when compared to virtually embodied versions in similar
conditions. For these reasons, research with robotic tutors
has recently been increasing.

Social robots enable the design of novel educational
settings because they can, for example, interact with a
group of students more naturally than typical computer-based
applications [4], [5]. The benefits of small group learning
have long been recognized [6], [7], but these inherently
more social settings also bring additional challenges. While
teachers are able to recognize disengagement in a student –
or a group of students – and intervene if necessary, it is still
unclear whether robots are capable of doing so.

There have been many efforts toward the automatic
classification of engagement in children and adolescents [8],
[9], [10], [11], under the assumption that if an artificial tutor
is able to track student engagement and respond accordingly,
learning gains will increase. While most of the efforts so far
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Fig. 1: Children engaged with two social robots acting out
an educational story around feeling words.

are focused on modeling student engagement, less attention
has been given to incorporating such models into real-time
systems and validating their efficacy [12].

In this paper, we address the questions of when and how
should an embodied tutor intervene when it automatically
detects disengagement in a small group of children. For
addressing the question of when to intervene, we propose a
decision-making mechanism where the disengagement level
of each child in the group is modeled as a homeostatic
variable. Triggering a disengagement repair intervention
depends not only on the value of these homeostatic variables,
but also on a set of parameters that can be adjusted to make a
robot more or less proactive in interrupting the natural course
of the interaction. For the question of how to intervene,
we investigate two different types of disengagement repair
strategies, one in which the robots address one particular
child in the group, and another in which the robots address
the whole group.

II. RelatedWork
The use of interventions to repair student disengagement

behaviors has been a very prominent research topic in
the field of Intelligent Tutoring Systems [13]. Arroyo et
al. [8], for example, studied the impact of non-invasive
interventions, such as presenting performance charts, to
prompt students to reflect on their progress.

Robots have the potential to leverage on social cues to
keep students engaged in the interaction because of their
embodiment. Despite the growing body of research on
engagement/disengagement classification in Human-Robot
Interaction [9], [11], [14], less attention has been given to



when and how robots should respond once they are able
to detect user disengagement in real-time. One of the few
examples that closes this loop is the work by Szafir and
Mutlu [15], who conducted an experiment in which a human-
like robot was able to detect drops in user attention through
EEG, and then used immediacy cues – raising its volume and
using arm gestures – to attempt re-engagement. Participants
who received immediacy cues had better story recall than
the control group, and females reported higher motivation
and rapport. While this is one of the most similar works to
the one we report in this paper, Szafir and Mutlu’s study
was performed with adults interacting individually with the
robot, and we are targeting groups of children.

More recently, Brown and Howard [16] used interaction
features such as speed and validity of submitted answers to
monitor the engagement levels of high-school students (13
to 18 years) while completing math exercises in the presence
of a robot. Upon detecting disengagement, the robot would
employ verbal, nonverbal or a combination of both types of
behaviors. The authors found that the verbal-only condition
lead participants to complete the exercises faster, but no
significant learning gains were found between conditions.

The related work presented so far assumes that the
system is interacting with one user at a time. Research on
maintaining engagement in multiparty settings with adults
has focused on the problem of engagement intention, i.e.,
whether users are expressing desire to start interacting with
the agent, often assuming that participants can join and leave
the interaction dynamically [17], [18], [19].

III. System Design

We designed a real-time system that allow robots to (1)
monitor the disengagement level of each child within a small
group, and (2) decide when to employ repair strategies in
order to increase the engagement level of that particular child
and, as a consequence, the other children in the group. We
define engagement as “the process by which individuals in an
interaction start, maintain and end their perceived connection
to one another” [20].

A. Real-time Disengagement Detection

We address real-time disengagement detection as a binary
classification problem. Let Xi(t) = [x1, x2, ..., xn] be a vector
of visual, auditory and contextual features extracted at a time-
frame t from the interaction context and behavior of a child
i in a group of size N. For every timestep t and each child i,
we assume the existence of a data-driven model that receives
as input Xi(t) and outputs yi(t) ∈ {0, 1}, a binary value that
represents whether children are disengaged from (yi(t) = 1)
or engaged in (yi(t) = 0) the interaction with the robot.

B. When to Intervene?

We assume that our disengagement classifier can output
whether each child in the group is disengaged or engaged
at a small unit of analysis (e.g., 500 msecs) that enables
close to real-time decision making by the robot. This means
that the same disengagement episode could be “active” for

several time intervals. For this reason, a simple if-then rule
for triggering disengagement repair actions would result in
repetitive and inappropriate social behavior by the robot.

To compute the decision of whether and when a robot
should employ a disengagement repair strategy given
a history of outputs from the real-time classifier, our
approach is to model each child’s disengagement level as
a homeostatic variable that, when above a certain threshold
and within certain domain-specific restrictions, can trigger
a repair strategy. We define domain-specific restrictions as
the environment conditions that might require fine-tuning
depending on the number of children in the group and the
application domain. For example, in a math learning task
we might limit the total number of disengagement repair
interventions, or specify a minimum time interval between
two interventions.

The pseudo-code for triggering disengagement repair
strategies is presented in Algorithm 1. At every timestep
t, the robot starts by receiving the new binary values yi(t)
from the classifier and using these values to update the
disengagement level variable di(t) of each child i. Then, if
the number of interventions did not exceed the maximum
number of interventions Θ and the time since the last
intervention is greater than the predefined time λ, the robot
checks whether the disengagement level of any children in
the group is above a threshold value γ. If so, the action
of displaying a disengagement repair strategy is triggered.
We assume that repair strategies take precedence over the
natural course of interaction. This means that if the robot
is executing another action, that action is momentarily
interrupted and re-started after the repair strategy is over.

Our disengagement intervention algorithm is independent
of the number of children in the group and from the context
of the interaction. As such, the parameters γ, λ and Θ

need to be adjusted depending on user group size and on
how “pro-active” the robot is supposed to be regarding
interventions. Different robots and application domains may
require different types of disengagement repair strategies, so
we leave the design of particular strategies out of the system
design.

IV. Implementation

The disengagement repair algorithm described above was
implemented in a scenario where two socially assistive robots
interact with small groups in a storytelling task designed
to promote emotional literacy in elementary school children
[4]. Children can control the actions of the characters at
specific moments of the interaction by selecting different
story options presented on a tablet interface (text with an
accompanying illustration). The robots act out the story
options selected by the children and, while doing so, they
use the proposed disengagement intervention algorithm to
decide whether or not to interrupt the normal course of the
interaction in the attempt to repair disengagement.

We used Robot Operating System (ROS) to handle data
stream flows and the communication between the different
modules, which we describe in more detail below. Although



Algorithm 1 Pseudo-code of the algorithm for a robot to
decide whether and when to select a disengagement action.

NumInterventions = 0, LastInterventionT ime = 0
loop

for i = 1→ N do
Update yi(t)

di(t) = di(t − 1) +

{
1 if yi = 1
−1 otherwise

end for
if NumInterventions < Θ ∧ (t − LastInterventionT ime) > λ
then

if max(di(t)) > γ then
ExecuteInterventionStrategy(i), where i = argmax

i
(di(t))

LastInterventionT ime = t
NumInterventions = NumInterventions + 1

end if
end if

end loop
where
NumInterventions→ total number of interventions since t = 0
LastInterventionT ime → time t of the last intervention (to any
user in the group)
N → total number of users in the group
di(t)→ cumulative disengagement level of user i at time step t
γ → threshold value
λ→ minimum time between two interventions
Θ→ maximum number of interventions allowed

the developed architecture can support any number of robotic
characters and different group sizes, for simplicity let us
assume that we have two robotic characters and a fixed group
size of three children.

A. Behavioral Feature Extraction

A Microsoft Kinect V2 sensor was used to extract
the visual and auditory features necessary to classify the
disengagement of each child, namely Voice Activity, Smiles,
Lean Forward, Lean Back, Look Up, Look Down and Look at
Robots. Before streaming the features to the Disengagement
Classifier, this module eliminates potential false positive
bodies tracked by the sensor by considering only the closest
three bodies, and uses information from the face and body
coordinates to ensure that the features of each child are
being consistently tracked in the same relative position
(e.g., left, middle, right). This module streams data to the
Disengagement Classifier, running as a ROS node in a
different machine, at approximately 30 Frames Per Second
(FPS).

B. Disengagement Classifier

To classify disengagement, we used an SVM-based model
trained offline with data from a gender-balanced dataset
of 21 children interacting with the robots in small groups
of three. The training data was collected in a preliminary
data collection study in which the robots’ perception of the
environment was limited to the tablet inputs [14]. The SVM
model (type C-SVC, parameter C = 1 and γ = 0.5) with a
Radial Basis Function (RBF) kernel was trained using Scikit-
learn library [21]. By using the set of visual and auditory
features described above, we are able to classify whether

each child in the group is disengaged or not with an average
of 60% accuracy [14].

The disengagement classifier outputs a value for each child
in the group based on the behavioral features of that child1.
Because the model was built using 500msec time intervals,
the features were averaged and converted to a binary value
in that time window. The binary value of a feature at time
t reflects what happened in the majority of the interval. For
example, Voice Activity is set to 1 when the child is speaking
in the majority of audio frames received from the Behavioral
Feature Extraction module for that interval.

C. Action Selection

The action selection module controls the flow of the
interaction in a constant loop with two main tasks. First,
it continuously monitors and updates disengagement levels
using Algorithm 1, and triggers disengagement repair
interventions whenever necessary. After pilot tests with a few
groups of children interacting with the system, we set up the
algorithm parameters as follows: NumInterventions = 2 for
each story option (i.e., 6 for the whole interaction), γ = 10,
λ = 30 sec.

The second main task of the this module is to manage
the storytelling by interpreting the story scripts, sending
the appropriate story lines to the robot controllers and
communicating with the tablet interface to display the right
story options and perceived user input. When the child selects
a new story option on the tablet, that story option is played
out by the robots. When the robots finish playing out a scene,
the following story options are presented on the tablet as text
with an accompanying illustration.

D. Robot Controller

The robot controller is responsible for conveying the
animations and speech behaviors in the different robotic
characters that play out the stories. We used two MyKeepons
(see Figure 1), Leo and Berry, with programmable servos
controlled by an Arduino board. Each robot has four degrees
of freedom: it can pan and roll to the sides, tilt forward
and backward, and bop up and down. To complement the
pre-recorded utterances, we developed several non-verbal
behaviors such as idling, talking and bouncing.

E. Disengagement Repair Strategies

With the help of elementary school teachers from the
school in which we conducted the user study reported below,
we designed two sets of disengagement repair strategies:
general and targeted. In general interventions, the robots
address the whole group and make generic comments that
imply responsibility of all participants, while in targeted
interventions they directly address the child with the highest
level of disengagement. Additionally, in general interventions
both robots look at each one of the children in the group, and
then utter a verbal comment without targeting any particular
child (e.g., looking at each other or looking at the group

1We tested models combining the features of the target child and the
other children in the group, and the model performance did not increase.



TABLE I: Examples of verbal comments employed by
the robots in general (addressing the group) and targeted
(addressing one child) disengagement repair strategies.

General Targeted
Berry: I can’t hear you Leo! Berry: Hey, We’re trying to work

here!
Leo: Let’s go over that bit again. Leo: Hello?
Berry: Do they seem distracted to
you? Leo: Yeah, a little bit.

Berry: Can you please pay
attention?

Leo: Why aren’t they listening to
us?

Leo: Why aren’t you listening to
us?

but without making eye contact with any of the children).
In targeted interventions, both robots orient themselves to
the most disengaged participant before making the verbal
comment.

These two different categories of disengagement repair
will comprise the two experimental conditions of the study
reported in this paper. As such, to the same group of
children, the robots will employ strategies from only one
of these groups. Table I contains examples of the verbal
comments used by the robots in the two disengagement
repair categories. Once the action selection module triggers
an intervention, the selection of specific behaviors within
each category is performed randomly, with the two robots
having the same probability of uttering the verbal comments
to account for potential spacial bias of the children who are
closest to one of the robots.

V. Experimental Evaluation

We conducted a repeated interaction study in which groups
of children interacted with the robot system described above.
This study had two main goals. First, we wanted to have a
proof-of-concept of our autonomous disengagement repair
algorithm working in real-time in a classroom environment.
Our second goal was to investigate the impact of type
of repair strategies (i.e., targeted versus general) in small
groups.

A. Participants

A total of 72 children were recruited from an elementary
school in the United States where RULER [22], a social and
emotional learning program that inspired the learning content
that the robots deliver to children through the interactive
stories, has been implemented. The participants in the study
were first through third grade students (35 female, 37 male)
between the ages of 6 and 9 (M = 7.5, S D = .83).

B. Study Design

The study was a between subjects design with participants
randomized into small groups of 3 and assigned to one
of the following conditions: targeted (disengagement repair
strategies directed specifically toward the disengaged child,
N = 27), general (disengagement repair directed at the whole
group, N = 27), and a control condition (no disengagement
repair interventions, N = 18). The conditions were counter-
balanced for age and gender, and groups were exclusively

TABLE II: Summary of the study design with regard to the
presence of disengagement repair interventions – Yes (Y) or
No (N) – and difficulty level of the story content – Easy (E),
medium (M) or Hard (H).

Condition Session 1 Session 2 Session 3
Dis.? Level Dis.? Level Dis.? Level

Control N E N M/H N M/H
Targeted N E Y M/H Y M/H
General N E Y M/H Y M/H

composed of participants from the same grade level. Group
formations remained the same through the entire study.

Participants interacted with the robots a total of three
sessions, approximately once per week. Repeated sessions
were used to avoid potential effects of interacting with a
robot for the first time. For the same reason, the first session
was treated as a baseline: even in the disengagement repair
conditions, the robots did not employ any disengagement
repair interventions. Additionally, all participants in session
1 were assigned to the interactive story with the easiest
learning content. In the following two sessions, the session
content was counter-balanced in each condition to account
for effects of difficulty level over time (see Table II).

C. Session Contents

The goal of our scenario is to create an interactive
safe and judgment free space for children to develop
their emotional intelligence skills by trying out various
situations in emotionally-charged situations that they might
find in the real world. Each pedagogical session featured an
interactive narrative around a different feeling word that is
part of the RULER curriculum: Inclusion (easy), Cooperation
(medium), and Frustration (hard). The scripts were reused
from a previous experiment that investigated the effects of
children interacting alone or in small groups in this scenario,
but in which the robots were not capable of detecting
disengagement in real-time and respond accordingly [4]. The
difficulty level is reflected by the number of core ideas
and story details, as well as by the number of additional
characters mentioned in the story by the two main robot
characters. Each session consists of an introductory scene
followed by three different story options for children to
explore. The options impact the story line, and consequently,
the feelings of the story characters in different ways.

D. Procedure

Consent forms were distributed in the classrooms of
teachers that had agreed to participate in the study. A
project aide retrieved groups of participants from their
classrooms and brought them to the experiment room located
in the school library. After receiving verbal consent, the
experimenter introduced the participants to the robots, Leo
and Berry, and explained how the session would proceed.
The robots started by acting out an introduction scene,
and then participants were instructed to select what would
happen among three different options presented on the tablet
with text and accompanying illustrations. Participants were



instructed to explore all the story options. The experimenter
remained in the room, but out of sight of the participants for
the duration of the robot interaction. The experimenter was
responsible for recording the interaction using 3 HD cameras
(one for each participant), making sure the Kinect sensor was
tracking all participants, and controlling the beginning and
end of the interaction, since the robots’ behavior was fully
autonomous.

The experimental sessions lasted roughly 30 minutes.
During about half of this time, children interacted with the
robots in a small group, and in the remaining 15 minutes each
participant was interviewed individually by an experimenter
in a separate room by additional experimenters. During the
interview, the experimenter used small cards, with the same
illustration as the tablet during the storytelling interaction,
to represent the various scene choices for the story session.
Interviews were conducted following a standardized protocol
comprised of the same series of questions (one open-ended
question, followed by two closed-ended questions) for each
of the four scenes (i.e., Introduction, Option 1, Option 2,
Option 3). In the order that each participant selected the
story options, the experimenter asked: a) what happened in
the story when that option was selected, b) what color of
the mood meter (RULER tool) they thought the main story
character was in and c) what word would they use to describe
how the character was feeling. During each interview session,
participants answered a total of 12 questions (4 scenes per
session), and a total of 36 questions over the course of
the study. If a child did not respond within 10 seconds of
the question being asked, the experimenter would inquire,
“Would you like me to repeat the question or would you
like to move on”. All interviews were audio-recorded and
transcribed verbatim for coding.

1) Reliability Coding: Two independent coders analyzed
the interview transcriptions from the three sessions, counting
the number of core characters (e.g., Leo, Berry), core
narrative ideas (e.g., Leo does not know anyone, everyone
is staring at Leo’s clothes), correct and incorrect feeling
words, event details and extra-event details. The two coders
overlapped in 25% of the data for reliability analysis.
Reliability between coders was measured using the Intra-
class Correlation Coefficient test for absolute agreement
using a two-way random model. All the coded variables
for each interview session had high reliabilities. The lowest
agreement was found in the number of correct details
(ICC(2, 1) = 0.597, p < .001), and maximum agreement
was reached for the number of mentioned core characters
(ICC(2, 1) = 0.965, p < .001). Given acceptable agreement
between the two coders in the overlapping interviews, data
from one coder was randomly chosen for analysis.

E. Measures

Our exploratory analysis included recall and understanding
metrics extracted from the post-interaction individual
interviews, and behavioral metrics extracted during the
interaction with the robots.

1) Recall and Understanding: The post-interaction
measures focused on participants ability to logically
reconstruct a comprehensive narrative, and interpret the
emotional state of the characters for each of the narrative
choices. The interview questions were coded and then
combined into the following dependent variables:

Narrative Structure Score (NSS) – the ability of
participants to “logically recount the fundamental plot
elements of the story” [23], [24]. For each session S and
participant i, responses were coded for the presence of core
characters and ideas. NSS was computed using the following
formula:

NS S S ,I =
Mentioned(CoreCharacters + CoreIdeas)

All(CoreCharacters + CoreIdeas)
A perfect NSS of 1.0 indicates that the child was able

to recall all the core characters and main ideas in all four
open-ended questions of that interview. The average number
of characters in each story was three (Leo, Berry, and one
additional character for the medium and hard narratives),
while the number of core ideas varied depending on the story
difficulty level.

Emotional Understanding Score (EUS) – participants’
ability to correctly recognize and label characters’ emotional
states. Responses to the interview questions “what color
of the Mood Meter do you think <robot character> was
in?” and “what word would you use to describe how
<robot character> was feeling?” were used to calculate this
metric2. These responses were coded into the ColorS core,
with participants receiving +1 if the correct Mood Meter
color was provided, and -1 if an incorrect color was
given. The second direct question was used to create
a FeelingWordS core, which measures how proficient
children are at enumerating affective words to particular
Mood Meter quadrants (e.g., enthusiastic, peaceful). In the
FeelingWordS core, participants received +1 or -1 for the
first provided feeling word, and +0.5 or -0.5 points for each
additional appropriate or inappropriate word, respectively.
EUS was then calculated by summing these two scores:

EUS S ,I = ColorS core + FeelingWordS core

Higher EUS indicates that more Mood Meter colors and
corresponding feeling words were accurately identified. This
score is not bounded because participants were free to use
any number of words in their responses.

2) Behavioral Metrics: The participant videos collected
during the robot interaction were synchronized with
automatically generated logs that contain the times in which
the robots employed disengagement repair interventions.
We conducted a post-hoc automatic behavioral analysis of
the video recordings using a commercially available facial
expression analysis software3 that outputs levels of valence

2The Mood Meter is a quadrant with the x-axis representing low to high
pleasantness and the y-axis indicating low to high energy. Participants were
asked to categorize the emotional state of the robot characters based on
the following colors: Yellow (pleasant, high energy), Green (pleasant, low
energy), Blue (unpleasant, low energy), or Red (unpleasant, high energy).

3http://www.noldus.com/human-behavior-research/products/facereader



Fig. 2: Average Narrative Structure Scores (NSS) for
participants in each condition on every interaction session.

and arousal of tracked faces at 30 FPS. Valence values
can range from -1 (most negative) to 1 (most positive),
and arousal ranges from 0 (low energy) to 1 (high energy).
Because we did not expect the robot’s disengagement repair
interventions to affect the average valence or arousal of
the whole interaction, we focused the analysis of these
variables in the 20 seconds following a robot disengagement
repair strategy, which encompasses the average duration
of children’s responses to these interventions. For each
participant belonging to one of the two experimental
conditions, we averaged his/her valence and arousal for the
20-second windows right after a disengagement repair was
employed by one of the robots.

VI. Results

We examined the effect of our manipulation on the
recall, understanding and behavioral metrics using analysis of
variance (ANOVA). No significant gender differences were
found in the results reported below.

A. Recall and Understanding

1) Narrative Structure: A one-way ANOVA was
conducted to investigate the impact of study condition and
Narrative Structure Score (NSS). There was a statistically
significant difference between the two study conditions,
F(2, 207) = 5.418, p < .01, η2 = .05. A Bonferroni post-hoc
test revealed that NSS was significantly higher in the control
condition (M = .48, S D = .15) compared to the general
condition (M = .40, S D = .15, p < .01), and that NSS
was significantly higher in the targeted than in the general
condition (M = .46, S D = .15, p < .05). There were no

Fig. 3: Average Emotional Understanding Scores (EUS) for
participants in each condition on every interaction session.

statistically significant differences between the control and
targeted groups.

When considering the session number as a within-subjects
factor (and keeping study condition as a between-subjects
factor), there was a statistically significant main effect of
time in a repeated measures ANOVA, F(2, 64) = 6.25, p <
.05, η2 = .16, and no significant interaction effect between
time and condition, F(4, 130) = .57, p = .69, η2 = .02. Post-
hoc tests applying Bonferroni correction revealed that NSS
was significantly higher in session 1 (M = .48, S D = .17)
when compared to session 2 (M = .42, S D = .15, p < .05),
but no significant differences were found between session
3 (M = .45, S D = .12) and the first two sessions. It is
relevant to note that session 1 was our baseline session (easier
story content and similar treatment for all participants),
and the two following sessions were counter-balanced for
story content difficulty. Figure 2 shows NSS over time for
participants in each study condition.

2) Emotional Understanding: To investigate the impact of
study condition on Emotional Understanding Score (EUS),
we conducted a one-way ANOVA. There was no statistically
significant difference between study condition in EUS,
F(2, 207) = .21, p = .811, η2 = .00. When including time as a
within-subjects factor, a repeated measures ANOVA revealed
again a significant main effect on time, F(2, 64) = 11.43, p <
.01, η2 = .26, but no interaction effect between time and study
condition, F(4, 130) = .12, p = .97, η2 = .00. A Bonferroni
post-hoc test revealed that EUS was significantly lower in
session 2 (M = .10, S D = .83, p < .01) and in session 3
(M = .21, S D = .64, p < .01), when compared to session 1
(M = .76, S D = .98), our easier baseline session.



Fig. 4: Average Valence for participants in the two
experimental conditions in the moments after the robots
employed disengagement repair interventions.

B. Behavioral Measures

To investigate the variation of children’s valence and
arousal in the moments right after the robots employed a
disengagement repair behavior, we conducted within-subjects
ANOVAs with session number (2 or 3) as the within-subjects
factor and condition (targeted or experimental) as a between-
subjects factor.

1) Valence: We found no significant main effect on
session number in participants’ valence, F(1, 121) =

1.78, p = .19, η2 = .01. A significant interaction effect was
found between session and study condition, F(1, 121) =

10.32, p < .01, η2 = .08 (see Figure 4), with children
in the targeted condition experiencing significantly higher
valence in session 3 (M = .02, S D = .25) than in session
2 (M = −.03, S D = .25), and participants in the general
condition experiencing lower valence in session 3 (M =

−.15, S D = .25) than in session 2 (M = −.02, S D = .22).
2) Arousal: There was no significant main effect on

session and arousal, F(1, 121) = 2.15, p = .15, η2 = .02, nor
in the interaction between session and condition, F(1, 121) =

.16, p = .69, η2 = .00. Although not statistically significant,
arousal is lower in session 3 (M = .36, S D = .08) when
compared to session 2 (M = .38, S D = .09) collapsed across
the two experimental conditions.

VII. Discussion

Our results contrast with previous research with adults
who found that higher interaction recall is achieved when
robots can monitor participant’s engagement and employ
social cues when attention drops [15]. However, it is
important to frame these results within the context of groups
of children. First of all, interruptions are disruptive by nature
[25] and children of this age might not have developed

the capacity to quickly recover from them, especially in
the presence of their peers and without adult supervision.
In this line of reasoning, Kennedy and colleagues [26]
found that more social behavior is not always reflected in
increased learning gains in child-robot interaction. In fact,
we noticed that oftentimes the robot’s interventions lead to
higher disengagement: participants responded to the robots
(e.g., by denying that they were disengaged or asking how the
robots knew) or started talking to each other about what just
happened. These behaviors were more frequent in session 3
than in session 2. Finally, an alternative explanation is that
the selected parameters of our algorithm, such as maximum
number of disengagement repair interventions and minimum
time between interventions, were not optimal for this case.
Fine-tuning the algorithm parameters differently could have
impacted children’s recall and understanding abilities in a
different manner.

When comparing the two types of disengagement repair
strategies, interventions targeting one particular child lead
to higher recall and understanding gains than interventions
addressing the whole group. These results can be explained
by the diffusion of responsibility theory, which suggests
that the mere presence of others decreases the pressure
on individuals to respond because of a sense of shared
responsibility [27], a phenomenon also known as the
bystander effect. Research has shown that young children are
also influenced by the bystander effect [28]. For instance,
they are more likely to exhibit prosocial behavior when
personal responsibility increases [29]. In our study, it could
have been the case that the sheer presence of the other
group members (i.e., bystanders) reduced the likelihood of
successful interventions addressing the entire group.

Additionally, behavioral metrics indicate that targeted
interventions might be more successful over time. In the
moments right after the robots employed a disengagement
repair behavior, participants’ valence tended to increase from
one session to the other in the targeted condition, but it
decreased for children in the general condition. One possible
interpretation is that general interventions tend to penalize
participants who are engaged, and over time this can have
a negative effect. However, future experiments are necessary
to investigate whether these trends would persist over longer
periods of time.

VIII. Conclusion

The contributions of this work were twofold. First, we
presented an algorithm that allows social robots to monitor
disengagement in small groups of children and decide when
to intervene in the attempt to re-engage children in the
interaction. Second, we investigated the impact of targeted
(to a particular child) versus general (addressing the group)
disengagement repair strategies in a field study where the
same groups of children interacted with two autonomous
robots once a week over three weeks.

Overall, our results suggest that interrupting the natural
course of the interaction can be extremely costly, especially
in multiparty child-robot interaction. As children realize



that the robots are socially aware of their behavior, they
start addressing the robots more often (and more socially).
Previous research also suggests that this can be a source
of distraction [26]. In other words, robot social behavior
leads to more human social behavior and, in learning
environments, that comes with a cost. Further research is
needed to understand what the optimal trade-offs are with
regard to both the number and type of disengagement repair
interventions, so that educational robots with augmented
perceptive capabilities can make a positive impact on
children’s learning.
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