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This dissertation makes three contributions to the study of personalization in robot 

tutoring: (1) we provide evidence for improved student learning gains associated with the 

physical presence of a robot tutor, (2) we deliver experimentally-derived design guidelines 

for future work in robot tutoring, and (3) we provide novel robot tutoring personalization 

systems and demonstrate th a t these systems improve student learning outcomes over 

non-personalized systems by 1.2 to 2.0 standard deviations, corresponding to  learning 

gains in the 88th to 98th percentile.

We begin by investigating a foundational question in the field of robot tutoring: can 

the physical presence of a robot tutor affect student learning outcomes? We conducted 

an experiment comparing student learning outcomes between three conditions in which 

participants received tutoring from either: (1) a physically-embodied robot tutor, (2) an 

on-screen tutor, or (3) a voice-only tutor. We found that students who received tutoring 

from the physically-embodied robot tutor were more engaged in the lessons than students



in the other two conditions. We also found that, despite the instructional content being 

the same across all three conditions, students who received tutoring from the physically- 

embodied robot achieved significantly better learning outcomes than students in the other 

two groups by 0.3 standard deviations, corresponding to gains in the 62nd percentile.

In order to  arrive at design guidelines for our work in automated personalization for 

robot tutoring, we first studied how humans personalize their tutoring. To do this, 

we asked participants to teach robot students, which, unlike human students, can be 

expected to  behave in the exact same way on multiple occasions and with different 

human tutors. By employing robots as students, we were able to  study the nuances of 

human tutoring personalization. We found that human tutors teach more and produce 

more strongly affective vocalizations to  students who are less successful than to  students 

who are more successful. We also found that, even if two students perform exactly the 

same on all learning tasks, human tutors still personalize their instruction based on the 

affective content of students’ responses. We use these findings to propose guidelines for 

future work in automated personalization, with the goal of producing more human-like 

automated tutoring.

Our final contributions are our automated personalization systems for robot tutors: two 

of which are intended for shorter-term robot tutoring interactions and one of which is 

intended for longer-term interactions. For the shorter-term models, designed for use in at 

most one contiguous session with a robot tutor, we created an additive model intended 

to investigate the effects of the simplest forms of personalization systems, and a Bayesian 

model th a t is slightly more sophisticated and leads to improved learning gains over the



additive model. For the longer-term system, we used a Hidden Markov Model (HMM) 

tha t tracked students over the course of five sessions, taking place over two weeks. We 

evaluated these systems against similar non-personalized systems with human students 

and found that our personalization systems increased learning gains by between 1.2 and

2.0 standard deviations over non-personalized systems, corresponding to gains in the 

88th to 98th percentiles.
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teach me and I m ay remember, 

involve me and I learn.”

-  B e n j a m i n  F r a n k l i n



Chapter 1

Introduction

Robots th a t serve as social interaction partners for students outside the classroom may 

soon be able to  provide individualized, long-term, in-home academic support tha t supple

ments a teacher’s classroom instruction. Especially for students who have fallen behind 

in class or those who regularly need extra review and attention, such robots could serve 

as an important secondary source of individualized support. We envision robot tutors 

tha t function as in-home homework helpers, interacting with students one-on-one as they 

do their work and providing them with motivational support and content assistance. In 

this dissertation, we will explore some initial implementation questions of such robot 

tutors. Though we are not the first group to  study robot tutoring, we are the first to 

investigate robot tutoring personalization, such that the robot personalizes the lessons 

it gives based on the needs of individual students.

1



Chapter 1. Introduction 2

1.1 Tutoring

In education research, one-on-one tutoring by a content expert is widely considered to 

be one of the most efficacious teaching modalities (Bloom 1984; Cohen, Kulik and Kulik 

1982; VanLehn 2011). In a landmark study, Bloom (1984) found tha t students who re

ceived individual domain-expert tutoring outperformed students who received classroom 

instruction by two standard deviations on average, i.e. achieving scores comparable to 

the 98th percentile of students who received traditional classroom instruction. This re

sult is cited as “Bloom’s two-sigma effect,” and it is often credited with establishing 

one-on-one tutoring as a gold standard against which the effectiveness of other teaching 

modalities and practices are measured (Hogan and Pressley 1997).

Though now more commonly referred to as “Bloom’s two-sigma effect,” this result was 

first called “Bloom’s two-sigma problem” by the author because it highlights the relative 

ineffectiveness of the typical classroom instruction model that most schools and educa

tional programs are based on today (Bloom 1984). Followup research has clarified that, 

taking into account the background of the tu to r and what standards the tu to r can set 

for his or her pupils, the benefit of human one-on-one tutoring over classroom instruc

tion may be closer to 0.8 sigma, or test scores in the 80th percentile (VanLehn 2011). 

However, whether tutoring improves scores by 0.8 sigma or 2.0 sigma, there is a well- 

established positive influence of one-on-one tutors which demonstrates tha t our current 

educational system, based on undifferentiated group instruction, is producing signifi

cantly sub-optimal learning gains for its students. Perhaps, one day, with the addition 

of personalized robot tutors to supplement traditional classroom instruction, we can fill
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this learning gap and produce outcomes on par with one-on-one tutoring. Perhaps we 

could even produce outcomes better than typical one-on-one tutoring if we leveraged the 

strengths of both modalities and designed their uses to complement one another.

1.2 Human Tutoring

In order to build automated tutors that someday approach the level of success attained 

by expert human tutors, we must ask, "W hat do the best expert human tutors do that 

makes them so effective?" Though the mechanisms and processes are still of some debate 

in education research, there is a general consensus tha t tutors provide two functions 

tha t a typical classroom teachers do not. First, tutors give individualized scaffolded 

guidance to students as they solve problems or analyze new concepts by providing enough 

instructional support to  bridge a student’s knowledge gap and then iteratively taking 

pieces of support away until students are able to build the bridge themselves (Wood, 

Bruner and Ross 1976). Second, tutors gauge a student’s understanding on an individual 

basis and build a mental model of a student’s comprehension which they use to  frame 

future scaffolding episodes (Chi et al. 2001).

In addition to acting as a safety net for students to explore the boundaries of their 

knowledge, tutors can also act as a significant source of motivation and accountability 

for students. The one-on-one interactivity of a tutoring dialogue can keep students 

more actively engaged in the act of problem solving and critical thinking than classroom 

instruction or working alone (Merrill et al. 1992). For example, prompting students
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to describe aloud what they’ve learned forces students to  question their assumptions, 

form better synthesized conclusions, and, ultimately, increases their learning gains and 

retention (Chi et al. 1994; Pressley et al. 1992). More recently, Chi et al. (2001) isolated 

the variable of interactivity by comparing a typical tutoring interaction with a static 

text control group consisting of the same instructional content, finding tha t students 

new to the subject scored better on post-tests simply as a result of the interactivity 

of tutoring, likely as a result of increased engagement. This dissertation explores how 

student engagement in robot tutoring affects learning gains in Chapter 4.

1.3 Automated Tutoring

The goal of automated tutoring is to produce systems that leverage the benefits of the 

one-on-one teaching modality described above without requiring as many human re

sources. Most such systems in development today are called Intelligent Tutoring Sys

tems (abbreviated “ITS’s”). A wide variety of ITS’s exist, from those designed for early 

childhood education for a student’s first years in school (Prentzas 2013), all the way 

up to professional training for medical doctors (Suebnukarn and Haddawy 2004) and 

military personnel (Steele-Johnson and Hyde 1997). Though these systems have been in 

development for the past fifty years, only in the past ten years have any become commer

cially available. Two such commercial systems have already reached millions of students 

(Desmarais and Baker 2012). See Pane et al. (2014) for an account of how a commercial 

autom ated tutoring system performed in a randomized pair-matched controlled study
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F ig u r e  1.1: System  arch itecture of FLU TE, an exam ple of an Intelligent 

T utoring System  (ITS) which, like m ost IT S ’s, separates th e  s tu d en t m odel 

from th e  curriculum  model, seen here a t th e  to p  of th e  d iagram  (Devedzic 

and  D ebenham  1998). M ost IT S ’s are specialized tow ards th e  teaching 

requirem ents of a  specific subject. In th is  case, F L U T E  tu to rs  th e  system s 

curriculum  in com puter science and  requires content experts in th a t  area 

to  w rite its  curriculum  model.

with a sample size of over 20,000 students in a two year long intervention calling for 

supplementary use in traditional public school classrooms.

Generally speaking, ITS’s are designed with four main components: (1) a student model, 

which tracks the progress of individual students, (2) a knowledge model, which is typi

cally authored separately by a curriculum expert, usually a teacher, (3) a tutoring model, 

which is closely associated with the student model and matches available curriculum to
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F ig u r e  1.2: T he Bayesian Knowledge Tracing algorithm  is one of the  

m ost popular studen t m odels in Intelligent T utoring System s (ITS) liter

a tu re  (Baker, C o rb ett and  Aleven 2008). It is a  H idden M arkov M odel 

w ith  two hidden sta tes, ‘learned’ and  ‘unlearned ,’ representing th e  in ter

nal s ta te  of th e  s tu d en t’s m astery  or lack thereof of a  specific skill. I t also 

has two observable sta tes, ‘valid’ and ‘invalid,’ representing th e  validity of 

answers given by the  student. P (G ) is th e  probability  of a  guess, P (T )  the  

probability  of a  skill being learned, and  P ( S ) th e  probability  of a  “slip,” or 

a  m isuse of a  known skill. P (L n) represents th e  in itia l likelihood a  studen t 

knows skill n.

an individual student’s needs, and (4) a graphical user interface, which may or may not 

include an on-screen agent character. See Figure 1.1 for an example ITS architecture 

consisting of these components; see Figure 1.2 for an example of a student model ex

pressed as a Bayesian network. A broad overview of a variety of ITS system architectures 

can be found in a literature review by Nwana (1990). We describe several distinctions 

in ITS literature below tha t influenced our work in making robot tutors.
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1.3.1 M odel-T racing vs. C urricu lum -Sequencing Tutors

The first distinction tha t is important in our work corresponds to the two major families 

of automated tutors outlined by Desmarais and Baker (2012): (1) those tha t perform 

step-by-step guidance through individual problems in a given domain, called model- 

tracing tutors, and (2) those tha t perform curriculum sequencing to maximize a student’s 

learning potential by choosing a path through the curriculum space, called curriculum- 

sequencing tutors. These two families have differing origins in the education literature, 

though they are not mutually exclusive in practice. The choice between them typically 

reflects the granularity of the student model of the tutoring system, whether the tu tor is 

modeling a student’s progress with specific steps to  solve a certain category of problems, 

or the tu tor is modeling a student’s knowledge as he or she progresses through a problem 

space by picking the most appropriate problems to solve next.

In our robot tutoring work, we explore both approaches to automated tutoring. We 

created a model-tracing robot tu to r for Chapter 5, which traces students’ ability to 

perform steps in a cognitively-demanding puzzle solving task, where all of the puzzles 

are fixed in advance. For Chapter 6, we created a curriculum-sequencing robot tutor 

which chooses the most appropriate language-learning task for students among available 

tasks, based on an estimate of each student’s skills related to those tasks. We find 

tha t the granularity of our modeling, whether within-problem as in model-tracing or 

between-problems as in curriculum-sequencing, reflected the intended length of time for 

the tutoring interactions we designed, such that model-tracing was more appropriate for
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( a ) User interface of ANDES, a 

workbook-style physics tutor.

( b ) User interface of AutoTutor, a 

dialogue-driven computer science tutor.

F ig u r e  1.3: Side-by-side com parison of th e  graphical user interfaces of 

Andes, a  w orkbook-style Intelligent T utoring System  (ITS) (Schulze et al. 

2000), and  A utoT utor, a  dialogue-driven n a tu ra l language generating  ITS 

(G raesser e t al. 2008). IT S ’s th a t  have an im ated  or v irtual agents produce 

b e tte r  s tu d en t engagem ent and satisfaction over workbook-style system s 

and  m ay lead to  b e tte r  s tu d en t outcom es (Lester e t al. 1997; P rendinger 

et al. 2003).

shorter-term interactions and curriculum-sequencing was more appropriate for longer-

term interactions.

1.3.2 W orkbook-B ased  vs. D ia logue-D riven  T utors

Another important distinction in ITS literature that informs our work is the choice of 

the user interface for automated tutors. There are two dominant graphical user interface 

styles: what we call “workbook-style” tutors and “dialogue-driven” tutors. “Workbook- 

style” refers to  a tu to r interface that asks students to fill in the blanks as they work 

through a problem with the tutor. Typically, such tutors require students to show their
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work in great detail so tha t the tu tor can better diagnose what each student knows and 

does not know. See an example of such an interface in Figure 1.3a.

The other dominant style is “dialogue-driven tutors,” “character-driven tutors,” or “con

versational agents.” In these ITS’s, a student is expected to answer natural language 

prompts by typing in natural language statements to  the tutor software. While solving 

problems, students are expected to  produce a close equivalent of a series of teacher- 

written statements that define the key inferences or steps needed to  solve a problem 

(Rus et al. 2013). The most significant such tu tor is AutoTutor, see Figure 1.3b for a 

screenshot of its interface. AutoTutor does natural language processing to assess to  what 

degree the content of a student’s answer matches the key inferences needed to complete 

each problem (Graesser et al. 2008).

The distinction between these two popular interfaces, one typically with an on-screen 

character (i.e. dialogue-driven tutors), the other without (i.e. workbook-style tutors), 

allows us to  ask how the presence of a virtual agent influences students in automated 

tutoring.

In the ITS community, the phenomenon of a student behaving differently in the presence 

of an on-screen character as part of the tutoring software is called the “persona effect” and 

its validity is debated (Lester et al. 1997). Most groups studying the persona effect find 

an increase in student attention, satisfaction, or motivation attributed to  the presence 

of an on-screen agent (Moundridou and Virvou 2002; Van Mulken, Andr6 and Muller 

1998), but only a handful of groups have found learning gain improvements as a result of 

these effects (Baylor and Ebbers 2003; Prendinger et al. 2003). This may indicate that
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the persona effect, or embodiment in robotics, only contributes to learning gains in some 

domains but not others. Conversational agents are becoming more popular in the ITS 

community according to a recent survey of such agents by Rus et al. (2013), so soon we 

may know more about the persona effect and whether we can effectively harness it in 

real-world tutoring applications.

In Chapter 2 we present results on the benefit of having a physically-embodied robot 

tu tor compared to  an on-screen virtual agent and a disembodied voice. We find that 

physical presence leads students to pay more attention and improve their learning out

comes relative to  the other two conditions.

1.3.3 P ersonalization  in A u tom ated  Tutors

The personalization a tu tor does to match the needs of each student is what accounts for 

the relative success of one-on-one tutoring over group instruction in traditional classroom 

settings (Merrill et al. 1992). Personalization is a feature of all automated tutoring 

systems and many kinds of personalization have been pursued by ITS researchers -  from 

inferring a student’s motivation based on his or her facial expressions or posture (Conati 

and Maclaren 2009; D’Mello 2012), to  detecting if students are trying to  abuse the hint 

and help features of ITS’s to  game the system to improve their scores (Baker, Corbett 

and Koedinger 2004).

The most significant type of personalization in automated tutors is the student model 

(Hogan and Pressley 1997). An example Bayesian Network student model is found in 

Figure 1.2. We offer several preliminary student models for robot tutors in Chapter 5
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F ig u r e  1.4: RUBI is a hum anoid robo t designed to  in teract w ith  young 

children, 18 to  24 m onths old. It has articu la ting  arm s, an  expressive face, 

and  a  touch-screen tablet-like m idsection on which it displays educational 

content. T he RUBI p latform  is best known for a  stu d y  of its  use to  teach 

vocabulary in a preschool classroom  setting  (M ovellan e t al. 2009).

and Chapter 6, targeted towards a variety of learning tasks and student populations. In 

addition to this form of personalization, we also explore the role of affect in human-robot 

tutoring in Chapter 4.

1.4 Robot Tutoring

Perhaps the most developed robot tutoring platform is from a project called RUBI. The 

RUBI project began in 2004 and is now in its fifth hardware iteration; for an overview of 

the project see Movellan et al. (2007). RUBI is a humanoid robot designed to interact 

with 18- to 24-month-old children. It has articulating arms, an expressive face, and a
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touch-screen tablet-like midsection on which it displays educational content. See Fig

ure 1.4 for a picture of the robot interacting with children. The RUBI platform has been 

used for a variety of studies, from teaching vocabulary words in a preschool classroom 

setting (Movellan et al. 2009) to detecting children’s preferences for different activities 

in a simulated home setting (Malmir et al. 2013). Ruvolo et al. (2008) used RUBI to 

perform apprenticeship learning in which the robot learned to  teach from demonstration 

by a human teacher. The studies with RUBI have not focussed on the personalization 

aspect of tutoring, which is what we look at in this dissertation.

The other dominant family of robot tutoring is those tha t act as telepresence agents for 

teachers who operate the robot from a distance and conduct either one-on-one tutoring 

or traditional classroom group instruction. (Hyun, Yoon and Son 2010) established 

some experimentally-derived guidelines for using robots remotely in classrooms, done 

with the Korean robot tu tor called iRobiQ, a humanoid similar in design to RUBI. 

Another Korean project, Engkey, is specifically designed for English-language tutors 

who may live abroad (Yun et al. 2011). To see Engkey in use in a classroom setting, see 

Figure 1.5. Telepresence robots for education are a burgeoning technology, with other 

notable examples being M IT’s Huggable robot (Lee et al. 2008) and another Korean 

project called ROBOSEM (Park et al. 2011). All of these projects, however, assume 

a human teleoperator who is responsible for the instructional content. In our work, 

although we do occasionally use human operators for some aspects of an interaction, the 

educational content is always automated and independent of the human operators.
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F ig u r e  1.5: ‘Engkey’ is a telepresence robo t agent for teachers and  tu 

to rs to  operate  from a  d istance (Yun e t al. 2011). I t uses a video feed 

of th e  hum an tu to r ’s face to  convey affect inform ation. T his family of 

robo t tu to rs , unlike our work, requires a  hum an teacher to  provide the  

instructional content.

1.4.1 P ersonalization  in H um an -R obot In teraction

Though we are the first group to  look at personalization in robot tutoring, we are not 

the first to look at personalization across all of robotics. The most significant previous 

work in personalization is Snackbot, a robot that personalized dialogue in reference to an 

individual user’s history of snack choices (i.e. an apple or a candy bar), was found to be 

more engaging by users than a non-personalized version of the same robot, leading to an 

increased desire to use the robot and an increase in social behavior directed toward the 

robot (Lee et al. 2012). A robot weight loss coach by Kidd and Breazeal (2008) generates 

customized dialogue based on the progress of the user but their research does not isolate
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the effect of personalization. In other work, a long-term study of elementary students 

playing chess with a robot explored how supportive the students perceive the robot tutor 

to be depending on the kind of feedback it gave students (Leite et al. 2012). In the work 

of Sung, Grinter and Christensen (2009), users that decorated, and thus “personalized,” 

their Roombas, self-reported higher engagement with the robot and more willingness to 

use the robot in the future.

Previous work in personalization in robotics research is varied, but we look specifically 

at how personalization affects robot tutoring interactions. We find out to what extent 

personalization influences students’ perception of the robot and, more importantly, to 

what extent personalization impacts the learning gains made by students.

1.5 Dissertation Overview

This dissertation answers a foundational question in robot tutoring, delivers experimentally- 

derived design guidelines for future work in robot tutoring, and provides novel robot tu 

toring personalization systems that improve student learning outcomes over non-personalized 

systems by 1.2 to 2.0 standard deviations, corresponding to  gains in the 88th to 98th 

percentile.

1.5.1 Foundational Q uestion: “W hy U se  a R ob ot?”

We first answer a foundational question in the field of robot tutoring: “Why use a 

robot?” Our work shows tha t the physical presence of a robot can improve student
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learning outcomes over on-screen character tutors by as much as 0.3 standard deviations, 

corresponding to  gains in the 62nd percentile.

The presence of on-screen characters in automated tutoring systems have been shown 

to improve student engagement, satisfaction, and, in some studies, student learning 

outcomes over autom ated tutoring systems that do not have on-screen characters (Baylor 

and Ebbers 2003; Lester et al. 1997; Prendinger et al. 2003). We investigate whether the 

physical presence of a robot tutor can have a similar or perhaps stronger effect than the 

presence of on-screen characters in automated tutoring. We compared three conditions 

in our investigation, each of which received the same instructional content: one in which 

the content was delivered by a robot tutor, one in which the content was delivered by an 

on-screen character tu tor based on the robot in the first condition, and one in which the 

content was delivered by the same voice as in the first two conditions, but with no physical 

or virtual embodiment. We found tha t the physical embodiment of the robot increased 

students’ attention and students who received robot tutoring learned significantly more 

of the instructional content than those in the other two groups. We conclude that the 

physical embodiment of a robot can be leveraged to improve student learning outcomes 

over on-screen character tutors. This work is described in Chapter 2.

1.5.2 E xp erim enta lly -D erived  D esign  G uidelines

To maximize the impact of our automated tutoring systems, we first assessed the key 

features of expert human tutoring behavior. Understanding what makes an expert human 

tu to r effective is not as straightforward as it may seem. When education researchers
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study human-human tutoring, a major potential confounding variable in their work is 

the “chemistry” between tu tor and student, which determines how effectively they are 

able to communicate (Topping and Ehly 1998). This effect limits researchers’ ability to 

compare one tu to r’s behavior to another, even when they teach the same student, and 

as a result it is difficult to  generalize about the nuances of successful tutoring practices.

Our work overcomes this limitation by using robots as students paired with human 

tutors. Unlike human students, robot students can produce the exact same behavior in 

multiple instances and with different human tutors. Having consistent robot reactions 

to a variety of human tutoring behavior allows us to investigate the commonalities and 

differences between the human tutors more precisely. Based on these investigations, we 

provide design principles for future work in automated personalization systems for robot 

tutoring.

• Does the relative successfulness of a student influence the kinds of tutoring a human 

tu to r provides? We found that when the same human tu tor teaches two robot stu

dents, one a more successful student and the other a less successful student, humans 

provide significantly different feedback to these types of students. When teaching 

a less successful student, human tutors give feedback much earlier in each task and 

more frequently throughout the task. Human tutors also vary the affective content 

of their instruction to these robot students. When teaching the robot student that 

makes more frequent mistakes, human tutors provide significantly more affect in 

their instruction, the majority of which is encouraging and motivational. Whereas, 

when they teach a more successful robot student, we found tha t human tutors
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provide less and less feedback over time. These findings highlight the importance 

of treating more-successful and less-successful students significantly differently in 

automated tutoring, something tha t is not currently done in many autom ated tu 

toring systems. This work, along with resulting design guidelines, can be found in 

Chapter 3.

•  In the work described above we found tha t human tutors provide very different 

kinds of instruction to students th a t differ in their performance on learning tasks, 

but would human tutors personalize their instruction between students who per

form identically on learning tasks? We investigate this in a study with three condi

tions, all of which perform the learning tasks identically and receive identical scores, 

but each of which have distinct patterns of emotional responses. Either the robot 

responds to  the scores it receives with: (1) emotionally-appropriate responses such 

as, ‘T h a t was great!” for good scores or, “I am so sad,” for poor scores, or (2) often 

emotionally-inappropriate responses, such as “We did amazing!” for poor scores, or 

(3) apathetic responses such as, “That was OK.” We found tha t human tutors do 

personalize their instruction to  students of exactly the same learning task perfor

mance, based on the students’ responses alone. We found tha t the robot students 

who gave feedback tha t was often emotionally-inappropriate or apathetic caused 

human tutors to be disengaged with the teaching process, evidenced by their per

formance of fewer demonstrations with less enthusiasm and accuracy than partici

pants in the emotionally-appropriate group. We conclude from these findings tha t 

human tutoring personalization goes well beyond a learner’s task performance and
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tha t the affective content of a tutoring dialogue is of critical importance to human 

tutors. This work, and resulting design guidelines, can be found in Chapter 4.

1.5 .3  R ob ot T utoring P ersonalization  S ystem s

This dissertation contributes two kinds of novel systems for robot tu tor personaliza

tion, one intended for shorter-term robot tutoring interactions and one for longer-term 

interactions.

•  We created a model-tracing robot tutor th a t teaches adults to play a cognitively 

challenging puzzle game called ‘Nonograms’ or ‘Nonogram puzzles.’ While par

ticipants solve a series of Nonogram puzzles, the robot tu tor assesses their skill 

competency on a 10-skill Nonograms puzzle-solving curriculum we authored. The 

robot gives step-by-step advice several times during an interaction, much like it 

would if it were tutoring in m ath or physics, based on one of an individual stu

dent’s weakest skills. Participants who received personalized lessons from the robot 

tu to r improved their puzzle-solving time an average of 1.2 standard deviations over 

participants who received non-personalized lessons, corresponding to  gains in the 

90th percentile. This result validates the effectiveness of our personalization sys

tem, confirming tha t the lessons we chose for each student were significantly better 

suited to  them than those in the non-personalized condition. A description of this 

work can be found in Chapter 5.
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•  We also created a longer-term personalization system based on a Hidden Markov 

Model (HMM) tha t learned its transition probabilities over the course of a two- 

week-long tutoring interaction, teaching an English as a Second Language (ESL) 

curriculum to native Spanish-speaking first graders. In this work we implemented a 

curriculum sequencing tu tor to maximize a student’s exposure to unfamiliar or for

gotten English grammar skills. The students who received personalized instruction 

outperformed students who received non-personalized instruction in a post-test by 

an average of 2.0 standard deviations, corresponding to  gains in the 98th percentile. 

This work can be found in Chapter 6.

We conclude this dissertation with a summary of our contributions in Chapter 7.



Chapter 2

“Why a Robot?”: The Role of 

Embodiment in Robot Tutoring

In this chapter we address a fundamental question in robot tutoring: “Why use a robot?” 

We show tha t the physical presence of a robot tu tor has an effect on students that can be 

leveraged to  increase learning gains by 0.3 standard deviations over on-screen character 

tutors, corresponding to learning gains in the 62nd percentile.

In order to investigate the effects of embodiment in automated tutoring, we designed an 

experiment consisting of three tutoring conditions with differing embodiments, holding 

the instructional content constant between the three conditions. Participants either 

received lessons from: (1) a robot tutor, (2) an on-screen character tutor, based on video 

footage of the robot in the first condition, or (3) a voice-only tu tor with no physical 

or virtual embodiment, which used the same voice as in the previous two conditions.

20
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The domain we chose for this learning task was a cognitively challenging and relatively 

obscure puzzle game called ‘Nonograms’, in which players make progress in each puzzle 

by making logical inferences about a set of constraint satisfaction problems. Choosing 

this relatively complex pedagogical domain allows us to  better isolate the effect of the 

embodiment on student outcomes, rather than choosing a simpler pedagogical domain, 

like a vocabulary memorization task, where simply engaging with a robot may increase 

students’ willingness to practice and thereby lead to learning gains. We found that 

participants who received tutoring from the robot learned to solve Nonograms better than 

in the other two groups and improved their same-puzzle solving time significantly over 

participants in the other groups. We conclude tha t the effects of physical embodiment 

can produce student learning gains in an automated tutoring interaction, even for adults 

engaged in complex learning tasks.

2.1 Related Work

Though we are the first to  investigate the effect of physical presence on the success of 

automated tutoring systems, researchers in the Intelligent Tutoring Systems (ITS) com

munity have investigated the effect of on-screen characters on the success of automated 

tutoring systems. The phenomena of students behaving differently in the presence of an 

on-screen character is known as the ‘persona effect’ in ITS literature (Lester et al. 1997). 

Research on the persona effect has found that the presence of an on-screen character 

increases student attention, satisfaction, or motivation over similar agentless automated 

tutoring systems (Moundridou and Virvou 2002; Van Mulken, Andr6 and Muller 1998).
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However, only a handful of studies have found th a t these increases in student atten

tion, satisfaction, or motivation led to increased learning gains (Baylor and Ebbers 2003; 

Prendinger et al. 2003). These results indicate that the persona effect influences students 

but tha t the presence of an on-screen character does not, in and of itself, guarantee im

proved learning gains. We discuss this further in Chapter 1, Section 1.3.2.

Perhaps the physical presence of a robot tu to r can engender more trust, compliance, 

motivation, or engagement than the two-dimensional presence of an on-screen tutor. If 

so, we may be able to use those effects to  improve student learning outcomes. The effect 

of the physical presence of a robot in human-robot interactions has been investigated 

in teamwork, therapy, and coaching domains, though not yet in autom ated tutoring. 

There are two types of results in this work: changes in self-report measures as a result of 

embodiment and changes in compliance as a result of embodiment. We summarize these 

below.

•  A significant result among the self-report measures was found by Kidd and Breazeal 

(2004), in which a physically embodied robot was rated by participants as more 

enjoyable, more credible, and more informative than an on-screen character in a 

block-moving task. In Wainer et al. (2007), an embodied robot was rated by partic

ipants as more attentive and more helpful than both a video representation of the 

robot and a simulated on-screen robot-like character. Tapus, Tapus and Matarid 

(2009) find tha t individuals suffering from cognitive impairment or Alzheimer’s dis

ease reported being more engaged with a robot treatment than a similar on-screen 

agent treatment.
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( a ) Experiment apparatus in ( b ) Experiment apparatus in (c) Experiment apparatus in 
the robot tutor condition. the on-screen tutor condi- the voice-only tutor condi

tion. tion.

F ig u r e  2.1: E xperim ent appara tus by condition.

•  Compliance results include Kiesler et al. (2008), in which participants who received 

health advice from a physically-present robot were more likely to choose a healthy 

snack than participants who received the same information in robot-video or on

screen agent conditions. Bainbridge et al. (2008) found a significant improvement 

in the compliance of participants to  a robot’s requests to throw away books in a 

physically-present robot versus a video representation of the same robot.

We use task-performance measures in our work, in the form of Nonograms puzzle-solving 

time, as well as self-report measures, in the form of exit surveys, to investigate the effect 

of the physical presence of a robot in an automated tutoring interaction.



Chapter 2. “Why a Robot?”: The Role of Embodiment in Robot Tutoring 24

2.2 Overview

In this experiment participants were asked to solve a series of four logic puzzles called 

“Nonograms.” Periodically, as participants were solving these puzzles, the tu to r inter

rupted them to demonstrate a puzzle-solving skill relevant to the specific puzzle they 

were solving. These puzzle-solving lessons consisted of pre-recorded audio with synchro

nized lesson-specific on-screen visual aids, each between 21 -  47 seconds long, and each 

describing a unique skill. These lessons were delivered to  participants in one of three 

ways, depending on the experimental condition the participant was randomly assigned 

to: either by (1) a robot tutor, (2) an on-screen character tutor, or (3) a voice-only 

tu tor with no physical or virtual embodiment. The apparatus for the each condition 

can be found in Figure 2.1. The faster a participant was able to  solve the puzzles, the 

better at puzzle-solving we judged them to be. We compare the mean puzzle-solving 

times between participants across groups to  evaluate the effect of an automated tu to r’s 

embodiment on student learning outcomes.

2.3 Curriculum: ‘Nonograms’

To minimize the potentially biasing effect of differences in participants’ prior knowledge, 

we chose a pedagogical domain which was likely to be unknown to participants. ‘Nono

grams,’ also called ‘Nonogram puzzles,’ are a Japanese grid-based fill-in-the-blanks game 

similar to Sudoku. Nonogram puzzles are a difficult cognitive task, one tha t requires 

several layers of logical inferences to complete. Solving a Nonogram puzzle of arbitrary
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2 1 1 
2 2 1 1  

3 2  11  
4 1 2 
1 1 6
1 4 2 
3 1 3
2 3 2 
3 4  1 
1 3 2

2 2 1 1

3 2  11

( a ) Sample Nonogram puzzle, blank. ( b ) Sample Nonogram puzzle, solved.

F ig u r e  2.2: A sam ple Nonogram s puzzle. T he objective of N onogram s is, 

s ta rtin g  w ith  a  blank board  like in F igure 2.2a, to  find a  p a tte rn  of shaded 

boxes on th e  b o ard  such th a t  th e  num ber of consecutively shaded boxes 

in each row and colum n appear as specified, in length  and  order, by th e  

num bers th a t  are p rin ted  to  th e  left of each row and  above each colum n 

like in F igure 2.2b. For a  m ore detailed  explanation see Section 2.3.

size is an NP-complete problem (Nagao and Ueda 1996), meaning tha t no efficient com

putational solution is known. An example of a Nonogram puzzle with its solution can 

be found in Figure 2.2.

The objective of Nonograms is, starting with a blank board, to  shade in boxes on the 

board such that the number of consecutively shaded boxes in each row and column appear 

as specified, in length and order, by the numbers that are printed to  the left of each row 

and above each column. For instance, a row marked as ‘4 2’ must have 4 adjacent shaded 

boxes, followed by 2 adjacent shaded boxes—in th a t order, with no other boxes shaded 

in tha t row, with at least one empty box between the sets of adjacent shaded boxes,
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and with any number of empty boxes before or after the pattern. We refer to these 

contiguous sets of shaded boxes as ‘stretches.’ For instance, the row described above 

requires two ‘stretches,’ one of length 4, the other of length 2. One solves the puzzle 

when one finds a pattern of blank and shaded boxes such that all of the requirements for 

each row and column are satisfied. See Figure 2.2a and Figure 2.2b for a sample puzzle 

and its solution.

In a typical puzzle, one cannot solve most rows or columns independently. Instead, one 

must infer the contents of parts of rows or columns and use previous inferences as the 

basis of subsequent inferences. This is the case because when you shade in a single box 

on the board, you affect both its row and its column. That affects the rest of that row 

or column, and the rest of that row or column can affect any of the rows or columns 

tha t it intersects. One must make each move without violating any of the row or column 

requirements of intersecting rows and columns.

One way to make progress in Nonograms is to  shade boxes tha t the player infers must 

be shaded, regardless of how the rest of the row or column is shaded. Another way is 

to infer that a box or a set of boxes cannot be shaded. When participants made such 

an inference they marked tha t box or those boxes with a red ‘X’ symbol. These ‘X’s 

can be seen in the screenshots of the graphical user interface Figure 2.3 as well as in the 

examples provided in the lessons, documented in Section 2.4 below.

We created a full-screen Nonograms computer program tha t participants used with a 

mouse and keyboard. The user interface provided a timer and a count of how many
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1 1 1 2  6  2  3  2 1 2

1111

G A lfl 1 o r  4

0:53

HINTS OIVIN:

1/3 3 1 1

( a ) Screenshot of our Nonograms graph

ical user interface, during gameplay. The 

red ‘X ’ marks are flags participants can 

set when have determined not to shade in 

a specific box. The robot tutor encour

ages use of these flags.

( b ) Screenshot of our Nonograms graphical user 

interface, during a lesson (called “hints” during the 

experiment). The overlay here is visual aid that the 

robot tutor used to teach lessons. For example, in 

this case, the robot instructs the participant to put 

an ’X’ in the first two boxes.

F ig u r e  2.3: Screenshots of our Nonograms graphical user interface.

lessons (called “hints” in the interface) the participant had received and how many they 

would receive; screenshots of which are found in Figure 2.3.

Participants were asked to play four puzzles on ten-by-ten grids with a time limit of 

fifteen minutes per puzzle. Every participant in this study was asked to  solve the same 

sequence of four puzzles. The first puzzle was the easiest, though not a trivial one. The 

second was incrementally harder and the third was harder still.

The fourth puzzle, however, consisted of the same board as in the first puzzle, but 

disguised by a rotation of 90°, such th a t the column stretch requirements were swapped 

with row stretch requirements and vice versa. This meant that the first puzzle and the 

last puzzle were of the same difficulty and required the same knowledge to complete. 

This manipulation enables us to make within-subjects comparisons about the extent to
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which each participant improved the skills necessary to solve the first puzzle over the 

course of their participation in this study.

Figure 2.2, the sample Nonogram puzzle above, is the same puzzle participants solved 

first. In the fourth puzzle, the rows and columns were swapped.

2.4 Skills &: Lessons

In this study, the tutor interrupted the participant three times per puzzle. The puzzle 

game was paused and the tu tor delivered a short Nonograms lesson. The lessons ranged 

from 21 seconds to  47 seconds in length and consisted of a voice recording and a set of 

animations presented on screen, overlaid atop the paused Nonograms puzzle interface.

Ten Nonograms puzzle-solving skills were identified based on the author’s subjective 

experience of Nonograms. These ten skills are not universally identified rules or strategies 

for Nonograms, but rather a set of mutually exclusive row or column patterns in which 

one can logically fill in some of the remaining empty boxes.

For example, a stretch of length 9 can fit in a blank row or column of 10 boxes in only 

two ways. Either it fills the first box and 8 more, or it fills those same middle 8 boxes 

and the last box. In either case, the middle 8 boxes are shaded. We generalize this 

phenomena as one of ten skills we identified, such tha t for an empty row or column with 

just one stretch requirement of n where n >  5, the middle (2n -  10) boxes are shaded. 

This is one example skill, corresponding to  the first of the ten lessons. The text of all
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ten lessons, as well as the visual aids offered to participants during the lessons can be 

found below.

The following is the exact text of the Nonograms puzzle-solving lessons spoken by the 

tutor, along with the visual aids provided during each lesson.

2.4.0.1 “Shade Middle Boxes of Long Stretch”

“I f  a stretch has just one big number, I  bet some squares will be shaded no matter where

we put that stretch. Take a look at this example. The only stretch in this row is 9, but

no matter where you put it the middle 8 squares will be shaded. ”

9 I I I 1 I I 1 I 1 I 
V

“I  think this works for any row with one long stretch like here, where the only stretch is a 

6. We can put it all the way on the left, all the way on the right or anywhere in between. 

But the middle squares get shaded either way, so we can confidently mark them down 

without guessing. ”

6 I 1 I I 1 I 1 1 I I
V
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2.4.0.2 “Shade M iddle Boxes o f Long Stretch, Advanced”

“Here’s another hint for you. Take a look at this row. There’s only a one and a six and 

the one has to come first. That six is a long stretch and there are only a few options for  

where to put it. Imagine that the one is all the way at the beginning o f the row. I f  the 

one is there then we can figure out how to shade some of the other boxes that the six will 

have in common, no matter where it is. The six can be as close as possible to the one, 

or as far away as possible. Here are the four squares those two cases have in common. ”

1  6  

1 6

“In this other example, now the longer stretch comes first. Imagine that the ‘2 ’ is at the 

very end of the row, then the ‘5 ’ can be as far away from the ‘2 ’ as possible, as close as 

possible, or anywhere in between, yet some squares will always be shaded. ”

5 2 

5 2

2.4.0.3 “Completing a Row”

“I ’ve noticed something that should help you get started on empty rows. I f  there’s only 

one way to Jill in a row then that’s the way it has to be. It sounds obvious, but take a 

look at this example. Starting from the left, we shade four blocks, put an ’X ’, then shade
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five more blocks. There’s no way we can arrange them that fits the number pattern on 

the side so we can mark it down confidently. ”

“It even works for rows with more than two stretches. See here, we start from the left 

then shade two, then an ’X ’, shade three, then an X ’, and then shade three more. The 

row begins and ends with the first and last stretches, and there’s only room for one ’X ’ 

in between the stretches, which means there aren’t any other possible configurations.”

2 3 3 

2 3 3

2.4.0.4 “Completing a Row, Advanced”

“I  have another tip that I  think might help. I f  you start off with a few boxes in any row 

that are marked with ’X ’s or already shaded, you may be able to fill out the whole rest 

of the row based on what requirements are left. For instance, in this example, the three 

blocks that are X ’ed out means that the T ’ and ‘6 ’ stretches can only go in one way.”

1 6 I x I x | x I

1 6 B x
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“This also works for partial rows or columns. As you can see in this row, there are two 

open areas, so you know that the ‘3 ’ has to be one one side and the ’4 ’ needs to be on the 

other side of the X ’s. You can shade the three empty boxes confidently. ”

3 4 

3 4

2.4.0.5 “Shade to the Lth box.”

“This strategy is kind of tricky, but I  think it can help you. Look at the first stretch of 

a row and call i t ’s length ‘L ’. I f  a box is shaded in the first L boxes of a row, you know 

that that box has to be part of that first stretch, so you can shade up to the Lth box. Up 

the Lth box will be shaded in no matter where the first stretch is placed. Take this row

for example. The first stretch is a ‘4 ’, and the second square is shaded, so we know that

it has to be part of the first stretch. Therefore we can shade up to the fourth square. ”

4 i  1 1 ■  I I I I I I I
V

“In this next example, the first stretch is a five and the fourth square is shaded. So, we 

fill up all the squares from four to five, which in this case is just the fifth square. ”
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5 

5

2.4.0.6 “X-Out Beginning/End If It Will Not Fit First/Last Stretch”

“Here is a strategy to help you X-out more boxes. Take a look at this example. The first 

stretch is a three, but the third box is X ’ed out, so there isn’t enough room to put it at 

the beginning. That means we can X-out all the other boxes leading up to it, since the 

first stretch in this row must be three boxes long. ”

3 1 

3 1

“We can also do this at the end of a row too. The last stretch is a four, but the third 

square from the last is X-ed so we know that all the other squares after it have to be X-ed 

out too.”

1 4 

1 4

X X X
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2.4.0.7 “X-Out Boxes Out Of Reach”

“Here is a handy way to finish rows or columns that you’ve already made progress on. 

I f  there is only one stretch left in a row, and you know where it is, you can X-out any 

boxes that are too far away to be part of the stretch. Take this row for example. The 

only unfinished stretch is of length two and you know that it has to be around the fourth 

square, so you can X-out blank spaces farther away, like the blank sixth, seventh, and 

eighth squares. ”

1 2  1

i 2  i  M M * I  f

2.4.0.8 “X-Out Boxes That Don’t Fit Smallest Stretch”

“I f  you see any series of blank squares bordered by X ’s and those squares are shorter than 

the shortest stretch, you can go ahead and X  them all out. This is because stretches are 

always bounded by X ’s or the end of the board, and if  there isn’t enough space for even 

the smallest stretch then there can be no shaded squares there. In this case the smallest 

and only stretch is a five but we see a series of bounded boxes of length four, so we know 

the five cannot fit. ”

5 x x x x x
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“Now, in this other case, the smallest stretch is a two, so i f  we see a stretch of one blank 

boxes bounded by X ’s we can X  it out.”

2 2

2 2

V

□E

2.4.0.9 “X-Out Boxes Around Max Length”

“Here’s something that might be able to help. I f  in any row or column you see a bunch of 

shaded boxes in a row and the number of boxes is equal to the longest stretch, you can put 

X ’s around them. Let’s assume that along the way we’ve shaded these four boxes. Since 

the longest stretch in the row is four, we know that there have to be X ’s at the ends of 

these boxes.”

2.4.0.10 “If First or Last Box Shaded”

“I  thought of a good technique you could use. I f  the first square of a row or column is

shaded, then it must be part of the first stretch. You can fill in the rest of that stretch

and put an X  on the end. See, here we know that first square is part of the ’4 ’ stretch,

so we can complete the stretch and put an ’X ’ at the end. ”
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4 1 1

4 1 1

“This strategy also works for the last square of a row or column too. I f  the last square is 

shaded, i t ’s part of the last stretch, so you can work backwards to fill in more squares like 

this one. The last stretch is a ‘3 ’, so we can shade the last three boxes then put an ’X ’. ”

4 3 

4 3

Participants received three lessons per puzzle, for each of four puzzles. On average, 3.2 

of these lessons were repeated per participant, depending on the lesson ordering. Lessons 

were given either when a participant made no moves for 45 seconds or as he or she filled 

the 25th, 50th or 75th box on the board (of 100). The user interface displayed the number 

of lessons remaining for each puzzle at all times.

The lesson ordering was based on a personalization algorithm we designed. The details 

of this algorithm and an evaluation of its effectiveness are the subject of Chapter 5. 

The personalization ensured tha t the lessons the robot gave corresponded to the skills in 

which each participant had the least competency, among those th a t were applicable to 

the current game state. In all three conditions in the study, the personalization system 

was held constant. If two participants had made the exact same moves, no m atter what
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experimental conditions they were in, they would have received the exact same lesson 

ordering.

2.5 Conditions

In all three experimental conditions in this study, the tu tor spoke in the same voice and 

used the same pre-recorded lessons. The tu tor served three roles.

•  First, it refereed the puzzle game. It welcomed participants when they started, 

told them when they had finished or when they had run out of time, and told them 

when the experiment was over.

•  Second, to discourage the participants from explicitly asking the tu tor for advice, 

in the physical robot tutoring and on-screen tutoring conditions, the tu to r turned 

its head to follow the mouse cursor when the participant was solving a puzzle. The 

tu tor did not respond to any direct queries.

•  Third, the tu to r delivered three lessons per puzzle. The tu tor started each lesson 

by saying “I have an idea that might help you,” or “Here is another hint for you,” 

and in the case of the physical and virtual tutors, it would turn  from the screen 

to  face the participant and bounce up and down to indicate it was talking to  the 

participant. In the voice-only condition, the tu tor simply spoke the lessons with 

no physical or virtual representation. When the tu tor repeated a lesson, it would 

apologize first (i.e., “I’m sorry to repeat this hint but I think it might help.”).
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F ig u r e  2.4: Keepon is an  11-inch tall, stationary , yellow, snowm an

shaped  robo t w ith small, round eyes, one of which contains a  cam era, 

and  a small, round nose containing a  m icrophone. Its  m otors, though  vis

ible here, are typically  enclosed in a  black m etal cylindrical tube. K eepon 

can ro ta te  left and right, lean side to  side, ti lt  up  and  down, and  bounce 

up and  down.

2.5 .1  R ob ot Tutor

For the robot tu tor condition, we used a robot called Keepon. Keepon is an 11-inch tall, 

stationary, yellow, snowman-shaped robot with small, round eyes, one of which contains 

a camera, and a small, round nose containing a microphone. The robot can be seen in 

Figure 2.4. Keepon stands atop a 12-inch black cylindrical pedestal which houses its 

motors and controllers. It has four motors tha t allow it to  rotate left and right, lean side 

to side, tilt up and down, and bounce up and down. Keepon was originally developed 

for use with children with social skill deficiencies (Kozima, Nakagawa and Yasuda 2005).
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Instead of using a vision system to detect the state of the gameboard by processing input 

from the robot’s camera, we simply allowed the tu tor in all three conditions to  query 

the graphical user interface program directly to  receive perfect knowledge of which boxes 

were shaded and which were not. This was done to  ensure that the tu to r’s knowledge of 

the state of the gameboard was consistent across all three tutoring conditions.

2.5 .2  O n-Screen Tutor

The on-screen character tu to r was comprised of video recordings of the physical robot 

tutor, played to  match the behavior of the physical robot in the physical robot tutoring 

condition. We recorded four videos: (1) the robot facing the computer, watching the 

gameboard as a participant solves a puzzle, (2) the robot turning around to face the 

participant, (3) the robot “talking” to the participant by bouncing up and down, and (4) 

the robot turning back around to face the gameboard on the computer. We recorded 

these videos in such a way that they would appear seamless when played in this order. 

We thereby created an on-screen representation of what participants experienced in the 

physically-embodied robot condition.

2.5 .3  V oice-O nly Tutor

The voice-only tu tor used all of the same voice recordings as in the other two conditions, 

but with no physical or virtual representation.
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2.6 Participants

There were 60 participants in this study, between 18 and 35 years of age, most of whom 

were undergraduate and graduate students of Yale University. There were 20 participants 

in each group of the three groups. Exclusion criteria for participants were lack of En

glish fluency, prior academic experience with robotics or artificial intelligence, and prior 

experience with Nonograms, the most common form of which in the U.S. is a Nintendo 

game called, ‘Picross DS’ (Nintendo 2007a).

2.7 Procedure

Participants watched a five minute instructional video about the graphical user interface 

and read a two-page instruction manual we authored that describes the rules of Nono

grams. In the instructional content, we encouraged participants to  use logical reasoning 

to  make moves rather than guessing. Excessive guessing can disrupt the personalization 

of the tu to r and can confuse novice Nonograms players potentially causing a loss of data. 

After watching the video and reading the instructions, participants were given an op

portunity to ask clarifying questions about the rules and the interface. The text of the 

instructions given to  participants appears in full in Section 2.8 below.

During the experiment, participants were alone in a room with the computer, and the 

robot in the robot tutoring condition, as well as a video camera positioned behind them; 

see Figure 2.1. Participants chose when they were ready to  start each new puzzle. Each
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round ended either when the participant solved the puzzle or when the fifteen minute 

time limit had elapsed.

After the conclusion of the final puzzle, participants in the three groups tha t received 

tutoring were asked to complete a survey consisting of five Likert-scale questions de

signed to assess whether the tu to r’s lessons were helpful, clear, and influential, as well 

as the participants’ perceptions of the tutor. We asked participants to  respond to the 

following prompts: “How relevant were the tu to r’s lessons?”, “How much did the tu to r’s 

lessons affect your gameplay?”, “How well did you understand the tu to r’s lessons?”, “ How 

smart/intelligent do you think the tutor is?”, and “ How distracting/annoying did you 

find the tu tor to be?” Participants responded with a score from 1 to  7, 1 being “not at 

all” and 7 corresponding to “very much.” The intention of these questions was to  reveal 

differences between tutoring conditions that could explain any performance differences 

between groups.

2.8 Instructions

The following written instructions, along with sample Nonogram puzzle and solution, 

were given to participants before beginning their participation in this study.

This is a study about the effectiveness of digital tutors.

You will play a puzzle game called "Nonograms" and an on-screen tutor will give you 

advice to help you get better as you play. Several times per game, the tutor will teach you
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a puzzle-solving strategy that you may not have tried yet. The following are the rules of 

Nonograms.

Nonograms is played on a ten-by-ten grid. Your task is to figure out which of the boxes 

on the grid need to be shaded and which don’t. You’ll see a series of numbers to the left 

of every row and at the top of every column. These numbers are different for every puzzle 

and provide constraints for which boxes can be shaded and should not. The numbers are 

called "stretches they tell you how many consecutive boxes are shaded in each row and 

column. For example, i f  the stretches for a row are "2 3" then 5 total boxes are shaded 

in that row. But not just any 5 of the boxes. First there must be two contiguous boxes 

shaded somewhere and after that three consecutive boxes are shaded. The stretches are 

listed in the order that they must appear in that row or column. A puzzle is solved when 

all rows and all columns have all of the stretches they are required to have and no extra 

boxes are shaded.

All Nonogram puzzles start out entirely blank. To play, mouse over the box you want to 

shade in, and press the space bar to shade it. Also, you can put an X  in a box that you 

think won’t be shaded in. To do that, press the X  button. I f  you want to clear a box and 

make it blank again -  mouse over it and press ’C ’.

An important thing to know about Nonograms is that you will never need to guess in 

order to make progress in the game. As you look around the board, you will always be 

able to find some part of the board that you can fill in. Sometimes you ’11 be able to fill in 

an entire row or column at once, but more often than that you ’11 have to use the process 

of elimination to determine which boxes in a row must be shaded and which definitely
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1 1 2  1 1 1 2  1 
2 1 1 1 1 4 3 1  2 1 1 1 1 4 3 1
1 3 3 2 3 2 3 3  1 3 3 2 3 2 3 3

1 1 3

1 1 2

1 1 2

2 2 1

1 1
2 1 2

7

6 1

Sample puzzle, blank. Sample puzzle, solved.

aren’t shaded. To do that, we encourage you to imagine all the possible configurations of 

a row’s or column’s stretches and decide whether any boxes are always shaded or always 

X-ed out, in every possible configuration. Once you’ve started to make progress on the 

board, you will be able to use the boxes you’ve already filled in to help you fill in more 

boxes. I f  you fill in several boxes in a row, you can check the columns those boxes were 

in to see if  that new information helps you determine something about the boxes in those 

columns.

By deducing each move, logically, from the board and from previous moves, you’ll be able 

to go from a blank board to a completed board in no time. The more experience you have 

with this game, the better you will do.

Those are all the rules for Nonograms. We ask you to play 4 boards, back-to-back. We 

want you to finish them as quickly as you can. I f  you’re not done in 15 minutes, the 

program will move you on to the next puzzle. We encourage you to work as hard as
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you can on each puzzle, and please remember that you shouldn’t need to guess to make 

progress.

Good luck!

2.9 Results

This study investigates the effect of embodiment on learning gains in autom ated tutoring 

systems. We measure the length of time participants needed to  solve each of the four 

Nonogram puzzles. Lower puzzle-solving times are considered better puzzle-solving per

formance and indicate better Nonograms puzzle-solving skill competency. If a participant 

did not complete the puzzle in the allotted fifteen minutes given for each puzzle, that 

puzzle was scored as having been completed at the fifteen minute mark. The frequencies 

of participants running out of time were not significantly different between groups for 

any of the four puzzles; varying between 31 — 38% in the first puzzle, to 9 — 14% in the 

fourth puzzle.

Participants who received tutoring from the physical robot performed better, on average, 

on the second, third, and fourth puzzles than participants in any other group. Means 

and standard deviations for each puzzle for each group can be found in Table 2.1 below, 

a plot of which is in Figure 2.6a. In the fourth puzzle, the mean puzzle-solving time for 

participants who received physical robot tutoring (M =  7.6, S D  — 3.1) was significantly 

better than the mean in either the on-screen tutoring group (M  =  8.7, SD  =  2.4), 

f(36) =  0.03 or in the voice-only tutoring group (M  =  9.1, SD  = 3.0) as well, f(37) <
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Participants In Robot Condition 
Solved Last Puzzle Fastest

I
S
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Puzzts

Participants in Robot Condition 
Solved Same Puzzle Faster

VWoe-Oniy TWor O n-S cr**n  TUtor

( a ) Mean solving time per puzzle in min
utes. Participants in the physical robot tu
toring condition solved the fourth puzzle 
significantly faster than participants in ei
ther the on-screen and voice-only tutoring 
conditions (p < 0.03). See Table 2.1 for 
means and standard deviations.

( b ) Mean improvement in solving time be
tween puzzles #1 and #4. These puzzles 
consisted of the same gameboard, disguised 
in the fourth puzzle by a 90° rotation. Par
ticipants in the physical robot tutoring con
dition improved their solving times signifi
cantly more than participants in the other 
two conditions (p < 0.01).

FIGURE 2.6: Behavioral m easure results. P artic ipan ts  in  th e  physical 

robot tu to rin g  condition solved th e  last puzzle significantly faster, and  im

proved their sam e-puzzle solving tim e significantly more, th a n  partic ipan ts 

in either of th e  o ther groups.

0.02. There was no significant difference between the performance of participants who 

received on-screen tutoring and participants who received voice-only tutoring, across all 

four puzzles. This result indicates tha t the physical presence of the robot tu to r had an 

effect on participants tha t resulted in a significant learning impact over participants who 

received on-screen or voice-only tutoring.

In this experiment the first and fourth puzzles were 90° rotated variations of the same 

gameboard. Thus, both puzzles required the same skills to solve and the difference 

in solving time between these two puzzles is a measure of each participant’s acquired
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Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4

Voice-Only Tutor 12.6 ±  2.4 10.7 ± 2 .7  10.3 ± 3 .3  9.1 ± 3 .0

On-Screen Tutor 12.8 ± 2 .1  11.1 ± 2 .6  9.9 ± 2 .6  8.7 ± 2 .4

Robot Tutor 12.7 ± 2 .6  10.0 ± 3 .5  9.4 ± 3 .0  7.6 ±3 .1

T a b l e  2.1: M ean solving tim e across conditions, in m inutes.

knowledge over the course of the study. Participants who received physical robot tutoring 

improved their same-puzzle solving time (M  =  5.8, SD  — 3.5) significantly more than 

those who receieved on-screen tutoring (M  =  3.9, SD  = 2.3), t(31) < 0.05 or voice- 

only tutoring (M  =  3.4, SD  =  3.5), f(37) =  0.04. There was no significant difference 

between the on-screen tutoring and voice-only tutoring conditions. A plot of these data 

can be found in Figure 2.6b. This result indicates tha t participants who received lessons 

from the physical robot learned more effectively than those who received voice-only or 

on-screen lessons.

The survey results reveal tha t participants found the physical robot tu tor less “annoy

ing/distracting” on average (M  =  4.9, SD  =  1.2) than participants in the other two 

groups, the on-screen tu tor,(M  =  6.4, SD  = 0.8), i(33) <  0.05, and the voice-only tutor, 

(M  =  6.4, SD  = 0.7), f(29) <  0.05. A plot of these data can be found in Figure 2.7a. 

This result indicates that the participants were less bothered by a physically embodied 

tutor.

Though the data show that the participants in the physical robot tutoring group learned
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How annoylng/dlstractlng did 
you find the tutor to be?

p < 0 .0 1

VWce-Ortiy Uitof On-Screen TUtor Robert Tlrtof

( a )  Participants who received physical 

robot tutoring rated the tutor as signifi

cantly less annoying the the participants 

in the other two tutoring conditions (p  <  

0 .01 ).

How much did the tutor's lessons 
affect your game-play strategy?

VWca-OMy TUtor On-Screen TUtor Robot TUtor

(b )  Despite puzzle-solving data to the con

trary, participants in all three groups rated 

the effect of the tutoring on their gameplay 

as not significantly different from one an

other.

F ig u r e  2.7: R esults of self-report m easures com pleted after th e  in ter

action. T he rem aining th ree questions showed no significant differences 

between conditions.

more by the end of the experiment, those same participants did not rate the usefulness 

of the tu to r’s instruction higher than participants in the other two groups, who learned 

less. Responding to  the survey question, “How much did the tu to r’s lessons affect your 

game-play strategy?” there was no significant difference between any group, the physical 

robot tutoring (M  =  6.4,57? =  0.5), the on-screen tutoring (M  =  6.3,57? =  0.4), or 

the voice-only tutoring condition (M  =  6.2,57? =  0.5), see Figure 2.7b. These data 

indicate that whatever social effect physical embodiment has on this interaction, it did 

not influence the participants’ perception of the value of the robot tu tor over the other 

two tutoring conditions, despite the fact that the behavioral measure indicates better 

learning in the robot tutoring group.
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2.10 Discussion

Perhaps the most interesting question raised by these results is: “How did the physical 

presence of the robot tu tor improve learning gains?” The survey results do not provide 

a definitive answer. Participants did not report having significantly more difficulty un

derstanding the lessons in any of conditions. In fact, all three groups rated their level of 

understanding of the lessons fairly highly: ranging from a low of 5.0 (M  =  5.0, SD  =  1.4) 

by participants in the voice-only tutoring condition to a high of 5.6 (M  =  5.6, SD  = 1.2) 

by participants in the robot condition. These ratings indicate th a t the manipulation in 

this experiment did not cause participants to perceive themselves as understanding more 

or less of the lessons as a result of embodiment. However, the performance data  indicates 

tha t to  some extent, they did.

Perhaps a more revealing result is the survey question tha t asked participants how “an

noying/ distracting” they found the tutor to be. Results were generally high as the survey 

data  revealed that, in the words of one participant, “it was distracting to  have the lessons 

interfere with my thought process unexpectedly.” Participants in the physical robot tu

toring condition were less annoyed (M  =  4.9, SD  = 1.2) than participants in the other 

two groups: the on-screen tutor, (M  =  6.4, SD  = 0.8), t(33) <  0.05, and the voice-only 

tutor, (M  =  6.4, SD  = 0.7), i (33) <  0.05. Perhaps this lack of “annoyance/distraction” 

indicates a level of respect for the physical robot tha t was not present in the other tu 

toring conditions. Perhaps participants can more easily ignore on-screen characters or 

disembodied voices than they can a real, physical entity.
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Another hypothesis is th a t the learning gains can be accounted for, in part, to a social 

pressure to comply with the commands of a physically embodied robot, such as the 

effect seen in Bainbridge et al. (2008). Perhaps its physical form brings the robot closer 

to  peer-like behavior in the subconscious minds of participants. More work is needed to 

understand the underlying mechanisms of this phenomena.

Another question our work raises is, “W hat is the duration of this effect?” Would the nov

elty of having a robot as a tu tor wear off or does physical embodiment lead to sustainable 

learning gains and pedagogical advantages? A longitudinal study is needed.

2.11 Conclusion

This study investigates the effect of the embodiment of an automated tu to r on adults 

performing a cognitively-challenging learning task. Participants who received lessons 

from a physically present robot tu tor outperformed participants who received the same 

lessons from an on-screen video representation of that robot, as well as participants who 

received the same lessons from a voice-only tutor. Participants in the physical robot 

tutoring condition solved the final puzzle significantly faster and improved their same- 

puzzle solving time significantly more than participants in the other two groups. From 

these data we conclude tha t the physical embodiment of a tu tor can yield learning gains 

in automated tutoring interactions.



Chapter 3

How Do Humans Personalize Their 

Tutoring to Students Who Tend to 

be More Successful vs. Less 

Successful?

In this chapter, we investigate human tutoring personalization in order to  inform our 

design of human-like automated personalization systems in later chapters. In order to 

investigate the nuances of human tutoring personalization, we use robots as students 

rather than humans as students because, unlike human students, robots can be expected 

to  perform in exactly the same way in multiple instances and with different human 

tutors. Studies of human-human tutoring are limited by the “chemistry” between tutor

50



Chapter 3. How Do Humans Personalize Their Tutoring Based On Successfulness? 51

and student, which determines how effectively they are able to  communicate (Topping 

and Ehly 1998). This potential confounding variable prevents human-human tutoring 

research from probing the nuances of human tutoring behavior. In our work, we find 

commonalities between how human tutors naively teach robot students and we use these 

commonalities to  derive design guidelines for future work in automated personalization 

systems.

We investigate how human tutors personalize their tutoring towards students of differing 

histories of success in learning tasks by conducting an experiment in which each partici

pant interacted with two robot students, one tha t is more successful, an “overachieving 

student,” and one that is less successful, an “underachieving student.” We measured 

the quantity, timing, and affective content of the instructional vocalizations tha t par

ticipants made towards these two robot students. We find tha t participants produced 

more speech, and more affective speech to underachieving students than to  overachiev

ing students. These results tell us tha t human tutors personalize their instruction based 

solely on the successfulness of a student and tha t automated systems tha t intend to be 

more human-like should treating differently-performing students significantly differently, 

something that is not currently done in many systems. We provide guidelines based on

our findings for automated personalization systems in robot tutoring.1

1The work in this chapter was co-first authored by the present author and Elizabeth Seon-wha Kim 
(Kim et al. 2009). It appears in both authors’ dissertations.
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3.1 Background

In automated tutoring research, the most common forms of which are Intelligent Tutoring 

Systems (ITS’s), most systems are designed to adapt to individual students’ strengths and 

weaknesses (Nkambou, Bourdeau and Psych6 2010). We discuss several kinds of ITS’s 

and their personalization systems in Chapter 1, Section 1.3. However, ITS’s typically 

do not vary the quantity or affective content of their instruction based on the abilities 

of the student. Though some ITS’s do model affect, they typically model the affective 

state of students, such as in the work of D’Mello (2012), Conati and Maclaren (2009), 

and D’Mello et al. (2005), rather than producing a model of affect for the automated 

tu to r and personalizing that affect to best suit the needs individual students. The design 

implications that we glean here about how human tutors behave can be applied to ITS 

research as well as our own field of robot tutoring.

In human-human tutoring, the details of how tutors personalize their instruction to suit 

students of differing abilities are not fully understood. W hat we do know is that hu

man tutors give individualized scaffolded guidance to students as they solve problems or 

analyze new concepts by providing each student with enough support to build a bridge 

between the student’s knowledge and the content of the problem and then iteratively 

taking pieces of support away until students are able to build tha t bridge for themselves 

(Wood, Bruner and Ross 1976). We also know that human tutors gauge a student’s 

understanding on an individual basis and build a mental model of a student’s compre

hension, which they then use to  frame future scaffolding episodes (Chi et al. 2001). We 

discuss these features of human tutoring in more detail in Chapter 1, Section 1.2. There
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is no human-human tutoring work that specifically investigates whether a human tu to r’s 

verbalizations change, in quantity or affective quality, in response to  the ability level of 

the student. We use robots as students to investigate this question.

The use of robots as students is a common practice in Learning from Demonstration 

(LfD) robotics research, an overview of which can be found in Argali et al. (2009). The 

goal of LfD is to  create automated systems that correctly interpret naive human teaching 

practices such that non-technical users can teach robots to perform novel or inherently 

collaborative tasks without needing to know how to program a computer. As a related 

topic, some LfD groups study how changing the robot student’s behavior affects the 

kind of instruction a human tu tor provides. The area this is most common is in Active 

Learning from Demonstration research, in which the robot student queries the human 

tu tor for specific information about a demonstration or for specific new demonstrations 

Thomaz, Hoffman and Breazeal (2006). This community has investigated what kinds of 

queries human tutors prefer to answer from a robot student and how the queries that 

a robot student makes affect the perception of the intelligence of that robot (Cakmak 

and Thomaz 2012). Other work in this area has found tha t human tutors give both 

instructional and motivational feedback to  robot students, as well adapting their teaching 

strategies as they develop a mental model of how the robot student learns, all of which 

human tutors have also been shown to do with human students (Thomaz and Breazeal 

2008). No work in LfD, however, has investigated how human tutors personalize their 

teaching to robot students of differing skill levels.
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3.2 Methodology

We conducted a study to  investigate how human tutors personalize their instruction 

when they teach robot students of differing abilities. Each participant in this study 

tutored two robot students, first teaching one and then teaching the other. One of the 

robot students was significantly more successful in the learning tasks than the other 

robot student. Participants were led to believe tha t the robots were learning based 

on the verbal instruction they gave, but in fact the actions of each of the robots was 

planned ahead of time and constant across all participants. This manipulation allows 

us to compare how human tutors taught these two kinds of robot students differently. 

We measured the quantity, timing, and affective quality of the participants vocalizations 

and compare how participants personalized their instruction between the more successful 

robot student and the less successful robot student. We use these results to  inform design 

guidelines for future work in personalization of automated tutoring.

3.2 .1  R ob ot

The robot we used for this study, a commercial toy called called “Pleo,” is an 8-inch 

tall, 21-inch long green dinosaur-shaped robot created by now-defunct toy company 

called UGOBE Life Forms (UGOBE 2008). The robot is pictured in Figure 3.1. In 

this experiment, we used two Pleo robots, one which we called “Fred,” which was the 

more successful robot student, and the other which we called “Kevin,” which was the 

less successful robot student. Fred and Kevin were differentiated with different colored 

hats as well as separate sets of ‘bark’ and ‘growl’ vocalization recordings in order to  cast
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F i g u r e  3.1: T he “Pleo” robot, an  8-inch tall, 21-inch long dinosaur

shaped  robo t originally sold as a  toy  by UGOBE Life Forms (UGOBE 

2008).

them as independent social actors in the minds of participants (Nass, Steuer and Tauber 

1994).

3 .2 .2  A p paratus

In this study, we asked participants to teach dinosaur robots to demolish toy buildings. 

We used three pairs of toy buildings on each side of a model road, set up mirror image 

to  one another, except tha t one building in each pair was marked with large red “X” 

marks. This setup can be seen in Figure 3.2. Participants taught the robot dinosaurs to 

knock down the buildings with red “X’s,” and not the unmarked buildings. The robot 

walked down the road towards the participant and it knocked down one of each of the 

pairs of buildings by first pointing to it with its head and then making a loud growling
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F ig u r e  3.2: P artic ip an t gives feedback to  th e  robo t studen t as it decides 

which building to  knock over w ith  its  head, th e  building on th e  righ t or 

th e  building on th e  left.

noise and swinging its head forcefully into the building in order to  knock it over. We 

asked participants to speak to  the robot to guide it through this demolition process.

We conducted the study on a 10-inch wide by 30-inch long model road along which the 

robot walked straight across toward the participant. On each side of the road, there were 

three cardboard toy buildings, approximately 10-inches tall. The buildings on each side 

of the road were pairwise identical such that the left side of the road mirrored the right 

side of the road, except for the red “X” marks. First, the robot encountered a pair of
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F i g u r e  3.3: T he overhead view used for W izard of Oz control of the

ro b o t’s locom otion. N orth  of th is  frame, a  partic ipan t is stand ing  a t the

end of th e  table. B uilding pairs, from b o tto m  (beginning) to  top  (end) 

are: purple, silver, and orange.

purple buildings, then a pair of silver buildings, last a pair of orange buildings, which 

were the buildings closest to the participant. This setup is pictured in Figure 3.3.

The road on which this task took place was set on a table about 3 feet off the ground. 

The three pairs of buildings were placed on either side of a straight, yellow double-lined 

road. The yellow double-lines were raised, providing a track for the robots to  walk along, 

ensuring that the robot stayed in the middle of the road at all times. The buildings were 

separated from each other on each side of the road by a space of 3 inches. From the 

perspective of the robot, the buildings that were marked with the red “X’s” were: the 

purple building on the right side of the road, the silver building on the right side of the 

road, and the orange building on the left side of the road, as seen in Figure 3.3. These

markings and orderings were constant for all participants.
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3.2 .3  C on d itions

There were two conditions in this study and each participant saw both conditions.

One condition, in which the robot was called “Fred,” was the more successful of the 

two students. The other condition, in which the robot was called “Kevin,” was the less 

successful of the two students. The only difference between the behavior of Fred and 

Kevin is tha t Fred always chose the correct building to knock down for all three pairs of 

buildings, whereas Kevin chose the incorrect building in the first and second pairs, but 

chose the correct building in the last pair.

The ordering of Fred-then-Kevin, or Kevin-then-Fred, was alternated per participant. 

Of the 27 total participants, 13 saw Kevin first and 14 saw Fred first. We investigate 

whether the ordering of the two robots affected the participants vocalizations with two- 

way ANOVAs in the results.

3.2 .4  “W izard  o f  Oz”

It was essential for the success of this study to convince participants tha t the robot tutor 

was listening and responding quickly and accurately to  their instructions. Automated 

Speech Recognition (SR) and automated Affect Recognition (AR) systems are not yet 

as robust or reliable as human speech and human affect recognition, see Gold, Morgan 

and Ellis (2011) and (Zeng et al. 2009) respectively. Therefore, in order to  guarantee the 

perception of human-like responsiveness, the robots in this study were secretly controlled 

by a remote operator. This is an experimental methodology called “Wizard of Oz"
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(Dahlback, Jonsson and Ahrenberg 1993) which allows us to  create the illusion tha t the 

robot can autonomously respond to  the content of the participants’ tutoring as some day 

SR and AR systems will enable it to  do.

The “wizard” responded to  the participants’ vocalizations with a set of seven pre-defined 

actions: a happy bark sound, a questioning bark sound, a sad bark sound, a move 

forward, swinging its head left, swinging its head right, or doing a “happy dance” at the 

conclusion of the study.

To give the appearance of autonomy, the robot also had several idling behaviors that 

were not controlled by the wizard. In the event that no action was taken by the wizard 

in three seconds, the robot would make a yawning sound, or a quiet huffing sound, to 

indicate idling. It would accompany those sounds with slight head tilts and shifting of 

its legs, in random order, again to give the illusion of lifelike autonomy.

The wizard was off-site and never met or interacted with the participant during the course 

of the study. There was no indication that participants were aware of the presence of 

a wizard in any of the trials. The wizard was able to hear the participant through a 

clip-on lapel microphone we asked all participants to wear. The wizard was able to see 

the participant via two live camera feeds on a television screen and a laptop showing the 

same perspectives as seen in Figure 3.2 and Figure 3.3.

The robots were controlled by infrared (IR) signals. There is an IR receiver in the nose 

of each robot. IR signals were sent from long-distance IR beacons through an IguanaIR 

USB-IR transceiver (IguanaWorks 2008), controlled in Linux using LIRC (Linux Infrared
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Remote Control) software (Bartelmus 2008). The beacons were located in front of the 

participant, disguised as an additional camera. The wizard controlled the robot using the 

seven pre-scripted/pre-recorded behaviors described above with a handheld USB gaming 

pad, the buttons of which were mapped to each behavior. For example, pressing the 

forward button caused the robot dinosaur to walk forward, and pressing to the left or 

right caused the robot to swing its head in the respective direction. These robot actions 

were created and modified using UGOBE’s software development kit and a third-party 

Pleo development platform called MySkit (DogsBody & Ratchet Software 2009).

The “Wizard of Oz” methodology was used here to  ensure participants were convinced 

tha t the robot could hear and react to their instructions quickly. This is essential to 

the success of this study because if participants ever doubted the ability of the robot 

to respond to their instruction, they would have been disincentivized from providing 

any further instruction and tha t would have adversely impacted our data collection and 

results. In this study, we are investigating the effect of the successfulness of the robot 

tutor, which was held constant between participants based on each of the two conditions. 

The human operator of Fred and Kevin followed the exact same protocol for the learning 

tasks across all participants. Thus, we can compare how any individual participant 

may have treated Kevin differently from Fred based on their relative successfulness as 

students.
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3.2 .5  P artic ip ants

There were 27 participants in this study, 9 male and 16 female, each 18 years of age 

and above. Our exclusion criteria were a lack of English fluency or previous research or 

coursework experience in artificial intelligence or robotics.

3.2 .6  P roced ure

The testing session lasted approximately 30 minutes. Each participant gave informed 

consent to be recorded, and then was led into a lab containing the two dinosaur robots 

and the road and building apparatus described above. The participant stood behind 

the end of a table and clipped a lapel microphone to his/her shirt collar. Fred and 

Kevin, the robots, stood in front of the demolition training course, close to  and facing 

the participant.

The participant was told the following:

“These are our dinosaurs, their names are Kevin and Fred. Kevin is the one with the red 

hat with the ‘K ’ on it. Fred is wearing a blue hat with the letter F ’. Today they’re going 

to train to join a demolition crew. They ’11 be knocking over buildings with their heads. 

Behind them is the training course that they’ll running today. They’ll go one at a time: 

Fred will be first and I ’ll take Kevin and leave the room. When Fred’s done, then i t ’ll be 

Kevin’s turn.”

The ordering of the dinosaurs varied per participant as specified above, name orderings 

were changed accordingly in the instructions.
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The participants were then told, “You are going to help them pick the red ‘X ’-marked 

buildings in the training course to demolish. In the training course, you’ll see there are 

three pairs of colored buildings standing across from one another -  the purple pair at. the 

far end, the silver pair in the middle, and the orange pair closest to us. The robots will 

do the training course sequentially, starting at the purple buildings and walking towards 

us. For each pair, you’ll see that one is marked with an X . ’ Kevin and Fred can see the 

X ’s too. For each pair of buildings i t ’s important that they knock down the building with 

the X ’ and that they don’t knock down the unmarked building.”

"They already know how to knock down buildings. We want you to help them understand 

that they should only knock down the buildings with the red X ’s and all of the ones 

with the X ’s. You’re going to help them by talking with them. We encourage you not 

to make any assumptions about how this might work. Just act naturally and do what 

feels comfortable. Please stay in this area demarcated by caution tape. The training is 

complete when an orange building fa lls ."

The experimenter then asked the participant to say hello and explain the task to the 

robots, in his or her own words. The dinosaurs returned the greetings with a happy bark 

and acknowledged the receipt of instructions with another happy bark closely follow

ing the participant’s utterances. The experimenter then solicited questions or provided 

additional clarification for the task from the participant.

Then the experimenter placed one of the dinosaurs at the start position, between the first 

pair of buildings at the far end of the course, facing the participant. The experimenter
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left the room, taking the other robot with them out of the room. The participant was 

then alone with the robot.

The robot gave a happy bark vocalization indicating the start of the trial. The robot 

then walked to the first pair of buildings. Then it slowly (over 4 seconds) communicated 

its intent to knock over one of the first pair of buildings, by turning his head towards the 

building while vocalizing a slowly increasing growl. If the participant did not vocalize 

negatively towards the robot, the robot concluded his swing into the building and the 

building fell. If the participant did say “stop,” or a similar instructive command, the 

dinosaur discontinued the swing towards the originally intended building, and turned its 

head towards the other building and again began vocalizing its intention to  knock down 

the other building by swinging its head towards it slowly. After one of the first pair of 

buildings fell, the dinosaur walked forward to  the second pair of buildings and repeated 

this procedure. After finishing with the second pair, this procedure repeated again for 

the third pair of buildings.

The experimenter returned to the training room when either the participant indicated 

the end of the training, or a period of time (approximately 30 seconds) elapsed after one 

of the last pair of buildings fell. The participant was given a few minutes’ break while 

the experimenter reset the demolition training course, putting all buildings right-side-up 

again. The participant then engaged in this same procedure with the remaining robot.

The only difference between these two training sessions was the original intended choice of 

the two robot learners in each of the three trials. The robot named “Fred” always chose
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the correct building, in all three pairs. The robot named “Kevin” chose the incorrect 

building in the first two pairs but the correct building among the third pair.

Once the second training session was complete, the participant took an exit survey. Af

terwards, the experimenter debriefed the participant and showed him or her the “Wizard 

of Oz” control room, explained the technology, the purpose of the study, and the necessity 

for the deception.

3.3 Analysis

After conducting the experiment, we divided the recordings of participants into three 

phases and we used human coders to analyze the recordings to assess their affective 

content.

3.3 .1  V ocalization  C ategories

We noted participants’ vocalizations fell into three cyclic sequential phases, based on 

the robot’s progress in each trial. All three of these phases occurs in each trial: (1) 

‘Direction,’ which occurred before the robot picked a building, (2) ‘Guidance,’ which 

occurred while the robot swung its head to knock over a building, and (3) ‘Feedback,’ 

which occurred after the building fell or the robot stopped its swing. We segmented all 

our audio recordings into these three categories.

For example, when the first of the three trials began with the robot placed between the 

first pair of buildings, where the robot indicated its readiness by vocalizing. The robot
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then signaled its intent to knock over a building, either the one on the left or the one 

on the right, where the intention is broadcast for four seconds. Last, if the robot was 

not corrected or stopped, it knocked over the building it signaled intent to knock down. 

In this example, the first sentence describes the ‘Direction’ phase, the second describes 

‘Guidance’ and the last is ‘Feedback’.

In this manner, for each pair of buildings, the instructional phases cycled from ‘Direction’ 

to  ‘Guidance’ to  ‘Feedback,’ then back to ‘Direction’. Sometimes there was one cycle per 

trial: the robot gets to the building pair, swings its head towards the correct building 

of the two, and knocks it down. Other times, there were two: the robot gets to the 

building pair, intends for the wrong building and receives reprimand, then replies to the 

reprimand, then intends for the right building, and knocks it down.

The segmentation was performed by recognizing the robot sounds we heard on the audio 

recordings tha t uniquely identified the phases of each trial. The only phases for which 

there was no unique sound indication was between trials: separating the last phase of one 

trial (‘Feedback’) and the first of the next trial (‘Direction’). We waited for a two-second 

pause in our participants’ vocalizations, but if there was none we divided based on the 

transcription of the words used such that ‘Feedback’ ended when evaluative words were 

no longer used, such as “no,” “stop,” “right,” or “good job.”

3.3 .2  A n alyzing  A ffective C ontent

We segmented the audio recordings of each participant’s vocalizations according to the 

guidelines above. The average length of each file was approximately 20 seconds. We then
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randomized the ordering of these files and asked two human coders who were blind to 

the design and conditions in this study to identify the number of words in each file and 

to analyze the affective content of each file.

The coders rated the affective content of each audio clip as either positive, negative, or 

neither. Positive affect was described to  coders as sounding “encouraging,” “approving,” 

or “pleasant,” whereas negative affect was described as sounding “discouraging,” “pro

hibiting,” or “disappointing.” We asked the coders to rate the intensity of the affect on a 

differential semantic scale originally conceived by Osgood, Suci and Tannenbaum (1957), 

from 0 (mild) to  2 (very strong), and their respective confidences for each judgement on 

a differential semantic scale from 0 (not sure) to 2 (quite sure).

3.4 Results and Discussion

This study investigates how human tutors personalize their instruction towards robot 

students of differing abilities. The measures we used in this study were the number 

of words spoken per second, the affective category ratings (i.e., positive, negative, or 

neither), and the affect intensity ratings (from 0, “mild,” to  2, “very strong”). The 

ratings of two naive coders showed high agreement ( k  = 0.84 using Cohen’s quadratically 

weighted, normalized test (Cohen 1968). Most audio clips were short and contained 7.71 

words/clip on average (1.26 words/sec) and a standard deviation of 8.43 words/clip (1.36 

words/sec). Because teaching styles varied per participant, where some participants were 

more verbose than others in communicating the same information, we performed our
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Participants Vocalized Before, During, and After Tasks

Direction 
(Before Task)

Guidance 
(During Task)

Feedback 
(After Task)

0 1 2 3 4 5

Words per Second

F i g u r e  3.4: D istribu tion  of vocalizations across th e  th ree  phases: before, 

during, and after each learning task . No significant difference betw een 

phases indicate th a t  partic ipan ts  provided a sim ilar am ount of instruction  

in each phase of tu to ring . T he boxes in th is  p lo t contain  th e  m iddle 50% 

of observations, whereas th e  whiskers extend to  th e  ou ter quartiles.

analysis using ‘words per second’ as our main measure, rather than ‘words per clip’. 

Using ‘words per second’ allows us to compare how much of the time participants were 

speaking to  the robot over the course of their interaction, regardless of how many words 

they used to  communicate the instructional content.

We present our findings here and we use the findings to propose design guidelines for 

future work in automated personalization systems such as the ones we later design for

robot tutors.
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3.4 .1  H um an tu to rs  vocalize  before, during, and after a learner’s ac

tions

Participants in this study used an almost equal number of words per second in all three 

phases: before, during and after each learning trial. A plot of this data can be found 

in Figure 3.4. Over all phases, the frequency of words spoken was on average 1.26 

words/sec, with a standard deviation of 1.36 words/sec. There were no significant differ

ences between groups. This result indicates the human tutors provide the same amount 

of tutoring vocalizations per second before, during, and after learning tasks.

Typical Intelligent Tutoring System’s (ITS’s) do not provide guidance all throughout 

the learning tasks (Nkambou, Bourdeau and Psyche 2010). The two dominant families 

of ITS’s (as outlined in Chapter 1, Section 1.3) provide either step-by-step feedback 

during a problem, or they provide feedback after a problem, and some hybrid systems 

do both. These two kinds of instructional content are most closely related to our second 

and third phrases, what we call the ‘Guidance’ and ‘Feedback’ phases. Our findings 

indicate th a t for automated tutors to behave more like human tutors, if operating in 

a similar educational context as this one, they need to  provide instruction to  students 

that includes a significant amount of planning before a task, as in our ‘Direction’ phase, 

which most automated tutoring systems do not currently do.
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Participants Gave Most Affective Feedback After a Task

Direction 
(Before Task)

Guidance 
(During Task)

Feedback 
(After Task)

0.0 1.0 2.00.5 1.5 2.5 3.0

Prosodic Intensity Rating

F IG U R E  3.5: T he affective in tensity  of th e  instruction  partic ipan ts  gave 

was significantly higher in each successive phase of th e  tu to rin g  task: be

fore th e  task , during the  task , and after th e  task , (p  <  0.001 for the  

ANOVA tests, F[2] =  58.2,19.2).

3 .4 .2  H um an tu tors express affect during and after a learner’s actions

Although we did not specifically instruct participants to  use affective content in their 

instruction to  the robot tutors, participants vocalized with intensely affective prosody 

during ‘Guidance’ phase (M  =  1.28, SD  = 0.93) and in the ‘Feedback’ phase (M  =  

1.89, SD  =  0.78). Figure 3.5 plots this data. Participants’ affective intensity in the ‘Di

rection’ phase was minimal (M  =  0.47, SD  = 0.68). The differences in affective intensity 

ratings between ‘Direction’ and ‘Guidance’, and between ‘Guidance’ and ‘Feedback’, were 

both significant (p  <  0.001 for both ANOVA tests, F[2] =  58.2,19.2). This indicates 

th a t participate gave significantly more strongly affective instruction in each successive
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phase of the task: from before the task to during the task as well as from during the 

task to  after the task.

This is in stark contrast to  most automated tutoring systems which do not model the af

fective production of the tu to r’s dialogue. Our findings indicate tha t to  make automated 

tutors more like human tutors, automated tutors should produce more strongly affective 

feedback during a learning task than before one, and more strongly affective feedback 

after a learning task than during one.

3 .4 .3  H um an tu to rs  help  less o ften  as a learner continu ally  succeeds

Participants used significantly fewer words per second when teaching “Fred,” the more 

successful robot student, over the course of the three subsequent trials (p < 0.002, linear 

regression). Figure 3.6 is a plot of this data. We verified tha t this trend is not explained 

by the condition ordering. In a two-way ANOVA, we found a highly significant main 

effect for trial number (p  =  0.0018, F [l] =  10) and for order (p =  0.0004, F[l] =  13), but 

not for their interaction (p — 0.38, F [l] =  0.7). These data indicate tha t the drop-off in 

words per second of instruction was not due to repetition or boredom, but rather that 

human tutors provide progressively less frequent instruction to a more successful student 

over time. A similar test for “Kevin,” the less successful robot student, showed no trend 

of decreasing words per second over the three trials (p = 0.57, F [l] =  0.38).

This result indicates tha t for automated tutoring systems to be more like real human 

tutors, they should provide less frequent tutoring to students who consistently do well. 

Currently, most automated tutoring systems provide the same frequency of instruction to
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Participants Vocalized Less Over Time to "Fred"

Trial #1

Trial #2

Trial #3

0 2 31 4

Words per Second Said to "Fred" (The More-Successful Robot)

F i g u r e  3.6: W ord counts per second for vocalizations m ade to  “Fred,” the  

m ore successful student. Over th e  course of the  th ree  subsequent trials, 

th e  num ber of words per second decreases significantly (p  < 0.002, linear 

regression).

all students, or they allow students to select more or less feedback (Nkambou, Bourdeau 

and Psych6 2010). Our results show th a t human tutors significantly vary the rate of 

instruction between students, providing more instruction to less successful students.

3 .4 .4  H um an tu tors  g ive m ore in stru ction  to  a  stu d en t th e y  perceive  

as struggling

In the third trial for each robot, after participants had experienced the first two trials in 

which “Fred” picks the correct answer each time and “Kevin” picks the incorrect answer 

each time, participants gave significantly more guidance to the less-successful robot (p <
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More Frequent Guidance to Less-Successful Robot

Kevin -

Fred -

0.0 0.5 1.0 1.5 2.0 2.5

Words per Second, in Trial #3

F i g u r e  3.7: In th e  th ird  tria l, after partic ipan ts  had  experienced th e  first 

two tria ls  in which “Fred” picks the  correct answer each tim e and  “Kevin” 

picks th e  incorrect answer each tim e, partic ipan ts  gave significantly more 

frequent guidance to  th e  less-successful robo t (p  < 0.05, F [l]  =  5).

0.05, F [l] =  5). This result indicates tha t participants formed distinct mental models 

between Kevin and Fred, and in anticipation of another failure by the less successful 

student, produced more instructional content than they did for the student who continues 

to  do each task correctly.

This result is consistent with related work in Learning from Demonstration (LfD) tha t has 

shown th a t human tutors build models of each individual robot learner, and personalize 

their instruction based on those models (Thomaz and Breazeal 2008). We show here 

tha t not only do they personalize their instruction but they also build expectations of 

which robot will need more instruction and which will need less.
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Participants Used More Affect w/ Less-Successful Robot

Kevin -

Fred -

F IG U R E  3.8: In th e  ‘G uidance’ phase, which is th e  phase during th e  

learning task , partic ipan ts  gave m ore intensely affective in struction  to  

th e  less-successful robot th an  th ey  gave to  th e  more-successful robot,

(p <  0.05, F [l]  = 5 ) .

3.4 .5  H um an tu tors  used  m ore in ten sely  affective voca liza tion s tow ard  

th e  less-su ccessfu l robot

In the ‘Guidance’ phase, which is the phase tha t takes place exclusively during the 

learning task, participants gave more intensely affective instruction to the less-successful 

robot than they gave to the more-successful robot, (p  < 0.05, F [l] =  5). A plot of 

this data  can be found in Figure 3.8. 83% of the affective vocalizations given to  the less- 

successful robot in this phase were rated as positive in nature by our independent coders; 

17% was rated negative. This result indicates that human tutors increase the affective

“ i----------- 1-----------1-----------1-----------1-----------1----------- r
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Prosodic Intensity Rating, During Guidance Phase
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content of their vocalizations by producing more positive or encouraging vocalizations 

when a student is struggling than when a student is succeeding.

This result contrasts with the majority of automated tutoring systems th a t do not employ 

an affective model for their instruction (Nkambou, Bourdeau and Psych6 2010). We show 

th a t human tutors do personalize the affective content of their instruction to  students of 

differing abilities. For automated tutors to act more like human tutors, we must build 

models of affect for the dialogue tha t automated tutors produce.

3.5 Conclusion

In this chapter, we investigated how human tutors personalize their instruction to  robot 

students of differing abilities. Each participant taught two robot students, one more suc

cessful in the learning tasks and one less successful in the learning tasks. We found that 

participants personalized their instruction between robots such that the less successful 

student got more instruction and more strongly affective instruction than the more suc

cessful student. We also found tha t participants gave less instruction over time to the 

more successful student. We provide design guidelines based on these findings for future 

work in automated personalization systems for tutoring:

•  We suggest tha t to make automated tutors more like human tutors, automated 

tutors should produce more strongly affective feedback during a learning task than 

before one, and more strongly affective feedback after a learning task than during 

one.
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•  Our findings indicate tha t for automated tutors to behave more like human tutors, 

if operating in a similar educational context as this one, they need to  provide 

instruction to  students that includes a significant amount of planning before a 

task, as in our ‘Direction’ phase, which most automated tutoring systems do not 

currently do.

•  We show here tha t not only do they personalize their instruction but they also 

build expectations of which robot will need more instruction and which will need 

less.

•  We suggest tha t for automated tutors to  act more like human tutors, we must build 

models of affect for the dialogue tha t automated tutors produce.



Chapter 4

How Do Humans Personalize Their 

Tutoring to Robots with Differing 

Emotional Responses?

In this chapter, we continue our study of human tutoring personalization by pairing 

human tutors with robot students. Our previous work investigating how human tutors 

personalize their interaction to students of different abilities leads us to  ask how human 

tutors might personalize their interaction to  students of the exact same ability, but with 

differing emotional response patterns. By using robot students we can investigate how 

humans tutors personalize their instruction to students who perform exactly the same 

way on a series of learning tasks but whose emotional responses differ significantly. We

76
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use our findings to  derive several design guidelines for future work in automated tutoring 

systems.

In order to  investigate how human tutors personalize their instruction to  robot students 

tha t perform the same way in learning tasks but have differing emotional responses, we 

designed an experiment with three conditions in which participants tutored a robot stu

dent that: gave either (1) typical emotional feedback to  the human tutor, (2) apathetic 

emotional feedback, or (3) atypical emotional feedback. In all three conditions the robot 

student performed the learning tasks in the exact same pre-scripted way, and it received 

the exact same pre-scripted grades based on its performance. We led participants to 

believe that their instruction helped the robot learn to perform the learning task better 

over time and we allowed participants to choose how many demonstrations of each lesson 

they would give to  the robot student. We measured how many demonstrations partici

pants chose to  give as well as the precision with which the participant was performing 

each demonstration. We use these sources of data to investigate whether only the per

sonality of the robot student, and not any differences in learning performance, influence 

human tutoring personalization. We use the results of this study to propose guidelines 

for creating more human-like automated personalization tutoring systems.

4.1 Introduction

We do not know the precise underlying mechanisms by which human tutors personalize 

their tutoring. It has been shown that human tutors personalize their instruction based
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on how students perform in learning tasks (Wood, Bruner and Ross 1976) and it has also 

been shown that human tutors personalize their instruction based on student’s affective 

state (Lehman et al. 2008), but it is not known how these two effects are related. How 

would human tutors personalize their instruction if two students performed identically 

across all learning tasks but had differing patterns of affective expressions? We investigate 

this question with robot students.

Automated tutoring systems th a t take into consideration the student’s affective state are 

becoming more common in Intelligent Tutoring Systems (ITS) research (D’Mello et al. 

2005). Prom the work incorporating affective sensors into AutoTutor, in which the tutor 

detects affective states like frustration, delight, flow, and confusion (Craig et al. 2004), 

to  systems in which boredom is closely monitored (San Pedro et al. 2013), there are now 

a variety of systems tha t take into consideration the emotions of the student. How to 

personalize the tu to r’s instruction with this affect information is not a trivial question. In 

this study, we explore how humans personalize tutoring to robot students who vary their 

affective state but not their learning performance in order to isolate the variable of affect 

and inform future research in automated tutoring systems that personalize instruction 

based on a student’s affective state.

We tested three affective state conditions in this study: either (1) emotionally appropri

ate responses, (2) often emotionally inappropriate responses, or (3) apathetic responses. 

We chose to manipulate the emotional appropriateness in these conditions, along with 

a control for apathetic responses, because it is known tha t when people are presented
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with inappropriate emotional expression in other humans, they question their own per

ception of events in an attem pt to  ‘correct’ the inconsistency, a phenomenon known as 

“cognitive dissonance” (Aronson 1969). Related work tha t compared participants’ im

pressions of a virtual agent, outside the education domain, where the agent either was 

or was not consistent in its emotional expression replicated the findings about human- 

human interactions in human-agent interactions (Creed and Beale 2008). We investigate 

here whether cognitive dissonance can affect a human tu to r’s personalization, even when 

students perform in exactly the same way otherwise. The cognitive dissonance effect 

allows us to  definitively answer whether or not emotion alone affects human tutoring 

personalization.

4.2 Methodology

In this study we investigate how human tutors personalize their instruction to students 

who perform the same but having differing emotional responses to  tha t performance. For 

this experiment participants were asked to  teach the robot several “dances” by demon

strating them repeatedly for the robot student. During each dancing demonstration, the 

robot would dance as well and, after each demonstration, the robot would receive a score 

based on its performance. The robot would then respond to  that score. Across all three 

conditions in this study, the robot danced in exactly the same way and received exactly 

the same pre-programmed scores. The only differences between the three conditions 

were the emotional statements the robot student made after receiving those scores: they 

were either (1) emotionally appropriate responses, (2) often emotionally inappropriate
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II

( a ) Demonstration of the “lean” dance 
move.

( b ) The participant’s view of the ap- (c) The apparatus viewed from above. Partici-
paratus: the robot and the dance in- pants stood on the Wii Fit Balance Board, visi-
structions on screen behind the robot. ble at the bottom of this image.

F ig u r e  4.1: T he experim ental apparatus. P artic ipan ts  were asked to  

dem onstrate  dances to  a  robot, where th e  instructions for th e  dances were 

displayed on th e  screen behind th e  robot. We led partic ipan ts  to  believe 

th a t  th e  robo t learned dances by w atching th e  p a rtic ip an t’s dem onstra

tions.

responses, or (3) apathetic responses. Participants saw exactly one of these conditions 

and we allowed participants to  choose the number of demonstrations to do for each 

dance. We measured the number of demonstrations participants choose to do as well as 

the accuracy of those demonstrations in order to study the effect of this manipulation of
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emotional responses on human tutoring personalization.

4.2 .1  A pparatus

Participants were asked to demonstrate five predefined “dances,” each set to a unique 

half-minute segment from popular music. Table 4.1 lists the five song segments we 

chose. We choreographed a unique “dance” for each of the five song clips, of progressively 

increasing difficulty, the details of which are described below. Participants were led to 

believe tha t demonstrating the dances for the robot student would teach the robot to 

perform the dances. Unbeknownst to  the participants, the robot student performed a 

pre-determined sequence of dances, with built-in failures, exactly the same way for each 

participant regardless of the participant’s input. We found only one participant who 

caught on to this manipulation and his data was excluded from the results.

# Artist Title Cut

1 Willy Wonka Oompa Loompa 0 : 20 -  0 : 51

2 Daft Punk Robot Rock 0 : 34 -  1 : 02

3 Michael Jackson Billy Jean 0 : 26 -  0 : 58

4 Basement Jaxx Do Your Thing 0 : 32 -  0 : 59

5 Lady Gaga Just Dance 0 : 46 -  1 : 22

TABLE 4.1: T he song clips th a t  were used in th is  study.
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4 .2 .2  “D an ces”

Throughout the experiment, participants stood on a Nintendo Wii Fit Balance Board 

Peripheral, which is a wide and low-to-the-ground pressure-sensitive platform (Nintendo 

20076), placed in front of the robot. This peripheral is pictured in Figure 4.1c. Partici

pants were given dance instructions on a screen behind the robot, as seen in Figure 4.1b. 

These dance instructions were positioned behind the robot and out of its line of sight. 

Instead, as participants followed the dance instructions, we led them to believe the robot 

was mimicking their movements by having the robot perform movements close to  those in 

the instructions participants were following. The robot appeared to mimic participants 

during every demonstration. After each of these demonstrations, the robot would turn 

to face the computer and it would receive a score out of 100, as seen in Figure 4.2c. The 

reaction the robot gave to this score was the only difference between conditions in this 

study.

The “dances” themselves were composed of series of two kinds of moves: (1) ‘leans’, either 

left or right, and (2) ‘bounces’. To perform a lean, the participant would shift his or 

her weight to  one side of his or her body. Leans had varying durations, indicated by a 

trailing shadow of the robot image on the screen, as seen in Figure 4.2b. The ‘bounce’ 

move was performed by bending one’s knees and then quickly standing upright again. 

Bounces did not have varying durations, instead they were intended to be performed 

as quickly as possible. Bounces could be executed during leans, or on their own. On 

average, there were 13 seconds of leaning and 16 bounces per 30-seconds of dance. The
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( a ) Dance instructions scroll from right to 
left. When the instruction is inside its tar
get box at the left of the screen, the partic
ipant is supposed to perform the move.

KATE'S SCORE: 82%

(c) After each demonstration, the robot re
ceives a percentile score, turns around to 
look at it, and responds with one of three 
kinds of verbal responses, depending on the 
experimental condition.

( b ) The robot-shaped figures at the top are 
“leans,” which are accomplished by a weight 
shift left or right for a fixed time based 
on the trailing shadows. The circles be
low are “bounces,” accomplished by quick 
weight shifts down an back up.

TEACH
AGAIN

MOVE ON

( d ) After every dance, the participant 
chooses whether to demonstrate that dance 
again or move to on to the next dance.

F ig u r e  4.2: Screenshots of th e  user interface.

dances ranged in complexity from 8 to 30 bounces per dance and from 8 to 20 seconds 

of cumulative leaning per dance.
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The dance instructions were given in an illustrated scrolling interface style similar to 

the interfaces found in popular rhythm-based video games like Dance Dance Revolution 

(Konami 1998) and Guitar Hero (Harmonix 2005). Our interface is depicted in Fig

ure 4.2a and Figure 4.2b. In the interface, there are robot-shaped figures representing 

the lean dance moves, and circle figures representing the bounce dance moves. These 

figures start a t the right-hand side of the screen and scroll slowly towards the left-hand 

side. On the left-hand side are two stationary targets, in the shape of black rectangles. 

When the moving figures, starting on the right, reach the stationary targets on the left, 

participants were told to perform the dance moves they illustrated. In this way, partici

pants could monitor the fixed targets for the dance moves they should do at the current 

moment, and they could look towards the right of the targets to  see the dance instruc

tions coming up next. The lean dance moves lingered in the fixed target for the length 

of time it took for the trailing shadow to catch up with the target -  such tha t longer 

shadows indicated longer leans and shorter shadows indicated shorter leans. Bounce 

dance moves lingered in the target for half of a second each.

We chose these two dance moves, “leans” and “bounces,” in order to best utilize the 

kind of data that Wii Fit Balance Board Peripheral provides, which is four weights 

representing the force applied to each quadrant of the board. This allows changes in 

position, especially along the X and Y axes, to be easily detected. “Leans” and “bounces,” 

X and Y axis shifts respectively, were used because they were easy for participants to 

do, easy to  display on screen, and easy for the robot to mimic. We calculated accuracy 

scores for each participant for each demonstration by an average of two values: (1) the
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percentage of time that a participant was kneeling down during the approximately half of 

a second of the “bounce” symbol stopping in its target rectangle and (2) the percentage of 

time tha t the participant leaned his or her weight in the direction of the “lean” indicated 

in its target rectangle.

4 .2 .3  R ob ot

The robot we used for this study is the same robot we used in Chapter 2 to  study 

the effects of embodiment on robot tutoring. The robot, “Keepon,” is a small, yellow, 

snowman-shaped device with four degrees of freedom. For a description of its capabili

ties, see Chapter 2, Section 2.5.1. The robot was referred to as ‘K ate’ throughout this 

experiment.

During the course of the experiment, when the robot was not dancing, it looked around 

the room at randomly chosen degrees of rotation and occasionally made humming noises, 

breathing noises, sighs, or yawns. These idling behaviors were intended to  cajole the 

participant into making a choice on the screen so as to start or continue the experiment. 

In addition, the robot confirmed selections made by the participant on the screen by 

speaking phrases like “Oh, okay, let’s move on!” when the participant chose to move on 

to the next song, or “Here we go!” or “Okay. I’m ready!” when he or she chose to  begin 

demonstrating a dance. Lastly, during the dance itself, the robot occasionally spoke one 

of several ‘thinking’ sounds, like “Hmm.” or “Oh!” These additional speech utterances 

were timed at random, intended to give the illusion of the robot’s autonomy.
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During each demonstration, the robot also danced. The robot’s movements corresponded 

to  the dance instructions displayed on screen, in proportion to  the score that it received 

for tha t demonstration. For example, to achieve a score of 78%, the robot would perform 

only 78% of the moves indicated in the instructions. For the other 22%, the robot would 

remain motionless. We intended for this lack of motion, in addition to  the “thinking 

sounds” described above, to communicate that the robot was watching the participant’s 

demonstration in the time th a t it was not performing the dance itself.

4 .2 .4  Scores

The scores the robot received were percentages proportional to  the the robot’s dancing 

accuracy compared to the on-screen instructions. Unbeknownst to the participants, 

the sequence of scores (and the performance of the robot) was pre-scripted for each 

demonstration of each dance. For example, on the third demonstration of the third dance, 

the robot received a score of 80% regardless of how well the participant demonstrated 

the dance and regardless of what experimental group he or she was in. On the next 

demonstration, the fourth, the robot would always receive a score of 84%. W ith every 

subsequent demonstration of a dance, the score increased. This was done across all 

conditions, in order to isolate the effect of the responses to these scores by holding 

constant the successfulness of the student .

Each dance had a separate sequence of scores, prepared in advance, but all of the se

quences began with several low scores (all below 30%), followed by a large jum p to a 

series of higher scores (all above 75%). The jump occurred on the third demonstration



Chapter 4. How Do Humans Personalize Tutoring to Robots with Differing A ffect? 87

for each of the first three dances, on the fourth demonstration of the fourth dance, and on 

the fifth demonstration of the fifth dance. The intention of these jumps in the scores was 

to provide participants a convenient stopping point for each dance. We investigate how 

many participants in each demonstration were patient enough with the robot student to 

reach the jum p in each of the dances pre-planned scores.

4 .2 .5  C onditions

W hat the robot said in response to the scores it received was the only difference between 

the three conditions in this study. These responses contained between two and fifteen 

spoken English words, all recorded in the same female voice. Sample responses for all 

three conditions can be found in Table 4.3, Table 4.4, and Table 4.5. Participants were 

exposed to an average of 3.8 to 5.9 robot responses per song, depending on how many 

demonstrations they elected to perform.

We base the emotionally appropriate responses condition and the often emotionally in

appropriate responses condition on a subset of two of the appraisal dimensions defined 

by the EM A model of emotion (Marsella and Gratch 2009). The two dimensions we used 

were:

•  D esirab ility , which reflects robot student’s appraisal of the scores it earned, where 

scores above 75% was considered desirable and scores below 30% were considered 

undesirable. All scores in this study were set to  be either below 30% or above 75%. 

The motivation for this choice is documented below.
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•  E x p ec ted n ess , the robot’s expectation of a score based on its previous score. The 

first score for each dance was always treated as unexpected. After the first score, 

when the robot’s score changed by 10% or more from one demonstration to  the 

next, it was treated as unexpected. In all other cases, the score was treated as 

expected.

We treat both appraisal dimensions as binary decisions, yielding four possible emotional 

categories to describe the “emotionally appropriate” response for any given score. A 

description of these four categories is found in Table 4.2 below.

E x p ec ted U n ex p ec ted

Desirable

U n d esirab le

satisfaction, pride 

shame, frustration

happy-surprise, relief 

disappointment, worry

TABLE 4.2: T he four em otional categories from which we determ ine the 

“em otionally app ropria te” response.

For each of the four categories, we recorded approximately fifteen spoken emotional 

utterances, samples of which can be found in Table 4.3 and Table 4.4. We also recorded 

twenty spoken apathetic utterances, samples of which can be found in Table 4.5.

The reason for choosing an apathetic control condition over a condition with no speech 

whatsoever was was to  maintain a similar illusion of the robot’s intelligence across all 

three conditions.

The robot’s responses for each condition were chosen as follows:
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•  E m o tio n a lly  A p p ro p r ia te  R esp o n ses  -  The robot spoke with one of the prere

corded responses from the appropriate emotional category, determined by the score 

the robot received during that demonstration. Among the responses in tha t cate

gory, one was chosen at random without repeating any responses per participant 

per song. See Table 4.3 for a  sample.

•  O ften  E m o tio n a lly  In a p p ro p r ia te  R esp o n ses  -  The robot spoke with one of 

the prerecorded responses from a random emotional category. Among the responses 

in that category, one was chosen at random also without repeating any responses 

per participant per song. See Table 4.4 for a sample.

•  A p a th e tic  R esp o n ses  -  The robot spoke with one of the prerecorded responses 

from the apathetic group, again chosen at random without repeating any responses 

per participant per song. See Table 4.5 for a sample.

In every instance above in which we discuss random choices, it is important to  note that 

across all participants the seed value for the pseudorandom number generator was held 

constant per dance and per demonstration. The “random” choices above are random in 

the sense tha t we did not choose the ordering ourselves, but those choices were constant 

across all participants, per dance per demonstration.
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“Emotionally Appropriate” Condition

Score Robot’s Response

20 “Oh no, ohh no."

22 “Ugh, man, this is hopeless."

82 “Ooh, check that out, we did great!"

89 “Now, how great is that."

91 “Cool, cool, we did well."

94 “Oh yeah, th a t’s right! Un-huh!"

95 “Oh yeah, oh yeah, oh yeah."

97 “Yeah, well, I ’m really good at this."

99 “Cool, cool, we did well."

T a b l e  4.3: Sam ple of th e  ro b o t’s responses to  its  scores in th e  “em otion

ally appropria te  responses” condition. Com pare w ith  sam ple responses in 

th e  o ther two conditions, found in Table 4.4 and Table 4.5 below.

4.3 Participants

There were 62 participants, between 18 and 40 years of age, all from New Haven, CT. 

Most participants were undergraduate and graduate students, none of whom were com

puter science majors. Our exclusion criteria were lack of English fluency or prior academic 

experience with robots or artificial intelligence (i.e. students having taken or currently 

taking a robotics or artificial intelligence course).
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“Emotionally Inappropriate” Condition

Score Robot’s Response

20 “Look at that! That is an awesome score."

22 “Augh, that was bad, that was really bad."

82 “Oh no, tha t was terrible!"

89 “Oh yeah, th a t’s right! Un-huh!"

91 “Ugh, I’m so mad!"

94 “Ooh, we’re doing really well."

95 “Hey, that score’s pretty darn good."

97 “Now, how great is that."

99 “Ugh, oh no, I’m so sorry!"

T a b l e  4 .4: Sam ple of th e  ro b o t’s responses to  its  scores in th e  “often 

em otionally inappropria te  responses” condition. C om pare w ith  sam ple re

sponses in th e  o ther two conditions, found in Table 4.3 above and  Table 4.5 

below.

4.4 Procedure

The participant was told tha t the purpose of this study was to help the robot learn to 

dance. The participant was informed of the features of the instruction interface and how 

to perform the dances. Participants were left alone with the robot and asked to remain 

standing on the Wii Fit Balance Board Peripheral, positioned in front of the robot, 

throughout the experiment. Participants would click on buttons on the interface with a 

mouse th a t extended to within reach of the Balance Board. After each demonstration,
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“Apathetic” Condition

Score Robot’s Response

20 “We did okay."

22 “Mhmm. That makes sense."

82 “Sure. I’ll take it."

89 “That looks alright to m e."

91 “That was... th a t was okay."

94 “Oh. T hat’ll do."

95 “Hmm. Looks like we’re doing fine."

97 “T h a t’s decent."

99 “I think th a t’s fine."

TABLE 4.5: Sam ple of the  ro b o t’s responses to  its scores in th e  “ap a th e tic  

responses” condition. C om pare w ith  sam ple responses in th e  o ther two 

conditions, found in Table 4.3 and  Table 4.4 above.

the robot gave its emotional response to the score and, afterward, participants were 

presented with two buttons, one marked “Move On” and a larger one marked “Teach 

Again,” as depicted in Figure 4.2d.

Participants demonstrated the dance moves in front of the robot as the robot also danced. 

Participants could choose after each demonstration whether to  repeat the same dance 

or to  move on to the next dance, with no option to return to  previous dances. Some 

participants asked the experimenter, during the explanation of instructions, what scores 

were required or desirable, to which the experimenter consistently replied by requesting
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th a t the participant continue his or her demonstrations until he or she felt satisfied 

with the robot’s performance or score. The experimenter did not mention the emotional 

aspect of the robot’s behavior. The experimenter also did not reveal tha t the participants’ 

accuracy was being scored. The complete text of the instructions is provided below:

“Today you’re going to teach our robot, Kate, to dance. We made five thirty-second 

dances that we want her to learn, each dance is set to its own pop song. Your job is 

to demonstrate the dances for her and she ’U learn them by imitating you. The dances 

themselves are really simple, they’re made up of two kinds of moves: leans and bounces. 

The screen behind Kate will tell you what moves to do and what moves are coming up. 

Here, let me show you.” At which point a 15 second video was shown demonstrating 

“leans” and “bounces.”

“Each time you dance together, Kate will get a score out of 100%. A fter each dance, you’ll 

be asked whether you want to teach Kate that song again or to move on to the next song. 

You can teach each song as many times as you want, the more times you demonstrate it 

for her the better she ’11 do. Once you move on from a song, you can’t go back to it. Does 

that make sense? Do you have any questions?” After the participant’s questions were 

answered, they were asked to stand on the Wii Fit Balance Board Peripheral and begin 

the experiment.

After participating in the study, participants were asked to complete a survey consisting 

of six open-ended questions followed by two Likert-scale rating questions. The open ended 

questions were designed to  give the impression that the experiment was investigating how 

well the robot learned the dance moves (e.g. “In your opinion, how well did Kate learn?”,



Chapter 4. How Do Humans Personalize Tutoring to Robots with Differing Affect? 94

Participants Demonstrated More Often 
To The Emotionally-Appropriate Robot Student

Appropriate inappropriate Apathetic

Experimental Condition

Participants Demonstrated More Accurately 
To The Emotionally-Appropriate Robot Student

Appropriate inappropriate Apatietlc

Experimental Condition

( a )  Participants who taught the robot ( b )  Participants who taught the robot

student with emotionally-appropriate re- student with emotionally-appropriate re

sponses did significantly more demonstra- sponses performed each demonstration sig-

tions that participants in the other two nificantly more accurately that participants
groups, p <  0.001. in the other two groups, p <  0.001.

F i g u r e  4.3: O ur resu lts indicate th a t  partic ipan ts  who tau g h t th e  robot 

s tu d en t w ith  em otionally-appropriate responses perform ed significantly 

m ore dem onstrations and perform ed each dem onstration  significantly m ore 

accurately  th a t  partic ipan ts  in th e  o ther two groups. (E rror bars p lo t s tan 

dard  error.)

“Do you think you demonstrated the dances well enough?”, “W hat factors influenced 

your decision to  move on from one song to the next?”). The two Likert rating questions 

were, rating (1) “K ate’s emotion responses to her scores...”, on a scale of “1 -  seemed 

arbitrary.” to  “7 -  seemed believable.”, and (2) “Overall Kate learned...”, on a scale of “1 

-  very poorly.” to “7 -  very well.”
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4.5 Results

This study was designed to investigate whether human tutors personalize their tutor

ing to robots tha t perform exactly the same in learning tasks but vary in their emo

tional responses during tutoring. To investigate this, the mean number of demon

strations per dance, over all five dances, was compared across conditions, see Fig

ure 4.3a. Participants who taught the robot student with emotionally appropriate re

sponses demonstrated the dances (M  =  5.9, SD  — 2.3) significantly more frequently than 

those who taught the robot student that gave often emotionally inappropriate responses 

(M  =  4.1, S D  =  1.5), f(123) =  5.18,p  <  0.001 as well as demonstrating the dances signif

icantly more frequently than those in the apathetic responses group (M  — 3.8, SD  =  1.0), 

t(110) =  6.32, p  <  0.001, and. No significant difference was detected between the ap

athetic response condition and the often emotionally inappropriate response condition. 

This result indicates tha t human tutors do change their behavior based solely on the 

emotional output of their students.

The mean accuracy of each participant’s demonstrations, calculated as described in 

Figure 4.2.2, produced similar results, see Figure 4.3b. Participants who taught the 

robot student with emotionally appropriate responses earned significantly higher accu

racy scores (M  — 89%, S D  — 12%) than participants in both the apathetic responses 

group (M  — 81%, SD  = 15%), t(692) =  7.6,p  < 0.001 and the often emotionally inap

propriate responses group (M  =  80%, S D  = 15%), f(648) =  6.86,p  <  0.001. Again, no 

significant difference was found between mean accuracies of participants in the apathetic
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Participants Were More Engaged Over Time 
With The Emotionally-Appropriate Robot Student

Participants Were Maximally Engaged 
With The Emotionally-Approprlate Robot Student

Umar H M rwson

90%  -

2  70%  -

40%  -

5  30%  -

20%  -

10%  -

Appropriate Inappropriate

Emotional R esponse  Condition

( a ) The number of demonstrations par
ticipants made over time grew fastest in 
the emotionally-appropriate robot student 
group. The mean slopes are compared here 
of linear regressions, single asterisk indi
cates significance, p — 0.05, double asterisk 
indicates moderate significance, p — 0.07.

Appropriate Inappropriate

Experimental Condition

( b ) Participants who taught the robot 
student with emotionally-appropriate re
sponses were significantly more likely to be 
patient enough with the robot student to 
reach the jump in the scores, from below 
30% to above 75%. Asterisks indicate sig
nificant differences among means, p < 0.01.

FIGURE 4.4: Results from the behavioral data.

group and the often inappropriate emotional group. This further confirms tha t human 

tutors personalize their tutoring based on emotional feedback of students.

For each dance, the robot received only scores tha t were below 30% until, after some num

ber demonstrations per song, the scores it received would jump to exclusively above 75%. 

The number of demonstrations necessary to reach tha t jump in scores was consistent per 

song across all participants; it was the same for the first three dances and it increased 

in the fourth and fifth dances. We investigated the percentage of participants tha t per

formed enough demonstrations to  earn a high score on the last two “increased-difficulty”
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dances, plotted in Figure 4.4b. The percentage of participants in the emotionally appro

priate responses group who reached those jumps (93%) was significantly larger than the 

percentage of participants in the apathetic response group (61%), t(24) =  2.7,p  =  0.01, 

and in the often emotionally inappropriate response group (58%), t (34) =  3.5, p = 0.001. 

This indicates th a t participants who taught the robot student with emotionally appro

priate responses were not only more engaged with the robot, but more patient with it 

when it failed.

We also investigated the rate of change of the number of demonstrations over the five 

dances, between conditions; see Figure 4.4a. Fitting each participant’s number of demon

strations per dance with a least squares linear regression allowed us to  investigate the par

ticipant’s engagement over time, by comparing the mean slopes between conditions. The 

mean slope of participants in the emotionally appropriate condition (M  =  .46, S D  = .70) 

was significantly larger than the mean slope of those in the often emotionally inappro

priate response group (M  =  .02, SD  =  .59), t (26) = 2 ,p  = 0.05. The mean slope in the 

apathetic group (M  =  0.30, SD  = .41) was larger than the mean slope in the often emo

tionally inappropriate group with only moderate significance, t(41) =  1.8, p = 0.07. This 

result tells us th a t participants who taught the robot student with emotionally appropri

ate responses were more engaged, more patient, and more consistent than  participants 

in the other two groups.

We also found th a t even by the end of the first dance, where on average across all 

groups, participants saw only 4.2 of the robot’s responses (SD  = 2.0), and yet, by 

the end of the first dance there were already significant differences within the mean
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Survey: ’How believable were Kate's emotions?’

Approprttt* mapproprlM Apathetic

Experimental Condition

( a )  This question verifies our main manip

ulation: the emotional content of the robot 

student’s responses was correctly identified 

by participants as appropriate or often in
appropriate, in those groups respectively.

Survey: "How well did Kate learn?”

Appropriate inappropriate Apathetic

Experimental Condition

( b )  The perception of the robot student’s 

successfulness was significantly higher for 

participants who taught the robot stu
dent that gave emotionally appropriate re
sponses.

F i g u r e  4.5: R esults from th e  survey data .

number of demonstrations across groups. After the first dance, both appropriate (M  =  

5.1, SD  =  2.6) and often inappropriate (M  =  4.4, SD  = 2.2) emotional response groups 

had a significantly higher number of demonstrations than the apathetic group (M  =

3.4, S D  = .70), t(16) =  2.5,p  =  0.03 and f(30) =  2.2,p — 0.04. This indicates tha t the 

personalization human tutors do based on a student’s emotional feedback happens early 

and consistently.

The survey results verified our manipulation -  the emotionally appropriate response 

group rated the robot’s emotions (M =  6.0, SD  = .77) significantly more believable than 

the apathetic response group (M  — 2.8, SD  = .97), t (24) =  7.93, p < 0.01, and the often 

emotionally inappropriate response group (M  =  3.0, SD  — 1.4), f(37) =  8.36, p < 0.01.
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(See Figure 4.5a.) There was no significant difference between the often-inappropriate 

emotional group and the apathetic group. This result reveals tha t participants were 

noticing the emotional feedback of the student, and not only the scores it received.

The survey results also indicated tha t the emotionally appropriate response group rated 

the robot’s ability to  learn (M  =  5.6, SD  =  .98) significantly higher than participants 

in the apathetic group (M  =  4.8,51? =  .97), £(29) =  2.62, p = 0.01, and significantly 

higher than participants in the often emotionally inappropriate response group (M  =

4.5, SD  — 1.4), £(37) =  3.02,p  <  0.01; see Figure 4.5b. This indicates tha t participants 

who taught a robot tu to r with emotionally appropriate responses perceived the robot to 

be smarter than participants in the other two groups perceived the robot student to  be, 

even though the robot performed just as well in all three groups.

4.6 Discussion & Design Guidelines

The central finding of this work is that, even when students perform exactly the same 

across all learning tasks, naive human tutors significantly alter their tutoring to  adapt 

to  students with different emotional responses. Participants taught significantly more 

often and significantly more accurately to robot students with emotionally appropriate 

responses. Our first design guideline in this chapter is therefore: if autom ated personal

ization systems are to  draw the best qualities of human tutoring, they need to pay close 

attention to  the student’s emotional feedback. We found th a t this effect, in which partic

ipants treated the emotionally appropriate robot student differently than the others, was
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robust in several measures including how patiently participants waited for the “jump” in 

scores, as well as how the number of demonstrations they chose to  do grew over time 

faster than in the other two groups. Though we do not suggest tha t automated tutors 

are disengaged with students who behave apathetically or emotionally inappropriately, 

we do suggest tha t identifying these behaviors and responding as an expert tu to r would, 

by perhaps questioning the behavior or offering a break, is important to  the success of 

automated tutoring.

Comparing the apathetic condition to the often inappropriate emotion condition, the 

majority of the statistical analysis supports the null hypothesis -  namely, th a t neither 

produces significantly different quantity or quality training data. The only exception 

present is the mean slope data, which produced a marginally significant result between 

these two groups (p =  0.07). (See Figure 4.4a.) This trend may indicate that there is 

some underlying difference tha t we do not yet have enough statistical power to determine. 

However, this result also strengthens the design guideline we are proposing: we found 

tha t even apathetic responses are enough to cause human tutoring personalization, and 

tha t this personalization is similar to the way human tutors trea t often emotionally 

inappropriate robot students. In other words, the emotional output of a student is an 

incredibly im portant signal to a tu tor and ignoring it by thinking of students as apathetic 

or unemotional leaves automated tutoring systems without a rich source of data  on which 

to personalize an interaction.

Even though all three of the robot students performed each dance the exact same way 

and received the exact same scores, the survey data, which can be found in Figure 4.5b,
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indicate tha t participants in the emotionally appropriate response group believed the 

robot learned significantly better, on average, than those in either of the other groups, 

p  < 0.01, p = 0.01. This result may be due simply to the relative patience of participants 

in this group, as indicated by their performing more demonstrations and, thus, earning 

higher scores. Even if th a t is the underlying cause, this data indicates tha t human tutors 

perceive students of the same objective ability as having differing abilities based on their 

emotional output. This leads to our other design guideline: if automated personaliza

tion systems are to be more human-like in their personalization, they should take the 

emotional signal into consideration when assessing the otherwise objectively-measured 

skills of a student. This may seem counterintuitive, that skills perhaps should not be 

objectively measured, but another way to understand this result is tha t communication 

skills are sometimes almost as important as the content itself. If a student is not able 

to establish a good rapport with the automated tutor, because he or she is bored or un- 

enthusiastic and therefore his or her emotional responses are not ideal, the tu to r should 

notice th a t and report it as an element of the evaluation of th a t student. Human tutors 

allow this to affect our judgement of a student but perhaps an automated system can 

more easily separate the two.

4.7 Conclusion

In this study we investigate how human tutors personalize their instruction to students 

of the same ability but different emotional responses. Participants were asked to  teach 

the robot several “dances” by demonstrating them repeatedly for the robot student. The
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robot student then responded to  the score it received during each demonstration in 

one of ways: either with (1) emotionally appropriate responses, (2) often emotionally 

inappropriate responses, or (3) apathetic responses. We found tha t participants taught 

significantly more often and significantly more accurately to the emotionally appropriate 

robot student than to  the other two robot students. We also found tha t participants 

who taught the robot student with emotionally appropriate responses rated the robot 

student as “able to  learn” significantly better than participants in either two groups, 

perhaps because they were less engaged with the student and observed fewer successes, 

indicating th a t the emotional responses affect a naive human tu to r’s perception of a 

student’s ability to  learn. We propose design guidelines for future work in automated 

personalization systems based on these data:

•  We suggest th a t if automated personalization systems are to  model the best quali

ties of human tutoring, they need to  pay close attention to  the student’s emotional 

feedback, which many systems currently do not do. We found tha t the emotional 

output of a student is an incredibly important signal to human tutor, where even 

apathetic responses caused novice humans to  respond differently to students.

•  We suggest tha t if a student is not able to establish a good rapport with the 

automated tutor, because he or she is bored or unenthusiastic and therefore his 

or her emotional responses are not appropriate, the tu tor should detect this and 

attem pt to  intervene.



Chapter 5

The Effect of Personalization in 

Short-Term Robot Tutoring

In this chapter we investigate to what extent the personalization of a robot tu tor can 

affect student learning gains over the course a single tutoring session. As the first group to 

investigate the role of personalization in robot tutoring, we were interested in establishing 

a minimum threshold for the effects of personalization. Is it difficult or expensive to  build 

robot tutoring personalization systems that tailor their output to  individual student’s 

strengths and weaknesses? Is it worth creating a personalization system for just a single

session application with a robot tutor?

In this chapter, we show th a t personalization can be done relatively simply and can make 

a significant difference even over the course of just one session with a robot tutor. We

103
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present two personalization systems we authored for short-term, single-session robot tu 

toring interactions and compare their effectiveness. We find tha t both produce significant 

learning gains: Participants who received personalized lessons from a robot tu tor based 

on these systems performed between 1.0 and 1.4 standard deviations above the mean 

of participants who received non-personalized lessons from the same robot tutor, corre

sponding to learning gains in the 84th and 92nd percentile respectively. Participants who 

received personalized lessons performed between 1.2 and 1.7 standard deviations above 

the mean of participants who received no lessons whatsoever, corresponding to gains in 

the 88th to  96th percentiles.

To study the effect of personalization in a single session of robot tutoring, we designed 

an experiment with four conditions: (1) a condition in which participants received per

sonalized lessons from a robot tu tor based on our first personalization system, (2) a 

condition in which participants received personalized lessons from a robot tu to r based 

on our second personalization system, (3) a condition in which participants received non

personalized lessons from the same robot tu tor as in the first two conditions, and (4) 

a condition in which participants were asked to perform the same learning tasks as in 

the previous three conditions but with no lessons or tutoring whatsoever. We find that 

personalization has a significant impact on student learning outcomes in robot tutoring, 

even in the course of just one session with the robot. In our work this impact is an aver

age of 1.2 standard deviations over the mean performance of participants who received 

non-personalized instruction and 1.5 standard deviations over the mean performance of 

participants who received no lessons whatsoever. We compare the two personalization
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systems below and provide guidelines for future work in short-term personalization in 

robot tutoring.

5.1 Introduction

We are the first to study personalization in the context of robot tutoring, whereas previ

ous work has explored personalization in other kinds of human-robot interactions. The 

most significant project in this area is Snackbot, a robot th a t personalizes dialogue in 

reference to an individual user’s history of snack choices (i.e. an apple versus a candy 

bar) (Lee et al. 2012). When Snackbot personalized its interactions it was found to  be 

more engaging by participants than a non-personalized version of the robot, leading to  an 

increased desire to  use it and an increase in social behavior directed towards the robot.

In other work tha t features personalization, Kidd and Breazeal (2008) present a robot 

weight loss coach th a t generates customized dialogue based on the self-reported progress 

of the user, finding tha t the physical embodiment of a robot coach produces significantly 

more engagement with the robot. This project does not specifically isolate the role of 

dialogue personalization. Leite et al. (2012) conducted a long-term study of elementary 

students playing chess with help from a robot, exploring how supportive the students 

perceive the robot tu tor to be depending on the kind of feedback it gave students. The 

robot chess tu tor did not personalize the kind of support it gave but this study asked 

students what kinds of support they preferred, which future work could use to personalize 

robot tutoring interactions. In the work of Sung, Grinter and Christensen (2009), users
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that decorated, and thus “personalized,” their Room has, self-reported higher engagement 

with the robot and more willingness to  use the robot in the future. These studies indicate 

th a t personalization in human-robot interaction produces better user engagement across 

many kinds of interactions.

We are the first to study whether this increased engagement produced by personalization 

leads to  learning gains for students interacting with a robot tutor. The most significant 

earlier robot tutoring project is called RUBI, a robot tu tor intended for early childhood 

education (Movellan et al. 2007). The RUBI project spans a variety of educational and 

robotics research but the RUBI group has not investigated the role of personalization. 

We provide an overview of their contributions in Chapter 1, Section 1.4.

We present two systems in this chapter tha t are intended to  evaluate the effectiveness 

of personalization in robot tutoring over a single session. We find tha t personalization 

in robot tutoring can be effective even with relatively simple systems and in just one 

hour-long tutoring interaction.

5.2 Overview

This study investigates the effect of personalization on student learning outcomes in a 

single session of robot tutoring. The curriculum the tu tor teaches and the apparatus 

of this study are the same as in our earlier work investigating the effect of embodiment 

in robot tutoring in Chapter 2. A description of the curriculum and apparatus can be 

found in Section 2.2 and Section 2.3.
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We provide a summary of key details here. Each participant in this study was asked 

to solve the same series of four logic puzzles called ‘Nonograms’ (also called ‘Nonogram 

puzzles’). Nonograms are Japanese fill-in-the-blanks grid-based puzzle games tha t require 

players to  perform many layers of logical inference to complete, similar to  Sudoku. A 

sample Nonogram puzzle, with solution, can be found in Figure 2.2.

There were four conditions in this study: two in which participants received personalized 

Nonograms puzzle-solving lessons, one in which participants received non-personalized 

Nonograms puzzle-solving lessons, and the last condition in which participants solved 

the same series of four Nonogram puzzles with no assistance. In the three conditions 

in which participants received robot tutoring, periodically as participants solved the 

puzzles, the robot tu tor interrupted them to deliver a Nonograms puzzle-solving lesson. 

These puzzle-solving lessons consisted of pre-recorded audio with synchronized lesson- 

specific on-screen visual aids, each lasting between 21 — 47 seconds, and each describing 

a unique Nonograms puzzle-solving skill. A transcription of the audio content of these 

lesson can be found in Section 2.3.

The only difference between the three conditions that received robot tutoring was the 

ordering of the lessons. In the personalized conditions, the lessons were ordered based 

on one of the two personalization systems we created. In the non-personalized condition, 

the lessons were chosen randomly among the lessons th a t applied to  the current state of 

the game board when each lesson was given. We measured how quickly participants were 

able to solve each of the four puzzles; the faster a participant was able to solve puzzles, 

the better at the puzzle-solving skills we assessed them to be. We compared the mean
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puzzle-solving times between participants across all four groups to  evaluate the effect of 

our two personalization systems on short-term robot tutoring.

5.3 Curriculum: ‘Nonograms’

This study uses the same curricular domain, Nonograms, as we used in Chapter 2. We 

also use the same ten Nonograms puzzle-solving skills and ten pre-recorded lessons we 

authored for tha t earlier work. See Section 2.3 for a description of the rules of Nonograms 

and the skills and lessons we created.

In this study we maintain the manipulation from our earlier work in which the fourth 

puzzle was a disguised 90° rotation of the first puzzle. Most Nonogram puzzles requires 

a slightly different subset of skills to solve, applied in a different order between puzzles. 

Because the first and fourth puzzles in this study had functionally identical gameboards, 

they required exactly the same subset of Nonograms puzzle-solving skills, in the exact 

same order, to complete successfully. As a result, comparing the performance of the 

a single participant on the first puzzle to  tha t same participant’s performance on the 

fourth puzzle allows us to  evaluate that participant’s skill competency growth over the 

course of the study. We use this within-subjects measure to evaluate the effectiveness of 

our personalization systems on student learning outcomes below.
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5.3 .1  Skills & L essons

For our work in Chapter 2, we identified ten unique Nonograms puzzle-solving skills and 

we recorded ten lessons, one for each skill, each under a minute in length. Each of these 

skills and corresponding lessons are described in Section 2.4. We describe how these 

lessons were ordered, depending on experimental condition, below.

It is significant to note that these skills are not trivial to order because, as is the nature of 

tutoring any cognitively-challenging task, it is difficult to  know what skill a student has 

full knowledge of, and what skill a student may be lacking in. One can observe how the 

student solves problems, but mapping the observations one makes to the skill competency 

of an individual student is a difficult task because there is a many-to-many relationship 

between such observations and such skill. Creating this mapping, and inferring from it 

the skill competency of an individual student, is a necessary job for personalizing the 

ordering of the instructional content. Below, we present two initial efforts to accomplish 

this goal.

5.4 Conditions

There were four conditions in this study, two conditions in which participants received 

personalized lessons from a robot tutor, one condition in which participants received 

non-personalized lessons from a robot tutor, and a condition in which participants solved 

the puzzles with no tutoring at all. Each participant experienced exactly one of these 

conditions.
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5.4.1 N o  L essons

To assess a baseline of performance on this puzzle-solving task, we measured how well 

participants learned Nonograms puzzle-solving strategies on their own, with no instruc

tion. Collecting this data allows us to compare the effect of our personalization systems 

against participants’ own efforts at inferring the puzzle-solving skills over the course of 

the session, which allows us to quantify the impact of our personalization systems. We 

expected th a t participants would get better at the task over time, inferring the same 

skill-solving strategies but more slowly and perhaps less clearly. In this condition, there 

was no robot present, so the results represent a baseline measure of how participants 

solve this task in a non-social setting, simply thinking the puzzles through on their own.

5 .4 .2  N on -P ersonalized  Lessons

To isolate the effect of personalization in a single session of robot tutoring, we designed a 

condition in which participants received the same pre-recorded lessons as in the person

alized conditions but ordered randomly. When the tu tor gave a lesson in this condition, 

it picked randomly from among the subset of lessons that could be directly applied to 

the current gameboard state at the time the lesson was given.

An alternative strategy for the non-personalized condition would have been to order the 

lessons in a fixed, pre-defined sequence. Doing this was not feasible here because Nono

grams skills can be applied in slightly different orders but result in the same solution. 

A fixed curriculum in this domain would have delivered lessons tha t were applicable to
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some participants’ gameboards when they were delivered but not to  others, rendering a 

comparison between non-personalized and personalized lessons as a comparison of irrel

evant and relevant lessons. Instead, with our system, we can isolate the personalization 

while keeping the relevance of the lessons constant across all conditions.

5.4 .3  P ersonalized  Lessons

We personalized the lesson ordering based on two models th a t estimate the skill compe

tence of each participant on each of the ten skills. The job of the model is to  interpret 

what each move a participant makes indicates about the underlying internal cognitive 

processes of that participant. A significant challenge in modeling these cognitive pro

cesses is that each of the participant’s actions can reflect the presence or absence of many 

skills at once. We describe two algorithms tha t attem pt to unscramble these potentially 

mixed signals here.

It is important to note that the lesson ordering algorithms presented here are not pro

posed as optimal solutions to  the lesson ordering problem more broadly. Instead, we are 

interested specifically in isolating what effect, if any, relatively simple personalizations 

can have on a single sessions with a robot tutor. Both algorithms take as input the moves 

participants make in the puzzles and produce as output a single skill in which the model 

indicates a participant’s knowledge is lacking.
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5.4.3.1 Additive Model

In this model, each individual Nonograms puzzle-solving skill i has an associated func

tion Si tha t defines precisely what it means to  apply skill i. Each function St takes 

as input a potential state of the gameboard or world (wt € W ) and returns a set, 

{wt+i, w't+1, w't'+1, w ff  1( ...} that contains all of the possible resulting world states after 

skill i applied is applied to world state wt-

Si(wt) =  {wt+i, i<4+1, w 't’+ ], w"'+ \ , ... | skill i was applied to world state wt}

We say skill i is “not applicable” to  a world state w if and only if Si(wt) — {tut+i | wt — 

rct+i}- In other words, if applying skill i to world state Wt only produces one possible 

outcome, a state identical to wt, then skill i does not apply to gameboard wt . This 

happens in Nonograms when a skill cannot be used to make progress in any of the rows 

or columns of a gameboard.

The skill functions Si are used in two ways, to detect successful demonstrations and 

missed opportunities:

•  We say skill i was successfully demonstrated at world state wt if wt £ St(vjt- i ) .  

In Nonograms, this represents an instance where the participant performs an action 

tha t matches the definition of one of the ten skills we defined.

•  We say the participant missed an opportunity to demonstrate skill i at world 

state Wt if the participant takes no action and Si(wt) ^  {wt+ 1  | wt = wt+1 }.
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This occurs when the skill can be used to make some progress in a row or column 

somewhere on the gameboard, but the participant does not make any move.

We incorporate these two applications of Si as follows. We define Pi as a boolean value 

tha t is 1 if and only if skill i has been successfully dem onstrated in the previous 

timestep, and n, as a boolean value tha t is 1 if and only if the participant missed an 

opportunity to  employ skill i in the current timestep. The timesteps for these two 

booleans are different. The boolean pi is evaluated every time a box on the Nonograms 

board is shaded. Therefore, every time a participant makes a move in Nonograms, they 

have the potential to successfully demonstrate one or more of our ten skills. The 

boolean n* is evaluated every time the state of the world does not change for a 3 seconds 

period, and then it is evaluated repeatedly every 1 second thereafter until another move 

is made. These time delays were chosen based on the authors’ subjective experience with 

the task domain that indicates tha t a pause while playing Nonograms indicates tha t the 

user is stuck, typically after 3 seconds of inactivity, and continuing thereafter, which 

we sample every second. In practice, this means tha t after three seconds of inactivity, 

the model starts to accrue evidence tha t participants are missing opportunities to 

demonstrate any skills that are currently applicable to the board during their inactivity. 

These inputs are summed with the following equation, either when a skill is demonstrated 

or an opportunity is missed:
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Each skill has its own assessment aStt • The values of as t vary from 0 to  100. We used 

three weights in these calculation, wo which is an initial seed value, set to 50 for all skills, 

and u p and wn which represented the relative frequency with which we expect to see 

successful demonstrations and missed opportunities respectively, set to  ojp = 50 

and u>n = 1. A floor of 0 and a ceiling of 100 was applied to the summed value at each 

timestep. The weights and seed value used in this algorithm were subjectively derived 

and fine-tuned based on pilot studies. These pilot studies revealed that participants 

sometimes took pauses of up to a minute to plan their moves, and as a result, any of 

the skills applicable to the board in those sixty seconds would decrease by as much as 

57. We tuned our weights in this additive model to reflect the notion tha t a single 

successful demonstration would cancel the effect of a little less than a minute of 

missed opportunities.

The additive model updates each of these skill assessment scores, a^t, as participants solve 

puzzles. When choosing a lesson based on this model, we choose the lesson associated 

with the skill with the lowest score. In the event of a tie, we choose randomly among 

the lessons associated with the tied lowest scoring skills.

5.4.3.2 Bayesian M odel

A weakness of the additive skill assessment algorithm is its susceptibility to  local max

ima and minima. When individual skill assessments reach floor or ceiling, the additive 

algorithm essentially ignores the participants’ performance history. A good human tutor 

does not forget previous successes or failures in light of more recent observations.
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P=1-P(LEARNED)

P(LEARNED)
KNOWS
SKILL

P(GUESS) P(MISTAKE)

P=1-P(GUESS) P=1-P(MISTAKE)

f  DOES NOT N 
DEMONSTRATE 
v  SKILL j

DEMONSTRATES 
^ SKILL j

F ig u r e  5 .1 : T he H idden M arkov M odel used for each skill in  th e  Bayesian 

personalized tu to rin g  condition. P(LEARNED) is the  likelihood th a t  p artic 

ipan ts learned th e  skill a t a  given tim estep , P(MISTAKE) is th e  likelihood 

th a t  a  p a rtic ip an t who knows a  skill makes a  m istake and  does no t apply  

it, and P(GUESS) is th e  likelihood a  partic ipan t does no t know a  skill b u t 

guesses th e  righ t answer. These param eters were learned per partic ipan t, 

per skill. M ore details can be  found in Section 5.4.3.2.

We addressed this weakness by offering a Bayesian network approach, in the form of 

Hidden Markov Models (HMMs). We created one HMM for each skill for each partici

pant, in the form illustrated in Figure 5.1. These HMM had two hidden states: either 

the participant (1) knew the skill or (2) did not know the skill. There were two possible 

observations, either (1) participants demonstrated a skill, which is defined in the same 

way as the successfu l d e m o n s tra tio n s  are defined above, or (2) participants did not 

demonstrate a skill, defined the same way as the m issed  o p p o r tu n itie s  above.
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Because the exclusion criteria for this study included any previous experience with Nono

grams, we knew the initial distributions of the hidden states for all ten skills: we set the 

probability tha t any participant knew any of the ten skills at the beginning of the study 

to  0%. For each participant and each skill, there were only three parameters to  learn, 

P(LEARNED), P(MISTAKE), and P(GUESS) defined in Figure 5.1. These were learned 

and updated at every timestep with the well-known Baum-Welch algorithm, an overview 

of which can be found in Welch (2003).

The parameter P(GUESS) serves two purposes in this work. First, though we actively 

discouraged participants from guessing throughout our instructional materials, some par

ticipants who were stuck on a puzzle for a long time did guess. We discouraged guessing 

primarily to avoid the situation in which an incorrect guess renders the puzzle unsolvable 

until th a t move is undone. However, if a participant does guess incorrectly, the subse

quent moves the participant makes are still modeled correctly. The skill functions 5,-, 

defined above, upon which the observational states in the HMMs are based, only depend 

on the state of any one row or column at a time. A guess that incorrectly shades a box 

in any given row or column still allows subsequent moves to  be modeled by the same 

skill functions Si.

In addition to  modeling guessing, P(GUESS) also allows us to  model when a given ob

servation could be interpreted as evidence of more than one skill. In Nonograms, some 

moves a participant makes cannot be identified as a demonstration of one skill, but rather 

as one of a set of skills. In these situations, the HMMs for all the potential skills are 

given the input th a t the participant demonstrated that skill, even though it is not clear
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from the move he or she made whether a participant knows one of those skills, some 

subset of those skills, or all of those skills. In this sense, P(GUESS) is the likelihood 

tha t a participant guesses or demonstrates a related skill. W hat these two events have 

in common is tha t we are not sure whether the participant knows the skill or does not 

know the skill, though we have some evidence th a t the skill was demonstrated. This is 

why we chose HMMs to model this phenomena, and the Baum-Welch algorithm to learn 

the transition probabilities over time.

The output of these ten HMMs was calculated with the Viterbi algorithm, which finds the 

most likely sequence of states tha t explain a given sequence of observations (Forney Jr. 

1973). When the robot tutor gave a lesson using this model, it chose randomly among 

the skills for which the Viterbi algorithm predicted that the participant was in the “does 

not know skill” hidden state.

5.5 Robot

We used the same robot to  deliver these lessons as in Chapter 2. Section 2.5.1 describes 

the robot and its behavior in this context. Figure 5.2 shows the two apparatuses of the 

experiment, with the robot tu tor placed beside the full-screen Nonograms graphical user 

interface in three of the four conditions, and solely the full-screen Nonograms program 

with no robot tu to r in the fourth condition.
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( a ) Apparatus in three of the four condi- ( b ) Apparatus in one of the four conditions:

tions: two conditions in which the robot participants solved the same series of four

provided personalized lessons to partici- ‘Nonograms’ puzzles with no tutoring or as-
pants and one in which the robot provided sistance whatsoever,

non-personalized lessons.

FIGURE 5.2: A pparatuses of th e  four conditions in th is study. T hree of 

th e  four conditions involved a  robo t tu to r, as in F igure 5.2a, one did  not, 

as in F igure 5.2b.

5.6 Participants

There were 80 participants in this study, 20 per condition, all of whom were between 

18 and 42 years of age. Most participants were undergraduate and graduate students 

of Yale University. Exclusion criteria for participants were lack of English fluency, prior 

academic experience with robotics or artificial intelligence, and prior experience with 

Nonograms.
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5.6.1 P roced ure

Before participating in this study, participants read a two page instruction manual teach

ing them the rules of Nonograms and watched a two minute instructional video teaching 

them  how to use the computer interface that we designed. In these instructional mate

rials, participants were encouraged to use logical reasoning to make moves in the game, 

rather than  guessing. Afterwards, any questions about the puzzle game and experiment 

were answered by an experimenter. The text of the instructional manual can be found 

in Section 2.8.

During the experiment, participants were alone in a room with the robot, the computer, 

and a video camera positioned behind them, see Figure 5.2. Participants chose when 

they were ready to start each new puzzle. Games ended either when the participant 

solved the puzzle or when fifteen minutes had elapsed, whichever came first.

After the conclusion of the final puzzle, participants were asked to  complete a survey 

consisting of five Likert-scale questions with open-ended follow-up questions for each. 

The questions were designed to  assess whether the lessons were helpful, clear, and in

fluential, as well as the user’s perceptions of the tutor. We asked participants to rate: 

how relevant the lessons were, how much the lessons influenced their gameplay, how well 

participants understood the lessons, and how “sm art/intelligent” and “distracting/an

noying” they perceived the tu tor to be. The intention of these questions was to  reveal 

differences between tutoring conditions that could explain any performance differences 

between groups.
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Pariticipants Who Received Personalized 
Robot Tutoring Solved Puzzle 4 Faster
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p  <  0 . 0 6

No Lessons Non-Personalized Pers. Additive Pers. Bayesian

F ig u r e  5.3: P artic ipan ts  who received personalized robo t tu to rin g  solved 

th e  fourth  puzzle significantly faster, p  <  0.01, on average th a n  partic i

pan ts  in th e  tw o control groups, on average. P artic ipan ts  who received 

personalized tu to rin g  based on the  Bayesian m odel outperform ed partic i

pan ts  who received tu to rin g  based on th e  A dditive m odel w ith  borderline 

significance, p  <  0.6. (E rror bars in graph  p lo t s tan d ard  error.)

5.7 Results

This study investigates whether personalization of robot tutors can make an impact on 

student learning outcomes over the course of a single session. The task-performance 

measure we used to evaluate the impact of the tutoring is the length of time participants 

took to  solve each of the four puzzles. For the purposes of calculating means, puzzles 

tha t were not yet completed at the fifteen minute time limit were scored as having been 

completed in fifteen minutes. The rate of failure was not significantly different between
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groups for any of the four puzzles, across the four conditions, varying from 29% to 38% 

in the first puzzle to  9% to 17% in the fourth.

Participants who received personalized lessons, when taken together, solved three of 

the four puzzles significantly faster, on average, than those who received either non- 

personalized lessons or no lessons at all, taken together: i(38) <  0.03 for the second 

game, t(39) <  0.01 for the third game, and £(39) < 0.001 for the fourth. The means and 

standard deviations can be found in Table 5.1, plots can be found in Figure 5.3 above 

and Figure 5.4 below. These results indicate th a t our personalization systems produced 

significantly improved student learning outcomes over non-personalized tutoring, in just 

a single session with the robot.

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4 

No Lessons 13.6 ± 2 .2  13.0 ±  2.3 12.3 ± 2 .5  11.6 ± 2 .7

Non-Personalized Lessons 13.8 ±  1.4 12.5 ± 2 .0  11.4 ± 2 .3  10.3 ±  2.9

Personalized Lessons, Additive 12.7 ±  2.6 10.0 ±  3.5 9.4 ±  3.0 7.6 ±  3.1

Personalized Lessons, Bayesian 12.2 ±  2.3 9.8 ±  2.4 6.9 ±  3.4 5.2 ±  2.6

TABLE 5 .1 : Puzzle-solving tim es given in m eans and stan d ard  deviations, 

m easured in m inutes. In each puzzle except th e  first, partic ipan ts  in b o th  

personalized lessons groups solved th e  puzzle significantly faster th a n  p ar

tic ipan ts in b o th  th e  non-personalized lessons group and  th e  no lessons 

groups. Table 5.2 below com pares perform ance in th e  fourth  puzzle across 

conditions.
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Personalized Lessons, 
Additive

Personalized Lessons, 
Bayesian

Non-Personalized 
Lessons

Personalized group 
improved by Z  = 1.0, 

8 ith percentile.

Personalized group 
improved by Z  =  1.4, 

92nd percentile.

No Lessons Personalized group 
improved by Z  = 1.2, 

88th percentile.

Personalized group 
improved by Z  =  1.7, 

96<h percentile.

T a b l e  5.2: Using d istribu tion  d a ta  in Table 5.1 above, we present the 

relative im provem ents of partic ipan ts  in th e  personalized conditions com

pared  to  partic ipan ts  in th e  control conditions o n  t h e  f o u r th  p u z z le . 

P resented as Z-scores, corresponding to  th e  num ber of s tan d a rd  devia

tions away from th e  control condition’s m ean the  personalized cond ition’s 

m ean appears in th e  control condition’s d istribu tion . In o ther words, the  

percentile tells us where the  m ean of th e  personalized condition lands in 

th e  control condition’s d istribu tion .

Between the two personalized lessons groups, one using the Additive model, the other 

using the Bayesian model, the group th a t received personalized lessons based on the 

Bayesian model did better on the last puzzle (M  =  5.2, S D  =  2.6) than the group 

th a t received personalized lessons based on the Additive model (M  =  7.6, SD  =  3.1), 

with borderline significance t(37) < 0.05. See Figure 5.3 above. For this reason we 

recommend the Bayesian method for future groups pursuing single-session robot tutoring 

personalization.

In this study, the fourth puzzle consisted of the same gameboard as the first, disguised
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Participants in Personalized Lessons 
Groups Solved Every Puzzle Faster

1
2

I

1
2

( a )  Mean solving time per condition, per 

puzzle. Participants who received personal

ized lessons solved each puzzle faster than 

participants in the non-personalized group, 

the last three puzzles, significantly faster. 

See Table 5.1 for data.

Participants In Personalized Lessons 
Groups Improved From Puzzle #1 to #4

_ i________i i________i i________i i________i _
No Lessons Non-Personsttzeci Personalized Personalized

Lessons Lessons. Lsssons.
Additive Bayesian

( b )  The first and fourth puzzles were the 

same gameboard disguised by a 90° ro

tation, therefore measuring a participant’s 

learning on the same puzzle-solving skills at 

the beginning and end of the study.

F ig u r e  5.4: Personalization produces greater learning gains, even in one 

session w ith  a  robot tu to r: (a) P artic ipan ts  whose lessons were personal

ized solved th e  last th ree  puzzles significantly faster th a n  partic ipan ts  in 

e ither control group, (b) P artic ipan ts  receiving personalized lessons signif

icantly  im proved their sam e-puzzle solving tim e over p artic ip an ts  in either 

control group.

by a 90° rotation. Different Nonogram puzzles require slightly different subsets of Nono

grams puzzle-solving skills to complete and those skills are typically applied in differing 

orders depending on the puzzle gameboard. Therefore, the difference in completion 

times between the first and fourth puzzles in this study, in which the gameboards re

quired the exact same subset of Nonograms puzzle-solving skills in the same order, is 

a within-subjects measure of an individual participant’s improvement over the course 

of the experiment. According to  this metric, participants in both personalized lessons 

groups, when taken together, improved (M  =  5.8, S D  = 3.3) their same-puzzle solving
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I*

How relevant dW you 
find tha tutor's baso n s to bs?m i How wsil did you understand 

the tutor's lossons?
How annoying/distracting did 

you find the tutor to  bs?

( a )  Participants who re
ceived personalized lessons 

rated the lessons as signif
icantly more relevant than 

participants who received 

non-personalized lessons, 

i (33) <  0.001. This indi

cates that participants felt 

both personalization systems 
produced relevant lessons to 

their needs, as was intended.

( b )  Participants who received 

non-personalized lessons 

rated their understanding 

of the lessons highly, and 

not significantly differently 

from participants in either 

personalized lesson condi

tion, despite their gameplay 

performance indicating that 
their understanding of the 

lessons was not as high as the 

personalized groups.

(c) Participants who received 

non-personalized lessons 

did, however, rate rate the 

robot tutor as significantly 

more “annoying/distract

ing” than participants in 

either of the personalized 

groups, f(38) <  0.01. Per
haps this reflects the lack 

of relevancy of the lessons 

in the non-personalized 

group, leading to participant 
“annoyance/distraction.”

FIGURE 5 .5: S urvey  resu lts  com p arin g  n on -p erson a lized  lesson s and th e  

tw o  p erson alized  lesson s con d ition s.

time significantly more than participants in either of the control groups, taken together 

(M  =  3.1, SD  = 2.4), f(31) < 0.01. See Figure 5.4b. This is another validation of the 

effectiveness of our personalization systems.

Survey results indicate that participants in the personalized lessons groups rated the 

lessons significantly more relevant to them (M  =  4.9, SD  =  1.4) than participants in the 

non-personalized group (M  =  2.9, SD  =  1.1), t (33) <  0.001, as seen in Figure 5.5a, which 

indicates tha t participants were able to tell when lessons were targeted towards their 

individual needs. However, there was no significant difference in how participants rated
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their understanding of the lessons between the personalized groups (M  =  5.4, S D  — 1.5) 

and the non-personalized group (M  =  5.0, S D  = 1.4), see Figure 5.5b. Nor was there a 

significant difference in how participants self-assessed the degree to which their gameplay 

was affected by the lessons, between the personalized groups (M  =  4.3, S D  =  1.3) 

and the non-personalized group (M  =  4.1, SD  =  1.3). These results indicate that 

participants were able to  identify the targeting of the lessons, but not the extent to 

which the lessons they received impacted their learning.

Participants who received personalized lessons rated the robot as significantly “smarter” 

or more “intelligent” (M  =  4.7, SD  = 1.8) than  participants who received non-personalized 

lessons (M  =  3.5, S D  =  1.6), <(36) <  0.03. Those participants also rated the robot tu 

tor as significantly less “annoying/distracting” (M  =  3.8, SD  = 1.2) than  participants 

who received non-personalized lessons (M  =  4.9, SD  — 1.2), <(38) <  0.01, see Fig

ure 5.5c. These data  indicate th a t although participants were not able to  identify the 

extent to  which the personalization influenced their learning, they did ascribe more posi

tive (“sm art”) and less negative (“annoying”) social characteristics to  the robot tu to r that 

personalized its lessons more than to the robot th a t did not perform personalization.

5.8 Discussion

This study assesses whether relatively simple personalization in robot tutoring affects 

students’ learning outcomes over the course of a single session with the robot. The 

data  indicate tha t even simple personalization, experienced by participants for only one
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tutoring session over the course of an hour, can raise mean learning gains by as much as 

1.4 standard deviations compared to a non-personalized tutor, see Table 5.1 and Table 5.2 

above.

An effect size of 1.4 standard deviations, or 1.4 sigma, is more than the mean standard 

deviation effect size of 0.76 sigma reported by Intelligent Tutoring Systems (ITS’s) evalu

ations, when comparing ITS’s to  traditional classroom instruction (VanLehn 2011). This 

difference, in part, can be accounted for by the effects of the physical embodiment of the 

robot tutor. In Chapter 2 we found this effect to raise learning gains by 0.3 standard 

deviations in this Nonograms domain over the learning gains made by participants who 

received an on-screen tutor.

Another potential reason for the size of the effect is the nature of Nonograms, in which 

a participant’s success hinges on several layers of logical inference. It could have been 

tha t participants who received personalized lessons caught on to the form of a general 

Nonograms strategy more quickly than those in the control groups. An early lead in 

Nonograms puzzle-solving strategies may have allowed these participants to  progress 

faster and perhaps feel more motivated, causing them to widen the performance gap 

over time between themselves and participants who received non-personalized lessons or 

no lessons.

The self-report survey data indicate tha t participants did not report more difficulty un

derstanding the lessons presented to them in the non-personalized condition than in either 

personalized condition. All three groups rated their own understanding fairly highly: a 

mean of 5.4 across the personalized lessons groups and 5.0 in the non-personalized group,
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out of 7, t(36) =  0.32. A plot of this data is found in Figure 5.5b. It is notable that the 

non-personalized lessons group reported a relatively high understanding of the lessons 

despite performing significantly worse than the personalized groups. This may indicate 

tha t the population we worked with was reluctant to admit tha t they did not under

stand the lessons, in the context of a study. Alternatively, perhaps the participants who 

received non-personalized lessons did understand the lessons in some sense, but failed to 

see opportunities in which to  apply them.

5.9 Conclusion

In this chapter we investigate the role of relatively simple personalization algorithms 

in single-session robot tutoring. We compare participants’ puzzle solving times across 

four conditions: two in which participants received personalized lessons from a robot 

tutor, one in which participants received non-personalized lessons from the same robot 

tutor, and a condition in which participants solved the same series of puzzles as in the 

other conditions but with no robot tutor or instructional assistance whatsoever. We find 

that participants who received even relatively simple-to-achieve personalized lessons for 

just a single hour-long session significantly outperformed participants who received non- 

personalized lessons by 1.3 standard deviations on average. We present these results as 

evidence that personalization can benefit short-term robot tutoring interactions, and that 

arriving at an effective personalization algorithm may not be as difficult as previously 

thought.



Chapter 6

The Effect of Personalization in 

Longer-Term Robot Tutoring

In the previous chapter we designed systems for shorter-term personalized robot-tutoring 

interactions, those limited to a single session. In this chapter, we describe a system 

intended for longer-term personalizations, those consisting of more than one but fewer 

than ten sessions. We present our personalization system which orders curriculum based 

on an adaptive Hidden Markov Model (HMM) tha t evaluates students’s skill proficiencies 

and we present a study investigating the effectiveness of this personalization system in 

a five-session interaction with a robot tutor, taking place over the course of two weeks.

In this work, we challenged ourselves to  create an automated robot tu tor th a t could 

be used in real-world learning task, rather than in contrived laboratory learning task 

as in our previous chapter. The domain we chose was English as a Second Language

128
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(ESL) education and the population we worked with were native Spanish-speaking 4- 

to 7-year-olds. We authored an interactive adventure story in Spanish with 24 inter

changeable chapters, each offering students a chance to practice one of four English 

grammar skills. We ordered these interchangeable chapters in one of two ways based 

on the conditions in our study. Participants either received lessons: (1) ordered by our 

adaptive HMM personalization system which selects a chapter based on a skill tha t the 

individual participant needs more practice with (“personalized condition”), or (2) ordered 

randomly from among the chapters the participant had not yet seen (“non-personalized 

condition”). We found th a t participants who received personalized lessons from the robot 

tu tor outperformed participants who received non-personalized lessons on a post-test by

2.0 standard deviations on average, corresponding to  a mean learning gain in the 98th 

percentile.

6.1 Background

According to the 2010 United States Census data, twenty percent of American households 

speak a language other than English in the home (U.S. Census Bureau 2011). Children 

raised in non-native English-speaking households face a severe preparatory disadvantage 

in school relative to  their native-speaking peers (Saunders 1988). Language-based disad

vantages accumulate throughout a student’s career and worsen in later grades as reading 

comprehension becomes more critical to academic success in all subjects (Callahan 2005).
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The largest population affected by this systemic disadvantage in the United States is 

Hispanic Americans. Sixteen percent of American households speak Spanish as the 

primary language in the home (U.S. Census Bureau 2011). The number of native Spanish 

speakers in the United States has grown by 24 million between 2000 and 2010 (U.S. 

Census Bureau 2011). Hispanic Americans have the lowest rates of high school and 

college degree attainm ent of any racial-ethnic group in America. W ith less education, 

Hispanics are at a competitive disadvantage in the workforce. According to  the US 

Bureau of Labor Statistics, Hispanic American unemployment has been roughly 20 to 

50% higher than Non-Hispanic American unemployment every year since the data was 

first collected in 1974 (U.S. Bureau of Labor Statistics 2014).

Effective ‘English as a Second Language’ (ESL) education is vital to leveling the playing 

field for children raised in non-native English speaking homes. Though there are many 

successful programs supplying ESL education across the country, especially in major 

metro areas like New York and Los Angeles, millions of Hispanic students still receive 

little or poor-quality ESL education (Humes, Jones and Ramirez 2011).

We envision an in-home robot tu tor that can serve as an English-fluent interaction part

ner for non-native speakers. As a first step towards this vision, we created a robot tutor 

tha t provided personalized one-on-one ESL instruction to  Spanish-dominant first grade 

students in a bilingual elementary school.
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6.2 Related Work

Younger students, such as those who participated in our study, are still learning their 

dominant language as well as learning English. For this population there is a targeted 

research field related to ESL education called ‘English Language Learning,’ or ELL. ELL 

programs are similar to  ESL programs with the exception tha t ESL assumes fluency 

in the student’s dominant language, whereas ELL curricula are designed for students 

who are learning more than one language at a time (Nero 2005). In our discussion of 

this project, we generalize our results from an ELL population of first grade students 

to  the broader ESL community. We do this because the main measure in this work is 

correctness of translation tasks from a student’s dominant language to English, which is 

a core competency in ESL research (Auerbach 1993). Our vision for this work is that it 

will serve both the ELL and ESL populations.

In developing the algorithms necessary for a longer-term personalized automated tutoring 

interaction, we base our work on that of the automated tutoring systems developed by 

the Intelligent Tutoring Systems (ITS) community. An overview of these systems can 

be found in Chapter 1, Section 1.3. For this work, we made a curriculum-sequencing 

tu tor tha t does not provide step-by-step feedback such as the robot tutoring system we 

created earlier in Chapter 5. Instead, this tu tor sequences an individualized path through 

available curriculum to maximize the effectiveness of the lessons for each student. For 

more information about curriculum-sequencing automated tutors, see Section 1.3.1 of 

Chapter 1.
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In addition to the related ITS research, our work is also similar to a body of education 

research called ‘Computer Assisted Language Learning’ (CALL), for an interview see 

Levy (1997). CALL is a branch of education research that studies the effectiveness and 

implementation of computer-based tools tha t are intended to  assist language learners 

or teachers, including static resources like webpages and translation software (Levy and 

Stockwell 2013). A common paradigm in CALL research are systems tha t process the 

speech of the user and correct errors in pronunciation, prosody, or grammar (Eskenazi 

2009). CALL systems typically do not vary their outputs based on a model of the user, 

like our automated personalization system does for this robot tutoring intervention. We 

evaluate the effectiveness of our robot language tu tor intervention with a standard pre

test/post-test metric, a common practice in CALL and education research more broadly 

(Littleton and Light 1999).

In this study, we focus on teaching English as a Second Language to  children ages 4 to 7. 

When learning a second language, age is also very important. The age of first consistent 

exposure to  a second language is the best known predictor of future fluency (Johnson and 

Newport 1989). This finding influences our choice of target populations for this work, as 

it indicates tha t the best time to start teaching a second language is well before puberty, 

ideally under 9 or 10 years of age (Johnson and Newport 1989). We chose to  work with 

first grade students for this reason.
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6.3 Methodology

In this chapter we present the implementation details of our automated personalization 

system and an experiment in which we evaluate the system’s effectiveness in a language 

learning task with children ages 4 to  7. We authored an interactive adventure story in 

Spanish with 24 interchangeable chapters, each offering students a chance to  practice 

one of four English grammar skills. We ordered these interchangeable chapters either by: 

(1) the output of our adaptive HMM personalization system (in the personalized condi

tion), or (2) randomly from among the chapters the participant had not yet seen (in the 

non-personalized condition). We evaluate students before they participate in this story 

and afterwards with a fixed pre-test and post-test administered to  both groups. These 

pre-tests and post-tests were disguised as chapters in the story and were administered 

by the robot, but were constant for both conditions. We evaluate the impact of our 

personalization system based on the differences in pre-test/post-test measures between 

groups.

6.3 .1  A pparatus

In this experiment, each participant, ages 4 to  7, engaged in five one-on-one 20-minute 

long sessions with a small stationary robot named Keepon over the course of two weeks.
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\

Okay! Leb s do a dance bo cclcbrabe 
our hard work! Tell [bhe sidekick] bo 

do bhe dance wibh us. in English!

F ig u r e  6.1: A first grade studen t in teracts w ith  th e  robo t tu to r. The 

cap tion  here is an  English transla tion  of w hat the  robot is saying in Span

ish. T he robo t to ld  an  adventure sto ry  to  the  partic ipan ts, entirely  in 

Spanish, and  partic ipan ts  were asked to  perform  Spanish-to-English sen

tence transla tions to  progress in th e  story. P artic ipan ts  perform ed between 

30 and  40 transla tions per session, sessions lasting approxim ately tw enty 

m inutes. Each p artic ipan t did  five sessions over th e  course of two weeks.

6.3 .2  R ob ot

The robot we used for this study, Keepon, is the same one we used in the studies in 

Chapters 2, 4, and 5. Keepon is an 11-inch tall, stationary, yellow, snowman-shaped 

robot with small, round eyes, one of which contains a camera, and a small, round nose 

containing a microphone. For a photograph, see Figure 2.4. In this study, the robot faced 

the participant and bounced while speaking in a personalized ordering of pre-recorded 

Spanish audio clips. See Figure 6.1 below for the relative positioning of the robot and 

the participant.
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EXPERIMENTER PARTICIPANT

FIGURE 6 .2 : O verhead view of th e  experim ental apparatus. T he partic i

pan t, a  first grade studen t whose dom inant language is Spanish, is seated  

facing th e  robot. T he experim enter, who provides adu lt supervision and 

n a tu ra l language processing for th e  robot, is seated  beside th e  partic i

pan t. T he experim enter provided occasional encouragem ent and vocabu

lary  assistance, as well as categorizing each of th e  p a rtic ip an t’s responses 

as either: correct, incorrect, irrelevant, or silent.

6 .3 .3  P artic ip ants

There were 19 participants in our study: 10 who received personalized lessons, and 9 

who received non-personalized lessons. All of the participants were schoolchildren ages 

4 to 7, attending the first grade. The participants were exclusively Spanish-dominant 

speakers, being raised in Spanish-dominant homes.
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6.3 .4  E xp erim enter

The participant was in the constant supervision of an adult during the course of this 

study. This adult, the present author, also played a role in the experiment. The ex

perimenter and the participant sat side-by-side as seen in Figure 6.2. The experimenter 

performed three roles:

1. First and foremost, the experimenter monitored the safety and wellness of the child. 

There were no notable adverse incidents during the course of this study.

2. The second role of the experimenter was to  provide natural language processing. 

We decided not to use Automated Speech Recognition (ASR) systems to  process 

the participants’ speech because such systems have relatively high error rates with 

children and non-native speakers (Chen and Zechner 2011; Williams, Nix and Fair- 

weather 2013). Instead, the experimenter provided speech recognition information 

to the system by coding each of the participants’ responses as either: ‘correct’, 

‘incorrect’, ‘irrelevant’, or ‘silent’ using the objective rules described in Section 6.4 

below.

3. The last role of the experimenter was to  provide occasional vocabulary assistance 

to participants in the study. The experimenter could only provide help with nouns, 

and not verbs, in order to  preserve the integrity of the “make” vs. “do” distinction 

made entirely by participants.
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“ M a k e ” “ D o ”

Ml D1
To construct or build. To perform a job or activity.

• make a cake • do the dishes

•  make dinner • do your homework

•  make a bridge • do a dance

• make a tent • do chores

• make a sound •  do an assignment

• make a decision •  do a project

M2 D2
To elicit a reaction. To perform unspecified action.

• make him happy •  do something

• make her smile/laugh • do anything

• make it feel better • do nothing

• make us proud • “What should we do?”

• make him pack • “Let’s do it!”

• make sure that • “How are you doing?”

T a b l e  6 .1 :  T he English words “make” and  “do” tran s la te  to  one word in 

Spanish (“hacer”), and as a  result m any native speakers struggle to  learn 

th e  d istinction  we m ake between these words when th ey  learn English. We 

picked four such distinctions between these two English words, of which 

m any m ore exist in th e  language. Every transla tion  task  p artic ip an ts  did 

was designed to  fit in exactly  one of these categories.
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6.4 Curriculum

During the course of this experiment, the robot engaged participants in an interactive 

adventure story task, a sample of which can be found in Table 6.2. In order to  make 

progress through the story, participants were asked to translate between 30 and 40 sen

tences from Spanish to English per session. We used these translation tasks to  teach four 

English grammar skills tha t are difficult for non-native speakers.

All of the translation tasks participants did in this study were sentences that, in English, 

contain either the words “make” or the word “do.” In Spanish, both “make” and “do” 

translate to a single word, “hacer.” As a result, native Spanish speakers often struggle 

to learn the distinction English speakers make between these words. Native Spanish- 

speakers often confuse the two. For example, children might say, “I made my homework,” 

instead of “I did my homework,” or “I did a goal in soccer today,” instead of, “I made a 

goal.”

In the English language, there are as many as ten distinct categories of usage for these 

two words th a t distinguish them from one another, depending on the ESL curriculum one 

chooses. For this work, we chose just four of these categories, two for the word “make” 

and two for “do.” All of our translation tasks fit exactly into one of these four categories, 

as described in Table 6.1. We chose to teach four categories rather than teaching all ten 

so as to  ensure tha t there were enough observations per participant per category to  train 

our model in the allotted time for the study. We treat each of these four category as a 

distinct skill in the model.
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Each translation tha t the participants did was interpreted by the experimenter, whose 

role is described in Section 6.3.4 above. The experimenter categorized each of the par

ticipants’ translation tasks using the following set of objective rules. Correctness in the 

context of this study was determined entirely by the verb used in the translation. When 

participants used the correct verb (either “make” or “do”) the translation was marked 

‘correct,’ regardless of the rest of the translation. If the participant used the verb “do” 

in the place of “make” or vice versa, the translation was marked ‘incorrect.’ If neither 

verb was used in the translation, it was marked ‘irrelevant.’ If the participant did not 

respond, ‘silent’ was marked.

6.4 .1  Sessions

There were five total sessions with each participant, no more than one per day, held over 

the course of two weeks, each lasting approximately twenty minutes. The sessions were 

conducted as follows:

•  The first session was a pre-test. Its contents were identical for participants in both 

groups. There were 40 translation tasks in this session, 10 per skill.

•  The second, third, and forth sessions consisted of 30 translation tasks each. These 

middle sessions were composed of 3 interchangeable chapters each, with 10 trans

lation tasks per chapter. Each chapter targets exactly one of the four grammatical 

skills described above. The bundling of 10 translation tasks into each interchange

able chapter limited the flexibility of our personalization system but was a necessary
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24 INTERCHAN GABLE CHAPTERS, 10 TRANSLATION TASKS EACH

8E88ION1 SESSION 2 SESSION 3 SESSION 4 SE8SION 5

F i g u r e  6 .3 : Participants engaged in five sessions over the course of a 

two week period. The first session was a pre-test, the same across all 
participants, with ten translation tasks per skill. The middle three sessions 

were comprised of 3 interchangeable chapters, each focussed on one specific 

skill, and each containing 10 translation tasks. The post-test was the same 

across all conditions and contained 10 translation tasks per skill. The 

ordering of the interchangeable chapters varied based on the condition, as 

described is Section 6.4.2 below.

tradeoff to keep our target population (4-7 year olds) engaged in a multi-day learn

ing task. We authored a total of 24 interchangeable chapters for this study, 6 that 

targeted each of the 4 skills. In total, each participant saw only 9 of the 24 inter

changeable chapters. Again this limitation was necessitated by the population, in 

order to avoid fatigue. For a visual representation of the content of each session 

see Figure 6.3. The ordering and selection of the lessons was determined by the 

condition the participant was in:

— In the personalized lessons condition, the episodes were ordered based on a 

Hidden Markov Model (HMM) tha t we built for each participant and skill.
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The model for each skill consisted of three hidden states, either (1) the partici

pant does not know the skill, (2) the participant does know the skill, or (3) the 

participant has forgotten the skill. In the personalized condition, the lessons 

targeting ‘not-known’ skills were chosen first, among those th a t the partici

pant had not already seen. The parameters of the HMM were updated after 

the pre-test and then again after each interchangeable chapter. The details of 

the model can be found in Section 6.4.2 below. If no skills were ‘not-known’, 

then lessons tha t targeted ‘forgotten’ skills were chosen randomly among those 

not yet seen. Lastly, if all of the skills were ‘known’, the tu tor chose a random

episode am ong the ones the participant had not yet seen.

— In the non-personalized lessons condition, participants received a random 

episode th a t they had not yet seen, distributed uniformly over the 4 skills. 

Because participants saw 9 total chapters, they saw one skill three times and 

the others twice. This condition is meant to simulate group classroom in

struction in tha t the lessons are not in an order best suited to any particular 

student, but rather evenly sampled across all the material at the teacher’s 

discretion.

•  The fifth and last session of the study was a post-test. Like the pre-test, there were 

40 translations, ten per skill, and every participant saw the same content in their 

fifth session with the robot, regardless of their group. We compare the results of

the pre-test and post-test scores across groups in Section 6.6 below.
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Robot Tutor Prompt (Translated to English) Skill

I t ’s so beautiful here! There are so many mountains. I think th a t’s a cave __
over there! Does tha t look like a cave?

Let’s get closer and see! I’ve never seen a cave before. « h a p p y  b a r k »  I 
think it IS a cave! T h at’s so cool! Let’s go explore. We shouldn’t spend 
too much time here, though, since we have a lot to do today! Please tell 
Toby, in English, to  m ake su re  w e leave soon.

« h a p p y  b a r k »  Alright, let’s go inside! I t ’s kind of dark in here. I hope 
we don’t get lost! Maybe we should make a map. Will you ask Toby, in Ml
English, if he knows how to m ak e  a  m ap?

«C O N F U SE D  B A R K » I’m not sure tha t he knows how to make a map. Please 
tell him in English to  first m ake a  p ic tu re  o f  th e  cave.

« h a p p y  b a r k »  Okay, thank you! We should make sure the picture is big 
enough for us to see, though. Please tell him in English to m ake a  B IG  Ml
m ap .

« h a p p y  b a r k »  Great, he’s making the map! Now we won’t get lost. We 
should also make notes of what we see, so tha t I can tell my friends when I M l
get back home! Please tell Toby, in English, tha t we should m ak e n o tes .

T a b l e  6 .2 : Sample of the robot’s dialogue targeted at skill ‘M l.’ The 

robot’s dialogue was pre-scripted and pre-recorded in Spanish, the English 

translation of which is presented above. The bolded portions are the trans

lation tasks th a t participants were asked to  perform. ‘Toby’, above, refers 

to an imaginary dog character th a t only understands English commands. 

For more information about the dialogue, see Section 6.4. See Table 6.3 
below for the original Spanish dialogue.
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Robot Tutor Prompt (Original Spanish) Skill

Es muy hermoso aqui. Hay much as montanas. Creo que es la cueva alia. 
i,Esos te parece una cueva?

Hay que cercarnos mas y ver. Yo nunca he visto una cueva antes. «L A D R A  

c o n t e n t a » Creo que si es una cueva. jEso es muy padre! Hay que explorar.
Pero no deberi'amos gastar tanto tiempo aqui', como tenemos mucho que 
hacer hoy. Por favor di la Toby, en ingles, q u e  se s e g u ra  d e  q u e  nos 
vayam os p ro n to .

« l a d r a  c o n t e n t a »  Bueno, hay que ir adentro. Esta un poco oscuro 
aqui. Espero que no los perdamos. Tal vez deberi'amos hacer un mapa. ^Le 
preguntes a Toby, en ingles, si el sabe como h ace r u n  m apa?

« l a d r a  C O N F U N D lD A » Yo no estoy segura que el sabe como hacer un mapa.
Por favor, dile en ingles que primero a d o n  u n  d ib u jo  d e  la  cueva.

« l a d r a  C O N T E N T A » Bueno, gracias. Pero deberi'amos hacer el dibujo lo 
suficientemente grande para poderlo ver. Por favor, dila en ingles que hago 
u n a  m a p a  g ran d e .

« l a d r a  C O N T E N T A » Genial. El esta haciendo el mapa. Ahora no los 
perderemos. Tan bien deberiamos hacer notas de lo que miramos. Asi le 
puedo decir a mis amigos cuando regrese a casa. Por favor dile a Toby, en 
ingles, que deberiamos h ace r n o tas.

TABLE 6.3: Sample of the robot’s dialogue targeted at skill ‘M l ’, in the 

original Spanish language, as spoken by the robot. See Table 6.2 above for 
English translation.

6.4 .2  P ersonalization

There were two conditions in this study, personalized lessons and non-personalized lessons. 

We discuss the personalization condition below; for more information about the non- 

personalized condition please see Section 6.4.1 above.

M2

Ml

Ml

Ml

Ml
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The goal of the personalization in this system is to sequence the interchangeable chapters 

we wrote to  best suit the skill competencies of an individual student, by challenging him 

or her with the translation tasks that he or she needs to practice most. Here we describe 

a system tha t takes as input the series of translation task observations coded by the 

experimenter, as described in Section 6.3.4, and produces as output one of the four 

skills, by which the robot chose the next interchangeable chapter to  give participants in 

the personalized lessons condition.

For each skill and each participant, we created independent same-structured Hidden 

Markov Models (HMMs) with three hidden states: (1) the participant does not know 

tha t skill, (2) the participant does know that skill, or (3) the participant forgot tha t skill. 

To see how these states are connected, see Figure 6.4.

There were four observable states in this model: (1) a correct answer, (2) incorrect 

answer, (3) irrelevant answer, or (4) no answer. For more information about how these 

observable states were recorded by the experimenter, see Section 6.3.4.

For each skill, the model was trained on the subset of the translation tasks targeting 

th a t skill alone. Because each translation task targeted exactly one of the four available 

skills, each of the four HMMs was trained on approximately one fourth of the collected 

data  across all participants.

We fixed some parameters of the HMM in advance, and learned the rest with the Baum- 

Welch algorithm based on the collected data  (Welch 2003). In total, we fixed 4 param

eters, and learned the remaining 14. The learned parameters were first learned based
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on the pre-test data and then updated with each new chapter’s worth of data  as it was 

collected.

We fixed the initial distributions of the hidden states for all four skills, based on the 

expert estimate of an ESL educator. She estimated that:

P ( k n o w s -s k il l ) =  0 .2 ,

P ( f o r g o t - s k i l l )  =  0 .4 , and 

P ( d o e s - n o t - k n o w - s k i l l )  =  0 .4 .

We also fixed the transition probability tha t a participant gives a correct answer given 

tha t he or she is in the ‘K N O W S -S K IL L ’ state. This choice was inspired by mastery learning 

literature in education research, in which students are expected to demonstrate mastery 

of a skill before learning another (Kulik, Kulik and Bangert-Drowns 1990). In this 

model, we wanted to  ensure tha t the transition from ‘KNOWS-SKILL’ to  a ‘CORRECT’ 

answer was not learned by the Baum-Welch algorithm as a relatively low probability, 

thereby overestimating the competency of participants. Instead, we set a relatively high 

requirement for the HMM to end up in the ‘KNOWS-SKILL’ hidden state by setting 

P ( c o r r e c t | k n o w s )  =  0 .9  for all four skills.

We apply the Viterbi algorithm to pick the most likely hidden state given the series of 

observations (Forney Jr. 1973). This tells us which of the four skills each student knows, 

doesn’t  know, or has forgotten, and we use that information to  choose a personalized 

lesson for each participant as follows:
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•  If any skill is unknown, the robot chose a random lesson targeting one of those 

skills from among the lessons that the participant had not yet seen.

•  If any skill is forgotten, the robot chose a random lesson targeting one of those 

skills from among the lessons tha t the participant had not yet seen.

•  If no skills are unknown and no skills are forgotten, then all skills are known and 

we choose a random lesson targeting any skill from among the lessons th a t the 

participant had not already seen.

The aim of this personalization is to target unknown or poorly understood skills first. 

Though this challenges students, it enables them to distinguish skills from one another 

more accurately. As students learn the patterns inherent to  each skill, they start to 

improve across all skills.

Our model includes a hidden state for forgetting a skill as result of our experience running 

this experiment with a pilot group over the course of five weeks. We noted tha t partici

pants’ performance worsened between sessions, especially sessions tha t had more than a 

week-long gap between them. This internal state is likely not necessary for shorter-term 

autom ated personalization systems.

We compare how this personalization system affected student learning gains relative to 

a non-personalized control group in Section 6.6 below.
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F i g u r e  6 .4 : The Hidden Markov Model (HMM) used to  sequence cur

riculum for the personalized group. Four simultaneous copies of this model 

were trained and run for each student, one for each of the English grammar 
skills defined above. Implementation details of the HMM can be found in 

Section 6.4.2.

6.5 Procedure

Participants were divided into two experimental conditions but the sole difference be

tween groups was the ordering of the translation tasks in the second, third, and forth 

sessions. The participants were blind to the condition they experienced. All participants 

followed the same procedure in this study as outlined below.

Before the experiment began, a voluntary consent form was sent to parents of potential 

participants, all of whom were in the same first grade class in a bilingual school, with 

help from school administrators. Students whose parents consented were informed that 

they could stop their participation in the study at any time, for any reason, simply by 

walking away from the robot. Participants were supervised during the course of the
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Our Personalization System Improves Learning Gains
o

■  Non-Personalized

■  Personalized

Pre-Test Post-Test

F i g u r e  6 .5 : Pre-test and post-test results across experimental groups, in

dicating the effectiveness of our personalization system. Participants who 

received personalized lessons performed significantly better on the post

test (M =  84, SD — 8) than  participants who received non-personalized 

lessons (M  =  63, SD  =  9), p(16) <  0.03. Error bars depict standard error. 

Statistical significant determined by unpaired Student’s T-Tests.

study by the experimenter.

Participants engaged in five sessions of approximately twenty minutes in length, no more 

than once per day, over the course of two weeks. We present the results of these sessions

below.
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6.6 Results

We investigated the effects of our personalization system on a longer-term robot tutoring 

interaction. Participants performed 30-40 translation tasks per session and an experi

menter coded each translation as either: ‘correct’, ‘incorrect’, ‘irrelevant’, or ‘silent’. 

We compare the mean percentage of ‘correct’ answers between groups to  evaluate our 

personalization system.

Participants who received personalized lessons (n=10) performed significantly better on 

the post-test (M  — 84, SD  = 8) than participants who received non-personalized lessons 

(n=9) (M  =  63, S D  — 9), p( 16) <  0.03. Statistical significant determined by unpaired 

S tudent’s T-Tests. This result indicates th a t our personalization system led to  signifi

cantly increased learning gains, by a mean of 2.0 standard deviations, corresponding to 

an improvement in the 98th percentile of scores in the non-personalized group.

There was no significant difference in the pre-test scores between these two groups, with 

mean scores of (M  =  38, S D  = 11) for the non-personalized group and (M  =  36, S D  = 

13) for the personalized group. This result indicates tha t the two groups started with 

roughly the same knowledge and, as a result of the personalization system, the group 

tha t received personalized lessons learned significantly more over the course of the study 

than the group th a t received non-personalized lessons.

Another result of our personalization system is the differences in correctness scores be

tween groups during the second session, which was either the first personalized lessons 

session for the personalized group, or the first non-personalized lessons session for the
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F i g u r e  6 .6 : Distribution of answers given by participants in the person

alized lessons condition across all five sessions with the robot. Between the 

pre-test and post-test, we see a momentary drop in correctness scores th a t 

then seems to  increase exponentially until the post-test. This result val

idates our main m anipulation, in which we were attem pting to  challenge 

students to  the hardest problems first. The lower initial scores, rising 

sharply over time, indicate th a t our personalization system correctly iden

tified which skills each participant needed more practice with and th a t the 

personalized lessons each participant received caused a sharp increase in 

learning gains over time.

non-personalized group. These data are plotted in Figure 6.6 and Figure 6.7. The mean

percentage of correct answers was significantly lower in the personalized lessons group,
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Non-Personalized Lessons Lead to Steady But Lesser Gains
o

I
B  silent 

B  irrelevant 

B  incorrect 

f l  correct

Pre-Test Non-Personalized Lessons Post-Test 
Session 1 Sessions 2, 3, and 4 Session 5

F i g u r e  6.7: D istribu tion  of answers given by partic ipan ts  in th e  non- 

personalized lessons condition across all five sessions w ith  th e  robot. Be

tween th e  p re-test and  post-test, we see a steady  increase in correct re

sponses, and  corresponding decrease in  th e  incorrect, irrelevant, and  silent 

responses. This result is consistent w ith  th e  expectation  of a  typical class

room  learning experience, in which we expect studen ts  to  perform  incre

m entally  b e tte r  th e  m ore m ateria l th ey  are exposed to . Some studen ts  

m ay be bored while o thers m ay be failing, b u t th e  m ean continues to  rise.

(M  =  28, SD  =  8), than in the non-personalized group, M (5 0 ,S D  = 10), p(14) <  0.01. 

This result indicates that participants who received personalized lessons found the lessons 

more challenging than those who received non-personalized lessons. We can conclude
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from this that our personalization system correctly identifies the skills in which each 

participant lacks competency, and can be used successfully to  sequence curriculum in 

order to  challenge students.

6.7 Discussion

The most significant result in this study is the extent to which personalization im

pacted learning gains. However, even participants who received non-personalized lessons 

significantly improved their knowledge during the course of this study. Participants 

receiving non-personalized lessons improved their scores by an average of 25 points 

(M  =  25%, SD  =  14%) between pre-test and post-test. This is evidence that sim

ply the act of repeated practice, with a robot, is enough to  stimulate significant learning 

gains in an ESL domain. When personalization is added to a robot language tutor, which 

would be useful on its own, the gains are even higher.

In the data  we collected, we can see a difference in the patterns of the correctness 

data  between conditions over the course of the five sessions. In Figure 6.6, where the 

personalized participants response distributions are plotted, there is an exponential-like 

growth in the ‘correct’ answers. The personalized lessons caused participants to  struggle 

with harder problems in the second session with the robot and thus made the rest of their 

time significantly more effective. Though they faced material that was more personally 

challenging, and thus failed more often early in the study, their post-test scores were very 

high. Whereas, in Figure 6.7, which shows the corresponding data for the participants



Chapter 6. The Effect of Personalization in Longer-Term Robot Tutoring 153

who received non-personalized lessons, we see a growth pattern tha t is close to linear 

rather than exponential. This may reflect a classroom style educational experience, in 

which curriculum is sequenced by a teacher to  suit the majority of the class rather than 

any individual, and as a result, produces steady learning gains that are not as quick as 

with a personal tutor. The patterns in these data  clearly favor the personalized model, 

but only if the initial challenge presented by personalization is not overwhelming to the 

point of frustration on the part of students. So long as students stay with the tutoring, 

they will achieve much better end results.

Another interesting outcome of this study is the relative scarcity of ‘incorrect’ answers 

among the data in either group. The mean overall occurrence of ‘incorrect’ answers across 

both groups and all sessions was only 7% (SD  = 3%). For a visual representation of the 

distribution of these answers per session and group, see Figure 6.6 and Figure 6.7. As 

a reminder, ‘incorrect’ answers are those where a participant used “make” in a sentence 

that was intended to  be translated as “do” or vice versa. The rarity of this phenomena 

in our study is not necessarily representative of its frequency in the participants’ natural 

conversations, where less pressure and structure is applied to their English language 

speech. Mistakes are likely more common when there is no study being run. Whereas, 

in the context of this study, it is likely that the relative rarity of incorrectness reflects 

a self-awareness on the part of the participants of their own lack of understanding of 

this grammatical distinction in English. Participants commonly avoided making the 

distinction between “make” and “do” by omitting the verb in their sentences or changing 

the meaning of the sentence slightly to  avoid having to  make the distinction altogether.
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These instances are what make up the ‘irrelevant’ data in the above plots. The relative 

abundance of ‘irrelevant’ and even ‘silent’ responses compared to  ‘incorrect’ also seems to 

corroborate the claim tha t participants avoided making the distinction when they knew 

they did not know the skills well enough. Toward the end of the study, this behavior 

was reduced, likely because participants had more knowledge of the skills.

The relatively large increase in skill competency, across both groups, as measured by 

the post-test, raises the question of whether these skills can be transferred to  students’ 

daily speech and ESL class performance. Though this is not the research question we 

ask in this work, as we are focused on creating effective personalization systems for robot 

tutors, it is a question one should ask of any education intervention in the long term. Do 

robot tutoring interventions like the one we made produce learning gains tha t transfer 

into daily life? All of the participants in this study were students in the same first grade 

class and their teacher commented on an improvement in the days after our work without 

the authors’ prompting. It was our experience that, generally, students were enthusiastic 

about interacting with the robot, even despite its limited capabilities at present, and 

that, likely, the skills improved in the study did transfer, at least to some small extent, 

to the students’ lives. As such systems become more robust, researchers may want to 

perform followup work to  see what the long-term impacts are of such interventions.
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6.8 Conclusion

In this work, we describe a personalization system for longer-term robot tutoring and 

we test our system with English as a Second Langauge (ESL) curriculum targeted to

wards Spanish-dominant first grade students. In this study, participants were divided 

into one of two conditions: they either received personalized lessons as decided by our 

personalization system, or they received non-personalized lessons chosen at random but 

evenly distributed among the ESL skills we targeted. We found tha t the participants 

who received personalized lessons significantly outperformed participants who received 

non-personalized lessons by a factor of 33%. We also found evidence tha t our personal

ization system correctly identifies a students weakest skills and can be used to  sequence 

curriculum to  maximize a robot tu to r’s effectiveness.



Chapter 7

Conclusion

This dissertation makes three contributions to  the study of personalization in robot 

tutoring: (1) we provide evidence for improved student learning gains associated with the 

physical presence of a robot tutor, (2) we deliver experimentally-derived design guidelines 

for future work in robot tutoring, and (3) we provide novel robot tutoring personalization 

systems and demonstrate that these systems improve student learning outcomes over 

non-personalized systems by 1.2 to 2.0 standard deviations, corresponding to gains in 

the 88th to 98th percentile.

We summarize the key details of our contributions below and discuss direction for our 

future work.

156
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7.1 Embodiment affects learning gains

In Chapter 2 we investigated to what extent the physical presence of a robot tu tor can 

affect student learning outcomes. We conducted an experiment with three conditions, in 

which the instructional content was the same across all three conditions but the content 

was delivered by either: (1) a physically-embodied robot tutor, (2) an on-screen character 

tutor, based on video footage of the robot in the first condition, or (3) a voice-only tutor 

with no physical or virtual embodiment, which used the same voice as in the previous two 

conditions. We measured how long participants took to complete four logic puzzles called 

‘Nonograms.’ The fourth Nonogram puzzle and the first Nonogram puzzle consisted of 

the same gameboard, disguised by a 90° rotation, thereby allowing us to track each 

individual participant’s puzzle-solving skills from the first time they need to  applied the 

skills necessary to  solve that puzzle to the last time they needed to  apply exactly those 

same skills to solve the final puzzle.

We found th a t participants who received lessons from a physically-embodied robot tutor 

significantly outperformed participants who received the same lessons from an on-screen 

video representation of that robot, as well as significantly outperforming the participants 

who received the same lessons from a voice-only tutor. Participants who received tutoring 

from the physical robot improved their same-puzzle solving time significantly more than 

participants in the other two groups. Our data shows tha t the physical presence of a robot 

tu tor can lead to learning gains of 0.3 standard deviations, corresponding to  gains in the 

62nd percentile. The survey data, however, did not conclusively reveal the underlying 

mechanism for these learning gains. The data did indicate tha t participants were less
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“annoyed/distracted” by the physically-embodied tutor than the other tutors. Perhaps 

then the underlying reason for their learning gains was an increase in attention and 

engagement with the tutor. Our work is the first to investigate the effect of the physical 

presence of a robot tutor and, as such, more work is needed to assess the underlying 

mechanisms of the effect we found.

7.2 Experimentally-driven design guidelines point to the 

importance of affect in robot tutoring interactions

In Chapter 3 and 4 we used robots as students to  investigate how human tutors perform 

personalization. We use the results from these studies to provide experimentally-derived 

design guidelines for future work in automated personalization systems.

In the first of these studies, described in Chapter 3, we investigated how human tutors 

personalize their instruction when they teach robot students of differing abilities. Each 

participant in this study tutored two robot students, first teaching one robot student 

then teaching the other robot student. One of the robot students was significantly more 

successful in the learning tasks than the other. Participants were led to  believe that 

the robots were learning based on the verbal instruction participants were encouraged to 

give, however, the actions of each of the robots was planned ahead of time and constant 

across all participants. This manipulation allowed us to  compare how human tutors 

taught these two kinds of robot students differently. We measured the quantity, timing, 

and affective quality of the participants vocalizations and compared how participants
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personalized their instruction between the more successful robot student and the less 

successful robot student.

Our results indicate th a t human tutors trea t students of differing abilities vastly differ

ently. The most significant differences were that: (1) participants talked progressively 

less to  the more successful student during the course of this study, likely due to  an in

ference that the more successful student needed less scaffolded support, (2) participants 

used more strongly affective speech towards the less successful student, most of which 

was rated as positive, such as encouragement and motivational vocalizations, and (3) 

participants provided more guidance to the less successful robot student in the final trial 

than they did on the same trial for the more successful student, indicating that they 

expected the less successful student to fail more often than the more successful student. 

Our results indicate th a t the quantity and affective quality of a tu to r’s speech is heav

ily personalized based on an individual student’s ability level. Few automated tutoring 

systems vary the emotional content or the amount of tutoring offered to  students to the 

same degree as we found human tutors do.

In our second study employing robots as students, described in Chapter 4, we investigated 

to  what extent human tutors personalize their teaching to robot students tha t behave 

identically in all learning tasks but have differing personalities. Participants in this study 

taught a robot student, and each time the student completed a task, it would respond 

with either: (1) emotionally appropriate responses, (2) often emotionally-inappropriate 

responses, or (3) apathetic responses. In this study, as in the previous, we led participants 

to believe tha t the robot was learning from the verbal instructions and, in this case,
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physical demonstrations that we encouraged participants to  give the robot. In this 

study, participants were allowed to provide as many demonstrations as they wished to 

the robot students. We measured how many demonstrations each group elected to do 

and we also measured the accuracy of each demonstration.

We found that, even when students perform identically across all learning tasks, hu

man tutors still personalize their instruction based on a  student’s emotional responses. 

Our data show tha t participants who taught the robot student who gave emotionally- 

appropriate responses performed significantly more demonstrations and performed signif

icantly more accurate demonstrations on average than participants who taught the apa

thetic or participants who taught the often emotionally-inappropriate robot students. Be

tween participants who taught the apathetic robot student and participants who taught 

the often emotionally-inappropriate robot student there were no significant differences in 

their behavior or survey ratings of the robot, indicating that students who seem apathetic 

produce the same disengagement in human tutors as students who actively misbehave. 

We also found tha t human tutors perceived the robot student who gave emotionally- 

appropriate responses as significantly smarter than participants perceived the other two 

students to  be, despite the fact tha t the behavior of the robot students was identical 

across all three conditions. From these results we propose two guidelines for future work 

in personalization of automated tutors: to  be more human-like, (1) automated tutors 

should respond differently to students who produce differing patterns of emotional re

sponses and (2) automated tutors should detect when student engagement is so low as 

to affect the perception of their performance on learning tasks and intervene by offering
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a break or a reward instead of continuing to tu tor to students who are disengaged. Some 

automated tutoring systems do model students’ affective states but few systems produce 

the same degree of personalization tha t we found human tutors do.

7.3 Personalization systems for robot tutoring dramatically 

increase learning gains

In our final two chapters, we contribute novel automated personalization systems for 

robot tutors: two systems for shorter-term robot tutoring interactions and one system 

for longer-term interactions.

As the first research group to investigate the role of personalization in robot tutoring, 

we were interested in establishing a minimum threshold for the effects of personalization 

on student outcomes. In Chapter 5 we investigate to what extent the personalization 

of a robot tu tor can affect student learning gains over the course just a single tutoring 

session. In this work we designed an experiment with four conditions: (1) a condition 

in which participants received personalized lessons from a robot tu tor based on our first 

personalization system, a simple additive model of the participant’s skills, (2) a condition 

in which participants received personalized lessons from a robot tu tor based on our second 

personalization system, a slightly more sophisticated Bayesian model, (3) a condition in 

which participants received non-personalized lessons from the same robot tu to r as in the 

first two conditions, and (4) a condition in which participants were asked to  perform the
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same learning tasks as in the previous three conditions but with no lessons or tutoring 

whatsoever.

We find tha t personalization has a significant impact on student learning outcomes in 

robot tutoring, even in the course of a single session with the robot tutor. Our re

sults show tha t the additive model produced learning gains of 1.0 standard deviations, 

corresponding to gains in the 85th percentile, and that the Bayesian model produced 

significantly higher learning gains of 1.4 standard deviations, corresponding to  gains in 

the 92nd percentile. Participants in both of these groups performed significantly better 

than students in either of the two control groups, those th a t received non-personalized 

lessons and the ones tha t received no lessons. We also found tha t participants rated 

both personalized tutors as significantly more “smart” and significantly less “annoying” 

than the non-personalized condition, reaffirming our findings that even in the course of a 

single session with a robot tutor, personalization can significantly impact the perception 

of the interaction by students and the learning gains those students ultimately make.

In our final chapter, Chapter 6, we created an automated personalization system intended 

for longer-term interactions and tested its effectiveness in a two-week-long five-session 

interaction with children. Our system uses a Hidden Markov Model (HMM) with three 

hidden states and four observation states, in which fourteen of the transition probabilities 

were learned on-line during the course of the interaction. To investigate the effectiveness 

of this system we designed an experiment with two conditions: either (1) participants 

received personalized lessons from a robot tu tor based on the HMM or (2) participants 

received non-personalized lessons from the same robot tutor. We measured the number of
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questions participants answered correctly in a fixed pre-test and post-test, where keeping 

the pre-test and post-test constant between groups allowing us to compare performance 

between as well as within group.

We found th a t participants who received personalized tutoring based on our model sig

nificantly outperformed students who received non-personalized tutoring by an average 

of 2.0 standard deviations, corresponding to  gains in the 98th percentile. This result 

confirms the effectiveness of our longer-term personalization system. We also found that 

participants in both groups learned a significant amount of the content over the course of 

the study: students who received non-personalized tutoring achieving a mean post-test 

score roughly double their pre-test score, whereas participants who received personal

ized tutoring nearly tripled their pre-test scores. The participants who received non- 

personalized lessons made steady but slow gains, whereas the participants who received 

personalized lessons were more challenged and made more drastic gains. We conclude 

that our personalization system correctly identified the skills with which individual stu

dents needed the most practice and challenged students with personalized lessons that 

resulted in significantly better student outcomes over a similar non-personalized system.

7.4 Future Work

In summation, this dissertation attem pts to lay some of the groundwork necessary to 

produce personalized robot tutors that serve as an at-home interaction partner to keep 

students engaged and on track in their homework. We know from our work that the
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physical presence of robots give them a unique ability to keep students engaged, and 

so we have shown tha t such homework helper robots have the potential to be more 

successful than on-screen tutors. We know from our work that, in developing these 

tutors, its important to note the affective communication, both on the tu to r’s side and 

the student’s. Last, we know that the algorithms we developed produce significantly 

improved learning gains and can act as a starting point for future work. The next 

steps towards our goal are to  attem pt longer-term studies and the develop appropriate 

machine learning algorithms th a t can model a student’s knowledge state during weeks- 

long, months-long, or years-long tutoring.
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