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Abstract. We present an implemented robotic system that learns elements of its 
semantic and episodic memory through language interaction with people. This 
human-like learning can happen because the robot can extract, represent and rea-
son over the meaning of the user’s natural language utterances. The application 
domain is collaborative assembly of flatpack furniture. This work facilitates a bi-
directional grounding of implicit robotic skills in explicit ontological and epi-
sodic knowledge, and of ontological symbols in the real-world actions by the 
robot. In so doing, this work provides an example of successful integration of 
robotic and cognitive architectures. 
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Setting the Stage 

The ability of today’s well-known artificial intelligent agents (Siri, Alexa, IBM’s Wat-
son, etc.)  to react to vocal and written language communication relies ultimately on a 
variety of sophisticated methods of manipulating textual strings that are largely seman-
tically uninterpreted (though a modicum of linguistic knowledge is used in their oper-
ation [39]). This methodology offers a solid breadth of coverage at a societally accepta-
ble level of quality for select application areas. Still, as an approach to modeling human-
level capabilities, this methodology has well-known limitations that are due to the 
dearth of knowledge resources and processing engines needed for extracting and repre-
senting the various kinds of meaning conveyed through natural language (NL) texts. 
To give just one example, knowledge-lean techniques find it difficult to resolve refer-
ence, as highlighted by the Winograd schema challenge competitions [11]. This paper 
presents a proof-of-concept system for teaching a robot in a human-like manner, relying 
on a combination of its NL understanding and reasoning skills. As a side effect, such a 
system demonstrates a methodology for overcoming the abovementioned knowledge 
acquisition bottleneck.  

Within the field of cognitive systems, several recent projects have been de-
voted to aspects of language understanding [1, 6, 7, 9, 12, 22, 25, 35, 37, 38], a response 
to the fact that the knowledge-lean paradigm currently prevalent in NLP does not ad-
dress the needs of sophisticated agent systems. Two characteristics set out system apart 
from the others. First, it simultaneously addresses the challenges of a) learning-oriented 
language-based human-robotic interaction, b) symbol grounding, c) linguistic meaning 
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extraction, and d) the enhancement and management of the episodic, semantic and pro-
cedural memory of a robot/agent. Second, the language processing component of the 
system and its associated knowledge resources address a broader set of meaning-related 
language phenomena, described at a finer grain-size of analysis.   
 To implement language-based learning in a social robotics environment, we 
must address the co-dependence among three capabilities: language understanding, 
learning, and task-oriented functioning. Language understanding requires knowledge, 
while the learning achieved through language understanding automatically adds to that 
knowledge. More knowledge means better language understanding, resulting in an in-
creasingly effective, human-like process of lifelong learning.  
 To support a robot’s interpretation of the results of its perceptual inputs as well 
as its decision-making and action, we must model the “minds” of the communicating 
agents: the types of objects and events in their world; the instances thereof mentioned 
in current and past communications; the agents’ knowledge about their tasks and re-
sponsibilities; their beliefs about other agents; as well as their inventories of desires, 
goals, decision biases, etc. [12, 20, 22, 30]. Hence the need for modeling agent memory. 
Most cognitive architectures distinguish three kinds of memory: semantic – roughly, 
memory of known types of entities in the world or domain; episodic – remembered 
instances of entities; and procedural –  roughly, uninterpreted skill-related routines.  

Learning How to Build a Chair 

The system we describe is a social robot collaborating with a human user. The experi-
mental domain is furniture assembly (e.g., [10]), widely accepted as useful for demon-
strating human-robot collaboration on a joint activity. Roncone et al. [34] report on a 
Baxter robot supplied with high-level specifications, represented in the HTN formalism 
[5], of basic actions implementing chair-building tasks. Using a keyboard command or 
pressing a button, the user could trigger the execution of basic actions by triggering the 
operation of low-level task planners that the robot could directly execute. The robot 
could not reason about its actions, which were stored in its procedural memory as un-
interpreted skills. The system described here integrates the robotic architecture of [34] 
with a cognitive architecture [16]. The integrated system’s language understanding and 
reasoning capabilities make it possible for the robot to a) learn the semantics of its 
hitherto uninterpreted basic actions; b) learn  the semantics of operations performed by 
the robot’s human collaborator and conveyed to the robot in natural language; c) learn, 
name and reason about meaningful groupings and sequences of the actions in a) and b) 
above and organize them hierarchically; and d) integrate the results of learning with 
knowledge stored in its semantic and episodic memory and establish connections be-
tween these memory modules and its procedural memory.  
 The core prerequisite for human-like learning is the ability to automatically 
extract, represent and use the meaning of natural language texts – utterances, dialog 
turns, etc. This task is notoriously difficult: to approach human-level capabilities, intel-
ligent agents must account for both propositional and discourse meaning; interpret both 
literal and non-literal (e.g., metaphorical or metonymical) meaning; offer a solution for 
reference resolution as well as implicature; and, particularly in informal genres, deal 
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with stops and starts, spurious repetitions, production errors, noisy communication 
channels and liberal (if unacknowledged) use of the least effort principle (e.g., [33]) by 
speakers and hearers. The language understanding module of our system, OntoSem 
[22], demonstrates progress on all of the above issues.  

 As its knowledge resources, OntoSem uses an ontology (world model) of 
some 9,000 concepts with on average of 16 properties each; a semantic lexicon for 
English covering about 25,000 lexical senses; and a frame-oriented formalism suitable 
for representing the semantics of robotic actions, natural language utterances and results 
of the robot’s processing of other perceptual modalities (e.g., interoception, see [16]). 
The ontology constitutes the agent’s semantic memory. It also maintains episodic 
memory, in the form of remembered instances of ontological concepts that it retained 
over its lifetime of processing perceptual input and carrying out reasoning.  
 In addition to the above static knowledge resources, OntoSem includes a va-
riety of linguistic microtheories and associated processing algorithms covering phe-
nomena such as lexical disambiguation and semantic dependency determination [13, 
17]; multiword expressions [21]; sentence fragments [19]; reference and ellipsis [18,  
40]; unexpected input [23]; mental model ascription [14]; speaker bias detection [20];  
and processing non-literal language [31].  

 The Process. At the beginning of the 
learning process, the robot can a) visually recog-
nize parts of the future chair (the back, the seat, 
two types of dowels, and the tool (screwdriver) to 
be used in chair assembly and b) perform the fol-
lowing preprogrammed basic actions: 
GET(object) (e.g. a bracket or a screwdriver) from 
storage area to workspace; HOLD(object) to facil-
itate the human’s actions and RELEASE(object) 
to the work surface.1 While these actions are not 
primitive in the robot’s procedural memory, they 
are conceptualized (and will be remembered in the 
semantic memory) as primitive event, with no 
constituent events listed in their description, as 
there is no need for the robot to reason about parts 
of these actions.  
 Input sequences for learning basic rou-
tines consist of the following types of elements: 1) 
commands to perform basic actions (to be exe-
cuted by the robot’s motor control module) and 2) 
natural language utterances by the user. The robot 
learns by reasoning on the basis of the meaning 

representations (MRs) of these utterances, generated by OntoSem. An example MR is 
presented in Fig.1. 

                                                
1 The robot also knows to CLEAR the workspace, but this is not used when assembling furniture. 

SPEECH-ACT-1 
    type            command 
   scope              CHANGE-LOCATION-1 
   producer     *speaker* 
   consumer ROBOT-0   
   time                time-0 ; time of speech 
CHANGE-LOCATION-1 
   agent                                   ROBOT-0 
   theme                      SCREWDRIVER-1 
   effect                      BESIDE  
                                         (AGENT.LOCATION  
                                            THEME.LOCATION) 
    time                                    > time-0 
    token                                        fetch 
    from-sense                         move-v2 
HUMAN-1 
    agent-of         CHANGE-LOCATION-1 
    token                                          you 
    from-sense                            you-n1 
SCREWDRIVER-1 
    theme-of        CHANGE-LOCATION-1 
    token                             screwdriver 
    from-sense               screwdriver-n1 

Fig. 1. Meaning representation for 
the utterance Now you will fetch a 
screwdriver (simplified).  
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In our task, the user teaches the robot three types of things: a) concept grounding: the 
connection between a basic action the robot knows how to perform and this action’s 
mental representation, constructed on the basis of relevant MRs and the robot’s stored 
knowledge; b) how sequences of basic actions can be combined to form representations 
of complex actions describing the robot’s work processes; and c) how these sequences 
(and their subsequences) can be encoded as concepts in the robot’s world model. Three 
different algorithms (modules) implement these three kinds of learning (see Fig. 2.). 
The algorithms are not applied in the order listed but rather are called whenever the 
input string licenses or requires them being triggered.  
 

 

  
At the beginning of the learning process, our robot channels Monsieur Jourdain from 
Molière’s Le Bourgeois Gentilhomme who was amazed to learn that all his life he was 
able to talk prose but didn’t know that he did so. Our robot can perform a number of 
basic actions but at the outset of the learning session does not know that it is performing 
these actions. As an illustration of concept grounding, consider an input subsequence 
consisting of the utterance of Fig.1 followed by a command for the robot to execute the 
basic action GET(screwdriver). OntoSem will generate the MR in Fig.1. When the ro-
bot executes GET(screwdriver), the physical-conceptual grounding learning module 
(LM) will link this procedure call with the representation of CHANGE-LOCATION-1 in 
the MR, thus linking the robotic and the cognitive architectures. This grounding is im-
plemented as part of the concept/property LM of the robot (see Fig. 2) by adding the 
property PM-LINK (‘pm’ stands for “procedural memory”) to CHANGE-LOCATION-1, 
with the filler GET(screwdriver). The immediate purpose of this linking of the robotic 
and the cognitive architectures is to make the robot capable in its subsequent function-
ing to a) trigger basic actions autonomously on the basis of language input alone, with-
out having the user issue the corresponding command and b) learn complex event se-
quences by just being told, without actually performing the actions comprising the com-
plex event. 
  In parallel with grounding basic actions, the robot learns the legal sequences 
of actions that successfully complete the task at hand. This kind of learning is facilitated 
by the robot’s language processing capability in that it can learn by understanding the 
user’s utterances in their context. The robot organizes action sequences hierarchically 

UVA1
UVA-RPA1, 
UVA-2 
UVA-UPA1, 
UVA-3 
…

An input sequence 
of text UVAs, a subset 
of which synchronized 
with RPAs and UPAs Robot’s NL 

understanding
module MR(UVA1) 

MR(UVA-RPA1) 
MR(UVA2) 
MR(UVA-UPA1)
…

Physical-
Conceptual 
Grounding 

Module

Learning Modules

Process
Network
Learning 
Module

 Concept /
Property
Learning 
Module

Memory 
Management 

Module

Meaning representations 
(MRs) of UVAs, UVAs-UPAs 
and RPAs added to the 
robot’s STM Learned 

Process 
Network 

(HTN)
+

Newly
Learned /
Updated

Event and
Object

Concepts 

Robot’s
motor control 

module

Episodic
 Memory
(explicit) 

Procedural
 Memory
(implicit) 

Semantic
 Memory
(explicit) 

Fig. 2. The core learning process. Input is a sequence of user verbal actions (UVAs) which explain 
user physical actions (UPAs) and issue commands to the robot, thus verbalizing robot’s physical 
actions (RPAs), which facilitates grounding the former in the latter. UVAs are interpreted into 
uniform meaning representation and provide input to grounding, process network and con-
cept/property learning modules (LMs). The memory management module (MMM) incorporates 
the results of learning into the episodic and semantic memories of the robot and mutually grounds 
RPAs in the robot's procedural memory and corresponding concepts in its semantic memory.    
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and makes sure that any non-terminal nodes in the resulting process network represent 
meaningful complex actions. If the robot does not have specifications for these complex 
actions in its stored knowledge, it learns new concepts for them, using the MRs obtained 
by processing the relevant user utterances.  
  Team tasks such as our chair assembly task typically involve joint actions by 
team members as well as individual actions by each of them. We treat joint tasks as 
complex tasks and require the system to decompose them into subtasks carried out by 
each of the team members. The individual tasks in our system include the robot’s basic 
actions (labeled Robot Physical actions, RPAs) as well as actions performed by its user 
(User Physical Actions, UPAs), provided the latter are described by the user through 
an accompanying User Verbal Action, UVA. The RPAs and UPAs appear as terminal 
nodes in the process network being learned.2 The robot’s activity that includes all the 
kinds of learning it does as well as updating its memory structures comes under the 
rubric of Robot’s Mental Action, RMS. Due to space constraints we cannot illustrate a 
complete process of assembling a chair (even the shortest version of the process num-
bers over 150 steps). So, we will present a small subset of this process – assembling the  

 third of the four legs of the chair 
– accompanied by associated ro-
botic learning, as illustrated in 
Fig. 3. All UVAs are first ana-
lyzed and their meanings are rep-
resented as MRs. UVA1 signals 
the beginning of a subsequence 
and, together with UVA7, marks 
the boundaries of the complex ac-
tion. All the RPAs and the UPA 
occurring within this span, in the 
order of their occurrence, will 
form the set of the terminal nodes 
in the subset of the overall process 
network, becoming children of 
the non-terminal designating the 
complex action of building the 
right back leg. Once this (sub)hi-
erarchy is constructed, the non-
terminal node at its root must be 
named. As the robot assembles 
the back leg of this type of chair 
for the first time, its process net-

work LM learns the composition of this complex action (RMA1) and labels the parent 
node of this small subhierarchy with the name of the concept, ASSEMBLE-RIGHT-BACK-
LEG, newly learned by the robot’s concept/property LM. The latter module also learns 

                                                
2 This effectively establishes a particular grain size of description. Should the application require 

it, the actions that we consider to be basic at this time can be further decomposed. 

UVA1 We will now build the right back leg 
UVA2 Get another foot bracket 
RPA1 GET(bracket-foot) 
RPA2 RELEASE(bracket-foot) 
UVA3 Get the right back bracket  
RPA3 GET(bracket-back-right) 
RPA4 RELEASE(bracket-back-right) 
UVA4 Get and hold another dowel 
RPA5 GET(dowel) 
RPA6 HOLD(dowel) 

UVA5 I am mounting the third set of brackets  
on a dowel  

UPA1 The user affixes the foot and the right  
back brackets to the dowel 

UVA6 Finished. Release the dowel 
RPA7 RELEASE(dowel) 
UVA7 OK, done assembling right back leg 

RMA1 Learns action subsequence 
ASSEMBLE-RIGHT-BACK-LEG 

RMA2 

learns the object RIGHT-BACK-LEG 
with BRACKET-FOOT, BRACKET-BACK-RIGHT  
and DOWEL as fillers of HAS-OBJECT-AS-
PART slot of RIGHT-BACK-LEG 

RMA3 Adds RIGHT-BACK-LEG as a filler of 
HAS-OBJECT-AS-PART of CHAIR 

Fig. 2. Assembling the right back leg of the chair.  
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the new object-type concept RIGHT-BACK-LEG, whose existence is the effect of the 
above action (RMA2). It also updates the concept of CHAIR by adding RIGHT-BACK-LEG 
as a filler of that concept’s HAS-OBJECT-AS-PART property (RMA3). For a detailed de-
scription of the algorithms for process network construction and naming the newly 
learned concepts, see [32]. The newly learned concepts are illustrated in Fig. 4. Note 
that the results of the operation of the process network LM are recorded in the HAS-
EVENT-AS-PART property of a result of the operation of the concept LM. At this stage 
in the process, the fillers of some of the properties in the concepts are tentative and are 
expected to be modified/tightened at the memory management stage.  
 
ASSEMBLE-RIGHT-BACK-LEG 
 IS-A   PHYSICAL-EVENT 
 AGENT   HUMAN, ROBOT 
 THEME   RIGHT-BACK-LEG 
 INSTRUMENT  SCREWDRIVER 
 HAS-EVENT-AS-PART GET(ROBOT, BRACKET-FOOT)  
    RELEASE(ROBOT, BRACKET-FOOT)  
    GET(ROBOT, BRACKET-BACK-RIGHT)  
    RELEASE(ROBOT, BRACKET-BACK-RIGHT) 
    GET(ROBOT, DOWEL) 
    HOLD(ROBOT, DOWEL) 
    MOUNT(USER, {BRACKET-FOOT, BRACKET-BACK-RIGHT}, DOWEL) 
    PART-OF-EVENT  ASSEMBLE-CHAIR 
    EFFECT   RIGHT-BACK-LEG ;default effects are events; if filler of effect is an 
               ;object, this means the effect is its existence 
 
RIGHT-BACK-LEG 
 IS-A   CHAIR-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT, BRACKET-BACK-RIGHT, DOWEL 
 PART-OF-OBJECT  CHAIR 

Fig. 4. Concepts learned as a result of processing the sequence of UVAs in Fig. 3. 

Memory management. Knowledge learned by the robot during each session with a 
human trainer (such as the sequence in Fig. 3) must be remembered so they can be used 
in subsequent functioning. Mutual grounding of basic actions and corresponding onto-
logical events is recorded both in the robot’s procedural memory (by augmenting the 
procedures implementing the robot’s basic motor actions with links to their correspond-
ing concepts in semantic memory) and in its semantic memory (by adding pm-links, 
see above). Newly learned process sequences and objects (such as ASSEMBLE-RIGHT-
BACK-LEG and RIGHT-BACK-LEG of Fig. 4) must be incorporated in the robot’s long-
term semantic and episodic memories. Due to space constraints, in what follows we 
give an informal description of the process. A more comprehensive description describ-
ing the relevant algorithms in full detail will be published separately.  
  For each newly learned concept, the memory management module (MMM) 
first determines whether this concept should be a) added to the robot’s semantic 
memory or b) merged with an existing concept (instead of being added as a separate 
one). To make this choice, the MMM uses an extension of the concept matching algo-
rithm of [4, 29]. This algorithm is based on unification, with the added facility for nam-
ing concepts and determining their best position in the hierarchy of the ontological 
world model in the robot’s long-term semantic memory.  
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As an illustration, suppose, the concept matching algorithm has de-
termined that the newly learned concept ASSEMBLE-RIGHT-BACK-
LEG must be added to the robot’s semantic memory. In this case, the 
algorithm also suggests the most appropriate position for the concept 
in the ontological hierarchy. This is determined by comparing a) the 
inventory and b) sets of fillers of the properties defined for the new 
concepts and for the potential parents of the new concepts in the on-
tological hierarchy. In the example of Fig. 4, the LM used the safest, 
though at the same time least informative, filler (PHYSICAL-EVENT) 
for the IS-A property of ASSEMBLE-RIGHT-BACK-LEG). To determine 
the appropriate parent, the algorithm traverses the ontological hier-
archy from PHYSICAL-EVENT down until it finds the closest match 
that does not violate recorded constraints. Fig. 5 shows the immedi-
ate children of PHYSICAL-EVENT (triangles next to concepts indicate 
that they are non-terminals) in our current ontology. The algorithm 
eventually reaches the area of the descendants of the concept EVENT 
presented in Fig. 6. The figure illustrates the fact that our ontology 
supports multiple inheritance – notably, the concept ASSEMBLE is a 

descendant of both CREATE-ARTIFACT and MANUFACTURING-
ACTIVITY, while CREATE-ARTIFACT, by virtue of being a child of the 
concept PRODUCE, is a descendant of both PHYSICAL-EVENT and 
SOCIAL-EVENT. This mechanism facilitates an economical represen-
tation of different aspects of the meaning of ontological concepts and 
allows the representation of both differences and similarities among 
concepts.3  
  Returning to the example of incorporating ASSEMBLE-
RIGHT-BACK-LEG into the robot’s semantic memory, the MMM at-
tempts to make the newly learned concept a child of the existing on 

ontological hierarchy as possible, to be able to inherit the values of as 
many of its properties as possible without the extra work of determin-

ing them one by one). This attempt fails because the filler of the AGENT property in 
ASSEMBLE, ASSEMBLY-LINE-WORKER, is more constrained than the corresponding filler 
in the newly learned ASSEMBLE-RIGHT-BACK-LEG,4 which is HUMAN or ROBOT.  The 
algorithm backtracks and succeeds in making ASSEMBLE-RIGHT-BACK-LEG a child of 
CREATE-ARTIFACT (and, thus, a sibling of ASSEMBLE).  
  Suppose now that a concept RIGHT-BACK-LEG already exists in the ontology. 
If this concept is as illustrated in Figure 7, then, after comparing this concept with the 
newly learned concept (see Fig. 4), the MMM will, instead of adding a new (possibly 
renamed) concept to the robot’s semantic memory, just add an optional filler BRACKET-
BACK-RIGHT to the HAS-OBJECT-AS-PART property of the standing concept of Fig. 7, thus 

                                                
3 This mechanism requires additional representational means to block spurious inheritance whose 

description is outside the scope of this paper. 
4 This example shows that in our formalism the names of concepts are just labels and do not carry 

meaning just by themselves. 

 
Fig. 5.  

 
Fig. 6.  
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merging the standing and the newly learned 
knowledge. If, however, the standing con-
cept is as illustrated in Fig. 8, then, because 
of the mismatch of the fillers of part-of prop-
erties between the newly learned and the 
standing concept, the MMM will yield two 
new concepts (Figs. 9,10). Note the need of 
modifying the names of the concepts. An im-
portant case of merging several versions of a 
concept in one representation is the system’s 
ability to represent the content of an action’s 
HAS-EVENT-AS-PART property as an HTN, 
augmented with the means of expressing 
temporal ordering, optionality and valid al-
ternative action sequences.  
Semantic memory stores the robot’s 
knowledge of concept types. So, for exam-
ple, it will contain a description of all that the 
robot knows about chairs and chair legs. This 
knowledge will be used to feed the reasoning 
rules the robot will use during language pro-
cessing, learning and decision-making. To 
make the robot more human-like, we also 
support case-based reasoning by analogy. 

For this purpose, the MMM records sequences of RPAs, UPAs and UVAs that the robot 
represents and carries out during specific sessions of interacting with specific users in 
the robot’s long-term episodic memory. The contents of the episodic memory will also 
support the robot’s ability to “mindread” its various users [2, 14, 26, 27, 28] and, as a 
result, be able to anticipate their needs at various points during joint task execution as 
well as interpret their UVAs with higher confidence. 
 
Discussion and Future Work 
 
Summary. The system presented concentrates on robotic learning through language 
understanding. This learning results in extensions to and modifications of the three 
kinds of robotic memory – the explicit semantic and episodic memory and the implicit 
(skill-oriented) procedural memory. We believe that deciding to separate the learning 
and the operation modes of robot’s functioning (cf. [1]) unduly complicates the learning 
process by requiring the robot to do extra work to distinguish between material that 
must be learned and known material and also because utterances that humans use while 
teaching are different pragmatically from those used in communication during regular 
functioning. The expected practical impact of the ability to learn and reason will include 
the robot’s ability to a) perform complex actions without the user having to spell out a 
complete sequence of basic and complex actions; b) reason about task allocation be-
tween itself and the human user; and c) test and verify its knowledge through dialog 

RIGHT-BACK-LEG 
 IS-A      SOFA-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                                                       DOWEL 
 PART-OF-OBJECT                SOFA 

Fig. 8. An alternative RIGHT-BACK-LEG. 

RIGHT-BACK-LEG 
 IS-A                        CHAIR-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                                                       DOWEL 
 PART-OF-OBJECT              CHAIR 

Fig. 7. A possible RIGHT-BACK LEG. 

RIGHT-BACK-LEG-CHAIR 
 IS-A     CHAIR-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                                                      DOWEL, 
                                            BRACKET-BACK-RIGHT 
 PART-OF-OBJECT               CHAIR 

Fig. 9. The right-back leg of a chair. 

RIGHT-BACK-LEG-SOFA 
 IS-A      SOFA-PART 
 HAS-OBJECT-AS-PART BRACKET-FOOT,   
                                                                       DOWEL 
 PART-OF-OBJECT                SOFA 

Fig.10. The right-back leg of a sofa. 
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with the user, avoiding the need for large numbers of training examples required by 
learning by demonstration only. The inability of the state-of-the-art deep learning-based 
systems to provide human-level explanations is a well-known constraint on the utility 
of such systems.  The cognitive robots we develop will still be capable of sophisticated 
reasoning by analogy but will be also capable of explaining their decisions and actions. 
Finally, our approach to learning does not depend on the availability of “big data” train-
ing materials. Instead, we model the way people learn since early childhood and 
throughout their lives – by being taught using natural language.  
 Evaluation-Related Issues.  The standard evaluation approaches that rely on com-
parisons with human performance on selected tasks have attracted criticism in the field 
of cognitive systems. Thus, Jones et al. [8] argue for practical evaluation of integrated 
cognitive systems that “involves not only measuring a system’s task competence but 
also the properties of adaptivity, directability, understandability, and trustworthiness.” 
Cassimatis et al. [3] make a convincing argument for going beyond what they call 
“model fit” evaluations of cognitive systems in terms of how well their output fits hu-
man behavior in an experimental setting. Instead, they propose that a model of higher-
order cognition should be evaluated on the basis of “(a) its ability to reason, solve prob-
lems, converse and learn as well as people do; (b) the breadth of situations in which it 
can do so; and (c) the parsimony of the mechanisms it posits.”  
  The critique of the model fit approach is motivated by the realization that 
good-quality comparison measures are difficult to build and that they are typically not 
explanatory – they do not provide reasons for performance discrepancies. At the same 
time, alternative methods of quantifying the factors suggested in [3, 8] must be devel-
oped before these recommendations can be followed in practice. 
  The demonstration of our system’s performance which we intend to present at 
the conference will include not only a view of the joint task performance accompanied 
by learning but will also overtly detail and illustrate the processes of language under-
standing, reasoning, learning and memory management by our cognitive robot. Specif-
ically, we will demonstrate: a) the robot’s understanding of UVAs; b) mutual grounding 
of basic RPAs and appropriate ontological concepts, mediated by MRs generated from 
relevant UVAs; c) learning task-oriented sequences of RPAs; d) learning new ontolog-
ical concepts, both new object types and new (complex) event types (the abovemen-
tioned sequences of RPAs will be learned as fillers of the HAS-EVENT-AS-PARt proper-
ties of the newly learned complex event types); and e) incorporating the newly 
grounded and learned concepts into the robot’s semantic and episodic memories.  
 Language Understanding. Language understanding in the area of cognitive systems 
is not to be equated with current mainstream natural language processing (NLP), a 
thriving R&D area that methodologically is almost entirely “knowledge-lean” [15]. 
Some of the more application-oriented projects in cognitive systems support their lan-
guage processing needs with such knowledge-lean methods, thus agreeing to a lower 
level of quality in exchange for broader coverage and faster system development. 
Longer-term, more theoretically motivated projects seek to develop explanatory models 
of human-level language processing that require knowledge (see [16] for a discussion]). 
The knowledge in such models supports not only language understanding but also rea-
soning and decision-making [30]. Indeed, deep language analysis requires knowledge 
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that is not overtly mentioned in the text or dialog. To be able to interpret language input, 
a language understanding agent must, thus, be able to reason about the world, the speech 
situation and other agents present in it. It must also routinely make decisions both about 
the interpretation of components of the input, what is implied by the input and what is 
omitted from the input and about whether and if so to what depth to analyze the input. 
(Human-level agents must be able to disregard parts of language inputs. This ability is 
essential for humans – it explains, for example, why we habitually interrupt one another 
in conversations.) 
 Memory Modeling. Another theoretical contribution of our work is overt modeling 
of the robot’s memory components. These components include an implicit memory of 
skills and explicit memories of concepts (objects, events and their properties) and of 
instances of sequences of events (episodes, represented in our system as HTNs). The 
link established between the implicit and explicit layers of memory allows the robot to 
reason about its own actions. Scheutz et al. [36] discuss methodological options for 
integrating robotic and cognitive architectures and propose three “generic high-level 
interfaces” between them – the perceptual interface, the goal interface and the action 
interface. In our work, the basic interaction between the implicit robotic operation and 
explicit cognitive operation is supported by interactions among the three components 
of the memory system of the robot.  
 Exploring the implicit/explicit boundary. The learning system we present has the 
potential to support further investigations of the interactions between explicit and im-
plicit memories and their use. Mercier and Sperber [24] argue that human reasoning is 
typically triggered only when people must explain and justify the decisions that they 
(or others) made, while the decisions themselves more often than not are made on the 
basis of implicit skills. The environment in which our system operates offers a potential 
testbed of this hypothesis. We plan to expand our system’s capabilities to include first 
clarification dialogs and, next, explanation and justification dialogs.  
 Next Steps. The first enhancement of the current learning system will consist in 
demonstrating how, after RPAs are mutually grounded in ontological concepts, the ro-
bot will be able to carry out commands or learn new action sequences by acting on 
UVAs, without any need for direct triggering through software function calls or hard-
ware operations. Next, we intend to add text generation capabilities, both to allow the 
robot a more active role in the learning process (by asking questions) and to enrich 
interaction during joint task performance with a human user. Another novel direction 
of work will involve adapting to particular users – modeling robots’ individuality and 
related phenomenological (“first-person” view) aspects of its internal organization and 
memory, developing and making use of mindreading capabilities [2, 14] that will in 
turn facilitate experimentation in collaboration among agents with different “theories 
of minds of others.” 
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