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Abstract—In peer tutoring, the learner is taught by a colleague
rather than by a traditional tutor. This strategy has been shown
to be effective in human tutoring, where students have higher
learning gains when taught by a peer instead of a traditional
tutor. Similar results have been shown in child-robot interactions
studies, where a peer robot was more effective than a tutor
robot at teaching children. In this work, we compare skill
increase and perception of a peer robot to a tutor robot when
teaching adults. We designed a system in which a robot provides
personalized help to adults in electronic circuit construction.
We compare the number of learned skills and preferences of
a peer robot to a tutor robot. Participants in both conditions
improved their circuit skills after interacting with the robot.
There were no significant differences in number of skills learned
between conditions. However, participants with low prior domain
knowledge learned significantly more with a peer robot than
a tutor robot. Furthermore, the peer robot was perceived as
friendlier, more social, smarter, and more respectful than the
tutor robot, regardless of initial skill level.

Index Terms—human-robot interaction; peer learning; robot
tutoring

I. INTRODUCTION

In peer-to-peer tutoring, children or adults teach each other
rather than being taught by a teacher [27]. There are benefits
of peer instruction for both the student who is teaching
and the student who is learning. Throughout this paper, we
will call a student instructing another student as the peer-
teacher or peer, the student who is being instructed as the
learner, and a traditional teacher as futor. When a peer-teacher
prepares content and teaches a colleague, they demonstrate
higher learning gains than when they only learn the content
for themselves [6]. Likewise, the learner who is taught by a
peer frequently learned more than the one who is taught by a
teacher, especially if they had higher prior domain knowledge
[25]. Furthermore, peer instruction lowers failing rates [29],
creates an increased sense of community [39], and increases
student self-esteem [18].

Most work in robot tutoring has focused on having the robot
take on the role of a traditional tutor [8]. While a few studies
investigated the robot’s role as a peer, these focused on child-
robot interactions [13], [28], [42]. Similar to peer tutoring
among adults, a peer robot tutor also had several advantages.
When interacting with a peer robot compared to a tutor robot,
children learned more [7], became more engaged [42], and
developed a stronger growth mindset [28].

Fig. 1. Participants built electronic circuits with either a peer robot or a tutor
robot. The robot would provide personalized help based on the user’s skills.
In the figure, we see the robot suggesting the user add a resistor to the board.

While children appear to benefit from peer-based child-robot
interactions, it is unclear whether the same results will hold
for adults. Adults may have higher expectations for a peer
that a robot could struggle to meet. Adults may also have more
practical experience working with peers and as such might not
easily accept a robot peer. Lastly, working with adults will also
require working in a more challenging educational domain,
with harder and more complex problems to be taught, which
may not easily transfer to a robot. To study how peer robots
are viewed by adults, we designed an in-between participant
study where participants interacted with either a peer robot or
a tutor robot, during an electronic circuit building task.

Participants built ten electronic circuits with an autonomous
robot, as seen in Figure 1. The system modeled the user’s skills
throughout each task using Continuous Bayesian Knowledge
Tracing [37]. The robot then provided personalized help to
the user depending on their skill state and the skills needed
for each task. The robot provided nearly identical advice in
both conditions. However, in the peer condition, the advice
was delivered using pronouns that indicated that the robot was
an equal and invested colleague (“we/us”), and in the other
indicated that the robot was a more knowledgeable authority
figure (“you”). Participants completed a pre-test and a post-test
to detect skills learned. They also completed questionnaires
about their perceptions of the robot.

While participants in both conditions demonstrated signif-



icantly more skills in the post-test than in the pre-test, there
were no significant increases of skills between the conditions.
However, when analyzing only participants with low initial
pre-test scores, they learned significantly more in the peer
condition than in the tutor condition. Furthermore, participants
viewed the peer robot as more intelligent, more social, and
friendlier than the tutor robot, independent of prior skill
knowledge. Additionally, participants who interacted with the
peer robot felt more respected by it than the tutor robot.

II. BACKGROUND

In this section, we introduce background on peer-to-peer
tutoring and show some advantages of this learning strategy.
We then review literature on how the peer-to-peer tutoring
strategy has been extended to human-robot tutoring.

A. Peer-to-Peer Tutoring

Peer-to-peer learning is defined as “an educational prac-
tice in which students interact with other students to attain
educational goals” [27]. It is typically used as a supple-
ment to the classroom learning process between a teacher
and students. Peer-to-peer learning is a favorable educational
practice because it prepares students for learning from others
in workplaces and communities [27].

There are numerous benefits to peer-to-peer learning. Peer-
teachers who studied in preparation to teach something and
then taught the information generally scored higher on a
retention test than students who prepared only for themselves
[4], [6], [19]. In reciprocal peer tutoring (RPT), students are
paired together to review content and to practice skills [18].
This strategy resulted in greater improvements in cognitive
gains, lower levels of subjective distress, and higher course
satisfaction [18]. In addition to increasing student achieve-
ment, peer-to-peer learning has many social benefits, including
positive race relations in desegregated schools, mutual concern
among students, and student self-esteem [40]. Interventions
were most effective with younger, urban, low-income, and
minority students [35].

Peer-to-peer learning is also effective for adult learning.
Lasry et al. showed that peer-taught university students had
higher learning gains than traditionally taught students [25].
Additionally, they show a significant increase in learning gains
for students with high background knowledge but not for
students with low background knowledge. Another potential
benefit for peer tutoring is that adults learn better in an
informal environment and need to be respected when learning
new things [15]. Awan [5] commends the use of peer-to-
peer learning in radiology residencies because it promotes
active and relevant learning. This practice also prepares future
physicians for explaining medical topics to their patients [9].

B. Robotic Peer-to-Peer Tutoring

Social robots have been found to be effective tutors via
individualized tutoring interactions [30], [31], [38]. Tutoring
robots can take on several different roles, including a learner, a
peer, or a teacher [1], [12], [13], [42]. However, approximately

86% of the studies conducted with robots to facilitate human
learning consist of the robot taking on the role of tutor [8].

Although the use of robots as peers represents a minority
of the literature, a peer-teacher social robot has been shown to
positively benefit a child’s language learning [23]. A peer robot
can also enhance a child’s own creative thinking [2]. Zaga et
al. showed how children demonstrated increased engagement
when playing with a peer robot to complete a Tangram puzzle
compared to when playing with a tutor robot [42]. In a
long-term study, a peer-teacher humanoid social robot with
the ability to personalize its interactions with children in a
classroom increased the children’s learning of novel topics [7].
Park et al. [28] determined that children who played with a
social robotic peer that exhibited a growth mindset (a belief
that success arises from effort and perseverance) developed
a stronger growth mindset of their own. Chen et al. [12]
noted that the children who interacted with their adaptive peer-
teacher robot not only had more expressive faces than the
children who interacted with their tutor robot, but they also
learned more and retained advanced vocabulary.

While robots can be used as a peer-teacher during child
learning scenarios, they can also play the role of a tutee or
naive peer. In this case, a person takes the role of a peer-teacher
and educates their robotic peer, resulting in the enhancement
of the person’s learning through the reinforcement of concepts.
Japanese children at an English language school improved
their spontaneous learning of new English vocabulary words
after teaching them to a robot [41]. The forms of teaching
naturally implemented by the children involved direct teach-
ing, gesturing, and verbal teaching. Robots have been used
in the role of the tutee where the children taught the robot
handwriting [11], [21], [22]. The children demonstrated to an
autonomous robotic agent how to write certain letters or words,
helping develop their own writing ability.

Although these studies focused on interactions with chil-
dren, a peer robot can nevertheless provide unique learning
benefits separate from those of a tutor robot.

III. METHODOLOGY

Higher learning gains and positive traits have been seen
when interacting with a peer-teacher both in human tutoring
[6], [25] and in robot-child tutoring [13], [28], [42]. Therefore,
we predict that participants interacting with a peer robot will
learn more new skills than participants interacting with a
tutor robot. Furthermore, an adult peer-teacher was especially
beneficial when the adult learner had higher prior knowledge
in the domain [25]. Therefore, we also predict that adults with
higher knowledge will benefit more from a peer robot.

Research has shown that adults learn better in an informal
environment and highlight the importance of feeling respected
[15]. We hypothesize that adults interacting with the peer robot
will feel treated more as an equal and therefore feel more
respected than those interacting with a tutor robot.

Prior work has shown that students who interacted with
a peer robot were more engaged [42] and were able to
create rapport with it [23]. Therefore, we hypothesize that



Section Part Tutor Robot

Peer Robot

Introduction to Robot

Reinforcement Question

Wrong Piece
you need it for the current task?”

Piece Recommendation “Here, try to add the resistor to the circuit.”
Help Utterance

Task Finished Correctly “Awesome, you are a good student.”

Experimenter: “Hello, This is Urie, the robot. Urie will be
teaching you a bit about eletronic circuits today.”

“When should you add a speaker to the circuit?”

“Can you explain to me what a button does? Do you think

“To power the music circuit you need to make sure that its
positive port is connected to the positive port of the battery.”

Experimenter: “Hello, This is Urie, the robot. You and Urie
will be collaborating in building some eletronic circuits today.”

“When should we add a speaker to the circuit?”

“Can you explain to me what a button does? Do you think
we need it for the current task?”

“Here, let’s try to add the resistor to the circuit.”

“To power the music circuit we need to make sure that its
positive port is connected to the positive port of the battery.”

“Awesome, we make a good team.”

Fig. 2. We present some of the different utterances between conditions. The robot was introduced differently to the participant depending on the condition.
The remaining utterances were very similar and often only differed in the pronoun used. Some examples of help actions included asking questions to reinforce
a correctly applied skill, pointing out a wrong piece on the board, recommending a piece, and giving a description of an incorrectly applied skill.

participants interacting with a peer robot will be more engaged
and view the robot more positively than participants with the
tutor robot. Lastly, people often have very high expectations
out of robots [3], [24], [33]. When the participant is told the
robot is a tutor, those expectations might be higher, as the robot
is presented as an expert at the task. Therefore, we hypothesize
that a peer robot might be seen as more intelligent than a tutor
robot as there will be lower expectations put on it.

We have five main hypotheses for this study:

Hypothesis 1a: Adults in both conditions will show signif-
icant improvement in electronic circuit skills from pre-test to
post-test.

Hypothesis 1b: Adults will learn more from a peer robot
than a tutor robot.

Hypothesis 1c: Adults with high initial knowledge will
especially benefit from a peer robot, compared to adults with
high initial knowledge interacting with the tutor robot.

Hypothesis 2: Adults will view a peer robot more positively
than a tutor robot.

Hypothesis 3: Adults will be more engaged with a peer
robot than a tutor robot.

Hypothesis 4: Adults will feel more respected by a peer
robot than a tutor robot.

Hypothesis 5: Adults will see a peer robot as more intelli-
gent than a tutor robot.

To test our hypotheses, we split participants into two con-
ditions: one where they interact with the robot as a tutor, and
one where they interact with the robot as a peer. Participants
built electronic circuits using a modular circuit-building toy
called Snap Circuits [17]. We chose circuit design because it
is a task that is challenging for most adults; there are varying
levels of initial knowledge, with some participants having high
initial knowledge and others low initial knowledge on circuits;
and a robot can model the task using a sensing system.

A. Conditions

Participants were split randomly into two conditions:

o Tutor Robot - The robot acted as a traditional tutor
and provided instructions to the participant. The robot
was introduced as a teacher to the participant, and its
utterances towards the participant used second person
singular pronouns like “you”.

o Peer Robot - The robot acted like a peer who is working
together with the participant on the circuit. The robot was
introduced as a collaborator, and its utterances used first-
person plural pronouns (“we/us”).

The difference between conditions was minimal, especially
considering the robot had few anthropomorphic features. In
both conditions, the robot’s utterances were very similar,
mostly changing pronouns from “we” in the peer condition,
and “you” in the tutor condition. The robot always presented
correct help suggestions independent of condition. Some ex-
amples of utterances can be seen in Figure 2.

B. Robot System

Participants interacted with the robot on a large table. Figure
3 shows an illustration of the experimental setup. Participants
were given each task via a tablet, and on the tablet, they
could indicate that they had finished the current task and
start the next task. The tablet provided no help with the task.
Participants used wires and electronic circuit pieces to build
their circuits on a board in the middle of the table. An overhead
Kinect Azure camera detected what pieces were on the board
and how they were connected. A green hand strip at the
bottom of the board was used to detect when the participants’
hands were on top of the board, and therefore the camera’s
observations would be inaccurate. A second camera faced the
participant to record the interaction.

A URSe robot from Universal Robots was used in this study.
It is a lightweight industrial robotic arm with 6-DOF. It could
pick up the snap circuit pieces with its gripper and hand them
to the participant. The robot was able to communicate to the
participant via a text-to-speech voice. Additionally, the robot
displayed idling behavior with random movements every few
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Fig. 3. The experimental setup. Participants were given tasks via a tablet
application. In the middle of the table, they built circuits using wires and
circuit pieces. They were provided basic instructions with the piece names.
An overhead camera focused on the circuit and modeled which skills were
correctly applied. A URSe robot provided them with help every 30 seconds
based on what was needed for the current task. An additional camera collected
video and audio data of the participant.

seconds, occasionally looking at the circuit board, pieces, or
the participant, by pointing the gripper at it. The robot acted
completely autonomously throughout the study.

C. Snap Circuits Tasks and Skills

We created 32 different electronic circuit tasks of varying
difficulty, of which participants completed ten. There were
more tasks than the number the participant completed, so the
robot could adjust to each person’s skill level. Section III-F
describes how tasks were chosen for each participant. For each
task, the participant was given an empty circuit board with
only a battery on it, many wires of different sizes, and seven
pieces: an LED, a switch, a button, a motor, a resistor, a music
circuit, and a speaker. Each piece could be snapped together
on the board to form circuits. An example of a completed
circuit can be seen in Figure 4.

The participant was instructed what task to complete next
via a tablet. They were given three minutes for each task
unless they correctly completed it before the time expired.
Some examples of tasks are: “Build a circuit that plays music
when a switch is turned on” and “Build a circuit that spins a
motor when a switch is turned on or a button is pressed”.

Each task required the participant to demonstrate different
skills. Some examples of these skills are: adding a speaker
when it is needed, creating a closed circuit, knowing the
directionality of an LED, powering the music circuit, and
creating AND and OR gates. A total of 17 skills were
tested. Section III-E explains how we model participants’ skills
throughout the tasks.

D. Experimental Procedure

Each session took approximately 60 minutes. The procedure
of the experiment consisted of the following:
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Fig. 4. An example of a completed circuit. This circuit plays music and
blinks a light in the rhythm of the music when the switch is turned on.

1) The participant completed the consent form and a de-
mographic questionnaire.

2) The participant completed six pre-test electronic circuit
tasks and questions. These are detailed in Section III-H.

3) The experimenter introduced the robot. Depending on
the condition, the robot was introduced as either a
peer/collaborator or as a teacher.

4) The participant built ten electronic circuits alongside the
robot. The robot provided personalized help actions.

5) The participant answered post-study questionnaires.

6) The participant did six post-test electronic circuit tasks.

7) At the end of the interaction, participants were debriefed
and paid $10 for their time.

E. Skill Estimation

A computer vision system with an overhead camera ob-
served the user as they placed pieces on the board. It tracked
which pieces were on the board, and which pieces were
connected to each other. User skills were modeled using an
extension of Bayesian Knowledge Tracing called Continuous
Bayesian Knowledge Tracing (C-BKT) [37]. C-BKT was
used as it allows skill modeling of complex tasks where the
observations are noisy, and skills vary in the amount of time
needed to demonstrate them. The system individually modeled
each of the 17 skills by creating an estimate of whether the
user had mastered each skill. We represented this estimate as a
vector b, where each skill was initialized to 0.5, representing
complete uncertainty of the user’s skill state. Each second,
b was updated using observations from the computer vision
system detailing which skills were applied correctly and which
ones were not.

E Task Selection

Prior work shows that selecting tasks with appropriate
difficulty leads to higher learning gains [16], [36]. Therefore
tasks were chosen for each participant according to their
demonstrated capabilities. To rate the difficulty of each task,
each of the 17 skills was given a difficulty rating from a scale
of 1.0 to 5.0, with 5.0 being the most difficult. These were
determined by consulting an electronic engineering major. The
ratings were stored in a difficulty vector d. For example, the



skill for whether a participant knew when to use an LED was
given a difficulty rating of 1, while the skill for whether the
participant knew how to create an OR gate was given a 4.5.
The current belief estimate b was used to select the next task.

In order to determine which task to give next to a partic-
ipant, all remaining tasks are assigned a difficulty rating R
based on the skills Sk that a task ¢ incorporated. The rating
was calculated based on the difficulty of each skill and the
participant’s current belief value b. Participants with higher
belief values would likely find the task easier. Therefore, we
used 1 — b(4) to measure how difficult the task would be for
the participant. As we are summing over the difficulty of each
skill for a task, the more skills a task tests, the more difficult
it will likely be. The difficulty rating R for a specific task is
calculated as follows:

Ry= Y (1—b(i) = d(i) ()

i€Sk

There is also a fixed ideal rating value V' that was set
equal to five after initial trial and error. The V is intended
to help ensure that an appropriate task is selected next for the
respective participant so that the task is not too easy nor too
overwhelming [26]. The task whose r value is closest to V'
is selected as the next task and removed from the possible
remaining tasks for the next iteration.

NextTask = ?él%l(‘Rt -V (2)

In the case where several tasks are equally close to V, one
of these potential tasks is selected at random. The process is
repeated until the interaction with the participant ends.

G. Help Action Selection

Personalizing help in tutoring systems leads to higher learn-
ing gains [14], [32]. Therefore the robot provides assistance to
the participant according to the skills they had demonstrated
during the current task. The robot provided a help action every
30 seconds. There were six different types of help actions, of
which the system selected one at random. The different kinds
of help actions were:

« Reinforcement Question - The robot asked a question
about a skill the participant had demonstrated.

o Reinforcement Utterance - The robot confirms that a
skill the participant had demonstrated is correct.

o Wrong Piece Point - The robot pointed to a piece on the
board and said it was not needed.

o Wrong Piece Utterance - The robot said that one of the
pieces on the board was not needed.

« Help Movement - The robot gave help to the participant
by explaining something about a skill they had not
demonstrated. While explaining it, the robot pointed to
something on the board or handed the participant a piece.

« Help Utterance - The robot gave help to the participant
by explaining a skill the participant had not demonstrated.
The robot did not move in this case.

The robot did not select a reinforcement help action if the
participant did not have any correct skills displayed during
the task. Likewise, it would also remove wrong piece help
actions from the randomization options if all the current pieces
on the board were needed. Additionally, when the participant
pressed the finished button on the tablet, but the task was
incorrect or incomplete, the robot randomly selected either a
help movement or a help utterance for one of the skills that
were demonstrated incorrectly. Examples of different types of
robot help actions can be seen in Figure 2.

H. Metrics

We had three different types of metrics: test metrics, behav-
ioral metrics, and survey metrics.
1) Test Metrics:

o Pre-test and Post-test - The pre-test and post-test were
composed of six very similar questions. The first two
questions on both tests were the same. They asked
participants to build from scratch a circuit that shines a
constant light and a circuit that plays music, respectively.
Participants were given five minutes to do both tasks. The
third and fourth tasks on both tests required participants
to add pieces to the board to complete the circuits. These
tasks were identical between pre-test and post-test, other
than the circuit boards being rotated 180 degrees to the
participant in the post-test. For the fifth and sixth tasks,
we presented pictures of pre-built circuits and asked
participants to write down what the circuits did. These
were similar between pre-test and post-test, but the pieces
were arranged differently on the board. Participants were
given five minutes to complete tasks three through six.
We classify participants into either having high prior
circuit knowledge or low prior circuit knowledge based
on their pre-test. If participants got less than half of the
skills correctly on the pre-test, they were considered to
have low prior circuit knowledge. Otherwise, they were
considered to have high prior circuit knowledge.

2) Behavioral Metrics:

o Speaking - We measured how much participants talked
to the robot. Participants were classified as engaging
in conversation with the robot if they said at least ten
sentences to it, and as not engaging in conversation if
they talked to it less.

3) Survey Metrics:

o Demographics - Before the interaction, we administered
a demographics questionnaire that asked participants
questions about their gender, age, occupation or major
(if student), and country of origin. We also asked how
often they used a computer, their familiarity with robots,
and their level of expertise on electrical circuits.

o Post Interaction Questionnaire - We administered the
RoSAS questionnaire about their feelings towards robots
[10]. The RoSAS measured participants’ perceptions of
the robot’s warmth, competence, and discomfort. We also
asked the participant to rate the following on a 1-7 Likert
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Fig. 5. (a) Participants significantly improved their circuit knowledge skills
from pre-test to post-test in both conditions. (b) There were no significant
differences in number of skills learned between conditions.

Scale with 1 being “Not Applicable” and 7 being “Most
Applicable”: The robot acted like my colleague; The
robot treated me like an equal; I felt like I was being
judged by the robot; I felt like the robot respected my
capabilities; The robot was friendly; I felt engaged while
interacting with the robot; I felt like the robot was boring;
I felt like the robot was smart; I felt like the robot was
good at electronic circuits; The robot was better than
me at electronic circuits. Finally, we had an open-ended
question for participants: Is there anything you wished
the robot would have done differently?

L. Participants

There were 37 participants who completed the experiment.
Interactions with the robot lasted on average 37 min and 37s
(SD = 5 min and 6s). The university’s Institutional Review
Board approved the study, and participants signed a consent
form agreeing to participate. There were nine male and eight
female participants in the peer condition, and their average age
was 28.00 (SD = 12.90). There were nine male, ten female,
and one gender-fluid participants in the tutor condition, and
their average age was 25.00 (SD = 10.60). Participants in the
peer condition rated themselves as an average of 2.47 (SD =
1.23) on a 1-5 scale on their prior electronic circuit knowledge,
whereas participants in the tutor condition rated themselves
an average of 2.40 (SD = 1.60). There were no significant
differences in gender, age, or prior circuit expertise between
conditions.

IV. RESULTS
A. Manipulation Check

First, we check whether the peer robot and the tutor robot
were perceived differently. We asked each participant on a
scale of 1-7 whether they perceived the robot as a peer
and whether they felt like they were treated as an equal.
Participants in the peer robot perceived it significantly more
as a peer (M = 4.59,5SD = 2.18), than participants who
interacted with the tutor robot (M = 2.65,SD = 1.39),
t(37) = 3.27,p = 0.002. And participants in the peer

Peer Robot

Tutor Robot

Low Initial Skill
X High Initial Skill]

+9 7| e Low Initial Skill
X High Initial Skill

Pretest/Posttests Scores

2.51

0.0
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Fig. 6. The pre-test and post-test scores for the peer and tutor conditions.
There were no significant differences in skills gained between conditions.
However, participants with low skill knowledge improved their skills signifi-
cantly more with the peer robot than the tutor robot.

condition (M = 5.00,5SD = 1.83) perceived the robot as
treating them as an equal significantly more than participants
in the tutor condition (M = 3.58,SD = 2.09), ¢(35) =
4.50, p = .041. Therefore, we believe our manipulation check
was successful.

B. Test Results

We compare the skill increase in each condition from pre-
test to post-test on the 17 skills. A skill is attributed as known
when the participant has correctly applied it at least half of
the time. On average, participants in the peer robot condition
scored 7.29(SD = 3.16) on the pre-test and 11.82(SD =
2.74) on the post-test. Participants in the tutor condition
scored on average 8.55(SD = 2.93) on the pre-test and
11.70(SD = 3.31) on the post-test. An ANOVA comparing
moment (pre-test and post-test) and condition found significant
differences F'(3,74) = 10.01,p < 0.001. A Tukey HSD test
revealed that both the peer condition (p = 0.001) and the
tutor condition (p = 0.009) significantly improved from pre-
test to post-test, as seen in Figure 5. There were no significant
differences between conditions for the pre-test (p = 0.587) or
the post-test (p = 0.900).

Participants in the peer condition learned on average 4.53
(SD = 3.22) new skills, whereas participants in the tutor
condition learned on average 3.15 (SD = 2.37) new skills.
These differences were not significant ¢(37) = 1.46,p =
0.154. Next, we compare participants with prior low electronic
circuit knowledge and participants with high prior electronic
circuit knowledge. We compared the number of learned skills
between condition and prior knowledge using an ANOVA and
found significant differences F(3,37) = 5.47,p = 0.004.
A Tukey HSD test revealed that participants with low prior
knowledge learned significantly more in the peer condition
than the tutor condition (p=0.023), but no significant dif-
ferences were found for high prior knowledge participants
(p=0.900). These results can be seen in Figure 6.
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Fig. 7. Questionnaire results. (a) The peer robot was perceived as significantly more social and intelligent than the tutor robot. (b) The peer robot was
perceived as significantly smarter, more respectful, friendly than the tutor robot, in addition to participants feeling more like they were treated as an equal.

C. Behavioral Results

In the peer condition, there were six participants who
engaged in conversation with the robot, and nine participants
who did not. There were two participants whose audio data
was corrupted. In the tutor condition there were eight par-
ticipants who engaged in conversation with the robot and
twelve who did not. Using a Chi-Squared test, these results
were not statistically significantly different from each other
X2(1, N = 35) = 0,p = 1.000.

D. Questionnaire Results

On the RoSAS questionnaire, participants rated the robot
as more warm in the peer condition (M = 3.74,SD = 1.37)
compared to the tutor condition (M = 2.90,SD = 0.96).
Participants also rated the robot as more competent in the
peer condition (M = 4.59,5D = 1.27) than the tutor
condition (M = 3.76,SD = 1.12). Lastly, participants
rated the robot similarly in regards to discomfort between
the peer (M = 2.11,SD = 1.03) and tutor conditions
(M = 2.20,SD = 1.19). Their ratings were significantly
different for warmth ¢(37) = 2.18,p = 0.036, and for
competence t(37) = 2.09,p = 0.044, but not for discomfort
t(37) = —0.25,p = 0.804. The RoSAS questionnaire results
are seen in Figure 7(a).

On the post-experiment questionnaire, participants in the
peer condition (M = 5.35,SD = 1.58) rated the robot sig-
nificantly smarter than the tutor condition (M = 4.25,SD =
1.68), t(37) = 2.04,p = 0.049. Participants rated the robot
as being better than them at electronic circuits in the peer
condition (M = 6.06,SD = 1.03) than the tutor conditions
(M = 4.95,SD = 2.06), but these differences were not
quite significant ¢(37) = 2.01,p = 0.052. Lastly, partici-
pants rated the robot a 5.42(SD = 1.42) on being good
at circuits in the peer condition, and a 4.60(SD = 1.88)
in the tutor condition. These differences were not significant
t(37) = 1.46,p = 0.152.

Participants felt more respected by the peer robot (M =
5.53,SD = 1.74) than the tutor robot (M = 3.95,5D =

1.93), and this difference was significant ¢(37) = 2.59,p =
0.014. Participants in the peer condition rated the robot a 3.06
(SD = 1.98) for feeling judged and a 3.60 (SD=2.52) in the
tutor condition, ¢(37) = —0.72,p = 0.479. Lastly, participants
in the peer condition (M = 5.00, SD = 1.83) perceived the
robot as treating them as an equal significantly more than
participants in the tutor condition (M = 3.58,5D = 2.09),
t(35) = 4.50,p = .041.

Participants viewed the robot as more friendly in the peer
condition (M = 5.59,SD = 1.50) than the tutor condition
(M = 415,5D = 1.84), t(37) = 2.57,p = 0.015.
Participants did not think the robot was more boring in one
condition than the other (peer: M = 2.24, 5D = 1.56; tutor:
M = 2.50,SD = 1.96), t(37) = —0.45,p = 0.657, nor did
they feel more engaged in one condition than another (peer:
M = 529, SD = 1.83; tutor: M = 4.80, SD = 1.99;
t(37) = 0.77, p = 0.447). These results can be seen in Figure
7(b).

V. DISCUSSION

The work is the first to show multiple benefits in peer tutor-
ing while only manipulating one very small aspect (pronouns
used and how the experimenter presented the robot). Most
research in peer robot tutoring was conducted with children
and was either not focused on peer vs. tutor [2], [24] or had
many differences between conditions [13], [42]. Additionally,
we believe this is the first HRI work comparing peers and
tutors that shows significant differences in learning using a
pre-test and post-test rather than other measures.

A. Hypotheses

Participants in both the peer condition and the tutor condi-
tion significantly improved their electronic circuit skills from
pre-test to post-test. This shows that the robot in both condi-
tions successfully taught the adults. Therefore Hypothesis 1a is
true: Adults in both conditions showed significant improvement
in electronic circuit skills from pre-test to post-test. Participants
did not learn more skills in the peer condition compared to



the tutor condition. Therefore we cannot confirm Hypothesis
1b; Adults did not learn more from a peer robot than a
tutor robot. Participants with high skill knowledge did not
have significantly different skill increase between conditions.
Therefore in regards to Hypothesis lc, Adults with high
initial knowledge did not especially benefit from a peer robot,
compared to adults with high initial knowledge interacting
with the tutor robot. On the contrary, participants with low
circuit knowledge learned significantly more with the peer
robot. These results differ from those seen in adult peer-to-
peer tutoring. Therefore, the robot taking on the role of a peer
should be especially considered in scenarios where the person
likely has low prior knowledge in the domain.

Participants did rate the peer robot more positively in several
dimensions. On the post-experiment questionnaire, participants
rated the peer robot as significantly more social and as sig-
nificantly friendlier than the tutor robot. Therefore we believe
that Hypothesis 2 is true: Adults viewed a peer robot more
positively than a tutor robot. It is important that people view
the robot positively when interacting with it, as they will likely
be more engaged and learn from the robot in the long term.

In most Human-Robot Interactions studies, engagement is
assessed using gaze patterns [34]. However, due to the current
COVID-19 pandemic, participants wore masks during the
interactions, which made computer vision systems that tracked
participant faces unreliable. Therefore we measured engage-
ment using the amount participants talked to the robot and their
self-assessed engagement on the questionnaire. Participants
did not significantly view the robot as being more boring in
one condition than another. Neither did they report being more
engaged. There were also no significant differences between
engaging in conversation with the robot between conditions.
Therefore, we do not support Hypothesis 3; Adults were not
more engaged with a peer robot than a tutor robot.

Participants reported feeling significantly more respected
by the peer robot compared to the tutor robot. Additionally,
participants felt that they were treated significantly more as
an equal when interacting with the peer robot. Therefore, we
confirm Hypothesis 4: Adults felt more respected from a peer
robot than a tutor robot. This is important, as feeling respected
is an essential factor in learning success [15].

Participants in the peer condition viewed the peer robot as
significantly smarter than participants in the tutor condition.
Additionally, participants rated the peer robot significantly
more competent than the tutor robot. Therefore we confirm
Hypothesis 5: Adults saw a peer robot as more intelligent
than a tutor robot.

B. Expectations of A Tutoring Robot

One possible reason the peer robot was rated as more
intelligent than the tutor robot was because participants had
lower expectations of a peer than a tutor. A tutor is presented
as an expert, whereas there is more uncertainty involved in
the capabilities of a peer-teacher. An open-ended question
asking participants whether they wished the robot had done
anything differently confirmed that many wished the robot

had additional capabilities. Participants wished the robot had
given examples of completed circuits, had the ability to answer
participants’ questions, and had given step-by-step instructions
for the more complicated circuits.

Domains in adult tutoring are often more complex than
those seen in children’s tutoring, with many requiring com-
puter vision systems to model the interactions. Therefore
giving personalized advice is not as straightforward as giving
help during child-robot interactions. Presenting the robot as a
peer could lower expectations. In consequence, people might
be more willing to receive advice from it than they would
from a tutor robot whose expectations are not met.

C. In-group/Out-group effects

In the peer condition, the robot presents itself as being in-
group with the participant when using the pronouns “we/us”.
Whereas in the tutor condition, the robot presents itself as an
authority figure by placing itself in the out-group when using
the “you” pronoun. People evaluate robots more positively
when they are in-group than when they are out-group [20].
This is one potential confound in our work, where part of the
results could be due to in-group/out-group membership.

D. Limitations and Future Work

Our work has several limitations, which could be potential
areas for future research. First, it is unclear why a peer robot
was especially beneficial for low prior knowledge participants.
Therefore, a future study that focused on this would greatly
benefit the community. Second, due to the pandemic, we could
not look in-depth into engagement and facial expressions, and
future work should analyze these once masks are unnecessary.
Lastly, testing different tasks and settings would bring further
insight into the benefits of varying robot roles.

VI. CONCLUSION

This paper explored different roles a robot can take when
teaching people about electronic circuits. The robot would
either take on the role of a peer or the role of a tutor. Partici-
pants with low prior circuit knowledge learned significantly
more with the peer robot than with the tutor robot. This
shows the benefits of peer robots, especially in domains where
the user is likely lower-skilled. Additionally, participants who
interacted with the peer robot viewed it as more friendly,
more social, more intelligent, and felt more respected than
participants who interacted with the tutor robot, independent
of prior knowledge. These are all essential qualities for a
robot to have, such that participants would be willing to have
long-term interactions with it. Therefore, we recommend more
exploration into robots who interact with the user as peers
versus as teachers, especially when teaching adults.

ACKNOWLEDGMENT

This work was funded by the National Science Foundation
(NSF) under grants No. 1955653, 1928448, 2106690, and
1813651.



[1

[2

—

[3

[t}

[4

=

[5]

[7

—

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Timothy Adamson, Debasmita Ghose, Shannon C Yasuda, Lucas
Jehu Silva Shepard, Michal A Lewkowicz, Joyce Duan, and Brian
Scassellati. Why we should build robots that both teach and learn.
In Proceedings of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, pages 187-196, 2021.

Safinah Ali, Tyler Moroso, and Cynthia Breazeal. Can children learn
creativity from a social robot? In Proceedings of the 2019 on Creativity
and Cognition, pages 359-368. ACM, 2019.

Patricia Alves-Oliveira, Tiago Ribeiro, Sofia Petisca, Eugenio Di Tullio,
Francisco S Melo, and Ana Paiva. An empathic robotic tutor for school
classrooms: Considering expectation and satisfaction of children as end-
users. In International Conference on Social Robotics, pages 21-30.
Springer, 2015.

Linda F Annis. The processes and effects of peer tutoring. Human
Learning: Journal of Practical Research & Applications, 1983.

Omer A. Awan. Peer to peer learning: Its importance and benefits.
Academic Radiology, 28(5):747-748, 2021.

John A Bargh and Yaacov Schul. On the cognitive benefits of teaching.
Journal of Educational Psychology, 72(5):593, 1980.

Paul Baxter, Emily Ashurst, Robin Read, James Kennedy, and Tony
Belpaeme. Robot education peers in a situated primary school study:
Personalisation promotes child learning. PLOS ONE, 12(5):1-23, 2017.
Publisher: Public Library of Science.

Tony Belpaeme, James Kennedy, Aditi Ramachandran, Brian Scassellati,
and Fumihide Tanaka. Social robots for education: A review. Science
robotics, 3(21), 2018.

Carolien Bulte, Aaron Betts, Kathryn Garner, and Steven Durning.
Student teaching: views of student near-peer teachers and learners.
Medical teacher, 29(6):583-590, 2007.

Colleen M Carpinella, Alisa B Wyman, Michael A Perez, and Steven J
Stroessner. The robotic social attributes scale (rosas) development
and validation. In Proceedings of the 2017 ACM/IEEE International
Conference on human-robot interaction, pages 254-262, 2017.

Shruti Chandra, Raul Paradeda, Hang Yin, Pierre Dillenbourg, Rui
Prada, and Ana Paiva. Do children perceive whether a robotic peer
is learning or not? In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, pages 41-49. ACM, 2018.
Huili Chen, Hae Won Park, and Cynthia Breazeal. Teaching and learning
with children: Impact of reciprocal peer learning with a social robot on
children’s learning and emotive engagement. Computers & Education,
150:103836, 2020.

Huili Chen, Hae Won Park, Xiajie Zhang, and Cynthia Breazeal. Impact
of interaction context on the student affect-learning relationship in child-
robot interaction. In Proceedings of the 2020 ACM/IEEE International
Conference on Human-Robot Interaction, pages 389-397, 2020.
Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, and Manuel
Lopes. Multi-armed bandits for intelligent tutoring systems. arXiv
preprint arXiv:1310.3174, 2013.

Jannette Collins. Education techniques for lifelong learning: principles
of adult learning. Radiographics, 24(5):1483-1489, 2004.

Yossi Ben David, Avi Segal, and Ya’akov Kobi Gal. Sequencing
educational content in classrooms using bayesian knowledge tracing. In
Proceedings of the sixth international conference on Learning Analytics
& Knowledge, pages 354-363. ACM, 2016.

Elenco. Snap circuits. https://www.elenco.com/brand/snap-circuits/,
2021. Accessed: 2019-9-10.

John W Fantuzzo, Ronald E Riggio, Sharon Connelly, and Linda A
Dimeft. Effects of reciprocal peer tutoring on academic achievement and
psychological adjustment: A component analysis. Journal of educational
psychology, 81(2):173, 1989.

Logan Fiorella and Richard E Mayer. The relative benefits of learn-
ing by teaching and teaching expectancy. Contemporary Educational
Psychology, 38(4):281-288, 2013.

Markus Hiring, Dieta Kuchenbrandt, and Elisabeth André. Would
you like to play with me? how robots’ group membership and task
features influence human-robot interaction. In 2014 9th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 9—
16. IEEE, 2014.

Deanna Hood, Séverin Lemaignan, and Pierre Dillenbourg. When
children teach a robot to write: An autonomous teachable humanoid

which uses simulated handwriting. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot Interaction, HRI

’15, pages 83-90. Association for Computing Machinery, 2015.

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[39]

[40]

[41]

[42]

Alexis Jacq, Séverin Lemaignan, Fernando Garcia, Pierre Dillenbourg,
and Ana Paiva. Building successful long child-robot interactions in a
learning context. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 239-246, 2016. ISSN: 2167-
2148.

Jacqueline M Kory-Westlund and Cynthia Breazeal. A long-term study
of young children’s rapport, social emulation, and language learning
with a peer-like robot playmate in preschool. Frontiers in Robotics and
Al 6:81, 2019.

Minae Kwon, Malte F Jung, and Ross A Knepper. Human expectations
of social robots. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 463-464. IEEE, 2016.
Nathaniel Lasry, Eric Mazur, and Jessica Watkins. Peer instruction:
From harvard to the two-year college. American journal of Physics,
76(11):1066-1069, 2008.

Janet Metcalfe and Nate Kornell. A region of proximal learning model
of study time allocation. Journal of Memory and Language, 52(4):463—
471, 2005.

Angela M O’Donnell and Alison King. Cognitive perspectives on peer
learning. Routledge, 2014.

Hae Won Park, Rinat Rosenberg-Kima, Maor Rosenberg, Goren Gordon,
and Cynthia Breazeal. Growing growth mindset with a social robot
peer. Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, pages 137-145, 2017.

Leo Porter, Cynthia Bailey Lee, and Beth Simon. Halving fail rates
using peer instruction: a study of four computer science courses. In
Proceeding of the 44th ACM technical symposium on Computer science
education, pages 177-182, 2013.

Aditi Ramachandran, Chien-Ming Huang, Edward Gartland, and Brian
Scassellati. Thinking aloud with a tutoring robot to enhance learning.
In Proceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction, pages 59-68. ACM.

Aditi Ramachandran, Sarah Strohkorb Sebo, and Brian Scassellati.
Personalized robot tutoring using the assistive tutor POMDP (AT-
POMDP). Proceedings of the AAAI Conference on Artificial Intelligence,
33:8050-8057, 2019.

Aditi Ramachandran, Sarah Strohkorb Sebo, and Brian Scassellati.
Personalized robot tutoring using the assistive tutor pomdp (at-pomdp).
2019.

Céline Ray, Francesco Mondada, and Roland Siegwart. What do people
expect from robots? In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3816-3821. IEEE, 2008.
Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L Sid-
ner. Recognizing engagement in human-robot interaction. In 2010
5th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pages 375-382. IEEE, 2010.

Cynthia A Rohrbeck, Marika D Ginsburg-Block, John W Fantuzzo, and
Traci R Miller. Peer-assisted learning interventions with elementary
school students: A meta-analytic review. Journal of educational Psy-
chology, 95(2):240, 2003.

Nicole Salomons, Emir Akdere, and Brian Scassellati. Bkt-pomdp: Fast
action selection for user skill modelling over tasks with multiple skills.
Nicole Salomons and Brian Scassellati. Continuous bayesian knowledge
tracing - modelling user skills over time. In Submission, 2022.
Thorsten Schodde, Kirsten Bergmann, and Stefan Kopp. Adaptive robot
language tutoring based on bayesian knowledge tracing and predictive
decision-making. In Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, HRI *17, pages 128-136.
Association for Computing Machinery, 2017.

Beth Simon, Sarah Esper, Leo Porter, and Quintin Cutts. Student expe-
rience in a student-centered peer instruction classroom. In Proceedings
of the ninth annual international ACM conference on International
computing education research, pages 129-136, 2013.

Robert E Slavin. Cooperative learning. Review of educational research,
50(2):315-342, 1980.

Fumihide Tanaka and Shizuko Matsuzoe. Children teach a care-receiving
robot to promote their learning: Field experiments in a classroom for
vocabulary learning. JHRI, pages 78-95, 2012.

Cristina Zaga, Manja Lohse, Khiet P. Truong, and Vanessa Evers. The
effect of a robot’s social character on children’s task engagement: Peer
versus tutor. In Adriana Tapus, Elisabeth André, Jean-Claude Martin,
Frangois Ferland, and Mehdi Ammi, editors, Social Robotics, Lecture
Notes in Computer Science, pages 704-713. Springer International
Publishing, 2015.



