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Using human tools can significantly benefit robots in many application domains. It
will endow a home robot with the ability to carry out everyday household activities
such as cleaning. It will enable an industrial robot to work in manufacturing or
maintenance using human tools such as screwdrivers. It will allow a robot to perform
experiments using existing human lab tools in a chemistry lab. Such ability would
allow robots to solve problems that they were unable to without tools.

However, robot tool use is a challenging task. Tool use was initially considered
to be the ability that distinguishes human beings from other animals (Oakley, 1944).
Robot tool use has three challenges: perception, manipulation, and cognition. While
both general manipulation tasks and tool use tasks require the same level of perception
accuracy, there are unique manipulation and cognition challenges in robot tool use.

In this dissertation, we first define robot tool use and compile a taxonomy of robot
tool use. We identify required skills for each sub-type in the taxonomy and review
previous studies on robot tool use based on the taxonomy. Next, we demonstrate our
work on solving some of the sub-types of robot tool use. We present an integrated
system that trains a robot with tool use, transfers the learned skills to novel objects,
and can even improvise the usage of novel tools. The robot that utilizes this system
can also generalize the learned skills to other robot platforms without additional
training. We then investigate more complicated forms of robot tool use. Specifically,

we explore how a robot can plan sequential tool use so that the robot can use one tool



to retrieve another tool in order to complete a task. We also examine how a robot
should choose the most appropriate tool from many possible tool options. Finally,
we investigate the application of learned tool use skills in related applications such as
human-robot collaborations.

We conclude this dissertation with the contributions and limitations of our work.

We also identify open challenges that remain to be solved as future directions.



Robot Tool Use: Learning, Transferring,
Reasoning, and Applying Knowledge about

Robots Using Human Tools

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Meiying Qin

Dissertation Director: Brian Scassellati

December 2022



Copyright (C) 2022 by Meiying Qin

All rights reserved.

1



Contents

1 Introduction

2 A Definition, a Taxonomy and a Review of Robot Tool Use

2.1 Definition of Robot Tool Use . . . . . . . . .. .. ... .. .. ....
2.2 A Taxonomy of Robot Tool Use . . . . . ... ... ... ... ....
2.3 Required Skills of Robot Tool Use . . . . . . .. ... ... ......
2.4 Robot Tool Use Literature . . . . . .. . ... ... ... ... ....
24.1 Non-Causal Tool Use . . . . .. ... ... ... ... .....
2.4.2 Causal Tool Use — Single-Manipulation Tool Use . . . . . . .
2.4.3 Causal Tool Use — Multiple-Manipulation Tool Use . . . . . .

2.5 DIscussions . . . ..o

Learning and Reasoning About Single-Manipulation Tool Use

3.1 Introduction . . . . . . ...
3.1.1 Task-Oriented Approach to Tool Use . . . ... .. ... ...
3.1.2 Star 1: Learning and Applying Task-General Tool Use
3.1.3 Star 2: Task-General Object Substitution. . . . . . ... ...
3.1.4  Star 3: Transferring Tool Use Skills to Other Robot Platforms

3.2 Methods . . . . . ..
3.2.1 Preliminaries . . . . . . . .. ...

3.2.2 Representations . . . . . . .. ... ... L.

1l

11
17
21
22
24
31
35



3.2.3
3.2.4
3.2.5
3.3 Results
3.3.1
3.3.2
3.3.3

Star 1: Learning and Applying Task-General Tool Use Skills .
Star 2: Task-General Object Substitution. . . . . . . . . . ..
Star 3: Tool Use Transfer to Other Robot Platforms. . . . . .
Star 1: Learning and Applying Task-General Tool Use Skills .
Star 2: Task-General Object Substitution. . . . . . . . . . ..

Star 3: Transfer Tool Use To Other Robot Platforms . . . . .

3.4 DIScussion . . . . . ..o

3.4.1
3.4.2
3.4.3
3.4.4

Contribution 1: Task-Generality . . . . . . .. .. .. ... ..
Contribution 2: Data Efficient . . . . . . . . ... .. ... ..
Contribution 3: Integrative framework . . . . .. .. ... ..

Limitations . . . . . . . . .

3.5 Summary ... ..o

Multiple-Manipulation Tool Use: Sequential Tool Use

4.1 Imtroduction . . . . . . . . .

4.2 Methods . . . . . ..
4.2.1 Learning Possible Affordances and Actions . . . . . .. .. ..
422 Planning . . . . . ..o

43 Results. . . . ..o

4.4 Discussion . . . . ...

4.5 Summary ...

Multiple-Manipulation Tool Use: Tool Selection

5.1 Introduction . . . . . . .. ..
5.1.1 Causality in ML and Robotics . . . . .. ... ... ... ...
5.1.2 Affordance learning . . . . . . . .. ...

5.2 Methods . . . . . . .

v

%)
62
66
67
67
74
79
81
81
82
83
84
85

86
87
93
93
95
98
101
103



5.2.1 Problem Statement . . . . . . . . .. ... 108

5.2.2 OQurapproach . . . . .. .. ... ... ... 110
5.2.3 Experiments . . . . .. ... 113
5.24 Evaluation . . . . .. ..o 117
5.3 Results . . . . . . 117
5.4 Discussion . . . . . . Lo 120
5.5 Summary ... ... 121

Applying Tool Use Knowledge in the Context of Human-Robot Col-

laboration 122
6.1 Introduction . . . . . . . .. .. 123
6.1.1 Taxonomy: Handover Requirements . . . . . . . ... ... .. 124
6.1.2 Task-oriented Handovers . . . . . . . . ... ... ... .... 127
6.2 Methods . . . . . . . .. 130
6.2.1 Object Model Generation . . . . .. ... ... ... ..... 130
6.2.2 Vision Module . . . . . . . ..o 130
6.2.3 Learning Tool Affordances . . . . . . .. ... ... ... ... 131
6.2.4 Grasping Configurations . . . . . . ... ... ... ... ... 133
6.2.5 Presentation Configurations . . . . . . ... .. .. ... ... 134
6.3 Results. . . . . .. . 136
6.3.1 Robot Validations . . . . . .. ... .. ... L. 136
6.3.2 SUrvey . . . ... 139
6.4 Discussion . . . . . . ... 140
6.5 Summary . . ... .. 141
Conclusion 142
7.1 Contributions . . . . . . ... 142
7.2 Future Work . . . . . ..o 143



A Summary Tables of Studies in Chapter 2 145

vi



List of Figures

1.1

2.1
2.2

2.3

Components of an action. The diagram is adapted from Qin et al.

(2021), CCBY. . . o .

Tool Use Taxonomy. . . . . . . .. .. . ... ... ... .....
The modified affordance model in Montesano et al. (2008) (C)2008,
IEEE (The IEEE does not require individuals working on a thesis
to obtain a formal reuse license). Affordances as relations between
(A)ctions, (O)bjects, and (E)ffects that can be used to address differ-
ent purposes: predict the outcome of an action, plan actions to achieve
a goal, or recognize objects or actions. We update the colors of the
model and represent manipulation skills with brown, cognition skills
with pink, and perception skills with grey. . . . . . .. ... ... ..
The different aspects of tool affordances need to be addressed in the

subtype of tool use. . . . . . ...

vii



3.1

3.2

3.3

Affordance Taxonomy. The structure emerges when observing effect-
based motion primitives from different frames of reference. The ef-
fects of Non-Pose-Based Tasks does not involve changes in the manip-
ulanda’s poses, which is different from Pose-Based Tasks. For Pose-
Based Tasks, there are infinitely possible poses changes of the manip-
ulanda in the world frame given different start poses. However, there
are only finite possibilities for Finite-Effects Tasks when the effects
are considered in the manipulanda frame. For example, a screw may
have very different end poses in the world frame when given different
start poses. However, when referenced by itself, the effects of a screw-
driving task that tightens it only have one effect, which is to move
the screw towards the direction of the tip of the screw. In contrast,
Infinite-Effects Tasks have infinitely many effects in both the world and
the manipulanda frame. Learning different subtypes in the taxonomy
requires different causal relations. For example, the tool-manipulanda
contact poses of the Finite-Effects Tasks are not determined by the de-
sired effects but by the features of the objects; one can determine how
a screwdriver should contact a screw without providing the desired ef-
fects. For Infinite-Effects Tasks, the tool-manipulanda contact poses is
determined by both object features and the desired effects; one should
be provided with the desired location of an object before determining
how a stick should contact the object to pushit. . . . . . . . .. ...
Star 1 illustrations. (a) depicts the four component trajectories that
comprise a hypothetical demonstration of a pushing task. (b) depicts
the parametrization of a contact pose using a nail-hammering task as
an example. . . ...

Alignment procedure for a hypothetical 2D tool substitution problem.

viil

ol

52
63



3.4

3.5

3.6

3.7

3.8

3.9

Demonstration of the variety of tasks learned by the robots using source
objects. Star 1 tested a robot learning a wide range of tasks, including
(a) knocking, (b) stirring, (c) pushing, (d) scooping, (e) cutting, (f)
writing, and (g) screw-driving. . . . . . .. ... L
The workspace of (a) URbBe, (b) Baxter, and (c) the Kuka youBot robot
are similar. Two Azure Kinect RGB-D sensors are placed on the sides
of the workspace. . . . . . . . . . ... ...
Different grasping poses of the source tools (Star 1). For each task,
that is, knocking, stirring, pushing, scooping, and cutting, at least
three different grasping poses were tested. . . . . .. .. .. ... ..
Results of learning source tools with source manipulanda (Star 1). We
compared Star 1 (green) performance against a baseline (gray) for
knocking, stirring, pushing, scooping, and cutting. The pictures at
the bottom right show the demonstrations of the writing task. The
top left is an “R” using the same scale and rotation as the training
sample. The top right, bottom left, and bottom right “R’s used the
following scales and orientations: scale 1.0, orientation 270°; scale 0.8,
orientation 30°; scale 1.5, orientation 300°. . . . . . . . ... ... ..
Substitute objects (Star 2). For each task, that is, knocking, stirring,
pushing, scooping, and cutting, three substitute tools and three substi-
tute manipulanda were included in testing. The objects in the yellow
frames were used as source objects in Star 3. . . . . .. .. ... L.
Results of aligning substitute objects to source objects (Star 2). The
green point clouds are the source objects while the blue point clouds
are the substitute objects. Manipulandum substitution for the pushing
and scooping task is not geometry-dependent, but goal-dependent, and

therefore, the alignment results are excluded in the figure. . . . . ..

1X



3.10 Results of tool substitution and manipulandum substitution (Star 2).

3.11

4.1

The bar graphs show the results of using the substitute objects to
perform knocking, stirring, pushing, scooping, and cutting. The bars
compare Star 2’s (blue) performance against the baseline (gray). . . .
Results of tool use generalization across robot platforms (Star 3). The
bar graphs include results of the URbe (green), Baxter (yellow), and
youBot (yellow) using the source tool/manipulandum combinations for
knocking, stirring, pushing, scooping, and cutting. The pictures at the
bottom right demonstrate different robots writing “R” with trained

scale and orientation. . . . . . . . .. .. L.

A comparison of classic Task and Motion Planning (TAMP) (a) and
the proposed task, affordance, and motion planning (TAAMP) (b). On
the right, cartoon vignettes illustrate the questions addressed at each
level with an example problem. In this problem, a robot should push
an object from under an immovable container. Task planning chooses
the action push. Affordance planning performs geometric reasoning in
the physical space and determines whether the environment can afford
the action at all, independent of who the actor is. Motion planning

addresses how to complete the action with this specific robot.

7

80

88



4.2 Diagram of the search for action parameters in TAMP and in TAAMP
for the action push. (Top) In an infeasible task in which a block can-
not be pushed from under an immovable container, TAMP attempts to
search for a feasible combination including affordance-centric parame-
ters (e.g., goal poses of the block p) and robot-related parameters (e.g.,
grasping pose g). Affordance planning detects that none of the p’s are
feasible in a generic sense and does not attempt to search for robot-
related parameters such as grasping poses. (Bottom) In a constrained
task where the block is located inside a tunnel, TAMP needs to con-
sider a large space, including p’s that are either feasible or infeasible,
and searches for feasible combinations to instantiate the action push.
Affordance planning detects the p’s that are feasible and performs mo-

tion planning only within feasible p states. . . . . . . . ... ... ..

x1



4.3

4.4

5.1

Eight tasks in our evaluations in simulation. In the unconstrained
manipulation task, the robot should place the green block (the “celery”)
on the immovable blue surface (the “sink”) to clean it and then place it
on the immovable red surface (the “stove”) to cook it. The cyan block
(the “radish”) is movable but not directly related to the goal. The rest
of the tasks shared the same goal. In the constrained manipulation task
IT, the robot needs to relocate the extra cyan block. In the infeasible
manipulation task, the robot cannot access the green block since it is
located under a yellow immovable. In the tool-use tasks, the robot
should pull the green block that is out of reach with the L-shaped tool
(i.e., the unconstrained tool-use task), or push the green block under
the immovable orange tunnel (i.e., the constrained tool-use task I), or
push the L-shaped tool to expose the grasping part of the L-shaped
tool in order to use the L-shaped tool to pull the green block (i.e., the
constrained tool-use task II), or cannot complete the task when the
green block is located under the yellow immovable container.

Eight tasks in our evaluations with a Kuka youBot arm. . . . . . ..

Tool selection via causal inference. A Baxter collaborative robot queries
a learned causal model of tool-assisted manipulation using perceptual
information from its workspace. Information from the graph is used to

select the most appropriate tool for completing its goal. . . . . . . . .

xii

99
100



5.2

5.3
5.4
5.5

6.1

6.2

The causal discovery process. During the observation phase (a) the
robot learns a skeleton of the causal graph observing demonstrations
performed by a human. During the validation phase (b) the robot
attempts to orient the edges of the graph via self-supervised exper-
imentation. Finally, during the augmentation phase (c), the robot
introduces a new node (blue) and attempts to incorporate it into its
graph via further experimentation. . . . . . . ... .. .. ... ...
The toolset. . . . . . . . . .
The learned structure of the SCM. . . . . ... ... ... ... ...
Tool reasoning results. a) depicts the mean distance of the center of
the block to the center of the goal region for each tool. b) depicts the
learning curve for a select number of tools given initial training on the
hoe. ¢) depicts how tools were selected and used as a function of the

block’s position given a static goal. . . . . . . .. ... ... ... ..

Our taxonomy of robot-to-human handover requirements. Bottom to
top: the basic, intermediate and advanced requirements. . . . . . . .

Difficulty levels of task-oriented handovers. . . . . . . . .. ... ...

xiil

109
116
118

119



6.3

6.4

Overview of the system (we use the stirring task as an example). (a)

It first perceives the pose of the spoon T2~ . and the large bowl

Tworld (b) The TRI-STAR framework described in Chapter 3

manipulandum*

provided tool affordances, which were the contact area of the tool and

the orientation of the tool R[*“Pardum when using it. (b1) The TRI-

tool usage

STAR framework aligned the trained tool in red (left) with the tool to
be used in green (left) to obtain the handle part in blue (right) and the
contact area of the tool in red (right). Our system calculates the center

of the contact area pjigi,. ..., the green dot (right), from the contact

area. (b2) Ryrenpulandum iq he first pose (top) in the tool trajectory. (c)

tool wusage

Tworld  was calculated from Tweortd

The grasping configuration co grasp tool on_table

model
tool usage*

world manipulandum .
culated from TROVE g and Ryp"0c ™™, (e) The human receives

Tworld

ee present

and p (d) The presentation configuration was cal-
the tool and used it tostir. . . . . . . . . ...
Handover evaluations on five tool-use tasks. (Top) The system was
first trained with how to perform the stirring, pushing, cutting, knock-
ing, and screw-driving tasks, rather than demonstrations of handovers.
(Bottom) The robot was required to generate handovers for the hu-
man receiver to perform subsequent tasks. The handovers were with
different levels of difficulty. The ‘N/A’ either refers to that the tool
cannot perform the handover at the difficulty level, or the tool is inap-
propriate. Each cell shows a demonstration, which shows the handover

generated and how the human used the tool to perform the subsequent

task. The pictures were taken from the view of the human receiver.

Xiv

137



6.5 Comparing handover configurations generated by our system and the
typical handovers in previous studies. The figure includes handovers of
level I (top), level II (middle), and level III (bottom), with the spoon
(left) and with the screwdriver (right) in different tasks. The typical
handovers always grasp the same location on a tool and orient the
handle of a tool horizontally to the human receiver. In contrast, our
configurations are customized to the subsequent tasks and thus require

minimum in-hand tool adjustments for the human receiver. . . . . . .

XV



List of Tables

2.1

2.2

4.1

4.2

6.1

Comparison of stereotyped tool use and flexible tool use based on Hunt
et al. (2013)’s descriptions. . . . . . .. ... L
Additional skills required in multiple-manipulation tool use beyond

single-manipulation tool use. . . . . . .. ..o

Possible affordances learned in different frames of references. They are
categorized based on the number of screw axis in the manipulandum
frame and the world frame. The frame of references is chosen with
fewer numbers of screw axis. When the numbers of screw axis in both
the world and object frame are finite, one can choose either frame.
When one is finite and the other is infinite, choose the frame with
finite screw axis. When both are infinite, the system assumes that
possible affordances can be any poses. . . . . . ... ... L.
Results In Simulation. Each cell shows the average or the percentage
of thirty trials in the given condition. The time out was set to be 600

seconds. The numbers in the run time cells followed the format of M

xXvi

13

21

95



Al

A2

A3

Summary of Non-causal Tool Use Studies. In this table, we summarize
the following aspects: (general learning) whether the study involves any
type of learning, including aspects in general manipulation; (learning
specifics) whether the study learns any aspect that is specifically for
tool use, rather than general manipulation; (tasks) the tool use tasks
demonstrated in this study; (dynamics) whether the study considers
the dynamics while using tools; (robots) the robot that is used to
demonstrated the tool use tasks or relevant aspects in this study. . . .
Study Summary of Causal Tool Use — Single-Manipulation Tool Use
— Basic Tool Use. In this table, we summarize the following aspects:
(actions) the action representations; (effects) the effect representations;
(tools) the tool representations; (Actions «» Effects) how this study
learns the relation between actions and effects; (sensory input) the
type of sensory input; (dynamics) whether the study considers the
dynamics while using tools; (tasks) the tool use tasks demonstrated in
this study; (robots) the robot that is used to demonstrated the tool
use tasks or relevant aspects in this study. . . . . . ... ... . ...
Study Summary of Causal Tool Use — Single-Manipulation Tool Use
— Transferable Tool Use. In this table, we summarize the follow-
ing aspects: (actions) the action representations; (effects) the effect
representations; (tools) the tool representations; (Actions <» Effects)
how this study learns the relation between actions and effects; (Tools
> Actions) how this study learns the relation between tools and ac-
tions; (sensory input) the type of sensory input; (dynamics) whether
the study considers the dynamics while using tools; (tasks) the tool
use tasks demonstrated in this study; (robots) the robot that is used

to demonstrated the tool use tasks or relevant aspects in this study. .

XVvil

149

151

156



A4

A5

Study Summary of Causal Tool Use — Single-Manipulation Tool Use
— Improvisatory Tool Use. In this table, we summarize the following
aspects: (actions) the action representations; (effects) the effect repre-
sentations; (tools) the tool representations; (Actions <> Effects) how
this study learns the relation between actions and effects; (Tools <>
Actions) how this study learns the relation between tools and actions;
(Tools <+ Effects) how this study learns the relation between tools and
effects; (sensory input) the type of sensory input; (dynamics) whether
the study considers the dynamics while using tools; (tasks) the tool
use tasks demonstrated in this study; (robots) the robot that is used
to demonstrated the tool use tasks or relevant aspects in this study. .
Study Summary of Causal Tool Use — Multiple-manipulation Tool
Use. In this table, we summarize the following aspects: (category)
the sub-category of this task in multiple-manipulation tool use; (af-
fordance) how the affordance is learned in this study; (manipulation)
extra manipulation skills needed compared with single-manipulation
tool use; (cognition: reasoning) extra reasoning skills needed compared
with single-manipulation tool use; (cognition: planning) extra planning
skills needed compared with single-manipulation tool use; (tasks) the

tool use tasks demonstrated in this study; (robots) the robot that is

160

used to demonstrated the tool use tasks or relevant aspects in this study.163

xXviil



Acknowledgment

I am thankful to receive tremendous support in completing my graduate studies,
seeking the next position, and finishing this dissertation.

First, to my Ph.D. supervisor, Brian Scassellati (Scaz), thank you for all your
support in the past six years. Thank you for helping me to become an independent
researcher and a critical thinker. These are the two most important skills I learned,
and I believe they will help me succeed in my future career. I would also like to thank
you for giving me the freedom to explore the two most exciting areas in the world,
in my opinion: animal-robot interactions and robot tool use. You also worked hard
to bring abundant funding to the lab so that we can work in the utopian and never
need to worry about the financial burden when doing research.

To other Yale faculty members, thank you for supporting me as a researcher.
Marynel Vazquez, thank you for all your support, from technical details to career
advice. My time as a graduate student will be much more challenging without your
help. Laurie Santos, thank you for being my second advisor on the project on animal-
robot interaction. Thank you for letting my dream come true to be able to work on
this project. Thank you for your patience and your great feedback. Your caring for
students inspired me to become a teacher. Dragomir Radev (Drago), thank you for
supervising me as a teaching assistant and being my referee when I am on the job
market. It is my pleasure to be able to work with you, who is highly efficient and

reachable for students. Maria Piniango (Ping lao shi), thank you for enlightening

Xix



me on the first step in research. Though we did not get a chance to collaborate on
research projects, I am very grateful that you taught me foundational skills, such
as reading research papers and writing my first research essay, as an undergraduate
student when you exchanged to teach at Peking University.

To my wonderful colleagues, thank you all for your daily support and guidance.
Having you in my journal as a Ph.D. student was my pleasure: Elena Corina Grigore,
Aditi Ramachandran, Sarah Strohkorb Sebo, Jake Brawer, Nicole Salomons, Timo-
thy Adamson, Emmanuel Adeniran, Rebecca Ramnauth, Nicholas Georgiou, Debas-
mita Ghose, Kate Candon, Kayla Matheus, Ellie Mamantov, Nathan Tsoi, Sydney
Thompson, Austin Narcomey, Qiping Zhang, Kate Tsui, Alessandro Roncone, Olivier
Mangin, Chien-Ming Huang, Laura Boccanfuso, Marilena Mademtzi, Larissa Hall,
Judi Paige, Angie Johnston, Moshe Shay Ben-Haim, Alyssa Arre, Michael Bogese,
Yiyun Huang, and Ellen Stumph. Jake and Nicole, thank you for being my closest
lab mates. I enjoyed the time that we encouraged and supported each other. Jake, I
really appreciate that I can collaborate with you on almost all the projects together in
robot tool use, especially during the difficult time of the pandemic. Alessandro Ron-
cone, Chien-Ming Huang, and Angie Johnston, thank you for your academic support
that helped me conquer the difficulties.

To other people who supported me, thank you for your advice. Paulo A. Ferreira,
Pawet Gajewski, and Frank Guerin, thank you for sharing your experiences in obtain-
ing object models. Toki Migimatsu, thank you for sharing your insight on task and
motion planning. James Tierney, thank you for conducting the excellent course on
academic writing. This course is one of the best writing courses I have ever attended.
You summarized common mistakes and taught us how to identify and correct them.
I improved my writing with your tips and communicated my ideas more efficiently
with researchers in the field.

To all the students that I have supervised, thank you for all your contributions to



my work and your valuable feedback for me as a mentor: Maxim Baranov, Abi-
gail Waugh, Malak Khan, Catherine de Lacoste-Azizi, Carolyne Newman, Owen
Marks, Valerie Chen, Caleb Kim, Skylar Regan, Chavely Calleja, Emani Brown,
Maisa Crispino, Nicholas Peters, Zo & Stublarec, Ryan McGough, William Zhu, and
David Eduardo Villarreal.

To whom influenced me most before I started graduate school, thank you for your
support. Arnold Rosenbloom, you are one of the best instructors I have ever had in
computer science. Both I and Albert were your students, and we learned a lot from
your inspiring lectures. I would also like to thank you for sharing your experiences
as a teaching stream faculty member, and for your advice on selecting job offers.
Jacqueline Brunning, I got so much help from you that I cannot elaborate on all of
them. It is so unfortunate that I will never be able to say goodbye to you. However, I
understand that you prefer not to hold commemorations. As a memorial to you in a
different form, I utilized what you taught me about logic and conducted work in this
dissertation which involves reasoning about robot tool use. I will never forget your
kindness to students. The best way to memorialize you is to pass on your kindness

to my future students, and I believe you will agree with me.

To my parents, my parents-in-law,
and my soulmate, my closest friend, my partner, Albert Wong,
THANK YOU!
I LOVE YOou!!

xxi



Chapter 1

Introduction’

Many robots are designed to interact with objects in the environment. Recent ad-
vances grant robots the ability to perform various tasks ranging from everyday tasks,
such as swiping a card (Sukhoy et al., 2012), to professional tasks that require high
precision, such as robot surgery (Sarikaya et al., 2017).

Among these tasks, robot tool use is gaining increasing attention. Being able to
use human tools such as screwdrivers and scissors can greatly expand the applicability
of a robot. Household robots will be able to assist humans better by performing a
wider range of tasks with everyday tools; robots in chemistry labs will be able to
run more experiments by leveraging the lab tools; manufactory robots will be able to
complete more tasks by utilizing construction tools without the need for specialized
grippers.

Based on the definitions of tool use in animals, we define tool use as “a robot
expands its body schema by attaching or securing an external, unanimated, attached
or freely available object in order to achieve a goal of altering the state of other
environment objects, updating its own state, or other goals, through purposeful ma-

nipulations.” (For why we define tool use this way, see chapter 2) In this dissertation,

!Portions of this chapter are currently under review: M. Qin, J. Brawer, and B. Scassellati. A
Survey: Robot Tool Use.



a tool refers to the object attached to a robot. A manipulandum refers to the object
being manipulated by the tool. An object is an umbrella term to include both tools
and manipulanda.

Robot tool use requires three skills. The first skill is perception. A robot should
identify and localize tools and manipulanda from the environment. For example,
to drive a slotted screw, the robot needs to align the slotted screwdriver with the
screw. Inaccurate pose perception of the screw will lead to misalignment, resulting in
the failure of the tool use action. To successfully drive a screw, position knowledge
alone is insufficient. In the above example, the tip of the screwdriver should both
be at the position of the top of the screw, and oriented in a way that the flat tip
of the screwdriver is aligned with the slot of the screw. Though challenging, the
perception requirement is not unique to tool use. General robot manipulation also
requires similar perceptual capabilities (Li et al., 2022).

The second skill of robot tool use is manipulation. Manipulation skills focus on
how to realize the required kinematics and dynamics of tool use actions. The actions
include two components as defined in Qin et al. (2021) and demonstrated in Figure
1.1: the contact poses and the course of the action. The contact poses include tool-
manipulandum contact poses and gripper-tool contact poses (i.e., grasping). These
poses consider both the translational (e.g., the tip of the pen should contact a point
on the paper) and the rotational (e.g., the pen should contact the paper close to
perpendicular to the plane of the paper, rather than parallel to it) relations of the tool
and the manipulanda, or the tools and the gripper. Manipulation also encompasses
both the tool trajectory (i.e., a time series of poses of a tool) and dynamics (i.e., the
forces required for successful tool use). Though the manipulation skills required in tool
use tasks may share similarity with general manipulation tasks, tool use additionally
requires that a robot should update its body schema when a tool is held (Stoytchev,

2003). For example, general manipulation tasks consider exerting certain forces at
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Figure 1.1: Components of an action. The diagram is adapted from Qin et al. (2021),
CC BY.

the end-effector, while tool use tasks concern how the forces be generated at the tool
rather than at the end-effector.

The third skill of robot tool use is cognition. This includes reasoning and plan-
ning tool use actions given the tasks and available tools. For example, a robot may
need to reason about how to grasp the tool to facilitate tool use, and determine
the tool-manipulanda contact pose, the trajectory, and the force needed to use tools
successfully. The robot also reasons about using a novel tool when learned tools
are unavailable. Moreover, the robot should plan to use multiple tools to achieve
a goal. Neurological evidence also supports that different cognitive processes were
involved when a human uses a tool compared with separate hand and tool actions
(Cabrera-Alvarez and Clayton, 2020).

The unique skills required by tool use distinguish tool use from general manip-
ulation tasks (for a review on robot manipulation, see Mason, 2018 and Kroemer
et al., 2021). Given the many challenges in robot tool use, this dissertation focuses
on cognitive challenges. Specifically, we investigate how to learn different types of
tool use tasks in a relatively uniform manner, how to perform planning when a chain
of tools needs to be used, and how tool use skills can benefit other sub-areas in
robotics such as human-robot collaboration (HRC). In order to gain tool use skills,

we focus on learning the interactions between the tools and manipulanda, including



tool-manipulanda contact poses as well as the actions of the tools. With learned tool
use skills, we explore how to expedite the planning of multiple tools by leveraging
and improving the-state-of-art task and motion planning algorithm (TAMP) (Garrett
et al., 2020). After investigating a robot using tools by itself, we examine how tool
use skills can facilitate collaborative tool-use tasks when a robot hands over a tool to
a human to perform a tool use task.

This dissertation begins with a review of studies in tool use in Chapter 2. We
first define robot tool use with insights from animal tool use research. We also devise
a taxonomy of tool use tasks, and identify the required skills of each sub-category.
We then organize existing tool use literature based on the taxonomy. We present
key findings that focus on one type of tool use as well as relevant lines of research in
general robot manipulation that share similar techniques. We conclude this chapter
by highlighting the open challenges in robot tool use.

The description of our work starts in Chapter 3. In this chapter, we present
the TRansferrIng Skilled Tool use Acquired Rapidly (TRI-STAR) framework. It is
an integrated, task-general system that can learn a wide range of tool use tasks with
minimal training samples. Moreover, it can generalize learned skills to novel tools and
manipulanda to perform. Furthermore, our representation allows skills to transfer to
other robots without additional training. These three advantages form the three
“stars” of our system.

Chapter 4 examines the problem of planning a sequence of tool uses in order to
complete a final goal. In this chapter, we present the Task, Affordance, And Motion
Planning (TAAMP) model, which adds an extra intermediate layer of affordance
planning to the classic algorithm of task and motion planning (TAMP). Affordance
planning detects what actions can be performed upon the manipulanda given the
current context. Therefore, it functions as a filter that restricts the search space of

motion planning. TAAMP can benefit both general manipulation tasks as well as



tool use tasks in identifying infeasible tasks and seeking solutions under constrained
environments.

In Chapter 5, we discuss how a robot should perform tool selection. In this chapter,
a robot learns tool use by observing human demonstrations, and generates a tool use
model that is represented with directed acyclic graphs. The robot then validates the
model by performing experiments with the tools. It may even augment the model
by attempting actions that have not been observed. The robot then is presented
with multiple tools, and it chooses the most appropriate tool to complete the task by
considering both whether a tool can enact required actions in this particular context
and how well the tool can afford the action in general.

In Chapter 6, we illustrate the importance of tool use knowledge in applications
beyond tool use. We applied the TRI-STAR framework in a human-robot collabo-
ration task to allow a robot to handover a tool to a human receiver to perform sub-
sequent tool use tasks. With tool use knowledge, a robot can generate task-oriented
handovers so that the human receiver requires minimum in-hand manipulations after
receiving the tools. Previous approaches to handovers mostly learned handovers from
demonstrations of hand overs. As a result, the learned handovers may be challenging
to generalize to scenarios where the tools need to be used in a novel way. In contrast,
our system can generate handovers based on the context.

Chapter 7 discuss our work presented in the previous chapters, including the
contributions of our work, as well as the limitations and future work.

This dissertation makes the following contributions to robot tool use:

1. We recognize the unique challenges in robot tool use tasks compared with tra-

ditional manipulation tasks.

2. We define robot tool use, develop a taxonomy of robot tool use tasks, and

identify required skills of subtypes.



3. We developmen the TRI-STAR framework that learns different types of tool-use

tasks uniformly and efficiently.

4. We expansion of classic TAMP to perform tool use tasks that require the use

of multiple tools in sequence.

5. We recognize the importance of learning tool use skills and present an applica-

tion of tool use knowledge in collaborative tool use tasks.



Chapter 2

A Definition, a Taxonomy and a

Review of Robot Tool Usel

In this chapter, we define robot tool use and introduce a taxonomy of tool use tasks
with insights from animal tool use literature. Next, we enumerate the skills required
for each type of tool use task. Finally, we provide a comprehensive review of robot
tool use literature organized based on the taxonomy. We focus on (1) the unique
challenges of tool use tasks compared with general manipulation tasks and (2) current
advancements in robot tool use. We conclude this chapter by identifying the open

challenges remaining to be solved in robot tool use.

2.1 Definition of Robot Tool Use

Tool use was initially considered a unique behavior only shown in humans (Oakley,
1944). Though still rare, researchers observed tool use behaviors in animals from
invertebrates to non-human primates. We focus on the implications of these ani-

mal studies for robot tool use, rather than on the implications for animal cognition.

'Portions of this chapter are under review: M. Qin, J. Brawer, and B. Scassellati. A Survey:
Robot Tool Use.



Therefore, the review of animal tool use studies is not meant to be comprehensive.

While tool use is an intuitive and commonplace part of everyday human affairs,
researchers have had difficulty reaching a consensus on a precise definition of tool use.
Van Lawick-Goodall (1970, p. 195) defined tool use as “the use of an external object
as a functional extension of mouth or beak, hand or claw, in the attainment of an
immediate goal,” emphasizing the goal-oriented and functional character of tool-use.
Alcock (1972, p. 464) revised the definition by specifying the kind of objects that
can be used as tools and identifying the scope of the goals: “Tool-using involves the
manipulation of an inanimate object, not internally manufactured, with the effect of
improving the animal’s efficiency in altering the form or position of some separate
object.”

Beck (1980) identified a number of shortcomings with these definitions. First, only
objects that are portable and manipulable should be considered as tools. Under this
definition, dropping a stone on an egg would be considered an example of tool use,
but pounding a fruit on a tree would not be. The latter case is considered proto-tool-
use (Parker and Gibson, 1977). Second, an agent should understand the connection
between the goal and the tool. Otherwise, the conditioned behavior of a rat pressing
a lever in a Skinner box would be considered tool use, and Beck considered this
inappropriate. Third, the tool need not be externally manufactured to the agent
using it nor inanimate. Researchers observed that captive apes threw feces toward
human intruders, and a chimpanzee utilized the dead body of a colobus monkey to
hit a conspecific, suggesting that a live ape could be utilized in a similar way. Beck
argued that these behaviors should be considered tool use. Fourth, the goal of tool use
can be extended beyond feeding or drinking to other goals such as self-maintenance.
As a result, Beck (1980, p. 10) re-defined tool use as “the external employment of
an unattached environmental object to alter more efficiently the form, position, or

condition of another object, another organism, or the user itself, when the user holds



or carries the tool during or just prior to use and is responsible for the proper and
effective orientation of the tool.”

For decades, Beck’s definition has been accepted widely in the field of animal
cognition and was even adopted in early robot tool use studies (e.g., Stoytchev, 2007).
Two observations motivated St. Amant and Horton (2008) to propose a new definition
of tool use. Kriitzen et al. (2005) reported that dolphins hold marine sponges in their
rostrum in order to prevent potential injuries when probing for food. Breuer et al.
(2005) observed that a wild gorilla tested the depth of water with a stick while it
walked across a pond. These two behaviors fall outside of Beck’s definition of tool use
since they do not involve altering the state of another object. St. Amant and Horton
were also concerned about Beck’s definition that it over-emphasized peripheral aspects
of tool use, such as the unattached property; an animal can use a stick that is still
attached to a tree as a tool. Moreover, they argued that Beck’s definition is vague to
determine whether a goal was achieved accidentally. They observed that purposeful
behaviors require a continuum of control. Therefore, St. Amant and Horton (2008,
p. 1203) re-defined tool use as “the exertion of control over a freely manipulable
external object (the tool) with the goal of (1) altering the physical properties of
another object, substance, surface or medium (the target, which may be the tool user
or another organism) via a dynamic mechanical interaction, or (2) mediating the flow
of information between the tool user and the environment or other organisms in the
environment.” They elaborated that the interactions between tools and manipulanda
should be dynamic. Under this definition, stacking boxes to reach bananas is not tool
use since the interactions between boxes remains fixed once they have been stacked,
while cracking a nut with rock is tool use because the interactions between the nut
and the rock is constantly changing.

Influenced by St. Amant and Horton’s argument, Shumaker and Walkup joined

Beck to revise the Beck’s widely accepted definition: “the external employment of an



unattached or manipulable attached environmental object to alter more efficiently the
form, position, or condition of another object, another organism, or the user itself,
when the user holds and directly manipulates the tool during or prior to use and is
responsible for the proper and effective orientation of the tool.” (Shumaker et al.,
2011, p. 36) We based our definition of robot tool use on this revised definition.

Other definitions of tool use in animal studies exist. Some may simply be shorter
versions of these definitions (e.g., Chevalier-Skolnikoff, 1989; Matsuzawa, 1999). Oth-
ers may disagree with the scope of tool use. For example, Asano (1994) did not
restrict the tools to be something being held. This might result in the scope of tool
use being overly broad since any behavior may eventually count as tool use, such as
walking, which utilizes the ground as the “tool”. Lestel and Grundmann (1999) ex-
pands the scope of tool use even more by including abstract concepts such as culture
as potential tools. These discussions may be too philosophical and lack operational
details for robotics research.

We identify three essential points in these definitions. First, tool use must have a
goal, despite a lack of consensus regarding a goal’s scope. Second, instead of achieving
a goal through random exploration, an agent utilizing a tool should understand the
connection between the goal and the behavior. Third, the tool should satisfy specific
physical criteria, such as being freely manipulable. Based on these points, we define

robot tool use as:

A robot attaches or secures to its end-effector an external, unan-
imated, freely available object or an object attached to another
object, in order to achieve a goal of altering the state of another
object, updating its own state, or other goals, through purpose-

ful manipulations.

Our definition adopts Shumaker et al.’s definition with minor modifications. First,

we restrict the tools to be externally manufactured and unanimated. Unlike living
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creatures, a robot typically does not produce materials (e.g., feces, spider webs) from
its body. We require the tools to be unanimated because an animated object that a
robot would most likely manipulate is another robot. We consider this a better fit to
the area of multi-agent systems rather than tool use since it involves synchronization
and communication between robots. Second, we relax the interactions between the
tool and object to be manipulated to be dynamic or static. Therefore, using a con-
tainer to relocate other objects would count as tool use. Third, we relax the goal of
tool use. The scope of the goals in animal tool use was summarized based on animal
behavioral observations. Given that tool use in animals is structurally simple even in
non-human primates (Fragaszy and Eshchar, 2017), the goals in the above definitions
are restricted to altering the state of another object and updating one’s knowledge
about the environment. In contrast, as robots often utilize human tools, robot tool
use is motivated by the same goals for which these tools were designed, goals that
can far exceed in scope and complexity those observed in animal studies. On the
contrary, robots are required to utilize human tools. The design of human tools is
more complex than those used by animals so that human tools may serve purposes
beyond the goals identified in animal studies. Therefore, we prefer not to restrict the

scope of the goal of robot tool use.

2.2 A Taxonomy of Robot Tool Use

In this section, we overview taxonomies proposed in animal and robotics studies, and
present a taxonomy on robot tool use.

Alcock (1972) proposed a dichotomy of tool use in animals: stereotyped tool use is
seen mostly in invertebrates and fish and flexible tool use is typically seen in birds and
mammals. Hunt et al. (2013) considered this dichotomy an accurate description of

two fundamental types of tool use with different underlying processes, despite being
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oversimplified. Stereotyped tool use is inherited and animals only utilize tools in
default ways in particular contexts. Examples of stereotyped tool use include antlions
throwing sand to capture prey (Alcock, 1972). The species of antlions developed this
behavior from the pre-existing non-tool use behavior of random sand flicking in order
to maintain their pits. The tool use behavior of antlions throwing sand evolves as a
phenotypic change in this species. As a result, these behaviors are widespread across
the species of antlions and rarely vary within and across individuals.

In contrast, flexible tool use, which is also referred to as creative tool use, is
learning-based that animals explicitly reasoning about the usages based on the con-
text. It is this type of tool use that some believe signals intelligence (Call, 2013) and
interests researchers in animal cognition. Chimpanzees’ cracking nuts with rocks and
fishing termites with sticks are examples of flexible tool use (Biro et al., 2003; Lons-
dorf, 2006), as a juvenile chimpanzee acquires such skills by observing its parent(s).
Therefore, the learning happens at the level of the individual, rather than at the level
of genus. Indeed, each instance of nut cracking or fishing termites can be differenti-
ated even within the same context by the same chimpanzee. Unlike stereotyped tool
use, flexible tool use does not share context-dependency and thus can occur across
different contexts. We summarized the differences between stereotyped tool use and
flexible tool use suggested by Hunt et al. in Table 2.1.

Call (2013) further identified different types of flexible tool use from the perspec-

tive of problem-solving in terms of creativity and adaptivity:
e Solving novel problems with old solutions;
e Solving old problems with novel solutions;
e Solving novel problems with novel solutions.

Solutions may include utilizing one tool, selecting a tool from available options, man-

ufacturing a novel tool, or using multiple tools sequentially.
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Stereotyped Tool Use Flexible Tool Use

Distribution | genus level individual level

Development | phenotypic changes stemed | observational learning
from pre-existing non-tool use

behaviors
Variability almost no variations within and | very different within and be-
between individuals tween individuals

Table 2.1: Comparison of stereotyped tool use and flexible tool use based on Hunt
et al. (2013)’s descriptions.

In contrast to the above taxonomies, Wimpenny et al. (2009) categorized tool use
based on the number of tools involved in a problem but overlooked the complexity of
the decision process. Boesch (2013) categorized tool use based on four levels of in-

creasing complexity though in some sense reminiscent of Wimpenny et al.’s approach:

e Simple tool use: Using one tool, e.g., a chimpanzee uses a twig for fishing ter-
mites (Goodall, 1964). The animal only needs to understand the connection
between itself and the reward via the tool, which is a first-order problem (Visal-

berghi and Fragaszy, 2006);

e Combined tool use: Using two tools simultaneously, e.g., a capuchin monkey
uses a rock to pound a nut on a hard surface (Spagnoletti et al., 2011). The
animal needs to consider both spatial relationships concurrently to connect itself
with the reward, which is a second-order problem (Visalberghi and Fragaszy,

2006);

e Sequential tool use: Using multiple tools one after another, including using a
tool for manufacturing another tool, e.g., a chimpanzee using multiple tools in
sequence to break a bee hive, open honey chambers, and extract the honey.

This behavior not only requires the animal to keep in mind multiple causal

13



relationships sequentially and choose the correct sequence, but also imposes

temporal delay for the reward;

e Composite tool use: Combining multiple tools to use as one tool, a tool use

behavior yet to be discovered in animals and currently unique to humans.

While the above taxonomies are based on animal studies, Tee et al. (2018, 2022)
proposed a categorization based on default usages of tools, and identified three types
of tools: category-I tools that “help to amplify /augment certain kinematic or dynamic
aspects of functions that are already in an agents repertoire.” (p. 6439), category-II
tools that are similar to category-I tools but “require actions different from what the
agent would have performed, without the tool, to achieve these functions.” (p. 6439),
and category-III “provide new functions that a human cannot perform without a tool.”
(p. 6440) As an example, they categorized a vacuum cleaner as a Category-III tool
because a robot cannot perform a cleaning task without this tool. However, a vacuum
cleaner can be used as a rake to reach objects or as a hammer to hit objects in other
contexts. In these contexts, the vacuum cleaner should be classified as category-I
tools. Given that this categorization does not consider contexts of tool use, it will
be challenging for a system following this categorization to perform flexible tool use,
which is context-based.

Based on the taxonomies of animal tool use and the characteristics of robot tool
use, we devise a taxonomy as shown in Figure 2.1. We categorize robot tool use into
non-causal tool use and causal tool use, which are similar to stereotyped tool use and
flexible tool use in animals, respectively. We changed the terminology for two reasons.
Frist, we would like to emphasize the fundamental differences between the two types
of tool use behaviors in robots regarding whether robots should understand required
causal relations, which are elaborated in Section 2.3. Second, though we consider
it necessary for a robot to understand required causal relations in order to achieve

behaviors similar to flexible tool use, there is a lack of evidence showing the mechanism
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Figure 2.1: Tool Use Taxonomy.

of flexible tool use in animals. Therefore, we would like to avoid claiming that flexible
tool use in animals is causal-based, and such discussion is beyond the scope of this
dissertation.

We further categorize causal tool use into single-manipulation tool use and multiple-

manipulation tool use based on Boesch’s taxonomy. A single manipulation refers to
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being presented with a single tool and using the tool to perform one action (e.g.,
pushing, scooping) in order to achieve one goal, though a robot may observe the
usage of multiple tools to learn a task. Multiple manipulations may involve one or
any combinations of multiple tools, multiple actions, and goals consisting of multiple
sub-goals.

Inspired by Call’s taxonomy, we categorize single-manipulation tool use into basic
tool use, transferable tool use, improvisatory tool use, and deductive tool use. Basic
tool use is the most basic form of tool use. In basic tool use, a robot uses a learned
tool to solve a learned task, such as pushing a block, striking a xylophone, and cutting
a cake. Unlike non-causal tool use that exclusively focuses on the actions, basic tool
use focuses on the causal relations between actions and effects. Transferable tool use
is a more complicated form of tool use, which aims to transfer learned tool use skills
to other intra-category objects that share common form factors (e.g., using mugs
of different shapes to pour liquid into different containers). Improvisatory tool use
adds further complexity by generalizing learned tool use skills to novel inter-category
objects. These objects are generally not designed to perform these tasks, such as
using the handle of a screwdriver in place of a hammer to drive a nail. Deductive tool
use concerns the problem of using a novel tool to solve a novel task. A robot will not
be provided any prior knowledge about the tool or the task, nor given opportunities
to learn about them from demonstrations. Instead, the robot should deduct the usage
of a tool from its physical knowledge about the world.

We categorize multiple-manipulation tool use into combined tool use, sequential
tool use, tool selection, and tool manufacturing. Combined tool use and sequential
tool use are similar to the definitions as in Boesch’s taxonomy, though sequential tool
use does not include constructing a new tool in our definition as it requires more
sophisticated manipulation skills. Tool selection refers to the process of choosing the

most appropriate tool among many options in order to complete a tool use task. Shu-
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maker et al. (2011) defined tool manufacturing as “simply any structural modification
of an object or an existing tool so that the object serves, or serves more effectively,
as a tool.” This definition only includes modifying an existing object. We combine
this definition with composite tool use in Boesch’s taxonomy, and re-define tool man-
ufacturing as the process of modifying or combining objects or existing tools, with
or without the usage of other tools, to complete a tool use task, or to complete the
task more efficiently. Different from Shumaker et al. and Boesch’s definition, our
definition also explicitly includes the possibility of utilizing other tools in the process
of manufacturing.

We do not enforce a subdivision of multiple-manipulation tool use by difficulty,
unlike a comparable category in Boesch’s taxonomy. Boesch was able to rank the
categories in animal tool use because the types of tools leveraged by non-human
animals are comparatively limited, and the manipulation skills in these animals are
usually relatively simple. In robot tool use, the difficulty is dependent on the actual
problem to solve, rather than the category that the problem belongs. For example,
utilizing two tools in sequence may be simpler than creating a new tool that requires
sophisticated manipulation skills. However, a problem that requires planning to use
ten tools may be more challenging than a problem that requires a robot to combine

two parts as a new tool.

2.3 Required Skills of Robot Tool Use

Our definition of tool use has three important components: objects, goals or desired
effects, and manipulations or actions to achieve the goals. These three components
agree with the three ingredients of the affordance model defined by Montesano et al.
(2008). The affordance model attempts to provide an operational definition of the

concept of affordances, whose precise definition is still debatable (for a review, see
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Manipulation
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inputs outputs function

(O, A) E Predict effect

(O, E) A Action recognition & planning
(A E) 0} Object recognition & selection

Figure 2.2: The modified affordance model in Montesano et al. (2008) (©)2008, IEEE
(The IEEE does not require individuals working on a thesis to obtain a formal reuse
license). Affordances as relations between (A)ctions, (O)bjects, and (E)ffects that
can be used to address different purposes: predict the outcome of an action, plan
actions to achieve a goal, or recognize objects or actions. We update the colors of the
model and represent manipulation skills with brown, cognition skills with pink, and
perception skills with grey.

Jamone et al., 2016 and Zech et al., 2017). The concept was first introduced by
Gibson (1979, p. 127) as what the environment “offers the animal, what it provides
or furnishes, either for good or ill”. Despite the lack of consensus around its definition,
the concept of affordances has facilitated much robotic research (Stoytchev, 2005b;
Cakmak et al., 2007; Ruiz and Mayol-Cuevas, 2018; Lueddecke et al., 2019; Katz
et al., 2014; Moldovan et al., 2012, 2013).

The affordance model by Montesano et al. formulated affordance as three-way
relations between objects, actions, and effects. Figure 2.2 shows our modified ver-
sion of this affordance model with coloring. The coloring captures the three skills
required for robot tool use as described in Chapter 1. While generating actions re-
quires manipulation skills, perceiving the effects and the objects demands perception

skills. Understanding the connections between the nodes in the model needs cognition
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skills. The key to robot tool use is to understand tool affordances.

Each subtype of tool use in our taxonomy addresses different aspects of affordances
and requires different skills, as shown in Figure 2.3. Non-causal tool use focuses on
generating desired motions, which correspond to the action node in the affordance
model. While the manipulation skills are similar to the ones in general manipulation
tasks, tool use tasks require additional manipulation skills, such as updating a robot’s
body schema when a tool is attached to its gripper.

Causal tool use involves learning and applying tool affordances, which focuses on
cognition skills. Single-manipulation tool use learns and reasons about affordances.
Among the different types of single-manipulation tool use, basic tool use learns how
to achieve desired effects with actions. With learned relations between actions and
effects, transferable tool use learns the relations between tools and actions in order to
adjust actions based on novel tools that share similar form factors with the learned
tools. In addition to these two relations, improvisatory tool use requires a robot
to understand what specific tool features cause the effects so that it can generalize
learned skills to inter-category objects. As a result, improvisatory tool use requires a
robot to learn the entire affordance model. These tool use tasks generalize tool use
to novel objects by learning and inducing affordance from observations. In contrast,
deductive tool use requires a robot to complete a tool use task without prior knowledge
using unlearned tools. As a result, the robot has no information to induce affordance
and should perform deductive reasoning from general physical rules.

Multiple-manipulation tool use applies rather than learns the affordances. In ad-
dition, tool manufacturing requires more sophisticated manipulation skills; sequential
tool use and tool selection require higher cognition skills; tool manufacturing requires
a high level of manipulation and cognition skills. We summarized the additional skills

required in each sub-type in Figure 2.2, and we will elaborate more in Section 2.4.3.
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Figure 2.3: The different aspects of tool affordances need to be addressed in the
subtype of tool use.



Additional Cognition Skills

Additional
Manipulation Skills
Reasoning Planning
Combined | Coordinate the use | Choose appropriate | N/A
Tool Use of multiple tools parameters for each
tool use
Sequential | N/A N/A Plan the order of us-
Tool Use ing multiple tools
Tool N/A Choose appropriate | N/A
Selection tools among many
available tools
Tool Man- | Perform the actions | Choose appropriate | Planning the order
ufacturing | of assembling differ- | parts to be assem- | of the manufactur-

ent parts together as
a tool, or modify the
current tool

bled and decide
where to attach each
part, or decide the
desired state of the
unmodified tool

ing, which may in-
clude sequential tool
use

Table 2.2: Additional skills required in multiple-manipulation tool use beyond single-

manipulation tool use.

2.4 Robot Tool Use Literature

In this section, we organize robot tool use literature based on our taxonomy. As
different levels of assumptions can be made, we would like to point out that techniques
that focus on the unique challenge in a higher-level tool use may not necessarily allow
a robot to handle the challenges that belong to lower-level tool use. In each section,
we focus on the techniques that can solve the unique challenge at each level of tool

use. We would also like to emphasize that the purpose of robot tool use is not to

mimic or model how animals use tools, but rather to allow robots to use tools.
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2.4.1 Non-Causal Tool Use

Non-causal tool use is the ability to use learned tools to solve learned tasks, without
understanding the cause-and-effect relationship between the actions and the goals.
The purpose of non-causal tool use is to duplicate or reproduce actions with limited
variations. It could be achieved by programming a wide variety of tool use actions
such as nut fastening in aircraft production that requires high precision (Pfeiffer et al.,
2017), stub grinding and deburring with force control (Robertsson et al., 2006), hand-
writing that involves multi-contact manipulation (Kim et al., 2014), furniture polish-
ing that uses an impedance model (Nagata et al., 2001), generating a collision-free
polishing path (Takeuchi et al., 1993), accurately drawing a circle with a compass
that involves complex contacts (Kutsuzawa et al., 2017), unfastening screws in col-
laborative tasks (Li et al., 2020), and pouring based on the volume of liquid (Rozo
et al., 2013), or actions relevant to tool use such as grasping a knife resting on a cut-
ting board that requires a high level of dexterity (Xue and Jia, 2020), or segmenting
a surgical tool from the background while using it (Su et al., 2018; Garcia-Peraza-
Herrera et al., 2017). The purpose of these approaches is to automate one process
to facilitate human work. Therefore, the implementations are designed to be highly
specific to the task.

However, given the wide range of tasks, it is impractical to program all tool use
tasks. Being able to learn these tasks is desired. One approach is to treat tool use tasks
the same way as general manipulation tasks and learn the actions accordingly. One
of the classic algorithms of learning actions is dynamic movement primitives (DMP)
(Schaal, 2006; Ijspeert et al., 2013). DMP leverages the concept of attractors from
dynamical systems, and actions are represented as a set of linear differential equations.
A more intuitive approach to understanding DMP is to visualize the equations as
vector fields, where a trajectory is formed by following the vectors from a starting

point to an end point. Each dimension may need to be learned separately and then
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coupled together. One advantage of DMP is that the shape of the trajectory can be
distorted based on the starting point and the end point. DMP and its variations have
been demonstrated with tool use tasks such as swinging a tennis racket (Schaal, 2006;
[jspeert et al., 2002), playing table tennis (Muelling et al., 2010), playing ball-in-a-
cup (Kober et al., 2008), pouring liquid (Pastor et al., 2009), and whiteboard cleaning
(Kormushev et al., 2011). Algorithms other than DMP have also been employed to
represent action primitives, such as probabilistic movement primitives (Paraschos
et al., 2013) and Fourier movement primitives (Kulak et al., 2020). Actions were also
parameterized as minimal plans to facilitate action interpretation (Guha et al., 2013).
To handle tasks that require high manipulation precision such as using chopsticks,
model-free imitation learning was chosen (Ke et al., 2021). For tasks that do not
require high precision of force or position control, indirect force controllers (Lutscher
and Cheng, 2013) or a unified algorithm for dynamic object manipulation (Tsuji et al.,
2015) can be considered. While these are methods designed to learn actions, general
learning methods such as deep learning (Droniou et al., 2014; Byravan and Fox, 2017)
and reinforcement learning (Peters and Schaal, 2006) were also used.

While these studies focus on learning actions, others focus on segmenting continu-
ous actions into action primitives for tool use (Lioutikov et al., 2017; Ramirez-Amaro
et al., 2014a). A similar line of research on general manipulation tasks is to recognize
the tasks based on the classification of actions (Hu et al., 2014; Shao et al., 2021;
Ramirez-Amaro et al., 2014b, 2015; Wolfel and Henrich, 2018; Koch et al., 2022).
This approach attempts to ground action profiles to labels, either primitive labels or
task labels, and do not relate actions to the effects on the objects being manipulated.
For example, the whiteboard swiping action will be characterized as the translational
movement of the eraser in this approach, rather than the words being erased, which
is the effect. While grounding action profiles to labels is useful in some applications,

it does not permit causal tool use.
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The above studies treated tool use tasks in the same manner as general manip-
ulation tasks. As a result, they cannot adjust actions based on how the tools are
grasped since they do not have tool-related knowledge. In order to accommodate
the tools attached to the end-effector, a robot needs to update its body schema to
include the tools, or in other words, to calibrate the tool in the gripper. Prior studies
focus on updating robot kinematics by considering the tip of a tool (e.g., Kemp and
Edsinger (2006)), which is considered the primary contact point between the tool and
the environment. Among these studies, some manipulated the tool with kinematic
control (Stoytchev, 2003; Nabeshima et al., 2005), and others found it necessary to
perform dynamic control (Nabeshima et al., 2007; Karayiannidis et al., 2014; Hoff-
mann et al., 2014a; Jamone et al., 2013; Kemp and Edsinger, 2006). Despite these
studies’ success, considering the tool’s tip only is insufficient for all tool use tasks. For
example, it is insufficient to know where the tip of a mug is when it is used to pour
liquid into another container. The mug needs to be tracked with multiple markers
attached to it (Lee et al., 2008). Another example is joint tools such as a pair of
scissors. In this scenario, a grounded relational representation of the entire tool is
needed (Katz et al., 2008). Beyond tool calibration, other studies explored collision
detection (Colgate et al., 1995) and obstacle avoidance (Lee and Song, 2021) with
tools attached to the gripper, as well as robot motion planning to complete tool use
tasks (Holladay et al., 2019; Kobayashi and Hosoe, 2009) or planning for the grasping
of the tool (Raessa et al., 2019; Chen et al., 2019; Lin and Sun, 2015) in robot motion

generation.

2.4.2 Causal Tool Use — Single-Manipulation Tool Use
Basic Tool Use

Though both basic tool use and non-causal tool use leverage learned tools to solve

learned tasks, basic tool use can adjust actions based on the desired effects while non-
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causal tool use cannot. In other words, basic tool use requires robots to understand
the causal relations between actions and effects. For example, a robot performing
basic tool use is able to push an object further away given a target region that is
further away, while a robot performing non-causal tool use will simply attempt to
duplicate learned actions and does not adjust the actions based on the target region
that is further away.

Sinapov and Stoytchev (2008) conducted an early study to explore the relation
between actions and effects with motion babbling. They utilized six different tools
(T-stick, L-stick, straight stick, L-hook, Y-hook, and an arrow-shaped tool) to re-
locate a puck with six pre-defined exploratory behaviors (i.e., push, pull, slide-left,
slide-right, rotate-left, and rotate-right). For each tool, the robot learned the distri-
bution of movement trajectories of the puck relative to its starting location. Forestier
and Oudeyer (2016) employed an active version of Model Babbling to explore the
distribution of manipulanda after tool use with two different sticks. These studies
focus on the potential distribution of the location of manipulanda, rather than the
one-to-one relationship between an action and its effect. Therefore, it is challenging
to utilize tools to achieve desired effects with this method.

Other studies learned the one-to-one relation of an action and its effect, though
in a quantitative manner. Okada et al. (2006) focused on verifying the effects as
success or failure of tool use tasks such as pouring. Pastor et al. (2011) focused on
predicting whether an object has been successfully struck by a pool cue or flipped
using chopsticks. Studying the relation of an action and its effect in this manner is
suitable if the state of the effects is discrete, but may not fit tool use tasks whose
effects are continuous such as pushing an object ten centimeters to its right.

Studies that focus on learning the one-to-one relation of an action and its effect
in a qualitative way generally employed tasks that result in the relocation of ma-

nipulanda. Stoytchev (2005a, 2008) pre-defined eight pulling actions and recorded
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the effects of these actions with five different tools into an affordance table. As the
actions were discretized, the effects can also be categorized in discretized space. In
the evaluation, a robot needed to choose appropriate actions based on the affordance
table in order to pull the manipulanda into a goal region, given one of the learned
tools. Though Tikhanoff et al. (2013) also leveraged pre-defined actions, they allowed
the actions to be parameterized with continuous variables, e.g., a randomly sampled
pushing direction. Rather than keeping an affordance table, they used Least Square
Support Vector Machines to regress the actions to the effects. Elliott et al. (2016) con-
sidered more types of push and pull. They also leveraged two regression techniques:
linear regression and Gaussian process regression. Other than pulling and pushing
tasks, Elliott and Elliott and Cakmak (2018) explored cleaning tasks to relocate dirt.
As the manipulanda are clusters of rigid bodies rather than a single rigid-body ma-
nipulandum, they represented the surface as a grid, and trained a pixel-level classifier
to predict whether each pixel contains dirt after an action. The robots in the above
studies explored tool use by themselves, pre-defined actions are necessary. In con-
trast, Liu et al. (2018) did not pre-define actions and took the method of imitation
learning and learned with deep reinforcement learning.

These studies focus on pushing and pulling tasks. A common feature of these tasks
is that the desired effect determines how a tool should contact a manipulandum.
Other tool use tasks may permit multiple equally viable ways for a tool to make
contact with a manipulandum to achieve the same effect. For example, pouring
liquid from different orientations all result in the same effect of a container being
filled. Claassens and Demiris (2011) conducted preliminary studies and termed such
properties with affordance symmetries. Affordance symmetries are important because
a robot will be able to generate different trajectories to complete a tool use task
when the learned contact results in collision. However, few studies have explored this

direction to our knowledge.
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Transferable Tool Use

Transferable tool use describes the ability to take tool use skills trained on an object
to other intra-category objects defined by a common form factor. Therefore, the key
to transferable tool use is to match the unlearned objects with learned objects.

We first present studies that concern specific types of tool use tasks. Most of these
focused on relocation tasks such as pulling and pushing. Mar et al. (2017) and Nishide
et al. (2011) leveraged self-organized maps to extract tool features to avoid the need to
pre-defining the features. Takahashi et al. (2017) learned a model with a deep neural
network that incorporated both grasping information and tool functions. Vogel et al.
(2017) searched for the “sweet spot” of a novel baseball bat-like object when used to hit
a baseball by sensing the force at the end-effector. Other studies considered pouring
tasks. Kroemer et al. (2012) used a kernel-based approach to generalize learned action
skills to novel objects. Brandi et al. (2014) performed warping to the point cloud of
a learned container to match a novel container. Dong et al. (2019) adjusted pouring
behavior by estimating the volume of liquid in the unknown containers. While these
studies attempted to transfer tool use skills to novel tools, other studies explored how
to act upon novel manipulanda. Gemici and Saxena (2014) sought to transfer cutting
skills to food of varying physical properties such as hardness. Elliott et al. (2017)
transferred learned surface cleaning actions to different surfaces, including surfaces of
different sizes. Li et al. (2018) developed the Push-Net so that the system can push
novel objects for re-positioning and re-orientation.

Though these studies demonstrated promising results on specific tool use tasks,
it is unknown whether these algorithms could generalize to other types of tool use
tasks. Therefore, other researchers investigated algorithms that transfer learned skills
more broadly and demonstrated with multiple tool use tasks. Tee et al. (2018, 2022)
matched the point cloud of unseen tools to the point cloud of the end-effector and

arms of the robot to obtain the usage of the tools. The kPAM/kPAM 2.0 (Gao and
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Tedrake, 2021; Manuelli et al., 2019) used keypoints on the tools to represent shared
global shape of the category of tools, and tool use skills were inferred from these
keypoints. Stiickler and Behnke (2014b); Stiickler et al. (2016, 2013); Stiickler and
Behnke (2014a, 2015) considered the point cloud presentation of tools and performed
deformable registration with different levels of resolution in order to match the overall
shape of the tools.

The approach of these studies requires two steps: one to learn tool use skills as
basic tool use, and one to learn the transfer process. Other studies merged the two
steps and learned them in one step. Sinapov and Stoytchev (2007) incorporated the
shape of the tool when learning tool use models for the pulling task. As a preliminary
model, transferr was only demonstrated with tools of the same shape but different
sizes. Gongalves et al. (2014a,b) utilized a Bayesian network to learn how the actions
and tool shapes influence the effects. The shape parameters include area, convexity,
eccentricity, compactness, circleness, and squareness. Due to the large size of the
network, it needed to be reduced to be able to train effectively. They validated
their technique with pulling and pushing tasks. Dehban et al. (2016) took a similar
approach but overcame the drawback of the need for a discretization of data. To be
able to handle grasping, Mar et al. (2015) leveraged support vector machines to map
geometric features between learned and novel tools for pulling.

There are pros and cons of these two approaches. Training everything in one step
may be more convenient, but the feature space can be quite large and requires more
data. Training in a modular way will make it easier to diagnose when the algorithm
does not function as intended. It will also make it easier to modify or incorporate

new features as the former requires the entire model to be retrained.
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Improvisatory Tool Use

Improvisatory tool use describes the ability to use tools in a creative way, which
involves generalizing learned tool use skills from objects designed for the tasks to
inter-category objects. These objects may not share common form factors with the
canonical tools. Therefore, local features of the tools that lead to the desired effects
should be identified.

While transferring tool use requires a robot to infer how actions are affected by
novel tools given the relation between actions and effects, improvisatory tool use
requires a robot to also understand what features of the tools caused the effects,
which is the relation between tools and effects. In other words, improvisatory tool
use calls for the learning of the full affordance model (Montesano et al., 2007, 2008).

In order to identify local features in unlearned tools, the function of a tool needs to
be detected on a per-part basis. Insights can be gained from a related line of research
that explores task-oriented grasping of novel objects. These studies made efforts to
detect the functional part of a tool in different tasks so that the system can generate
different grasping of the same object based on the task (Myers et al., 2015; Song
et al., 2010, 2011b,a; Ek et al., 2010; Madry et al., 2012; Song et al., 2015; Murali
et al., 2020; Kokic et al., 2017; Detry et al., 2017). Similar to these studies, studies
that focus on part detection for tool use also leveraged geometric features. Schoeler
and Worgotter (2015) segmented the tools and used graphs to represent the relations
between different tools parts. Nakamura and Nagai (2010) learned the full affordance
model. They provided human static demonstrations without showing the course of
actions, and detected local features with the Scale Invariant Feature Transform.

Given the functions of each tool part alone, a robot cannot realize improvisatory
tool use since a robot have no knowledge about how to orient a tool. The robot needs
to combine the tool parts information with tool use knowledge. Due to challenges

in modeling grasping, Fitzgerald et al. (2019) achieved the goal with human-guided
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adaptation that gained information on how to improvise each tool from human demon-
strators. To improvise tool use without the need of human demonstrations for each
tool, Agostini et al. (2015) learned actions with a modified DMP and used a Reposi-
tory of Objects and Attributes with Roles to detect potential usages of a tool. This
method is based on matching the global shapes of tools. Though this method can
perform some improvisatory tool use (e.g., utilizing a knife vertically for stirring in a
way similar to using a spatula), the transfer is limited. Other studies considered both
global and local features. Fang et al. (2020) and Xie et al. (2019) took 2D images
as input and trained neural networks for improvisatory tool use. While these studies
learned tool use skills and tool feature detection together, other attempts learned
them in a modular manner. Jain and Inamura (2013) manually pre-defined local fea-
tures, discretized actions for the pulling and pushing tasks, and trained a robot with
a T-shaped tool. They claimed that the skills could be generalized to novel tools,
though no demonstration was provided. The Keto framework (Qin et al., 2020) and
the GIFT framework (Turpin et al., 2021) generated keypoints on the tools, such as
grasping points and function points, based on local features. The robot then planned
motion based on the keypoints. However, the keypoint approach may have difficulty
on tasks where the tool contact point cannot be readily represented using only one
point on the surface, such as a pencil sharpener whose contact is inside the object
and the contact is more than a single point. Without using keypoints, Abelha and
Guerin (2017), Gajewski et al. (2019), Abelha et al. (2016), and Guerin and Ferreira
(2019) characterized the point cloud of a tool by approximating each of its segments
with superquadrics and superparaboloids. They parametrized tool use with so-called
p-tools, and demonstrated their technique with a wide range of tasks such as hammer-
ing and scooping in simulation or on a physical robot. While these studies utilized
visual features to transfer tool use, Zhu et al. (2015) included both geometric and

physical features such as mass.
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Deductive Tool Use

In deductive tool use, a robot should be able to utilize a novel tool to solve a task
for which it has no prior knowledge. This is a very challenging task, and no current
studies can perform deductive tool use to our knowledge. This type of tool use requires
a robot to infer the entire affordance model, which is the relations between actions,

effects, and tools, without tool use training samples as in improvisatory tool use.

2.4.3 Causal Tool Use — Multiple-Manipulation Tool Use

Multiple-manipulation tool use involves many different types of tool use. Unlike
single-manipulation tool use, the subtypes of multiple-manipulation tool use may not
be interrelated. Compared with single-manipulation tool use, they may require more
sophisticated manipulation skills and cognition skills such as planning, which are
generally not needed in single tool use where only one tool use task is considered.
In terms of tool knowledge, they usually require the full model of tool affordance

knowledge.

Combined tool use

Combined tool use refers to using multiple tools simultaneously, such as using a fork
and a knife to cut a steak. No prior studies have demonstrated combined tool use
to our knowledge. We identify two main challenges of combined tool use. The first
challenge is at the cognition level. A robot should choose the appropriate parameters
for each tool use, such as where to cut with the knife and where to stab the steak
with the fork. The second challenge is at the manipulation level, which is how to
coordinate the actions of each tool. It involves collision-free motion planning and
adjusting the actions of one tool based on the other tool. For example, the force
exerted on the fork to stabilize the steak is dependent on the course of the cutting

action with the knife. Though generating collision-free motion planning may share
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similar techniques in multi-agent systems (for a review, see Rossi et al. (2018); Ismail
et al. (2018); Rasheed et al. (2022)), how to choose appropriate parameters and how to
coordinate tools are issues specific to tool use and may need to be handled differently

from general manipulation tasks.

Sequential tool use

Sequential tool use involves completing multiple tool use tasks in order. Yamazaki
et al. (2010) designed an integrated system of daily assistive robots and applied it to
the task of tidying and cleaning rooms. This system focused on failure detection and
recovery, and manually defined the sequence of tasks to be completed. For a robot
to be fully autonomous, the robot should be able to arrange appropriate orders and
decide appropriate task parameters for each tool use task since the end state of a task
is the start state of the next task.

This requirement falls under the topic of task and motion planning (TAMP) (for a
review, see Garrett et al. (2021)). As its name suggests, it integrates low-level motion
planning which includes classic robotic manipulation techniques and high-level task
planning which belongs to classic Al planning. Task planning aims to find an action
skeleton to achieve a goal (e.g., pick up a pencil, use it to write, and put the pen down).
Motion planning aims to find motion plans to execute in a robot (e.g., the joint states
for each action). TAMP aims to find action parameters to connect task planning and
motion planning (e.g., where to grasp the pencil to pick it up so the pencil can be used
to write). TAMP currently has two main approaches to find action parameters: the
sampling-based approach and the optimization-based approach. The sampling-based
approach, which is used in the majority of TAMP studies, samples action parameters
and tests the feasibility of the sampled combinations. Therefore, this approach may
have difficulty when the solution space is relatively small since the probability of

being able to sample the correct solution is small. In contrast, the optimization-
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based approach used optimization techniques such as logic-geometric programming
(Toussaint et al., 2018) or sequential quadratic programming (Hadfield-Menell et al.,
2016). It is able to handle problems with a small solution space more efficiently if
the local optima can be handled properly. However, this approach generally requires
a longer running time for tasks with many objects due to the increased dimension.

Sequential tool use has been demonstrated with optimization-based TAMP. Tou-
ssaint et al. (2018) enabled a robot in simulation to reach a tool that was initially out
of reach with another tool in order to grab the target object. While they can han-
dle tasks in a static environment, Migimatsu and Bohg (2020) improved the method
with an object-centric approach to adapt to situations where objects were moved by
other agents. Though this study was not demonstrated with sequential tool use, it
has the potential to be applied to sequential tool use. Due to the current prelimi-
nary stage of tool use research, sequential tool use has not been demonstrated with
a sampling-based approach to our knowledge.

In the above optimization-based TAMP approach, sequential tool use is only in-
cluded as a demonstration to validate TAMP methods. Tool use, especially sequen-
tial tool use, usually includes multiple objects, which makes it challenging for the
optimization-based approach. It is also challenging for the sampling-based approach
since tool use tasks generally have a smaller solution space due to the additional
constraints of tools. Therefore, alternative TAMP algorithms designed for sequential
tool use may be needed due to the special requirements of tool use tasks compared

with general manipulation tasks.

Tool Selection

Tool selection is the ability to choose the most appropriate tool among many options.
In order to select the most appropriate object to be used as a ram to keep a door open,

Levihn and Stilman (2014) identified four properties of a ram. In order to learn the
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properties, Wicaksono and Sammut (2016) demonstrated a robot with an instance of
the pulling task, and the robot then performed experiments to generate hypotheses
about what features are important. As an example of the hypotheses, the hook on the
pulling tool should locate on the same side as the manipulanda. The hypotheses are
expressed in Horn clauses so that the features are qualitative. To learn the features in

a quantitative manner, Saito et al. (2018) learned the full model of tool affordances.

Tool Manufacturing

Tool manufacturing is the ability to complete a tool use task by constructing a tool
by combining available materials, modifying a tool, or both. As this process may
involve combining different pieces, the manipulation skills required may be similar
to the skills in robotic assembly. The peg-in-hole task, which is to insert a peg in
a hole, is a standard task in robotic assembly. Researchers have explored methods
to improve a robot’s performance, such as working with more complex parts with
force-guided assembly (Dietrich et al., 2010) and increasing the speed of compliant
manipulators (Bos et al., 2017) (For a review on robotic assembly with learning from
demonstration, see Zhu and Hu, 2018). Beyond the peg-in-hole task, previous studies
also considered the slide-in-the-groove assembly task (Peternel et al., 2015), and robot
assembly that leveraged tool use such as hammering and wrenching (Gu et al., 2014).

Nair et al. (2019a,b) studied tool manufacturing by combining available parts.
Their system was provided with examples of tool use, and selected appropriate parts
as the grasping parts and function parts. The selection was made by comparing the
similarity between the available parts and segmented parts of the demonstrated ex-
amples. The next step is to combine the parts selected with appropriate orientations.
The system then performed tool use tasks to validate the assembled tool. Unlike
robotic assembly, the manipulation skills required in these studies are relatively sim-

ple. It pre-defined three ways of attaching the different parts: pierce attachment,
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grasp attachment, and magnetic attachment. Sammut et al. (2015) designed a robot
engineer to perform tool manufacturing. The robot engineer first identified important
features of a tool use task, and then constructed the tool using 3D printing.

Tool manufacturing is a complicated task. The task settings of current studies
reduce the difficulty of both manipulation and cognition skills. At the manipulation
level, a robot may need to combine different parts with simple manipulation skills
or leverage an external machine. While in animal or human tool use, the manipu-
lation skills required in tool manufacturing are sophisticated and may even require
using other tools. At the cognition level, the choice of available parts discretizes
the solution space compared with the task whose solution space is continuous, such
as a chimpanzee needed to make a hook to retrieve food. Tool manufacturing also
requires tool affordance knowledge to identify important features of a tool to be as-
sembled and requires planning skills to arrange the manipulation actions, especially

when sequential tool use is needed.

2.5 Discussions

This chapter defines robot tool use. We also provide a taxonomy of robot use and
identify the required skills in each category of tool use. As a summary, non-causal
tool use focus on the manipulation skills of using tools. Causal tool use focus on
learning or applying affordances. The sub-categories of single-manipulation tool use
learn different parts of affordances. Basic tool use learns the actions-effects rela-
tion. Transferable tool use focuses on the tools-actions relation in addition to the
actions-effects relation. Improvisatory tool use requires the knowledge of the full
model. Deductive tool use generates affordances with general knowledge, rather than
inducting the model from experiences or demonstrations. While single tool use relies

on learning affordances, multiple-manipulation tool use leverages learned affordances

35



and requires more sophisticated manipulation and/or higher-level cognition skills. In
addition, we review literature on robot tool use. To facilitate future tool use studies,
we summarized the studies in this chapter in Appendix A.

The study of tool use is still in the preliminary stages, and most studies aim to
solve non-causal tool use and basic tool use. We identify the following open challenges

in tool use:

1. How can a robot learn the relations between tool-manipulanda contact poses and
effects in transferable tool use? There is a lack of studies on the relationship
between tool-manipulanda contact poses and tool use effects. Most studies focus

on the relation between trajectories and effects.

2. How can an integrative system for improvisatory tool use can handle a wide
range of tasks? While it is challenging to improvise tool use based on either
local or global features, it is even more challenging to develop a system that can
solve a wide range of tool use tasks. Such a system should decide whether local
or global features should be considered, or choose features beyond geometric

ones.

3. How can a robot perform deductive tool use? The challenge for deductive tool
use is the lack of prior experiences. Current techniques for other sub-types
of single-manipulation tool use performs inductive reasoning that learns affor-

dances from experiences, and cannot be applied to deductive tool use.

4. How can a robot perform multiple-manipulation tool use? Multiple-manipulation
tool use requires a robot to perform single-manipulation tool use. In addition,
each sub-type in multiple-manipulation tool use requires more sophisticated ma-
nipulation skills or higher level cognition skills. Moreover, the additional skills

differ among the sub-types of multiple-manipulation tool use.
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5. How can a robot learn the dynamics in causal tool use? It is already challenging
for current studies to consider tasks that can be achieved with only kinematic
control. It will be even more challenging to incorporate dynamics as it adds

additional dimensions to consider.

6. Can we design a benchmark database for standard tool use tasks? It is not trivial
to design standard tool use tasks with a benchmark database of object mod-
els to facilitate comparisons between different algorithms. The requirements of
the tasks should be detailed enough for precise replication. However, detailed
requirements may lead to algorithms tailored for these tasks, and loss of gener-
ality. Moreover, it is challenging to select representative tools for improvisatory
tool use as tools are expected to be used in creative manners. It is also im-
possible to include all possible tools for a given task due to the almost endless
choices of physical objects that can be used as tools. It is also time-consuming

to obtain the 3D model of an object.

7. When and how can tool use knowledge be applied other areas in robotics? Most
studies that are relevant to tool use ignore the affordance model. For example,
when learning robot grasping, a system typically observes how a human grasps a
tool, rather than inferring how a tool should be grasped based on the subsequent
tasks. However, not every study involving tool use requires a robot to learn
the full affordance model, and it is important to identify which part of the
model should be learned. Moreover, it also requires effort to connect tool use
learning module with other modules, such as robot grasping and human-robot-

collaboration tasks.

In this dissertation, chapter 3 presents a framework that can perform basic tool
use, transferable tool use, and improvisatory tool use to tackle open challenge 1 and

part of open challenge 2. Chapter 4 and chapter 5 aim to handle part of open challenge
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4. Specifically, Chapter 4 presents a method to generate solutions for sequential tool
use more efficiently. Chapter 5 describes a method for tool selection based on causal
reasoning. Chapter 6 applies tool use knowledge in a robot-to-human handover task

and provides an example to handle open challenge 6.
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Chapter 3

Learning and Reasoning About

Single-Manipulation Tool Use!

In this chapter, we present the TRansferrIng Skilled Tool use Acquired Rapidly (TRI-
STAR) framework that aims to handle open challenge 1 and part of open challenge 2
as described in Chapter 2. It is an integrated system that can perform basic tool use,
transferable tool use, and improvisatory tool use based on geometric features. TRI-
STAR has three primary components: 1) the ability to learn, reason, and apply tool
use to a wide variety of tasks from a minimal number of training demonstrations, 2)
the ability to generalize learned skills to other tools and manipulated objects, and 3)
the ability to transfer learned skills to other robots. These capabilities are enabled by
TRI-STAR’s task-oriented approach, which identifies and leverages structural task
knowledge. We demonstrate this framework with seven tasks that impose distinct
requirements on the usages of the tools, six of which were each performed on three
physical robots with varying kinematic configurations. Our results demonstrate that

TRI-STAR can learn effective tool use from only 20 training demonstrations. In

'Portions of this chapter were originally published as: M. Qin*, J. Brawer*, and B. Scassellati.
Rapidly Learning Generalizable and Robot-Agnostic Tool-Use Skills for a Wide Range of Tasks. In
Frontiers in Robotics and Al 2021. (* equal contributions) (Qin et al., 2021)
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addition, our framework generalizes tool use to morphologically distinct objects, as

well as transfers them to new platforms, with only minor performance degradation.

3.1 Introduction

Imagine a robot designed to perform household chores. Such a robot will encounter
many tasks requiring the use of a wide variety of tools, for example, cutting and
stirring ingredients to help with cooking, scooping pet food to care for family pets,
and driving screws and hammering nails to assist with house maintenance. In order
to be a help and not a hindrance, such a robot would need to be capable of rapidly
learning a wide assortment of tasks. In addition, given the complexity of household
chores and the diverse range of objects that could be encountered, a robot should
be able to generalize learned skills to novel tools and manipulated objects without
needing to be retrained. Finally, one might wish to leverage learned skills from other
users or transfer a library of accrued skills to a new robot without retraining.

A framework that enables such capabilities would have applications that extend
far beyond the household. The search-and-rescue and disaster cleanup domains, for
example, could benefit from such capabilities. Since these scenarios can be highly
unpredictable and resource-limited, the robot should be able to both learn tool use
rapidly and substitute learned tools for alternatives. In addition, the ability to trans-
fer learned skills to other robot platforms will enable rapid deployment of new models
to assist or to replace a damaged teammate, regardless of different robot kinematic
configurations.

In order to obtain these capabilities, a framework should be able to perform basic
tool use, transferable tool use, and improvisatory tool use as described in Chapter
2 and learn the full affordance model. Similar to previous tool use studies, we only

consider tool use tasks involving: 1) tools and manipulanda that are unjointed rigid
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bodies, 2) the use of contact forces to deterministically change the state of the ma-
nipulandum, and 3) a goal that can be accomplished with a single tool action, rather
than a series of actions.

We report on a task-general integrative tool use framework, called TRansferrIng
Skilled Tool use Acquired Rapidly (TRI-STAR). The framework includes components
such as perception, tool use learning, and tool use generalization. These components
collectively endow a robot with three capabilities, or Stars, aimed at solving chal-
lenging and commonplace problems in robot tool use. Star 1 enables basic tool use
in a task-general manner, that it can learn and apply a wide range of tasks with
minimal training. Star 2 allows transferable tool use and improvisatory tool use. It
generalizes tool use learned with source tools by Star 1 to both substitute tools and
manipulanda with no additional training, which is object substitution. Star 3 is the
ability to transfer learned skills directly to other robot platforms, which is platform

generalization.

3.1.1 Task-Oriented Approach to Tool Use

While some tool use studies are tool-oriented in that they seek to only model the
actions node of the affordance model for a specific tool or class of tools (e.g., Stoytchev,
2005a; Zech et al., 2017; Sinapov and Stoytchev, 2008), we opted for a task-oriented
approach (Kokic et al., 2017; Detry et al., 2017) that learns the entire affordance
model of a task. This is a more natural framing of the problem as the actions to
be performed with a tool are driven by the desired effects, not by the specific tool
itself. To illustrate, the actions taken with a hammer on a nail differ when one drive
the nail into a board or pull the nail out with the claw. In both tasks, the tool
(the hammer) and even the manipulandum (the nail) are the same, so differences
in how the tool is used can only be explained by the differences in the tasks. In a

tool-oriented approach, the tool would have uniquely determined a single action for

41



both steps.

In a task-oriented approach, effects, objects, and actions are connected through
causal relationships. A desired effect causes an agent to select features of objects
(e.g., the desired effect of cutting requires a tool to be sharp), and the objects and
the desired effects determine a precise action to be taken (e.g., the desired position
of a block determines how it should be pushed, and the size of a bowl influences
the radius of a stirring motion). While these objects-effects relations, actions-effects
relations, and objects-actions relations, respectively, may differ across tasks, they
remain constant across instances of a particular task and are useful when learning
and generalizing tool use.

Specifying these three relations for each task is impractical and learning these
relations for each task can be data intensive. However, the causal structure of this
approach implies that tasks with similar desired effects also share common features.
Therefore, we compiled an affordance taxonomy that categorizes tasks based on their
effects with respect to manipulanda and we will describe the affordance taxonomy (For
details, see Section 3.2.2). The advantage of utilizing taxonomic knowledge is that
information does not need to be manually specified for new tasks either when learning
a task or applying the learned tool use skills. In this way, taxonomic knowledge can

help to reduce the training data needed.

3.1.2 Star 1: Learning and Applying Task-General Tool Use

Star 1 is the ability to perform basic tool use, that is, to learn and apply the actions-
effects relations in the affordance model using a source tool and manipulandum. This
include determining the contact poses and the course of actions depending on the
effects. In this section, we first describe relevant studies. They often ignore the
causal relations and only models the action node, or ignore action generation. We

then describe the challenges in learning basic tool use and briefly describe the tests
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we conducted.

Studies focusing on modeling the actions node ignored the contact poses, though
they were applied to tool use tasks such as swinging tennis rackets (Ijspeert et al.,
2002), batting (Peters and Schaal, 2006), playing ball-in-a-cup (Kober et al., 2008) or
table tennis (Muelling et al., 2010), pouring (Pastor et al., 2009; Rozo et al., 2013),
writing letters (Lioutikov et al., 2017) or digits (Droniou et al., 2014), and peg-
hole insertion (Gao and Tedrake, 2021) with methods such as dynamical movement
primitives (Schaal, 2006; Ijspeert et al., 2013) or probabilistic movement primitives
(Paraschos et al., 2013). In one study, experimenters hard-coded the contact poses
that the end of a peg should align with the top of a hole vertically when learning the
peg-hole insertion task (Gao and Tedrake, 2021).

Studies that did not ignore contact poses (Kemp and Edsinger, 2006; Hoffmann
et al., 2014b) utilized the tool tip as a simplified representation of the contact area.
Yet, in practice, the contact area can comprise any arbitrary area at any location on
a tool, such as the tip of a screwdriver, the blade of a knife, the face of a hammer,
or the concave surface of a ladle. Moreover, with such a simplification, the relation
between the tool and manipulandum is reduced to be the angle of contact, which
is insufficient for tasks like screw-driving; a screwdriver should contact a screw not
only perpendicular to the head of the screw but also with the correct rotation about
the tip axis. Additionally, such simplified representations cannot account for tasks
that may have multiple viable contact poses; a hammer may approach a nail from
infinitely many orientations about the head axis of the nail and thus have an infinite
number of viable contact poses.

While the aforementioned studies did not incorporate the causal relations, studies
that focused on these relations did not consider action generation. Sinapov and
Stoytchev (2007) and Stoytchev (2008) learned how predefined linear end-effector

trajectories of different tools lead to positional changes of a manipulandum. Zech
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et al. (2017) attempted to learn relationships between effects and contact poses to
aid in tool selection but predefined a contact pose template. Other studies (Gongalves
et al., 2014b,a; Dehban et al., 2016; Moldovan et al., 2013) learned these relations
from a probabilistic approach but also with predefined end-effector trajectories.

Star 1 learns and applied the affordance model. We demonstrated seven tasks
(knocking, stirring, pushing, scooping, cutting, writing, and screw-driving) that learned
with a small number of training samples and tested different types of tool use. This
range of tasks tested the learning and application of tool use given different task types,
such as stirring, screw-driving and pushing, each corresponding to a type defined in
the taxonomy we describe in detail in the methodology. When learning manipulation
skills that are described in Chapter 1, we consider the minimum set of tool use that
enables a robot to use a tool, which includes the tool trajectory and tool-manipulanda

contact poses (henceforth referred to as contact poses).

3.1.3 Star 2: Task-General Object Substitution

Star 2 is the ability to perform transferable tool use that can complete a task, including
objects that share a common geometric template (geometrically-similar objects, e.g.,
mugs differing in shape and size as in Brandi et al. (2014), and improvisatory tool
use that share no common form-factor (geometrically-distinct objects, e.g., pushing
an object with a cake-cutter rather than a toy rake). To generate actions, an object-
substitution algorithm must adjust learned trajectories for tasks such as stirring in a
smaller container and produce contact poses. The contact poses for many tasks can
be obtained by finding the alignment between the source and substitute objects based
on features for tasks such as cutting, but for some tasks like pushing the contact poses
are determined by desired effects of the tasks. Similar to previous tool use studies,
we focused on geometric features only.

Many previous studies employed task-specific approaches that limited the robot’s
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ability to transfer to tools that share common form-factors. Some of these approaches
required hand-engineered information to find an alignment for each task (e.g., Brandi
et al., 2014; Stiickler and Behnke, 2014b; Hillenbrand and Roa, 2012). Providing
hand-engineered information for each task exhibits two disadvantages. First, al-
gorithms requiring hand-engineered information constrain their user-friendliness for
naive end-users who lack the knowledge to train these algorithms adequately. Second,
engineering information for each task is time-consuming and impractical in real-world
settings requiring the use of many tools.

Other approaches that can accommodate tools of various shapes usually require
prohibitively large amounts of data per task. For example, over 20,000 training exam-
ples were needed to learn and generalize in the pushing task (Xie et al., 2019); 18,000
simulated tools were used to generalize tool use in a sweeping and nail-hammering task
(Fang et al., 2020); 5,000 vectorized representation tools were used to train a neural
network to generalize tool use in the scraping, cutting and scooping tasks (Gajewski
et al., 2019; Abelha and Guerin, 2017). Acquiring a large training sample set is infea-
sible when tasks need to be learned rapidly or when many tasks need to be learned.
Moreover, these studies only considered tool substitutions but not manipulandum
substitutions limiting their applicability to many real-life tool use applications.

Star 2 performs object substitution by adjusting tool use skills learned by Star 1
using all three relations comprising taxonomic knowledge without additional train-
ing. While the actions-effects relations assisted the generation of actions to different
task configurations in the same way as in Star 1, the two object-related relations
help to generate contact poses and adjust learned trajectories. This ability to adapt
trajectories to accommodate substitute objects, as well as the ability to perform tool
and manipulandum substitution are two advantages of our approach that are not
typically considered in other studies. We evaluated Star 2 with five tasks (knocking,

stirring, pushing, scooping, and cutting). The substitute objects differed from the
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source objects in size, shape, or a combination of both. We also tested trajectories
requiring adjustments based on geometric features of the manipulanda (e.g., stirring
and cutting), desired effects (e.g., pushing), and trajectories requiring no adjustments

(e.g., hammering).

3.1.4 Star 3: Transferring Tool Use Skills to Other Robot

Platforms

Star 3 is the ability to transfer tool use to other robot platforms. This requires a robot-
independent representation of tool use. Though learning trajectories and dynamics in
the joint state space is common in learning motor skills, such representations make it
challenging to transfer learned skills to robots with different hardware configurations.
Learning in the Cartesian space is more conducive to cross-platform transfer, though
it suffers from practical limitations.

When learning in Cartesian space, prior tool use studies (e.g., Xie et al., 2019;
Fitzgerald et al., 2019) used the gripper pose as a proxy for the tool pose to simplify
the perception problem. In these studies, rather than learning tool-manipulandum
contact poses and tool trajectories, the gripper-manipulandum relative pose and grip-
per trajectories were used to learn tool use. Using gripper poses assumes that the
grasps of a tool remain consistent across training and testing regimes, which is dif-
ficult to ensure outside of a controlled lab setting even on the same model of robot.
When such assumptions cannot be met and a robot needs to grasp a tool differently,
workarounds sometimes are employed such as treating learned tools as novel (Sinapov
and Stoytchev, 2008; Mar et al., 2017), which complicates the skill transfer process.

In contrast, a trajectory of a tool, rather than an end-effector, are a flexible
and direct representation for the actions. Such a representation is not tied to any
particular robot configuration and does not require grasping consistency within or

across platforms. This flexibility enables a robot to perform tool use with different
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grasps of the same tool. Crucially, this flexibility also extends to transferring skills
to other robot platforms.

Star 3 performs tool use transfer from a source robot to a substitute robot by
leveraging our platform-agnostic representation of tool use skill. The strength of
using such a representation is that it updates a common representational schema
(i.e., Cartesian end-effector trajectories) in a simple way, but nevertheless greatly
impacts the flexibility and generalizability of tool skills. The process of applying the
skills is otherwise the same as in Star 1. We tested the transfer of tool use learned
with a Universal Robotics UR5e arm to both a Baxter robot and a Kuka youBot robot
with six tasks (knocking, stirring, pushing, scooping, cutting, and writing). These
three robots have different degrees of freedom (DoF) and are kinematically distinct.
URbe has 6 DoF, and one arm of Baxter has 7 DoF, which allows the robot to pose
its end-effector freely in the 3D space. YouBot without the mobile base has only 5
DoF and thus limits the robot’s ability to reach arbitrary poses. Depending on initial
conditions, a robot might abort execution or slightly adjust a trajectory if it cannot

be fully executed.

3.2 Methods

The TRI-STAR framework focuses on learning geometrically-based tool use via Learn-
ing from Demonstration with position control®>. We first introduce and summarize the
representational schemas we use throughout the system which include the affordance
taxonomy, trajectory and contact pose-based tool skills, and our 3D model and 6D
pose-based object representation. Subsequently we detail the three Stars enabling

the primary capabilities of our system.

2Source code is available at https://github.com/ScazLab/Frontiers Robot_Tool Use.git
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3.2.1 Preliminaries

The following terms are used in this method section. Pose describes the translational
and rotational state of a 3D rigid body, which is generally represented as a rigid homo-
geneous transformation matrix in the Lie group SFE(3) or exponential representation
parameterized as a screw axis and an angle, which is a concept from screw motion. By
the Mozzi-Chasles’ theorem (Chasles, 1830), for any arbitrary pose change or trans-
formation, an equivalent screw motion always exists. A screw axis S is a normalized
twist (i.e., a spatial velocity) which is a six-dimensional vector consisting of the axis

w of the helix and a linear velocity v at the origin:

More information about the use of exponential representations in robotics can
be found in (Lynch and Park, 2017; Siciliano and Khatib, 2016). Screw axes offer a
flexible and compact representation of actions. They provide a qualitative description
of 3D motion by characterizing the shape of a trajectory such as straight or curved
lines, circles, and helices, while the angles quantify the length that a trajectory should
follow along the shape defined by the screw axis. As a result, the motion primitives
are represented with screw axes in this study.

The rame of reference, or reference frame, is a coordinate system in which a pose
is referenced, and the world frame is the default frame. While this is a standard
definition, it is different from previous studies (e.g., Sinapov and Stoytchev, 2007),
where the term is used to describe an object of interest. To illustrate the differences,
when we refer to things like the “manipulandum frame,” for example, we mean the
coordinate system with the pose of the manipulandum at the origin, while the object
of interests could be anything rather than restricted to the manipulandum as in

previous studies.
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3.2.2 Representations
Task Representation: Affordance Taxonomy

We developed a taxonomy of affordances to assist learning and application of tool
use. Our taxonomy (Figure 3.1) recognizes two fundamental task types using desired
effects referenced in the world frame. In our study, we focus on tasks with effects
described by pose changes of the manipulandum as they can be easily perceived via
the depth cameras. Since the goals for everyday tool use tasks generally require simple
motions of the manipulanda, one screw axis can be used to characterize the shape of
a effect-directed motion primitive. Non-Pose-Based Tasks are tasks with zero screw
axes which represents the case where the pose of a manipulandum (e.g., a bowl) is
not changed as a result of the tool usage (e.g., stirring liquid in the bowl) in the
world frame. Pose-Based Tasks are tasks with non-zero screw axes such that the pose
of a manipulandum changes as a result of tool use, though two further subdivisions
emerge when observing in the manipulandum frame. Finite-Effects Tasks such as
screw-driving are tasks where a unique screw axis in the manipulandum frame exists
to describe actions-effects relations while there are still infinitely many effects in the
world frame. Infinite-Effects Tasks, in contrast, like pushing a toy with a rake to
the desired location, have infinitely many screw axes in the manipulandum frame to
represent effects.

The taxonomy characterizes what causal relations should be considered in the sub-
types. Learning tool use in Star 1 is consistent in all three types of tasks, except that
Infinite-Effects Tasks require modifications based on the actions-effects relations. The
contact pose required when completing a pushing task, for example, depends heavily
on the goal pose of the manipulandum. Applying tool use, in contrast, requires differ-
ent task-specific information depending on task type and the Star. The actions-effects

relations specify how actions should be updated based on the desired effects, which
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are crucial for Pose-Based Tasks because they determine, for example, the length of
the trajectory when driving a screw into a thick piece of wood versus a thinner piece.
The objects-effects relations specify which object features are relevant for achieving
the desired effect such as a sharp edge of a tool in the case of a cutting task. These re-
lations are important for generating contact poses for object substitution for all tasks
except the Infinite-Effects Tasks. These tasks do not require manipulanda-effects
relations but require actions-effects relations since the contact pose depends on, for
example, where the manipulanda should be pushed to in a pushing task. The object-
action relations dictate how the actions should be updated based on different object
features, which are relevant for the Non-Pose-Based Tasks such as stirring where the
radius of a stirring trajectory is dependent on the size of the container containing the
mixture being stirred. These relations capture common features across tasks within
each category of the taxonomy and can be used to guide the learning, application,

and transferring of tool use to substitute objects.

Actions Representation: Trajectory and Contact Poses

A trajectory consists of four components as shown in Figure 3.2a: 1) the preparation
component, which brings the tool in close proximity to the manipulandum, 2) the
contact component which initiates contact with the manipulandum, 3) the functional
component which acts on the manipulandum, and 4) the finishing component, which
moves the tool away from the manipulandum, terminating the trajectory. The main
part of the trajectory is the functional component. We represent this component
using screw axis representations which are compact and easily adapted for tool use.
Though we also included other components, we consider such components peripheral
to the tool skill proper and thus are not the focus of this study. Keeping with other
tool use studies that either completely ignore such components or hard-code them

(e.g., Sukhoy et al., 2012), we represented these components simply using trajectory
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Non-Pose-Based Tasks Pose-Based Tasks
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Figure 3.1: Affordance Taxonomy. The structure emerges when observing effect-based
motion primitives from different frames of reference. The effects of Non-Pose-Based
Tasks does not involve changes in the manipulanda’s poses, which is different from
Pose-Based Tasks. For Pose-Based Tasks, there are infinitely possible poses changes
of the manipulanda in the world frame given different start poses. However, there are
only finite possibilities for Finite-Effects Tasks when the effects are considered in the
manipulanda frame. For example, a screw may have very different end poses in the
world frame when given different start poses. However, when referenced by itself, the
effects of a screw-driving task that tightens it only have one effect, which is to move
the screw towards the direction of the tip of the screw. In contrast, Infinite-Effects
Tasks have infinitely many effects in both the world and the manipulanda frame.
Learning different subtypes in the taxonomy requires different causal relations. For
example, the tool-manipulanda contact poses of the Finite-Effects Tasks are not de-
termined by the desired effects but by the features of the objects; one can determine
how a screwdriver should contact a screw without providing the desired effects. For
Infinite-Effects Tasks, the tool-manipulanda contact poses is determined by both ob-

ject features and the desired effects; one should be provided with the desired location
of an object before determining how a stick should contact the object to push it.

end points.

We represent the functional components with a series of segments {(screw axis S,
angles 0)} with each segment parameterized with exponential representations of a
pose change. The advantage of such representation is twofold. First, since the screw
axis includes all six DoF, no coupling between dimensions is needed as in previous

methods (Schaal, 2006; Ijspeert et al., 2013; Paraschos et al., 2013). Second, in
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Figure 3.2: Star 1 illustrations. (a) depicts the four component trajectories that com-
prise a hypothetical demonstration of a pushing task. (b) depicts the parametrization
of a contact pose using a nail-hammering task as an example.

accordance with other representation schemes, trajectories can also be easily rescaled
and rotated. Such representation may not be ideal for other robot manipulation tasks
such as pick and place where learned trajectories are flexibly warped based on different
start and goal poses. However, this representation is suitable for the tool use domain
where trajectories may need to be warped in a structured way based on taxonomic
knowledge (e.g., to adapt a learned straight trajectory to push along a curved one
required by the desired effects) or extended along the shape outlined by the screw
axis such as when driving the same screw into boards of different thicknesses.

The contact poses are represented with equivalence classes of poses, {77} that

treats all poses formed from rotating around some axis as being equivalent. This is

a uniform representation for finite contact poses such as driving screws and infinite
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contact poses such as nail-hammering. Each element T is a manipulandum pose
in the tool frame (i.e., the tool frame is the pose of the tool when initiating contact
with the manipulanda). Such representation is able to accommodate contact areas
of any shape located anywhere on a tool and manipulandum as well as represent any
orientation between the two objects. The transformations in the same class can be
obtained by rotating about an axis Ség"l. As a result, a class of contact poses (shown
in Figure 3.2b) is parameterized as an axis S/, a transformation 7,29, as the origin,
and a group of angles 6 such that a viable contact pose can be obtained by rotating an
angle 6 about the axis S starting from 7%, In this way, this class can represent
a unique contact pose (i.e., a unique angle which is zero), limited contact poses (i.e.,

a limited number of angles), or an infinite number of contact poses (i.e., the angles

within a range).

Object Representation: 3D Models and 6D Poses

TRI-STAR is designed for a robot to be able to utilize novel tools without prior
training. In order to accomplish this the algorithm requires the robot to obtain 3D
models of the novel objects under consideration. We used Microsoft Azure RGB-D
cameras, which are commonly used and relatively inexpensive sensors, to obtain raw
partial 3D point clouds. With the relatively low fidelity of perceived partial point
clouds, available methods could not obtain full 3D models of sufficiently good quality.
Therefore, it was necessary to design a pipeline to fit our needs.

This pipeline begins with first mounting an object in the robot’s end-effector. The
robot can then rotate its end-effector around an arbitrary axis to ensure both the back
and front of the object is visible to the 3D camera. A series of raw point clouds are
obtained while the robot steps through the trajectory. The background in the point
clouds is then pruned to obtain the partial point clouds of the objects. Given the pose

of the end-effector at each step, the partial point clouds are merged by transforming
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these point clouds to the initial pose. To account for noise, we optimize the rotation
axis represented as a screw axis S with the Quasi-Newton method (Dennis and Moré,
1977) by minimizing the sum of the Euclidean distances between the bounding boxes
of the partial point clouds and the bounding box of the merged point cloud. As parts
of the objects are occluded by the robot’s own gripper, the robot obtains two such
merged scans and registers them to create the final complete scan. Supplemental
scans using Autodesk Recap® photogrammetry software was also used to obtain point
clouds for objects that are challenging for the robot to grasp. Although we attempted
to design the entire process to be autonomous, the grasping during scanning and tool
use requires an experimenter to assist with mounting an object to the gripper.

To obtain smoothed triangle meshes, the models are post-processed automatically
with a script using meshlabxml?, a python interface to MeshLab?®, similar to a previous
study (Gajewski et al., 2019). The point clouds are upsampled with Poisson-disk sam-
pling with input 5,000, meshed with Ball-Pivoting, smoothed with Taubin smoothing,
and holes are filled with the default settings. The meshes are then centralized and
realigned based on their minimum bounding boxes.

We used a non-marker-based perception system and estimated the pose of the
objects from raw sensor input. Two Azure devices are placed on the two sides of the
workspace to capture a complete point cloud representation of the workspace. Back-
ground and foreground point clouds are retrieved from both sensors. The workspace
is isolated, and the desktop is removed with random sample consensus (RANSAC;
Fischler and Bolles, 1981) from these point clouds. To obtain a partial point cloud
of the manipulanda, the background is subtracted from the foreground point clouds.
The pose of the object in the world frame T“°"'® is obtained by rigid registration

man

between the partial point cloud and the full 3D model. The pose with a higher fitting

3https://www.autodesk.com/
4https://github.com/3DLIRIOUS /MeshLabXML
Shttps://www.meshlab.net/

o4



score, measured by calculating the ratio of inlier point correspondences over the total
number of target points, is chosen. If the scores from both sensors are similar, the
averaged pose is used.

The method of obtaining tool poses in the end-effector frame is similar to the
method above, except for the extra step of removing points belonging to the gripper
to isolate the tool. The pose of the tool in the end-effector frame is then obtained
with Tge, = (Terld) =1 x Teerld where x is matrix multiplication, and the superscript
—1 represents matrix inversion, given the perceived pose of the end-effector in the
world frame T“°"'® and the perceived tool pose T, Similar to previous tool use

tool

studies, we assume a fixed grasp for a tool once it is in the robot’s end-effector.

3.2.3 Star 1: Learning and Applying Task-General Tool Use
Skills

In Star 1, our framework categorizes task demonstrations using our taxonomy and
leverages taxonomic knowledge of the identified category to learn tool use (i.e., the
contact poses and trajectories) and generate actions with desired effects not seen in
the training samples. In the following sections, we describe how tool use is learned
and applied to novel task configurations. Specifically, we first detail the simulated
demonstrations used to train the skills evaluated in this study. Subsequently, we
discuss how demonstrations are categorized using our affordance taxonomy and how
the corresponding taxonomic knowledge is leveraged to learn trajectory and contact
pose representations. Next, we detail how the system utilizes new task configurations

to apply learned skills by generating new trajectories and contact poses.

Learning Tool Use Skills

The input data required by our algorithm includes the start and goal pose of the

manipulanda in the world frame and the tool trajectories as the keyframes in the
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world frame. Twenty simulated training samples per task were provided. Training
samples were obtained with kinematic teaching of keyframe demonstrations in sim-
ulation. Each sample was a single demonstration of a task using a source tool and
manipulandum. The samples were assumed to be successful demonstrations of a task,
as no sophisticated outlier removal methods were utilized.

With the start and goal poses of the manipulanda, the system can infer the cate-
gory of task being demonstrated to be used to guide the learning of trajectories and
contact poses. If the effects of all demonstrations are zero vectors, then this task is
a Non-Pose-Based Task. Otherwise, it is a Pose-Based Task. If it is the latter, the
effects are converted to the manipulandum frame (i.e., the manipulanda frame is the
start pose of the manipulanda) and are clustered based on the Euclidean distance be-
tween w parts and the Euclidean distance between v parts of sample screw axes. If a
unique cluster is found, then this task is considered a Finite-Effects Task. Otherwise,
it is an Infinite-Effects Task.

The trajectory between two adjacent keyframes in a given demonstration is as-
sumed to be interpolated, which may or may not be linear depending on rotational
differences between the two frames. The keyframes can include only the start and
goal pose of segments or any arbitrary number of midpoints. The keyframes are
first merged into segments automatically. The different components of the trajectory
are then identified by the framework. However, each component is assumed to have
the same shape across demonstrations except for the functional component. Given
a demonstrated trajectory comprised of keyframes, the framework first groups the
keyframes into segments with similar transformations between keyframes (i.e., the
grouping stage). A component might be missing for different types of tasks, which
is identified during this grouping stage. Subsequently, each segment, or partial seg-

ment, is then parameterized with the appropriate component, and represented with

Tstart—func Tsta’r‘t—func

Tend—func
start—prep » *end—prep

end—fin + 85 illustrated in

, {(screw axis S, angles 6)}, and
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Figure 3.2a (i.e., the parametrization stage).

The first step in the grouping stage is to identify the preparation component and
the finishing component, which is to find the start pose of the preparation component
T reps g0al pose T2 of the preparation component (it is also the start of the
contact component T4 3 the start pose of the finishing component 7% . (it

start—con start—fin

is also the end of the functional component Te”“;’l‘(’[f}unc

), and end pose of the finishing
component T/2%"%. . To do this, the transformations between keyframes in the world
frame are converted to the screw motion representation. Adjacent transformations
with similar screw axes are merged. The similarity is evaluated with the Euclidean
distance between w parts and the Euclidean distance between v parts of sample screw
axes. The merging is done by averaging the screw axis and summing the angles.
After merging, the first segment is assumed to be the preparation component, while
the last is assumed to be the finishing component. The start and end poses of these
components can thus be found.

The second step in the grouping stage is to identify the other components. For
Non-Pose-Based Tasks, the rest of the segments are assumed to be the functional
component, and the contact component of this type of task is assumed to be a segment
with no transformations. For Pose-Based Tasks, the contact poses are assumed to
be unchanged once the tool contacts the manipulanda. Therefore, the start of the

functional component Twortd (which is also the end of the contact component

start— func

Tworld

world ) can be obtained with Tweortd x (Tworld =1 Tworld.  — Since the start

start—man end—man end— fin-
(i.e., the end of the preparation component) and end (i.e., the start of the functional
component) poses of the contact component are known, the contact component is
found by interpolating these poses, which is obtained by calculating the screw axis of
the transformation between the start and end pose and sampling angles with 1-degree

intervals. Although the start and end pose of the functional component is known,

the functional component is not a simple interpolation as it may need to follow a
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certain trajectory. Therefore, the algorithm allocates the remaining segments to the
functional component, after excluding the partial segment belonging to the contact
component. The partial segment is found by identifying the overlap between the first
proceeding segment of the preparation component and the contact component.

In the parametrization stage, the keyframes are converted to different reference
frames for easy application. The start and end pose of the preparation components
are converted to the frame of the start pose of the functional component, resulting
in T;ttgftt__p’if;c and Tj:jf_t;];zm, respectively. The end pose of the finishing component

is converted to the frame of the end pose of the functional component, which is

Tendffunc

end—fin - If multiple segments comprise the functional component, each segment

is represented with screw motion and the start pose of this segment is used as the

reference frame. As a result, the trajectory of a demonstration is represented using

Tend—func

start— func start— func
T T end—fin *

start—prep + Londprep > L(Screw azis S, angles 6)}, and

The next step of the parametrization stage is to find a template from all the train-
ing samples. The functional components of Infinite-Effects Tasks are ignored, as they
are determined by the desired effects, rather than a shared trajectory template. For
the rest of the tasks, the number of the segments comprising the functional compo-
nent should be the same for each task. For the minority of demonstrations that are
inconsistent with the number of segments that the majority of the demonstrations
are associated with, those samples are excluded. For the remaining valid training

samples, each segment of the component derived from different demonstrations is av-

Tsta,'rt—func Tstart—func

Tend—func
start—prep » ~ end—prep

end—fin L€ also averaged

eraged. The transformations , and
from each demonstration.

The above learns the trajectories and now we consider how to learn the contact
poses. Our current algorithm assumes a single contact area on the source tool when
performing the same task, which could be relaxed in future studies. The contact

area of the tool and the manipulandum were determined by proximity. For Infinite-
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Effects Tasks like object pushing where task success is contingent on the goals of
the manipulandum, a change-of-basis of the start pose of the manipulandum is per-
formed in order to incorporate the goal into its representation so that the contact
poses are effect-based. The demonstrated contact poses are then converted to our
representation of a class of contact poses using Sﬁgol, Tteol “and a group of {6}.

For Infinite-Effects Tasks, we perform a change-of-basis on the start poses of the
manipulandum before calculating the contact poses in order to account for the goal-
directed nature of these tasks. The z axis is chosen to be the moving direction of
the manipulanda, which is the normalized v part of a screw axis representing the
transformation of the manipulandum from the start to the goal in the world frame.
The z axis is chosen to be the direction of standard gravity. If the x axis and z axis
are parallel, an arbitrary direction is chosen ahead of time which is not parallel to
the standard gravity. The y axis is obtained with the right-hand rule, which is the
cross product of x and z. To ensure the perpendicularity between x and z, the 2z axis
is recalculated with the cross product of z and y. The position of the manipulanda
remained to be the perceived position.

The contact pose of each demonstration 7% are obtained by (T4 ;,..) 7" X

Tworld where Tworld fune 18 the tool pose at the start of the functional component

Tworld

and start—man

is the start pose of the manipulanda. Then the contact poses from
each demonstration are converted to our representation, a class of contact poses. The
axis between any two contact poses is calculated, and the poses whose axis deviate
too much from the majority of axes are excluded. An arbitrary pose, generally the
pose of the first demonstration, is chosen as the origin 7). The transformations
between valid contact poses and this origin are calculated in the origin frame and
represented using screw motion. The averaged axis Sﬁg"l is used as the axis of this

class. For the angles obtained, if the Kolmogorov-Smirnov test (Daniel, 1990) on the

group of angles showed no significant difference from a uniform distribution, then
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the range of this angle is used to represent {#}. Otherwise, the groups of angles are
clustered using density-based spatial clustering of applications with noise (DBSCAN;

Ester et al., 1996), and the mean of each cluster is included in {6}.

Applying Tool Use Skills

To apply the learned tool use with the source tool and manipulanda, configurations of

a task should be provided, which includes the start T457%,,,, and goal pose Tpo", ..

of the manipulandum 777 The goal pose Tworld can be provided by per-

goal—man* goal—man
ception (e.g., placed at the desired location) or by the experimenter in the form of

Tworld

o man 15 always perceived. The goal is

a transformation matrix. The start pose
always assumed valid for the given task and could be achieved by the given tool.

To use a tool, the contact poses and tool trajectories should be found. The contact
poses are generated based on learned contact poses and taxonomic knowledge. Since
multiple possible contact poses T exists for each task, multiple corresponding
tool trajectories are generated. These tool trajectories are then converted into end-
effector trajectories to be executed by the robot given the current perceived tool
grasping pose. Trajectories are considered candidates if their functional components
can be executed since the complete execution of the functional component is crucial
to perform a task. The final trajectory is chosen from the candidates that minimizes
the required joint changes. If none of the functional components can be executed in
full, the robot simply aborts execution. Otherwise, the robot attempts to execute as
many components or partial components as possible since the full execution of other
component is not central to successfully complete the task.

Now we consider how to generate a trajectory. Given a contact pose T/ ob-

. . . . start— func world
tained from above, which is equivalent to T, .n » and the start 7327  and

start—man
T

start—man
start—prep T

and end end—prep

goal pose T;‘gg?ljlman of a manipulandum, the start

of the preparation component in the manipulandum frame is calculated using the
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Tstart—funC)fl % Tstart—func and (Tstart—funC)fl > Tstart—func

learned tI'aJeCtOI‘IGS by ( start—man start—prep start—man end—prep

(the information from the learned trajectories are labeled with an enclosed rectangle),
respectively. The preparation component in the manipulandum frame is then found
by finding the interpolation between its start and end pose. The contact component
in the manipulandum frame is obtained using the same method, with its start pose
being the end pose of the preparation component and the end pose being the start
of the functional component. In terms of the functional component, each segment of
{(screw axis S, angles 0)} is found by interpolating the learned trajectory and con-
verting those transformations to the manipulandum frame for the Non-Pose-Based
Task. For Finite-Effects Tasks, the length of the trajectory, which is the angle in
the screw motion representation, is adjusted according to the goal while the learned
shape described by the screw axis remains the same. For Infinite-Effects Tasks (e.g.,
pushing), both the shape and length are determined by the goal with the end pose of
the functional component being (T%erld =1 quworld o (pstari=funcy—1 40 d the

start—man end—man start—man

trajectory is found by interpolating the start and end pose. The end pose of the fin-

ishing component is calculated using the learned trajectory as Tt man o pend—fune

end— func end—fin *
In the end, each pose in the trajectory TX%*~™* is converted to the world frame
with Twortd x Tetart=man - In the writing task introduced in Section 3.3, when a

different scale of the trajectory (e.g., write a larger or smaller “R”) is requested, the
angle 0 in {(screw axis S, angles 6)} is scaled if the screw axis represents transla-
tional changes only, otherwise the v part of the S in {(screw azis S, angles 6)} is
scaled. This works because the screw axis is in the previous pose’s frame, and the
v represents the velocity at the origin. To rotate the trajectory (e.g., to produce a
tilted “R”), one can simply rotate Tworld fune- The corresponding start and end pose
of other components need to be updated accordingly.

We now shift our attention to generating contact poses. For the learned class of

contact pose whose {6} is composed of discrete values, the contact pose in the matrix
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form corresponding to each value is calculated. If {#} is a range, the contact poses are
treated as discrete values by sampling angles from the range by 1-degree intervals.
For Pose-Based Tasks, the contact poses are adjusted along the tool direction of
motion so that a tool is guaranteed to touch the manipulandum (e.g., when pushing,
an irregular object may require a slightly different relative position between the tool
and manipulandum). With this method, we are able to generate collision-free contact

poses.

3.2.4 Star 2: Task-General Object Substitution

Star 2 utilizes the tool use learned by Star 1 and calculates the appropriate contact
poses by finding the alignment between the source and substitute object, and adjusts
the tool trajectory by leveraging the relevant taxonomic knowledge identified for each
category of tasks. Star 2 requires the same manual inputs as the application in Star
1, which include the start and goal pose of the manipulanda, the desired number of
circles for the stirring task, and the desired scale and rotation of the written letter

for the writing task, as well as the grasping pose.

Three-step alignment algorithm

For all tasks, except Infinite-Effects Tasks, contact poses are obtained by calculat-
ing the alignment between the source and substitute objects. The contact poses of
Infinite-Effects Tasks depend on both the desired effects and the alignment. When
the two tools are of the same type or share a generic form factor such as two different
types of hammers, often considering the entire shape of both tools (i.e., their global
features) produces the best results. In the case of tasks like pushing where no generic
tool form-factor exists, utilizing features like the contact area (i.e., local features) of
the source tool is necessary. Therefore, we designed a three-step alignment algorithm

that produces alignments between a source and substitute objects using both global
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Figure 3.3: Alignment procedure for a hypothetical 2D tool substitution problem.
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(step one) and local features (step two), and selects the most appropriate one (step
three). Since we consider local features, object meshes need to be segmented prior
to applying this algorithm. The application of the three-step alignment algorithm
differs slightly for tools and manipulanda.

In order to segment a mesh, we utilized a method similar to a previous study
(Abelha and Guerin, 2017) using the shape diameter function (CDF) with the CGAL
library®. The number of clusters k were ranged from 2 to 8 with step 1, and the
smoothness parameter A\ ranged from 0.1 to 0.7 with step 0.1. Since no direct relation
exists between the number of clusters k£ and the results of the segmentation, the
number of clusters with the greatest number of results was chosen as keposen. Since,
in most instances, the object with only one cluster is undesirable, k.,osen Was allowed
to be one only if the number of results with one cluster was significantly more than the
number of clusters with the second greatest number of results. The segmentation was
randomly chosen from all the segmentations with k.josen clusters due to similarity.

Figure 3.3 depicts our process for finding contact poses given segmented tool
models, by finding the alignment T;;"g:fgg{ between the source and substitute meshes.
Th goal of the first step is to find the alignment based on global geometric features. In
this step, the substitute objects are rescaled disproportionally so that their bounding
boxes share the same size as the bounding box of the source objects, and reoriented
along the axes of the bounding box. As an object can be rescaled and reoriented
in multiple ways, the one that is most similar to the source object is chosen as the
alignment based on global features. The similarity is measured by the averaged
minimum Euclidean distance between the points of the two point clouds when the
centers of the two objects are aligned. The contact area on the substitute object is
chosen by proximity to the contact area on the source object. The segment containing

the contact area is chosen to be the action part which is used in step two. If the

Chttps://doc.cgal.org/latest /Surface mesh segmentation/index.html
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contact area is distributed across multiple segments, then the action part is chosen
to be the contact area itself rather than any individual segment. As a result, we
do not rely on the correctness of the segmentation. The goal of the second step
is to find the alignment based on local geometric features. In order to find this
alginment and the corresponding contact area, the two action parts are mapped in
a similar manner except that the substitute action part is rescaled proportionally,
and the alignment of the two action parts uses modified iterative closest point (ICP)
registration (Rusinkiewicz and Levoy, 2001). In step three, of the two contact areas

found in the two steps, the candidate with the highest similarity score is chosen along

Tsrcftool

sub—tool is thus

with its corresponding contact pose and the alignment of the tools
found.
The manipulanda do not need to be decomposed into action and grasping parts

like tools do. Therefore, the contact area is used as the action part, and the algorithm

Tsrc—man

e is otherwise the

to find the alignment poses of the substitute manipulanda
same as finding the alignment of the substitute tool. For Infinite-Effects Tasks, the
alignment of the manipulanda is not needed since the geometric features of the ma-
nipulanda do not decide the alignment. Therefore, it is handled in the same manner

as the source manipulanda in that the start pose is updated to incorporate the desired

effect. The alignment, in this case, is set to be the identity matrix.

Generating Tool Trajectories

Given the alignment resulting from the three-step alignment algorithm, the trajectory
of the substitute tool can be found given the learned source tool trajectory with
adjustments based on the taxonomic knowledge if necessary (see Section 3.2.3). With
the obtained tool trajectory, the end-effector trajectory is calculated from the tool
trajectory in the same way as Star 1, except that the functional component is rescaled

based on the size of the substitute manipulandum relative to the source for Non-Pose-
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Based tasks.

To find a candidate tool trajectory, an equivalent trajectory of the source tool
acting upon an equivalent source manipulanda (i.e., the equivalent start pose and
goal pose of the manipulandum is calculated with 7%t x (Teremam) =1 and

start—sub—man sub—man

Tworld x (Tere—mem) =1 respectively) is first found. Then each pose of the tra-

end—sub—man sub—man

jectory T~ "" is updated with (T;Jg:;”gg)*l x et x T ;Jg:fggll which calculates
the trajectory of the substitute tool in the substitute manipulandum frame. The
trajectory is then converted to the world frame. For Non-Pose-Based Tasks, the
functional component of the trajectory is rescaled based on the relative size of the
longest dimension of the source and substitute manipulandum. Multiple candidate
tool trajectories are found and each corresponding to a contact pose chosen in the

same way as in Star 1. The final tool trajectory is chosen from the candidate tool

trajectories in the same way as in Star 1.

3.2.5 Star 3: Tool Use Transfer to Other Robot Platforms

As tool use learned by Star 1 are represented independent of robot configurations,
no additional algorithms were needed in order to enable skill transfer to different
platforms that could perform the given task. This was assisted via the development
of a perception system that obtains the 3D poses of the tools and manipulanda
from RGB-D cameras, though in principle, any method that can accurately perceive
these poses can be used. With the learned tool use and the perceived grasping, we
calculate the end-effector trajectories and control the robot by leveraging existing
inverse kinematics and motion planning libraries. In order to simplify motion control
across different robot platforms, we implemented a Robot Operating System node
that uses the same interface to control all three robots. This interface can be easily
extended to accommodate more platforms.

The same mechanisms of partially executing a trajectory or completely aborting it
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mentioned in Section 3.2.3 also apply when the platforms being transferred to cannot
execute the generated actions. Moreover, learning a class of contact poses also helps
with finding viable solutions on different platforms. For example, when required to
drive an nail with a hammer, a robot can choose to approach a manipulandum from
any orientation, even those even not appearing in the training set, which increases

the viable kinematic solutions when a robot searches for motion planning.

3.3 Results

TRI-STAR uses raw sensor data for perception and demonstrated Star 1 with seven
tasks trained with minimal training samples via Learning from Demonstration (Argall
et al., 2009). We tested Star 2 by providing three substitute tools and three manipu-
landa for each task. Finally, we conducted experiments for Star 3 that transferred the

learned skills to two other robot platforms with different kinematic configurations.

3.3.1 Star 1: Learning and Applying Task-General Tool Use
Skills

Figure 3.4 shows an example from each of the seven tasks with the source tools and
manipulanda, and Figure 3.5a shows the testing environment. Six of the seven tasks
were tested on a URbe robot, and the screw-driving task was demonstrated on a
simulated UR5e due to the higher perception accuracy required to align the tip of
a screwdriver to the slot on the head of a screw. All tasks tested on the physical
robot were evaluated quantitatively except for the writing task, which was included
for demonstration purposes only. Creating quantitative metrics was sometimes chal-
lenging; while the pushing task could be evaluated with translation errors to the goal
as had been done previously (Xie et al., 2019; Fitzgerald et al., 2019), other tasks were

previously reported with only binary success or failure results (Pastor et al., 2009;
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(a) Knocking. (b) Stirring.

(e) Cutting. (f) Writing.

(g) Screw-driving.

Figure 3.4: Demonstration of the variety of tasks learned by the robots using source
objects. Star 1 tested a robot learning a wide range of tasks, including (a) knocking,
(b) stirring, (c) pushing, (d) scooping, (e) cutting, (f) writing, and (g) screw-driving.
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(a) The workspace of the URb5e robot.
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(b) The workspace of the Baxter robot.

(¢) The workspace of the Kuka youBot robot.

Figure 3.5: The workspace of (a) URbe, (b) Baxter, and (c) the Kuka youBot robot are
similar. Two Azure Kinect RGB-D sensors are placed on the sides of the workspace.
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Brandi et al., 2014) or success rates over multiple trials (Fang et al., 2020; Gajewski
et al., 2019). When evaluating performance quantitatively, we used stricter methods
(e.g., using loudness in decibels for the knocking task) when possible.

The five tasks analyzed quantitatively were also compared with a baseline condi-
tion. We designed the baseline condition to accord with the common practice across
task-general tool use learning frameworks of using the gripper pose as a proxy to the
tool pose. Therefore, in the baseline condition, the robot repeated an end-effector
trajectory in the task space of a training sample chosen randomly. For the five tasks,
we tested ten trials per task per condition. Trials in which the robot was not able
to follow the commanded trajectories were excluded. The start and goal poses of the
manipulanda were altered in each trial. In both the experimental and baseline con-
dition, the robot held tools with various poses as shown in Figure 3.6, a complexity
that was not present in other studies. These poses were provided to the robot by
the experimenters in order to impose pose variety (see Section 3.1.4 for motivation),
though in principle TRI-STAR can accommodate autonomous grasping. Figure 3.7
summarizes the results. Details of testing each task are described below.

Knocking. A robot is required to strike an object with a hammer to produce
sound. The robot successfully completed the task in 10 out of 10 trials in the testing
condition, while its performance in the baseline condition was 4 out of 10 trials. We
also measured the sound of each knock on the manipulandum using the Sound Meter
app with a Samsung tablet placed close to the manipulandum. The average decibels,
including the reading from unsuccessful trials, of the testing condition (mean (M) =
82.79 decibel (dB), Standard Deviation (SD) = 2.58 dB) was higher than the baseline
condition (M = 32.00 dB, SD = 41.44 dB).

Stirring. A robot should stir the liquid with a spatula to desolve salt. 0.25 tsp
salt per liter was added to the room-temperature water and given several seconds

to settle. The robot was allowed to stir for one minute or five circles, whichever
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Knocking r.\ ;x/ V“‘;/.

Pushing

Scooping

Cutting

Figure 3.6: Different grasping poses of the source tools (Star 1). For each task, that
is, knocking, stirring, pushing, scooping, and cutting, at least three different grasping
poses were tested.
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lasted longer. Due to kinematic constraints, the grasps in the testing conditions were
similar to the training pose. This constraint, along with the enforced grasping pose
consistency across training and baseline conditions, resulted in both training and
testing conditions completing 10 of 10 trials. We also measured the concentration
changes in part per million (ppm) before and after the stirring using a total dissolved
solids meter. More salt dissolved in the testing condition (M = 75.20 ppm, SD =
48.79 ppm) than in the baseline condition (M = 28.70 ppm, SD = 20.10 ppm).

Pushing. A robot should push a blue item to the goal position chosen randomly
by the experimenters. The manipulandum was pushed closer to the goal position in
the testing condition (translation error: M = 3.36 centimeters (cm), SD = 1.45 cm)
than in the baseline condition (M = 61.06 cm, SD = 14.62 cm). Our translation
error in the testing condition is consistent with a recent study (Xie et al., 2019; M =
6.37 cm, SD = 5.33 cm) which also utilized perceptual data from raw sensor readings.
The translation errors were mainly due to perception errors. This is supported by the
significantly reduced translation error (M = 0.013 cm, SD = 0.0074 c¢m) observed
when performing the same experiments using a simulated UR5e robot with perfect
perception.

Scooping. A robot is required to scoop a rubber duck placed on top of packing
peanuts. The performance was rated as 1 if the robot successfully scooped the ma-
nipulandum, 0.5 if the rubber duck slipped away but the robot scooped surrounding
packing material, and 0 if the robot failed to scoop anything. The robot scooped the
manipulandum more successfully in the testing condition (M = 0.95, SD = 0.16)
than in the baseline condition (M = 0.20, SD = 0.35).

Cutting. A robot should cut a putty in half. We measured the percentage length
of the actual cut over the length of the intended cut. Even with a relaxed criterion
accepting cuts as shallow as 1mm depth in the baseline condition, the robot cut the

putty more thoroughly in the testing condition (M = 98.62%, SD = 2.91%) than in
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the baseline condition (M = 20.00%, SD = 42.16%).

Writing. A robot should write the letter “R” at the chosen location with the
required scale and orientation. The required scale and orientation may or may not be
included in the training samples. Figure 3.7 shows various letters “R” that the robot
wrote.

Screw-driving. The robot is required to drive a screw placed at random locations

and orientations in simulation, and the robot is able to complete the task successfully.

3.3.2 Star 2: Task-General Object Substitution

Five tasks (knocking, stirring, pushing, scooping, and cutting) were tested on a URbe
robot. Other than using substitute objects, the experiments and evaluation in Star 2
were the same as those performed in Star 1. For each task, three pairs of substitute
objects were tested, and all objects were appropriate for the tasks. In the baseline
condition, a random contact area and a contact pose were chosen on each of the
substitute objects. The trajectories were generated using the same method as the
testing condition. Figure 3.8 shows the source and substitute objects. Figure 3.9
shows the alignment result of each substitute object with the source object in each
task. Figure 3.10 summarizes the results of the five tasks. Details of each task are
described below.

Knocking. All three substitute tools successfully struck the substitute manipu-
landa in all trials in the testing condition, while the performance dropped significantly
in the baseline condition (i.e., at most 1 out of 10 trials for each tool-manipulandum
combination). In a previous study with a similar task (Fang et al., 2020), the highest
success rate on nail-hammering was 86.7% of all the substitute tools with tens of
thousands of training samples. In the testing condition, the average loudness in the
testing condition (M = 65.62 dB, SD = 3.35 dB) was higher than that of the baseline
condition (M = 4.34 dB, SD = 16.50 dB), while the loudness was not measured in
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Figure 3.8: Substitute objects (Star 2). For each task, that is, knocking, stirring,
pushing, scooping, and cutting, three substitute tools and three substitute manipu-
landa were included in testing. The objects in the yellow frames were used as source
objects in Star 3.
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Knocking

Tools

Manipulanda

Stirring
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Figure 3.9: Results of aligning substitute objects to source objects (Star 2). The
green point clouds are the source objects while the blue point clouds are the substi-
tute objects. Manipulandum substitution for the pushing and scooping task is not
geometry-dependent, but goal-dependent, and therefore, the alignment results are
excluded in the figure.
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Figure 3.10: Results of tool substitution and manipulandum substitution (Star 2).
The bar graphs show the results of using the substitute objects to perform knocking,

stirring, pushing, scooping, and cutting. The bars compare Star 2’s (blue) perfor-
mance against the baseline (gray).



the previous study.

Stirring. All three substitute tools successfully stirred the room-temperature
salted water in the substitute containers in all trials in the testing condition, while
all substitute tools failed to stir in the baseline condition. More salt dissolved in the
testing condition (concentration change: M = 82.10 ppm, SD = 62.29 ppm) than
in the baseline condition (M = 3.97 ppm, SD = 4.43 ppm). We did not encounter
another study that performed a similar task.

Pushing. The manipulanda were pushed closer to the goal in the testing condition
(translation error: M = 4.28 cm, SD = 2.26 cm) than in the baseline condition (M
= 29.44 cm, SD = 16.24 cm). In a previous study that also used raw sensor data
to perceive the environment (Xie et al., 2019), the translation error using substitute
tools and source manipulanda was similar (M = 5.56 cm, SD = 4.13 c¢m) to the
current study but required more than 10? training samples.

Scooping. The substitute tools scooped the substitute manipulanda more suc-
cessfully in the testing condition (rating: M = 0.78, SD = 0.34) than in the baseline
condition (M = 0.07, SD = 0.25). In a previous study (Gajewski et al., 2019), the
scooping task was tested only in simulation with substitute tools and source manip-
ulanda, and no quantitative results (e.g, success rate) were provided.

Cutting. The robot cut the manipulanda more thoroughly in the testing con-
dition (cut length percentage: M = 78.33%, SD = 33.95%) than in the baseline
condition (M = 6.67%, SD = 25.37%) even with relaxed criteria in the baseline con-
dition as mentioned in the Star 1 evaluation. In a previous study (Gajewski et al.,
2019), the cutting task was tested only in simulation with substitute tools and source

manipulanda, and no quantitative results (e.g., success rate) were provided.
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3.3.3 Star 3: Transfer Tool Use To Other Robot Platforms

Six tasks (pushing, stirring, knocking, cutting, scooping, and writing) were used to
test skill transfer from a URbe robot to both a Baxter robot and a Kuka youBot
without additional training. Due to the size and payload limitations of Baxter and
youBot, source tools different from Star 1 were chosen. The experiments were similar
to the ones in Star 1. However, no baseline conditions were included in Star 3, and no
comparisons were made with other studies since we did not encounter similar studies.
Figure 3.5b and 3.5¢ show the testing environment of Baxter and youBot. The objects
in the yellow frames of Figure 3.8 are the objects tested in Star 3. Star 3 only
considered scenarios that the new platforms could complete if they were trained in the
same way as the source platform. Therefore, the task configurations of all experiments
were within the feasible workspace of the new robots. Figure 3.11 summarizes the
results.

Knocking. All three robots successfully completed all trials. The loudness cre-
ated by the URbe (M = 75.43 dB, SD = 2.57 dB), Baxter (M = 74.04 dB, SD =
3.95 dB) and youBot (M = 73.89 dB, SD = 7.78 dB) were similar.

Stirring. All three robots successfully completed all trials. The concentration
changes of the stirs by Baxter (M = 185.10 ppm, SD = 86.01 ppm) and youBot (M
= 176.00 ppm, SD = 35.74 ppm) was slightly higher than the stirs by the URbe (M
= 160.60 ppm, SD = 43.71 ppm).

Pushing. YouBot (translation error: M = 2.40 cm, SD = 1.02cm) pushed the
manipulanda slightly closer to the goal than UR5e (M = 3.78 cm, SD = 1.74 cm)
or Baxter (M = 4.04 cm, SD = 2.25 cm), which was because of the shorter pushing
length by youBot due to limited maximum reach compared with URbe and Baxter.
Since it is open-loop control, fewer errors are accumulated during this shortened
course of pushing.

Scooping. URbe (ratings: M = 0.90, SD = 0.21), Baxter (M = 0.90, SD =

79



907 320
SD=778 i
80— SD=257 SD =395 280 SD =860
] 1 = T
70 7404 J_ E_ 240—
7389 o i SD=357
60— % SD=437
g & 200
v 507 & ]
g S 160 J_
=4 c
40— 4
3 2 176.0
3 £ 1207
30 c .
185.1
20— S 807
S i
107 40—
0— 0=
URSe Baxter youBot UR5e Baxter youBot
Knocking Stirring
SD=021 SD=021 SD=024
7] 1.0
SD=225 T
67 _
SD=175 08— l
E s- ]
= 090
o
9 4 0.6
et SD=120 @ 0.85
@ £ E
2 b
i= ] o
g 3 T 0.4
a
S 2 1
g L
404 02+
1 240
0~ 00—
UR5e Baxter youBot UR5e Baxter youBot
Pushing Scooping
100.0% SD=7.75% SD=344% URSe
.0% _ T
SD=2828% —
E T 96.9%
€ 50.0%
8 | 85.8%
< Baxter
5 60.0%—
o
el
14 i
i
O 40.0% —
]
2 -
% youBot
=]
£ 20.0%—
<
0.0% —
UR5e Baxter youBot
Cutting Writing

Figure 3.11: Results of tool use generalization across robot platforms (Star 3). The
bar graphs include results of the URbe (green), Baxter (yellow), and youBot (yellow)
using the source tool/manipulandum combinations for knocking, stirring, pushing,
scooping, and cutting. The pictures at the bottom right demonstrate different robots
writing “R” with trained scale and orientation.
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0.21) and youBot (M = 0.85, SD = 0.24) performed equally well.

Cutting. The average cut length percentage cut of URbe (M = 92.39%, SD
= 7.75%) and youBot (M = 96.92%, SD = 3.44%) was slightly longer than Baxter
(M = 85.83%, SD = 8.28%), which was due to the difficulty in securing the spatula
tightly in Baxter’s gripper.

Writing. All three robots were able to repeat the letter “R. ” Figure 3.8 shows
the letter “R” with the trained scale and orientation written by the three robots.

Screw-driving. All three robots in simulation completed the task successfully.

3.4 Discussion

The results show that the TRI-STAR framework learned a wide range of tasks, gen-
eralized the learned skills to substitute tools and manipulanda, and transferred the
learned skills across robot platforms. This was achieved by using our task-oriented ap-
proach, which includes an affordance taxonomy and identified taxonomic knowledge
which specifies knowledge shared across tasks that belong to particular task categories
and minimizes the need for knowledge to be defined on a per task basis. We center
our discussion around the ways our framework improves upon the state-of-the-art in

task-general tool use but also identify limitations of our approach.

3.4.1 Contribution 1: Task-Generality

TRI-STAR is a task-general tool use framework shown to learn, generalize, and trans-
fer tool use for a variety of everyday tasks. Not all tool use algorithms are intended
to be task-general as they assume pre-defined knowledge specific to individual tasks
at either the learning or generalization stage. Three advances made it possible for
TRI-STAR to be task-general. First, we summarized taxonomic knowledge of tasks

which enables a multitude of tasks to be learned efficiently including potentially any
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undemonstrated tasks covered by one of the known taxonomic categories. Second,
TRI-STAR can handle tasks with different contact pose requirements (e.g., pushing,
knocking, and screw-driving) and different types of trajectories (e.g., circular peri-
odic trajectories including stirring, linear trajectories including cutting, non-linear
trajectories including scooping, trajectories that could be either linear or non-linear
including pushing, and complex trajectories with both linear and non-linear segments
including writing) which allows a robot to work with a wide range of tasks. Third,
TRI-STAR can generalize the tool use to tasks whose substitute tools and manipu-
landa may be geometrically-similar or geometrically-distinct objects since we made no
assumptions about the shape of the objects, unlike previous approaches (Brandi et al.,
2014; Fang et al., 2020). An added benefit of generalizing tool use to geometrically-
distinct objects is that it can allow a robot to improvise the use of objects such that

an object not designed for a task could be used when desired objects are unavailable.

3.4.2 Contribution 2: Data Efficient

Task-general frameworks typically required a large training set size. However, training
with a large sample size is time-consuming and thus impractical in time-sensitive
domains like search-and-rescue. By leveraging taxonomic knowledge identified for
each task category, TRI-STAR required only 20 examples to learn each task, and no
additional training samples were needed by Star 2 to generalize the usage to substitute
objects or by Star 3 to transfer the skills to other platforms. In contrast, previous
studies required over 5,000 (Gajewski et al., 2019), 18,000 (Fang et al., 2020), and
20,000 (Xie et al., 2019) training samples. The small set of training samples needed
for each task makes it time-efficient for TRI-STAR to learn new tasks and thus easy
to be deployed as an application in the real world. Moreover, TRI-STAR experienced
only a minor loss in performance while significantly reducing the necessary training

samples.
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Star 3 does not require additional training data nor extra algorithmic infrastruc-
ture to implement, but rather updates a common representational schema (Cartesian
trajectory) that is utilized in many tool use studies. To automate research work,
robots have been deployed in chemistry labs (Burger et al., 2020), where tasks and
tools are standardized. The ability to transfer skills between robots could save re-
searchers in each lab hundreds of hours of training time as skills could be shared
across research labs. For robots in the factory or warehouse, it will be cost-efficient
for skills to be transferred to new models without having to shut down the factory
in order to debug compatibility-related problems. For other applications, platform-
agnostic skill transfer would not merely be a convenience but could open entirely new
applications. For example, for in-home robots, the prospect of training every single
task by each individual is a nonstarter for most consumers, whereas having access to

a shared library of skills may be more acceptable.

3.4.3 Contribution 3: Integrative framework

We demonstrate TRI-STAR’s ability to handle all three stars, including tool use learn-
ing, tool substitution, and tool use transference to other platforms. Previous studies
on task-general tool use either focused on learning basic tool use or tool substitution
and typically limit the types of objects considered (e.g., they only consider objects
that share similar form-factors or only consider tool but not manipulanda substitu-
tion). Other tool use studies tend to be customized to particular tasks, which makes
adapting them for the wide variety of tasks a robot might realistically encounter chal-
lenging without significant modifications. In contrast, TRI-STAR not only enables
all these functionalities within one integrative framework but also removed these lim-
itations. Moreover, our framework encompasses a pipeline which includes important
aspects often ignored in other studies such as tool-manipulandum contact pose learn-

ing and a perception system customized to the needs of tool use. Our framework
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covered important aspects that were not mentioned in previous studies, such as tool-
manipulandum contact pose learning. We integrated all of these into TRI-STAR and
showed its effectiveness with a wide range of tasks. Being an integrative framework

makes it plausible for TRI-STAR to be deployed into real-world contexts.

3.4.4 Limitations

While our results demonstrate the potential of our framework, it has limitations.
First, the robot used position control only, rather than force control or feedback
control, to learn and complete tasks, which limits its effectiveness on tasks that require
consideration of the forces being applied to the manipulanda such as nail-hammering,
or tactile feedback such as inserting a key into a lock. Second, our framework only
considers the geometric features of the tools and manipulanda and does not consider
other properties (e.g., material, weight, texture), which may hinder the robot’s ability
to choose the most appropriate contact areas for tools like sandpaper that have a
single abrasive surface but are otherwise geometrically uniform. Third, although
our system calculated the grasping location on the tool, automatic grasping was not
demonstrated in the evaluation.

Other limitations also exist for TRI-STAR. First, our framework assumes that all
objects, including relevant objects in the environment, are rigid bodies with no joints
(i.e., have 0 DoF). This assumption does not allow a robot to handle common tools
such as scissors or washcloths or to perform tool use tasks on top of soft surfaces. Sec-
ond, our framework relies on accurate visual perception and structured environments,
which is a common problem for non-marker-based perception systems and is an im-
pediment to handling tasks that require highly accurate perception, such as surgery.
Third, object alignment relies on full 3D models though ideally, this system should
perform alignments using only partial point cloud data of both geometrically-similar

and geometrically-distinct objects. Fourth, TRI-STAR cannot learn the cause-and-
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effect relations (e.g., Brawer et al., 2020) that comprise taxonomic knowledge, which
does not allow it to, for example, automatically choose between the actions required

to stir a liquid versus a heavier mixture like a batter.

3.5 Summary

In this chapter, we presented the TRI-STAR framework that can perform basic tool
use, transferable tool use, and improvisatory tool use. Despite its effectiveness with
single-manipulation tool use, it does not consider multiple-manipulation tool use,

which we will address in the next chapter.
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Chapter 4

Multiple-Manipulation Tool Use:

Sequential Tool Usel

In this chapter, we present a planning algorithm that aims to handle part of open chal-
lenge 4 as described in Chapter 2. Specifically, this algorithm helps to expedite the
search for valid trajectories in sequential tool use. Task and motion planning (TAMP)
is a classic algorithm for solving this type of problem (Garrett et al., 2021) which com-
bines high-level task planning and low-level motion planning to generate robot action
plans. The low-level motion planner searches for a solution by considering both robot
and environmental constraints. However, the large search space poses challenges in
efficiently identifying infeasible tasks or producing solutions for tasks with limited so-
lution space in constrained environments. In order to improve run-time performance
for these types of tasks, we propose an intermediate-level affordance planning step
situated between the task planning and motion planning steps. We call the combined
model Task, Affordance, And Motion Planning (TAAMP). The affordance planning

layer learns affordance knowledge, without predefining such knowledge as in classic

'Portions of this chapter are currently under review: M. Qin, J. Brawer, and B. Scassellati.
Using Task, Affordance, and Motion Planning (TAAMP) to Detect Infeasible or Limited Solutions
in Affordance-Constrained Environments.
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TAMP approaches. To solve a problem, affordance planning reasons about the range
of affordance-related parameters conditioned by current environmental constraints
independent of robot constraints in the physical space. As a result, the search space
is reduced by affordance planning for more efficient motion planning. We evaluated
TAAMP with tasks with different amounts of affordance constraints. Results showed
that the benefit of this additional affordance level in TAAMP outweighed its ex-
tra costs in tasks with constrained affordance and in infeasible tasks, while minorly

impacting performance for tasks with relatively unconstrained affordances.

4.1 Introduction

Task and Motion Planning (TAMP) (Garrett et al., 2021) is a classic method to solve
the problem of planning robot motion to achieve particular goals in various environ-
ments. It instantiates parameters for the action skeletons generated by high-level
discrete task planning and generates robot motion plans accordingly with the low-
level continuous motion planning. There are two common approaches to find action
instantiations in TAMP: sampling-based approach that performs random sampling,
and optimization-based approach that finds the solution with optimization techniques.
Both approaches may require pre-defined actions, and solution is found by considering
both environmental and robot constraints at the same time.

Consider the infeasible problem in Figure 4.1 in which a robot must push a block
located under an immovable container with a tool. Sampling-based approaches will
continue to sample combinations of all parameters including robot-related param-
eters (e.g., grasp poses), shown in Figure 4.2 (top). Similarly, optimization-based
approaches also attempt to perform the optimization in one step that considers robot
parameters. However, the infeasibility of this problem is not due to robot-related

parameters such as robot kinematic constraints or robot grasping poses. Rather, the
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Figure 4.1: A comparison of classic Task and Motion Planning (TAMP) (a) and the
proposed task, affordance, and motion planning (TAAMP) (b). On the right, cartoon
vignettes illustrate the questions addressed at each level with an example problem. In
this problem, a robot should push an object from under an immovable container. Task
planning chooses the action push. Affordance planning performs geometric reasoning
in the physical space and determines whether the environment can afford the action
at all, independent of who the actor is. Motion planning addresses how to complete
the action with this specific robot.

infeasibility is actor-agnostic; that is, it is independent of who is attempting the task
(e.g., a robot, an animal, a human) and is solely dependent on the environment.
This environment simply does not afford the block being pushed. Infeasible tasks in
general manipulation tasks share the same idea, such as picking up the block located
under an immovable container.

Similarly, current approaches are also challenging to find solutions in tasks with
constrained affordances, or in other words, tasks with a narrow set of possible so-
lutions, as demonstrated in Figure 4.2 (bottom). In this example, the immovable
container is replaced inside a tunnel so that the object can only be pushed along
the tunnel. As a result, the probability of reaching the solution is small by random
sampling in sampling-based approach. This approach may require a long timeout,

which negatively impact its run-time performance when encountered with infeasible
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Figure 4.2: Diagram of the search for action parameters in TAMP and in TAAMP for
the action push. (Top) In an infeasible task in which a block cannot be pushed from
under an immovable container, TAMP attempts to search for a feasible combination
including affordance-centric parameters (e.g., goal poses of the block p) and robot-
related parameters (e.g., grasping pose g). Affordance planning detects that none of
the p’s are feasible in a generic sense and does not attempt to search for robot-related
parameters such as grasping poses. (Bottom) In a constrained task where the block
is located inside a tunnel, TAMP needs to consider a large space, including p’s that
are either feasible or infeasible, and searches for feasible combinations to instantiate
the action push. Affordance planning detects the p’s that are feasible and performs
motion planning only within feasible p states.

tasks described earlier. This type of task is also challenging for optimization-based
approaches to search for the solution in the large and high-dimensional configura-
tion space (c-space). Similar to the infeasible task described above, the constrained
solution of this task is mainly due to the environment.

Therefore, we extended the current TAMP model. In our new model of Task,
Affordance, and Motion Planning (TAAMP) (shown in Figure 4.1b), we include an
intermediate level, i.e., affordance planning, in between task planning and motion
planning. In this study, we refer to affordance as the achievable range of the goal
states of an object of an action. In TAAMP, Task planning and motion planning
assume their original functions as in TAMP. More specifically, task planning addresses
what actions to choose, if any. Motion planning addresses if or how the actions can be
achieved with the specific robot. Unlike motion planning, affordance planning shifts

the focus from the robot to the objects to be manipulated. Affordance planning first
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learns how to generate actions as well aspossible affordances of the action by learning
from demonstrations, rather than pre-defined as in classic TAMP approaches. To plan
for a solution, affordance planning detects whether specific actions can be achieved in
a particular environment in an actor-agnostic manner without considering the robot.
For example, in the infeasible task shown in Figure 4.2 (top), affordance planning
detects that none of the goal poses can be achieved for the action push. It concludes
that the task is infeasible and stop executing without considering any robot-related
parameters. In the constrained task shown in Fig. 4.2 (bottom), affordance planning
attempts to reduces the space of possible affordances to feasible affordances, whose
goal poses and corresponding trajectories of the objects of interests are collision-
free in the current environment. Motion planning then only finds solution in this
reduced space. Affordance planning attempts to reduce affordance-centric parameters
independent of robot-related parameters by decoupling environment constraints from
robot constraints as much as possible. However, we recognize that some constraints
are caused by a mixture of environmental and robotic constraints. In these cases, we
use motion planning to handle these environmental constraints as in classic TAMP
approaches.

We evaluated the run-time performance and success rates using kitchen tasks in
simulation and on a physical robot with different levels of affordance constraints,
such as tasks with relatively unconstrained affordances, constrained affordances, and
infeasible affordances. Our results suggested that the benefit of affordance planning
outweighed the extra cost in infeasible and constrained tasks, while having a minimal
impact on the performance of unconstrained tasks. In summary, the contribution of
our work is to add affordance planning as an intermediate step in TAMP in order to

improve run-time performance by:

e learning the affordance of each action, which include viable goal states of the

objects and how to generate robot motion given a goal state, rather than pre-
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defining the knowledge;

e leveraging the learned affordances knowledge to perform geometric reasoning in

the physical space rather than in the c-space independent of the robot;

e reducing the search space for motion planning in order to expedite the search

in motion planning.

The detection of infeasible actions in previous studies relied on robot configura-
tions. Hierarchical Planning in the Now (HPN) (Pack and Lozano-Pérez, 2011) and
similar planners (Stilman et al., 2007; Stilman and Kuffner, 2008) backtrack when
collisions are detected using the swept volume of a specific robot trajectory. In the
planner embedded with causality-based geometric reasoning (Erdem et al., 2011),
constraints were added to the planner when specific robot trajectories resulted in
failures. When none of the motion plans generated were feasible (Srivastava et al.,
2014), they selected one robot trajectory and identified which objects were involved
in collisions.

Other studies leveraged constraint-based approaches to TAMP, and the constraints
were generally related to samplings of robot configurations. For example, motion
planning incorporated both geometric and robot constraints that resulted from the
instantiations of previous actions in order to solve the task of stacking multiple cups
vertically (Lagriffoul et al.; 2012, 2014). A previous study (Bidot et al., 2017) on
geometric backtracking connected the constraints on robot configurations with geo-
metric constraints. Iteratively Deepened Task and Motion Planning (IDTMP) (Dan-
tam et al., 2016) updated constraints incrementally to improve run-time performance.
The addition and removal of constraints were based on robot motion feasibility.

Recent sampling-based TAMP studies focused on improving the search algorithm
to expedite the search. FFRob (Garrett et al., 2018) employed FastForward search.

PDDLStream (Garrett et al., 2020) developed an adaptive algorithm that outper-

91



formed FFRob, and showed impressive performance on unconstrained tasks. More-
over, PDDLStream also incorporated affordance-centric sampling such as where to
place an object on a surface. However, the rules of such sampling are predefined
rather than learned, and the range of sampling is not reduced based on specific envi-
ronmental constraints of a problem as in TAAMP. PDDLStream is one of the state-
of-the-art algorithms in TAMP, and we compare the performance of our approach
with PDDLStream.

The sampling-based TAMP planners mentioned above focused on robots and
combined both robotic and environmental constraints in motion planning. Though
possible affordances can be pre-defined, these approaches do not reduce the space
of affordance-centric parameters based on current environmental constraints. Con-
versely, the intermediate-level affordance planning is actor-agnostic; it focuses on the
object to be manipulated and considers constrained affordances furnished by the en-
vironment independent of the robot. As a result, motion planning of TAAMP, while
still proceeding in the high-dimensional c-space with both robotic and environmen-
tal constraints, searches more selectively. Moreover, TAAMP learns, rather than
pre-defines, the affordances and actions.

Another set of research employed optimization-based approaches (Toussaint et al.,
2018; Migimatsu and Bohg, 2020; Hadfield-Menell et al., 2016). Such algorithms fo-
cused on the application of optimization techniques in order to find the optimized
solutions of all parameters at once given an action skeleton, though environmental
can be pre-defined as equations without robot constraints. When no solution could be
found for the current action skeleton, it continued with the next action skeleton until
all action skeletons were exhausted. Therefore, motion planning in optimization-based
approaches attempts to optimize both affordance-centric and robot-related parame-
ters at the same time by considering both environment and robot constraints, while

our study conducts a modularized search and attempts to reduce the search space
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for affordance-centric parameters prior to consider robot-related parameters. More-
over, affordances in our study are learned rather than pre-defined as equations as in
optimization-based approaches.

While the above studies focused on the detection of infeasible solutions or the gen-
eration of constrained solutions, other studies explored how to learn what is infeasible.
For example, the score space was employed to evaluate the similarity between differ-
ent problem instances and transferred knowledge from similar problems to generate
motion plans (Kim et al., 2019). In another study (Wells et al., 2019), a classifier
was trained to classify motion feasibility with the input of robot constraints, task
action and the problem instance. Instead of problem instances, the Deep Generative
Constraint Sampling (DGCS) (Ortiz-Haro et al., 2022) took the scene image as input.
These studies focused on the actors (the robots), while affordance planning focuses
on reducing the search space by only considering the object to be manipulated and

the environment.

4.2 Methods

The affordance planning in TAAMP first learns possible affordances with learning
from demonstrations. It also learned how robots should generate motions given a
goal state with these demonstrations. Given a specific problem and the goal, the
system plans for the solution with sampling-based approach. However, TAAMP can

be integrated into other planners, including optimization-based planners.

4.2.1 Learning Possible Affordances and Actions

We chose the TRI-STAR framework as described in Chapter 3 that allows robots to
utilize off-the-shelf human tools such as screwdrivers to manipulate another object

(i.e., manipulandum), and expanded this framework to learn affordances. TAAMP
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utilized star 1 of the TRI-STAR system, which is the ability to learn to use a tool
(e.g., a screwdriver) and apply the knowledge with the same tool in different contexts
(e.g., drive a screw shallower or deeper into the wood, or the screw is placed with
different poses).

We expanded TRI-STAR to learn possible affordances. Since any point on the
manipulandum trajectory may be potential goal poses, learning the distributions of
goals is equivalent to learning the range of via-points on all trajectories. Similar
to TRI-STAR, we represent the pose changes with exponential representations. We
classified the screw axes of the manipulandum trajectories in demonstrations. For
each group, we also recorded the range of angles. As a result, the affordance of

different actions can be represented in a uniform manner as

{Sy : [min_6y,max_6,],Sy: [min_60y, mazx_65),...}

In order to represent possible affordances in a more succinct manner, we leveraged
two frames of references: the world frame and the manipulandum frame. The world
frame assumes an arbitrary point and orientation as the origin. The manipulandum
frame assumes the starting pose of the manipulandum as the origin. We chose the
frame with fewer screw axis, shown in Table 4.1. For example, the scooping task has
infinitely many screw axis in the manipulandum frame but finite screw axis in the
world frame. Because an object can be placed with any orientations but the action
scooping tends to lift it up. Therefore, the object may result in any poses relative
to self (the manipulandum frame), but always be lifted up when relative to a fixed
point in the world (the world frame). In contrast, a pushing task has infinitely many
screw axis in both the object and the world frame.

TRI-STAR can generate actions given a goal. In order to handle general manip-

ulation tasks, we represented the grippers with their bounding boxes, and pretended

94



Manipulandum Frame
Finite Infinite
Finite | World/Manipulandum frame | World Frame
World Frame Infinite | Manipulandum Frame Assume Any Poses are Possible

Table 4.1: Possible affordances learned in different frames of references. They are
categorized based on the number of screw axis in the manipulandum frame and the
world frame. The frame of references is chosen with fewer numbers of screw axis.
When the numbers of screw axis in both the world and object frame are finite, one
can choose either frame. When one is finite and the other is infinite, choose the frame
with finite screw axis. When both are infinite, the system assumes that possible
affordances can be any poses.

the gripper as a tool when using the TRI-STAR system. The TRI-STAR system can

thus handle general manipulation tasks in the same way as tool use tasks.

4.2.2 Planning

We implemented? TAAMP based on PDDLStream (Garrett et al., 2020). PDDL-
Stream provides an interface to program TAMP tasks, integrates the contributions of
previous studies, and employs efficient search algorithms. It combines standard Plan-
ning Domain Definition Language (PDDL) (McDermott et al., 1998) with streams to
sample parameters or to certify predicates. In PDDLStream, a TAMP task is defined
with a domain PDDL and a stream PDDL. The domain PDDL is the same as the
domain in classic PDDL that mainly consists of predicate definitions and actions.
The streams governed the sampling procedures, and three types of streams are rel-
evant: the function streams that produce one set of outputs (e.g., given the grasp
pose, object pose, and the tool, generating robot configurations to push an object to
the designated position), the test streams that certify the boolean value of a predi-
cate (e.g., whether a specific robot trajectory results in collisions), and the sampling
streams that produce finite or infinite samples (e.g., possible grasping poses given an

object or a tool). The sampling procedure and the search are interleaved to find the

Zsource code: https://github.com/ScazLab/TAAMP.git
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solution.

Affordance planning was added as a test stream and sampling stream. As af-
fordance planning is actor-agnostic, both streams did not contain any robot-related
parameters, such as grasping poses and robot configurations. The test stream re-
turned whether an action is feasible in the current context and the sampling stream
returned feasible affordances, which are subsets of possible affordances. For example,
when detecting feasible affordance for a pushing action, it would not consider the
vertical pose changes of the object on a flat surface which fell outside of possible
affordances, nor end poses or trajectories that may collide with other objects.

In order to reduce the search space of affordance-centric parameters from possi-
ble affordances to feasible affordances, the affordance test stream perform geometric
reasoning in the physical space with a sampling-based approach. The test stream
first checked whether the affordance was constrained in the context of the task by
randomly sampling from possible affordances. If all sampled end poses and corre-
sponding trajectories did not result in collisions, the affordance planner determined
that the affordance was unconstrained. The test stream considered such action is
feasible, and the sampling stream approximated possible affordances as feasible af-
fordances in motion planning to find robot motion plans. Otherwise, the affordance
planner considered the environment to be constrained.

When the affordance was considered to be constrained, the affordance planner
conducted a brute-force search to find feasible affordances. We discretized the space
of all possible affordances, more specifically, the range of the angle parameters in the
affordance presentation, and searched for the instances that did not result in collisions.
We also assumed that the continuous value between two feasible and adjacent angles
are also feasible. These feasible affordances were then passed to the motion planner.
If the feasible affordances space was empty, the test stream announced that the action

was infeasible in the current context, without starting the motion planner. Since there
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Algorithm 1 Detecting task infeasibility and reducing possible affordances (P) to
feasible affordances (F') in affordance planning given current action (A) and current
environmental constraints (£).

1: procedure AFFORDANCEPLANNING(E, P, A)

2 feasible < True

3 constrained < False

4: F<+ P

5: for i :=1to 10step 1 do

6 goalPose, traj <— RandomSampling(P)
7 if Col(goalPose, E) or Col(traj, E) then
8 constrained < True

9

break
10: if constrained then
11: F <+
12: for each screw azis S € P do
13: for 0 := minAngle to maxAngle step 5° do
14: goal Pose, traj < Convert(S, )
15: if not Col(goalPose, E) then
16: if not Col(traj, E) then
17: F.append([S, 0])
18: if F'is empty then
19: feasible + False
20: return feasible, F

are overlapping between the test stream and the sampling stream, we saved affordance
planning results for the current contexts for future use. Algorithm 1 summarized how
affordance planning tests the feasibility of an action and how to reduce the search
space from possible affordances to feasible affordances.

To summarize, affordance planning in TAAMP first learns possible affordances of
each action from demonstrations and how to generate actions. In order to solve a
problem, task planning identifies an action skeleton. Affordance planning identified
the feasibility of the task and reduced the learned possible affordances to feasible
affordances in the current context in feasible tasks. Motion planning then searches

for the final solution by sampling feasible affordances.
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4.3 Results

The intermediate-level affordance planner aimed to detect environment constraints
rather than constraints related to the robot. Therefore, we evaluated the performance

of TAAMP using four types of tasks with different levels of affordance constraints:

Unconstrained tasks: feasible tasks with relatively unconstrained affordances.
Traditional TAMP planners should be able to find solutions quickly on these

tasks;

Constrained tasks I: constrained tasks that do not require backtracking. That
is, no objects other than the target object need to be relocated to complete

tasks;

Constrained tasks II: similar to Constrained tasks I but requires backtracking;

Infeasible tasks: infeasible tasks with completely constrained environments that

do not provide necessary affordances.

For each type of task, we included a manipulation task and a tool-use task to show that
TAAMP can benefit a wide range of tasks. Manipulation tasks were commonly seen
in previous TAMP studies, while tool-use tasks were not typical in TAMP studies (for
demonstrations of tool-use tasks in TAMP, see Toussaint et al., 2018). We included
tool-use tasks because our affordance planning may be especially helpful for this type
of task. When a tool is needed to push or pull an object, the object is usually out
of reach, or hard to reach due to the constrained environments, e.g., a broom is used
to retrieve objects under a sofa. In the latter case, the chance of finding the solution
with random sampling is small because only limited target poses are feasible.

Figure 4.3 shows all eight tasks tested in simulation. The unconstrained manipu-

lation task (top left) is a task originally included in the PDDLStream (Garrett et al.,
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Figure 4.3: Eight tasks in our evaluations in simulation. In the unconstrained manip-
ulation task, the robot should place the green block (the “celery”) on the immovable
blue surface (the “sink”) to clean it and then place it on the immovable red surface
(the “stove”) to cook it. The cyan block (the “radish”) is movable but not directly
related to the goal. The rest of the tasks shared the same goal. In the constrained ma-
nipulation task II, the robot needs to relocate the extra cyan block. In the infeasible
manipulation task, the robot cannot access the green block since it is located under
a yellow immovable. In the tool-use tasks, the robot should pull the green block that
is out of reach with the L-shaped tool (i.e., the unconstrained tool-use task), or push
the green block under the immovable orange tunnel (i.e., the constrained tool-use
task I), or push the L-shaped tool to expose the grasping part of the L-shaped tool in
order to use the L-shaped tool to pull the green block (i.e., the constrained tool-use
task IT), or cannot complete the task when the green block is located under the yellow
immovable container.

2020) source code package. In this task, a simulated KUKA iiwa robot arm is ex-
pected to cook a “celery” (the green block) by first placing it on the “sink” (the blue

surface) to clean it, and then placing it on the “stove” (the red surface) to cook it.
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Figure 4.4: Eight tasks in our evaluations with a Kuka youBot arm.

The “radish” (the cyan block) is a movable object but irrelevant to the goal. We
utilized this task to guarantee that the task is friendly to PDDLStream. Other tasks,
including tool-use tasks, were all variations of this task. We also demonstrated similar
tasks on a physical Kuka Youbot robot arm as shown in Figure 4.4.

The system learned possible affordances on four actions: pick, place, push, and
pull. The search method we chose for our approach and for PDDLStream was the
adaptive algorithm, which was shown to be most efficient in a previous study (Garrett
et al., 2020). We executed the scripts on a laptop with an 8th generation Intel Core
19-8950HK CPU with 32 GB memory operating on a Ubuntu 18.04 system. We tested
thirty trials for each task and evaluated run-time performance, as well as the success

rate of producing correct plans or recognizing the infeasibility of a task within the
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allotted time frame. The timeout for each trial was set to ten minutes.

Table 4.2 shows the results in simulation. For infeasible tasks, a success is to
identify the infeasibility before timeout. Due to the additional affordance planning,
our approach was slightly slower than PDDLStream in unconstrained tasks. However,
our approach was more likely to solve constrained and infeasible tasks than the TAMP

planner without affordance planning.

4.4 Discussion

We proposed the intermediate-level affordance planning to solve TAMP tasks, which
resulted in the three-level TAAMP model. Results showed that the benefit of TAAMP
outperformed its additional cost, and thus expedited the generation of motion plans
in constrained tasks and the identification of infeasible tasks, while having a minor
impact on the performance for unconstrained tasks. TAAMP learned possible af-
fordances. In previous approaches, they are usually pre-defined as sampling rules
in sampling-based approaches or as equations in optimization-based approach. Af-
fordance planning also reduced the search space for affordance-centric parameters
in motion planning to only include feasible affordances. Though not demonstrated,
TAAMP has the potential to explain the infeasibility of a task of whether it is due
to environmental constraints or robot constraints. As a result, different support may
be provided accordingly. Moreover, TAAMP also has the potential to leverage novel
tools to solve a task with star 2 of TRI-STAR, though the discussion of which is
beyond the scope of this study.

Affordance planning should be considered an extension, rather than a replacement,
to current TAMP planners. Given that the task and motion planning in the TAAMP
model is the same as other TAMP models, the task planner and the motion planner

of TAAMP can be replaced when more efficient planners are developed in the future.
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Moreover, it can be utilized by optimization-based approaches by performing modu-
larized optimization in multiple steps, though our implementation is sampling-based.

Affordance planning has limitations. First, affordance planning is designed to
handle affordance constraints imposed by the environments, but not constraints im-
posed by the robot. This extra planning will not improve performance if the scenario
is challenging due to robot constraints or a mixture of environment and robot con-
straints. Second, we only pose changes as the effects, and improvements can be made
to include other state changes of the objects (e.g., color, mass, volume, shape). Third,
the brute-force search in affordance planning can be replaced with more efficient al-
gorithms.

Though TAAMP is a good solution as a way of eliminating parameters, we ac-
knowledge that TAMP may be more efficient in unconstrained tasks where a solution
is guaranteed when the solution space is large. The insufficiency of TAAMP in these
unconstrained tasks is due to the extra affordance tests. To solve this, one may si-
multaneously execute both TAMP and TAAMP using multi-threading. The script
terminates when either planner returns a result. In this way, both unconstrained

tasks and constrained tasks will benefit from the best of the two worlds.

4.5 Summary

In this chapter, we present the TAAMP algorithm, which includes an extra intermedi-
ate layer of affordance planning compared with the classic TAMP algorithm. It bene-
fits both general manipulation tasks and tool use tasks, specifically sequential tool use.
It may also have the potential to facilitate other types of multiple-manipulation tool
use, such as planning for tool manufacturing. While this chapter focuses on sequen-
tial tool use, the next chapter focus on another subcategory of multiple-manipulation

tool use, tool selection.
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Chapter 5

Multiple-Manipulation Tool Use:

Tool Selection!

In this chapter, we present work that aims to handle part of open challenge 4, which
is tool selection. We introduce a method for a robot to reason about tool affordance
with an explicit model of cause-and-effect by constructing a structural causal model
through a mix of observation and self-supervised experimentation. We demonstrate
our method on tool selection tasks, and results suggest that after minimal training
examples, our system can preferentially choose new tools based on the context and

use these tools for goal-directed object manipulation.

5.1 Introduction

In The Crow and the Pitcher, the fifth century B.C.E. Greek poet Aesop wrote of a
thirsty crow who ingeniously found relief after dropping stones into a jug of water
until the water level was high enough for the crow to drink from it. More recently, the

scientific community corroborated this remarkable feat of physics-based instrumen-

'Portions of this chapter were originally published as: J. Brawer, M. Qin, and B. Scassellati.
A causal approach to tool affordance learning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 8394-8399. IEEE, 2020. (Brawer et al., 2020)
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tal problem-solving in New Caledonian Crows (NCC; Corvus moneduloides) (Jelbert
et al., 2014). Contrary to the flexible reasoning capabilities of crows and other higher
species, robot learning and reasoning remain starkly limited despite substantive ad-
vancements in statistical machine learning techniques. Additionally, what exactly
is learned by these systems remains largely opaque (Marcus, 2018), which not only
makes them difficult to debug but poses serious risks in robotics settings where un-
foreseen behaviors can cause physical harm.

Ideally, robots should be able to acquire knowledge and skills in a way that is
both transparent and portable across contexts, but without compromising on the in-
credible advancements made by the machine learning community. To that end, we
have developed a system whereby a robot can learn and exploit a graphical causal
model to solve a physical reasoning task. Our approach has a robot learning a struc-
tural causal model (SCM) (Pearl, 2000) through a mix of observation and physical
exploration. The SCM is used to perform causal inference, which is completed by a
group of neural networks that are dynamically constructed and trained as a function
of the learned structure of the SCM and the goals of the current task. As a result,
our system represents the robot’s knowledge in an explicit and explainable way by
the directed acyclic graph (DAG) entailed by the SCM, but that also leverages the
powerful pattern recognition capabilities of machine learning techniques via the use
of neural networks.

We demonstrate our method on a humanoid robot that must build a model of
the cause-and-effect relationships underlying tool-assisted manipulation and then use
this model to both solve goal-directed manipulation tasks, and quickly learn the
affordances of novel tools given a kinematic model of each tool.

We demonstrate that our system is capable of selecting the appropriate tool and
action to take to move an arbitrarily placed block into goal regions, as well as lever-

aging prior learning to bootstrap learning of new tools.
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SCM s

Figure 5.1: Tool selection via causal inference. A Baxter collaborative robot queries a
learned causal model of tool-assisted manipulation using perceptual information from
its workspace. Information from the graph is used to select the most appropriate tool
for completing its goal.

In sum, our contributions are the following;:

e A method for a robot to construct a transparent model of causation via a mix

of observation and experimental learning.

e A method for performing forward and backward causal inference using a series

of dynamically constructed neural networks.

e A method for a humanoid robot using learned causal models to quickly learn

and utilize tool affordances of novel tools.

5.1.1 Causality in ML and Robotics

Many researchers have attempted to formalize causal relations over the past cen-
tury. Here we focus on Pearl’s SCM framework to formalize causal relations using
directed acyclic graphs (DAGs) that define structural equations between causal vari-
ables (Pearl, 2000). Pearl argues that SCMs accommodate sophisticated forms of

reasoning, including interventional (e.g., “What if I had done X?”) and counterfactual
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(e.g., “What if I had acted differently?”) (Pearl, 2018). Counterfactual reasoning has
been integrated into RL systems; for example, it has been shown to enable the acquisi-
tion of effective decentralized multi-agent policies in a credit assignment task (Foerster
et al., 2018), and aid in the evaluation of high-risk healthcare policies (Oberst and
Sontag, 2019).

SCM-based reasoning has been employed in a robot by Angelov et al. (2019) which
used learned SCMs to counterfactually reason about user preferences in their demon-
strations of a motion task. Non-SCM based approached to causal reasoning include
Xiong et al. (2016), which integrated spatial, temporal, and causal and-or graphs
learned from user demonstrations to enable a robot to fold clothing. Nevertheless,
causal learning and reasoning for robots remains relatively unexplored despite the ac-

tive developments from the machine learning and artificial intelligence communities.

5.1.2 Affordance learning

While Bayesian networks have been a popular method for representing affordances
(see Andries et al. (2018) for a recent example), an explicitly causal framework
is rarely employed despite centrality of cause and effect within many affordance
paradigms. As frameworks like SCMs can tease apart causal, and not merely cor-
relational, properties in the environment, a robot equipped with such a framework
is better poised to model the effects of its actions on the world, and thus to acquire
and utilize affordances. We demonstrate this capability by showing that our system
can effectively complete goal-directed tool and action-selection tasks using acquired

affordance knowledge.
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5.2 Methods

5.2.1 Problem Statement

Our goal is to have a robot model simple tool use behaviors using SCMs, and then
subsequently use this model to quickly ascertain the affordances of novel tools. We
begin by giving a brief overview of the SCM formalism (refer to Pearl (2000) for more
technical details).

The problem of learning an SCM is twofold: the structure of the graph which
links variables to other variables — or causes to effects— must be learned, as well as
the functional mechanism that formalizes these relationships. Formally, an SCM M is
a tuple {U,V, F} where U is a set of unobserved background features or “exogenous”
variables, V is a set of observed features or “endogenous” variables, and F is a set of
functions that assigns values to variables in ) based on other variables in ¢/ and V.
Under the assumption that the causal structure is acyclic, there is a corresponding
DAG G where the nodes in the graph correspond to variables in &/ and V and the
edges to the functions in F.

Kocaoglu et al. (2017) demonstrated that feedforward neural networks admit an
interpretation as SCMs. We take advantage of this fact by using the causal structure
uncovered during learning to guide the construction of series of neural networks that
define the structural equations F underlying the SCM. The advantage of using such
a scheme is that it minimizes the assumptions of the generating distributions of the
variables of interest, which in many potential real-world scenarios are likely unknown
a priori. Exogenous variables U are represented by the hidden nodes in the neural

network.
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Figure 5.2: The causal discovery process. During the observation phase (a) the robot
learns a skeleton of the causal graph observing demonstrations performed by a human.
During the validation phase (b) the robot attempts to orient the edges of the graph
via self-supervised experimentation. Finally, during the augmentation phase (c), the
robot introduces a new node (blue) and attempts to incorporate it into its graph via
further experimentation.

109



5.2.2 Our approach
Causal Learning

Causal learning has three phases: the observational phase to the learn an unori-
ented skeleton of the causal graph, the validation phase to oriented the edges of the
graph, and the augmentation phase to augment the graph with new nodes via ex-
perimentation. The goal of the observational phase is to bootstrap learning of causal
structure by taking advantage of the fact that it can be inferred (usually within an
equivalence class of DAGs under reasonable assumptions of causation, see Eberhardt
(2017) for an overview of causal discovery) from passively collected, observational
data using standard structural learning algorithms. This helps minimize the amount
of interventional data required to fully specify the graph, which may be beneficial,
as often collecting this sort of data is difficult to collect for reasons of practicality.
The result of this phase is an undirected graph with edges drawn between causally
dependent nodes, though the direction of causation may not be known.

Subsequently, the robot enters the self-supervised validation phase, wherein it
attempts to orient the graph by collecting interventional data. An edge between
nodes V; and V5 is oriented Vi — V, if P(Valdo(Vy = x)) # P(Valdo(Vi = y))
for some interventions x and y, and vice-versa. As interventional samples can be
difficult or costly to obtain, it is desirable to be able to preferentially select nodes to
intervene on such that the total number of experiments is minimized. To that end we
take an active learning approach adapted from Hauser and Biithlmann (2014), which
simply intervenes on nodes in the graph produced during the observational phase
starting with the nodes with the highest degree, ensuring that the most informative
interventions are carried out first.

Finally, in the augmentation phase, the robot attempts to incorporate a new node

V3 into its causal model. Unlike in the validation phase, the goal of the augmentation
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phase is not orienting edges that already exist, but rather to add new oriented edges
where none had existed previously. An edge between a new node V3 and an extant
node V; is added to the model if it is determined that intervening on V3 effects the
value of V] using the method described above.

In order to minimize the number of edges to be tested, and thus the chances of
falsely identifying causal relationships, we developed a few heuristics for selectively
testing nodes. First, nodes are tested in topological sorted order. This ensures that
the causal antecedents that have thus far been identified are tested first. In addition,
we make the following assumption: if an edge V; — V4 is found for some nodes Vi, V5,
then we do not test any descendants of V5. While this has the potential to produce
an incomplete causal graph, it avoids the possibility of mistaking indirect causation
from V; — V5 — V5 for some descendant V3 of V5, for the direct causal connection

Vi — Vs

Causal Inference

Once the causal structure is in place, the functional mechanisms underlying the SCM
can be learned, allowing for the robot to perform causal inference. As we wish to min-
imize our assumptions about these underlying mechanisms, we use neural networks
to estimate these functions, using the structure of the graph to guide the structure
of the neural network architectures. However, while this allows for reasoning from
causes to effects, it is not immediately clear how other forms of causal inference, e.g.,
diagnostic or ’abductive’ reasoning from effects to causes, can be performed. Simi-
larly, in many real-world scenarios, it is often the case that observations have been
made for only a subset of variables in the SCM, and it may be desirable to estimate
the unknown values using known information.

In order to support these capabilities, the final set of neural network architectures

are dependent on not only the causal graph structure Gz, but the observed and unob-
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served variables as well. We treat these unobserved values as a set of “queries” (), the
values of which we would like to estimate. Each node ¢ € @) is ranked with a "causal
score" that is used to ultimately guide the order of inference, as well the construction
of the neural networks via a recursive algorithm (refer to algorithm 2). A causal score
is a value between 0 and 1, computed as the ratio of the number of ¢ adjacent nodes
with observed values to the total number of ¢ adjacent nodes. If the values of all of
¢’s parents are observed, it is automatically assigned a score of 1, as its value can be
estimated by standard means. Once the scores are computed, the value of the node
with the highest score is inferred, and it is treated as an observed variable, and so
can be used to infer the values of other nodes. This process of scoring and inference
is repeated until all nodes have been estimated.

Inferring the ¢ values was accomplished using feedforward neural networks, though
the structure of these networks may not match the forward structure of the corre-
sponding causal graph in cases where abductive inference is required. We use two
heuristics to construct each network f; 1) if all of ¢’s parents are observed, then
qg = f(Pa(q)), where Pa(X) denotes the parent nodes of node X; 2) otherwise,
q = [(Vopserved U Veottider), where Vopeerpeq 18 the subset of nodes adjacent to ¢ that
have been observed, and V_.,j;qer 18 the possibly empty subset of nodes that belong
to a collider subgraph with ¢, as these dependencies may carry useful information
about ¢’s state. Thus the size of the input and output layers of any neural network
was equal to the number of nodes in Vi pserved U Veortider @and the number of nodes in ¢
(i.e. 1), respectively. In practice, we found that a single hidden layer consisting of 10

nodes worked well across all networks.

Affordance learning

Andries et al. (2018) identify equivalences between affordances based on how similar

their effects are on an object when acted upon. We employ a similar approach to
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Algorithm 2 Recursive procedure for causal inference.

1: procedure ANSWERQUERIES(Q, ()
2 if @) is empty then return
3 else

4: (g, score) = maz(causalScores(G, Q))
5: if score == 1.0 then

6 Input = Pa(q)

7 else

8 InPUt = ‘/observed U ‘/colliders

9: G = f(Input)

10: Append ¢ to G.obs

11: AnswerQueries(Q \ q, Q)

learn and represent tool affordances. For some tool ¢ and set of possible actions A,
we represent its affordances as a vector at € R/, where each element af of the vector
corresponds to a measure of how well the effects of a tool action align with predictions
(here we use the coefficient of determination, r?). Using a learned causal model of an
exemplary tool, a robot can quickly estimate these vectors from a small number of
exploratory actions on an object and use these estimates for tool selection and usage

given some goal position for the target object.

5.2.3 Experiments

In this section we discuss the design and implementation details of the task used to

evaluate our model.

The Task

We would like the robot to 1) model the causal process underlying manipulating
objects with tools, and 2) leverage the learned model to more effectively learn and
wield new tools. Here we take as examples pushing and pulling as classes of actions
the robot can perform. We assume the robot can observe the random variables

corresponding to the initial position and final position of a manipulated block, p;.
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and pginal, respectively, as well as the movement vector d, which is defined as the
vector that the tool tip travels starting from a small displacement before or after the
block to the terminus of the push action. While piyit, Pfinai, d € R2, we represent
each of their dimensions by their own individual nodes, which we express with a
superscript, for example, pZ ., and p? ., For convenience, when we omit the superscript,
we are referring to both dimensions simultaneously. Additionally, while d € R?, for
simplicity, we limit the push vectors the robot can enact to 12 evenly spaced vectors
around the unit circle. This requires that for any estimated value of d, the robot
must choose one of these 12 vectors with the smallest angular distance to d to enact.
The robot can take actions push,pull € A in directions d, though does not at the
outset know the relationship between these two, or any other variables. Consequently;,
during inference, d and A are estimated using classifier networks,while p;,;x and pyina
are estimated using regressor networks.

While it is assumed the robot knows how to perform simple pushes and pulls with
each tool, it does not know the effects that tool use entails, nor in what scenarios a
given tool is appropriate. While the robot only needs to learn the causal relationships
among these 7 variables, the number of possible DAGs is super-exponential in the
number of variables (Robinson, 1973), for a total of approximately 1.1 x 10° possible
DAG structures, making this structural identification problem non-trivial.

In addition, there are a number of details related to the implementation of three
learning phases that are specific to this particular task, outlined below.

Observational phase: The robot observed demonstrations of a block being
pushed with a hoe tool (see Figure 5.3) by a human, and tracks pini, Dfina, and
d. This observational data is standardized and passed to a structural learning algo-
rithm in order to get an initial hypothesis of the causal structure. For the purposes
of this experiment we use the PC algorithm, a widely used score-based method for

causal discovery (Spirtes et al., 2000).
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Validation phase: We allow the robot to directly intervene on pintiai, Pfinal
and d, and limit it only to pushes with the hoe from the previous phase. Each
intervention is treated as a randomized controlled trial, where the intervened variable
is forced to take on one of two values. Interventions on pjn; and pfin compare
interventional distributions for two prespecified positions, where as interventions on
d compares the distribution induced by taking a random action vs taking no action at
all. As we wish to limit the assumptions we make about the underlying distributions
of the variables, we use the Kolmogrov-Smirnoff test to nonparametrically estimate
difference between the two interventional distributions. Given that these interventions
are used to quickly infer causal relations, and are not themselves rigorous scientific
experiments, the p < .05 significance convention need not be followed. Here we relax
the threshold of significance to p < .2, though this may be treated as a hyperparameter
which trades-off risk of type I errors for data-efficient estimation.

Augmentation phase: During the augmentation phase, the robot attempts to
add the action type A to its causal model. This proceeds in much the same way as

the validation phase, except we allow the robot to perform pulls as well as pushes.

Affordance-based tool selection

We would like the robot to choose the best tool, £, and tool usage d given the circum-
stances of the environment. Using desired movement vector d*, obtained by querying
the causal graph, together with the estimated affordance information a% for a given

tool ¢;, the robot can make this selection. This is captured by the heuristic

t,d = argmin(2 — a%)(2 — cos Oy, a-) (1)
t’i7dti

Here d;, is a movement direction the robot is capable of actuating with tool ¢;

according to its kinematic model. In essence, this heuristic chooses a tool based on
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Figure 5.3: The tool set.

the trade-off between how well it affords a desired action in general, and how well it

can enact the action in this specific instance.

The workspace

Experiments were performed on a Baxter collaborative robot (Fig 5.1)%2. Our Baxter
model was equipped with a claw gripper for manipulating the tools, as well as a
suction gripper for picking and placing the block during the self-supervised learning
phases. Informal tests suggested our model’s end-effector precision was within +1cm.
Figure 5.3 depicts the contents of the robot’s work space. Actions were performed
on a 5em? wooden block. Initially the robot had access only to a hoe. Additionally,
there were 5 morphologically distinct tools the robot’s learning was evaluated on.
During the evaluation phase, the robot was tasked with pushing the block into a
small rectangular goal region measuring approximately, 10cm x 8.5¢cm. The positions

of the tool tips, the block, and goal region were tracked with a head-mounted RGB

2Source code can be found at https://github.com/ScazLab/crow
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webcam using a blob detector calibrated to the colors unique to each object. We used
the Causal Discovery Toolbox’s (Kalainathan and Goudet, 2019) implementation of
the PC algorithm, as well as classifier and regressor neural network implementations

from Scikit-learn (Pedregosa et al., 2011).

5.2.4 Evaluation

With our experiments we wished to see how well a robot could use a learned causal
model to perform affordance-based reasoning for familiar and unfamiliar tools. In
order to do this, we ran three evaluations: 1) Given 8 samples with each of the 5
novel tools, we had the robot choose both the best tool and action to perform given
a single fixed goal location, but arbitrary initial positions of the block; 2) given 20
training samples per tool, multiple goal regions and multiple initial block positions,
we observed how close could the robot move the block towards the goal region for
each tool; 3) we looked at how accurately the robot could predict action effects as a

function of training data samples for a subset of the 6 tools.

5.3 Results

Figure 5.4 depicts the learned causal graph. The structure of this graph models two
important aspects of the task: 1) the final position of the block is a function of the
initial position of the block and the direction in which it is pushed, and 2) the type of
action, push or pull, effects the push direction, suggesting the robot has successfully
grounded these abstract actions to a concrete sensorimotor effect. The observation
phase consisted of 60 sample demonstrations of a human pushing a block. During
the validation and augmentation phases, we limited interventions to 20 samples per
intervention. During the validation phase the robot performed two interventions, for

a total of 40 samples. The augmentation phase consisting of one intervention on
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Figure 5.4: The learned structure of the SCM.

action type, consisted of 20 samples.

Figure 5.5(a) depicts the robot’s performance with each tool across 5 goal locations
with 5 randomly distributed initial positions per goal location. Remarkably, the
top 3 best performing tools, short hoe (M = 0.04,SD = 0.02), the hoe (M =
0.5,SD = 0.04), and the rake (M = 0.06,SD = 0.04), came within a few centimeters
of the goal on average, despite relative inaccuracy of the robot and the limited set of
movement directions at the robot’s disposal. The tool performance roughly track with
morphological similarity with the source tool (i.e., the hoe), with the most similar
tools producing the best results (refer to Figure 5.3). The learning curve results
depicted in Figure 5.3(b) tell a similar story, as the tools that are morphologically
most similar to the source tool, and to a lesser extent, the shovel — benefit much
more from the prior learning than the marker. Interestingly, the short hoe ultimately
performs better than the source tool, though this is likely due to the fact that the
short hoe is physically the same tool as the source tool, but just gripped closer to the
tool tip, producing more consistent pushes and pulls.

Figure 5.5(c) depicts how our system chose tools and actions as a function of the

object’s initial position given a fixed goal location. Here we see action selection in line

118



=== short hoe

== hoe (source tool)

0.02

= 0.14

)

et = rake
g

g) 0.10 === shovel
S)

= === marker
O

§ 0.06 == craser

Sk, loa  agy Sk, G
Ory e ‘{’e O,,e/ ef&@f Qser

%06
(a)
o === short hoe
0.14 - == hoe (source tool)
_ - === shovel
) T N
=== marker
5 0.10{ |
g T - marker
= T T }
= I -
k31
g 0061 — shovel
I T hoe (source tool)
0.02 ——\i\’ short hoe

0.0 50 100 150 200
N data samples

(b)
L === short hoe
Opush  @pull DGoal} 1
o o '. o 110 == rake
o 0 o —_—
Q
L === shovel
. f. 9 .0 09 %
° a=]
0 .. o 0 r0.8 8
° L4 [} o E’
o 0 0 0 6 ro.7 g
o ° 00 O —_
00 & S o 0 r0.6 E
o® (ONe) o ~
o % &
"0 5 Yo 0.5

08 06 04 02 00 -02 -04 -06
Block position (m)

(c)

Figure 5.5: Tool reasoning results. a) depicts the mean distance of the center of the
block to the center of the goal region for each tool. b) depicts the learning curve for
a select number of tools given initial training on the hoe. ¢) depicts how tools were
selected and used as a function of the block’s position given a static goal.
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with expectations; the robot chose to push the block when the block was positioned
before the goal relative to the robot, and pulled it when it was positioned beyond the
goal, further supporting the notion that the system has meaningfully grounded the
push and pull actions to sensorimotor effects. Figure 5.5(a) also helps shed light on
the tools choices in (c¢). The robot overwhelmingly preferred the short hoe for pushing
and pulling, which makes sense as it is the tool the robot uses most effectively. On
the periphery of the workspace, the robot begins choosing the rake for pulling, as the
rake is both slightly longer than the hoe, and also the robot’s next best tool. The
same reasoning for the choice of shovel on the edges of the workspace; it is the longest
tool available to the robot and thus the only one capable of completing the desired

pull.

5.4 Discussion

In this work, we demonstrated a method for a robot to learn and utilize a causal
structural model to rapidly acquire and reason over tool affordances. The results of
our experiments suggest that the grounding of actions to effects via the learned causal
model enabled the robot to effectively select and use tools preferentially based on the
conditions of the workspace.

We believe there are two primary advantages of this method over more common
approaches to robot learning: 1) The knowledge acquired through the learning process
is explicitly represented and hierarchically organized by virtue of the DAG structure
of the SCM; 2) By leveraging this same DAG structure to construct neural networks,
the functional mechanisms of the SCM can be learned in a relatively data-efficient
way. That is, even in a dense causal network, for a given node of interest, only a subset
of the nodes are required to infer the node’s value, mitigating the effects of the curse

of dimensionality that often plagues machine learning systems. The transparency
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of knowledge entailed in 1) is vital in a robotics context, for example in human—
robot collaborative contexts where shared expectations amongst collaborators has
been demonstrated to be important for team success (Hayes and Scassellati, 2013).
Nevertheless, there were some limitations to this work. There were relatively few
causal variables under consideration, and all of them were assumed to be observable.
Currently, it is not clear how well our method would scale to learning larger, more
complex causal graphs or graphs with latent causal variables. In addition, aspects of
the interventional experiments conducted by the robot, including the two initial posi-
tions of the block, were hard-coded. Ideally, the robot should be able to autonomously
generate its own experiments and choose values to force the interventional variables
to take on. This is an important problem, as depending on the generating distribution
underlying the model, some interventions may be more informative than others for

uncovering causal relationships.

5.5 Summary

In this chapter, we present our work that allows a robot to perform tool selection.
While this and the previous chapters focus on tool use, we will next illustrate how

tool use knowledge can benefit tasks beyond tool use.
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Chapter 6

Applying Tool Use Knowledge in the

Context of Human-Robot

Collaboration!

In this chapter, we turn our attention toward applying learned tool use skills in
collaborative human-robot tasks to handle open challenge 6 as described in Chapter
2. Specifically, we address the problem of how a a robot should hand over a tool
to a human. We identified different types of handovers and focus on one type of
handovers, task-oriented handovers, which incorporate information about subsequent
tool use tasks. We identify multiple difficulty levels of task-oriented handovers, and
demonstrate that our method can adapt to all difficulty levels, including tasks that
match the typical usage of the tool (level I), tasks that require an improvised and
unusual usage of the tool (level II), and tasks where the handover is adapted to
the pose of a manipulandum (level III). We evaluate the generated handovers with

online surveys. Participants rated our handovers to appear more comfortable for

'Portions of this chapter were originally published as: M. Qin, J. Brawer, and B. Scassellati.
Task-Oriented Robot-to-Human Handovers in Collaborative Tool-Use Tasks. In Proceedings of the
31st IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN
’22, Naples, Italy, 2022. ACM. (Qin et al., 2022a)
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the human receiver and more appropriate for subsequent tasks when compared with

typical handovers from prior work.

6.1 Introduction

A robot-to-human handover is a joint action wherein a robot grasps, presents, and
transfers an object held in its end-effector to a human receiver. It is a common exercise
in numerous applications, including service robots handing flyers to pedestrians (Shi
et al., 2013), personal assistive robots handing phones to people with disabilities (Choi
et al., 2009), and factory robots handing hammers to collaborators (Koene et al.,
2014a). To summarize the different requirements for handovers, we compiled a robot-
to-human handover taxonomy (Section 6.1.1). The taxonomy serves the following
purposes: 1) it helps to situate our study in the larger picture of robot-to-human
handovers; 2) it helps to organize related work on handovers; 3) it may serve as a
guide for future systems designed for handovers in terms of what requirements may
need to be considered.

This study focused on one specific handover, the task-oriented handover that is
commonly seen in the context of human-robot collaboration (HRC). A task-oriented
handover requires a robot to grasp and present tools in a way that incorporate infor-
mation about the tasks to be performed by the human receiver. In HRC, the purpose
of a task-oriented handover typically is not merely to pass an object to a human, but
also to enable the human to use the object to complete tasks. In order to maximize
efficiency, the task-oriented handover should allow the human receiver to initiate a
subsequent task with minimum in-hand object adjustment. Consequently, handovers
of this type are dependent on how the tools should be used. Previous studies on
task-oriented handovers generally demonstrated handovers of certain tools, without

providing information regarding how the tools are used in the subsequent tasks. How-
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ever, as mentioned in recent publications (Ortenzi et al., 2019, 2021), task-oriented
handovers have not yet gained enough attention in robot manipulations. As a result,
robots’ lack of understanding of tool use impedes their ability to generate handovers
with novel tools. Therefore, our study aimed to design a system that can gener-
ate appropriate task-oriented handovers with from demonstrations of tool use rather
than handovers by integrating existing techniques. Furthermore, we also identified
multiple levels of difficulties in task-oriented handovers and organized related work
accordingly (Section 6.1.2).

We built a system that generates task-oriented handovers. The system learned tool
affordances to allow the robot to understand the nature of the subsequent task. In our
system, we chose and integrated a tool-affordance learning technique appropriate for
handover tasks on a physical robot. We also conducted an online survey to evaluate

the handovers executed by the robot. In summary, our contributions are:
1. We defined a taxonomy of handover requirements.

2. Our system generated handovers based on learned tool affordances, rather than
handover demonstrations, since task-oriented handovers are dependent on the

subsequent tool-use task.

3. With the understanding of how tools should be used, our system was able to

handle task-oriented handovers for all three difficulty levels that we identified.

4. Survey participants preferred our handovers and rated them as appearing to be

comfortable for a human receiver and appropriate for the subsequent tasks.

6.1.1 Taxonomy: Handover Requirements

A handover is a complex manipulation with various requirements to satisfy. Therefore,

we compiled a taxonomy of handover requirements and summarized it in Figure 6.1.
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Professional protocols
Hygiene concerns

. . Heuristic rules
Oriented Social or cultural norms

Completeness & Safety

Figure 6.1: Our taxonomy of robot-to-human handover requirements. Bottom to top:
the basic, intermediate and advanced requirements.

The requirements at the lower levels should be satisfied first before a higher-level
requirement is satisfied. In the taxonomy, the basic requirement is to be complete
and safe. A complete handover refers to the successful delivery of an object to the
receiver (Huber et al., 2008; Koene et al., 2014b; Chan et al., 2012; Eguiluz et al.,
2017; Chan et al., 2013; Konstantinova et al., 2017; Neranon, 2018; Parastegari et al.,
2016), and a safe handover requires that no collision with the robot occurs at any time
during the course of delivery (Prada et al., 2014; Maeda et al., 2017; Sisbot et al.,
2010; Mainprice et al., 2010). This is the focus of most handover studies.

Beyond the basic requirement of completeness and safety, satisfying one or more
intermediate requirements will produce appropriate handovers. Compared with the
studies focused on basic requirements, fewer handover studies focus on intermediate
requirements.

The first intermediate requirement is that handovers should adapt to social or
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physical interactions between a human receiver and a robot (i.e., interaction-oriented).
The social interactions include sending or perceiving various types of social signals
such as eye contact (Strabala et al., 2013; Admoni et al., 2014; Grigore et al., 2013;
Cakmak et al., 2011), while the physical interactions involve adjusting where (Aleotti
et al., 2012; Koay et al., 2007) or when (Huang et al., 2015) to conduct handovers
based on the location or the physical state (e.g., availability) of a human receiver, or
generating handovers that comply with human ergonomic needs (Peternel et al., 2017;
Bestick et al., 2015). Satisfying these interaction—oriented requirements can help with
generating customized handovers that are more comfortable for the receiver.

The second intermediate requirement is that a handover should abide by various
conventions (i.e., convention-oriented), including professional protocols (e.g., handing
over a surgical tool to a surgeon during a procedure in the operating room), hygiene
concerns (e.g., one should not grasp the tines of a fork which will touch food), heuristic
rules (e.g., one tend to orient an object horizontally for the receiver), and social or
cultural norms (e.g., handing over a gift with a single hand is considered disrespectful).
Satisfying convention-oriented requirements can help with generating handovers that
match expectations.

The third intermediate requirement is that handovers should incorporate infor-
mation about subsequent tasks (i.e., task-oriented) (Chan et al., 2014, 2020; Bestick
et al., 2016; Ortenzi et al., 2019), which allows the human receiver to perform the
subsequent tasks more efficiently. Our study focuses on this third intermediate re-
quirement, task-oriented handovers, and other requirements are beyond the scope of
this study.

The advanced requirement in our taxonomy is that a handover should be context-
dependent. In other words, one should choose one or a combination of intermediate
requirements to meet based on the specific context. The intermediate requirements

may contradict each other, such that not all requirements can be satisfied simultane-
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ously. For example, during a convocation, an assistant hands the diploma to a dean
in a way that prioritizes the interaction-oriented requirements so that the dean can
receive the diploma more comfortably. However, when the dean hands the diploma
to a graduate, the dean will not prioritize the interaction-oriented requirements as
the assistant does, but will prioritize the convention-oriented requirements and use
both hands to show respect. Therefore, a robot needs to recognize which intermediate
requirements are important in the given context and choose one or a combination of

intermediate requirements to meet the given context.

6.1.2 Task-oriented Handovers

We identified three levels of difficulties in task-oriented handovers and organized re-
lated work on task-oriented handovers accordingly. Figure 6.2 summarizes the diffi-
culty levels and shows examples of each level. Level I is to properly hand over a tool
to a human to perform a task typically matched with the tool (e.g., using a screw-
driver to drive screws). Since a tool usually has a default usage, level I handovers
could be achieved by building or learning a dataset to store handovers (Chan et al.,
2020; Bestick et al., 2016; Ortenzi et al., 2019), assuming the dataset was learned
with handover demonstrations rather than tool-use demonstrations.

In level II task-oriented handovers, a human receiver may use tools with their
default usages, but may also improvise tool-use for tasks not generally associated
with the tools (e.g., using a screwdriver to play a xylophone rather than to drive a
screw). It is more challenging than level I because a pre-built dataset that can handle
level I handovers may not be able to handle level IT handovers due to the nearly
limitless ways any particular tool can be used in different tasks. More importantly,
the dataset may not be able to generalize to level II handovers due to a lack of
understanding of how the tools should be used. To realize handovers at this level, a

robot should recognize the functional segment of the tool and understand the usage
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Usage Task-dependent dependent

Figure 6.2: Difficulty levels of task-oriented handovers.

to determine the handovers. In other words, learning tool affordance is the key to
achieving level II task-oriented handover. To our knowledge, only one previous study
considered learning tool affordances before performing handovers (Chan et al., 2014).
Although only level I handovers were demonstrated, their system may be capable of
level IT handovers. However, the design of this previous study makes their system

impractical to be applied in many HRC scenarios. In that study, a human needed to
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demonstrate the usage of the novel tool to the robot in order to determine relevant
handover configurations. However, a novel tool to be handed over is generally out
of reach of the human receiver, so that a demonstration may be impossible without
handing over the tool in the first place.

In addition to level IT handover constraints, a robot should adjust the handover
configurations based on the pose of the manipulandum (i.e., level III handovers).
While some tasks impose consistent orientations irrespective of the tool used (e.g.,
stirring a pot of broth always requires a vertical tool orientation), the usages of tools
in other tasks depend on the pose of the manipulandum (e.g., using a screwdriver to
drive a screw placed either vertically into a tabletop or horizontally into a wall). This
imposes challenges for previous systems (Chan et al., 2014) because each task was
bound with specific handover configurations. Therefore, tool affordance may need to
be learned in a different way to allow level III task-oriented handovers.

Previous studies on tool affordance have learned tool-use in various ways. How-
ever, they may not be appropriate for task-oriented handovers. Tool affordances were
learned as a distribution of the outcomes (Sinapov and Stoytchev, 2008; Stoytchev,
2005a) instead of the relationship between a movement of a tool and the correspond-
ing status change of a manipulandum. With tool affordances learned in this manner,
a robot cannot achieve level IIT handovers because the relation between specific usages
and specific contexts is unknown. When this relationship was learned in a previous
study (Tikhanoff et al., 2013), it learned in a way that was specific to the learned
tools, and it was unknown whether a robot could generalize the learned tools to novel
tools. It would be tedious to learn to use every tool prior to handing it over. While
parallel Self-Organizing Maps (SOMs) can help with handling novel tools (Mar et al.,
2017), novel tools needed to share similar shapes with the training tools, imposing
restrictions on what kinds of novel tools a robot could hand over. This problem was

overcome by using a large training set (Gajewski et al., 2019; Fang et al., 2020; Xie
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et al., 2019), which may be impractical in time-sensitive scenarios to hand over tools.

6.2 Methods

In our system, a robot first learned how to use a tool. Then in a robot-to-human
handover task, the handovers were calculated based on how a tool should be used in
subsequent tasks, and were then passed on to standard inverse kinematic and motion
planning libraries to execute the motion. The tools may even be novel such that
the robot never observed their usages in the required task. In this case, the robot
first inferred its usage based on how the tools were used in the same task, and then

generated corresponding handovers.

6.2.1 Object Model Generation

Preliminary 3D models of the objects were scanned by the robot if possible. A script
that utilized MeshLab? was used to automatically process the 3D models to smooth,
upsample, recenter, and resurface the point clouds into triangular meshes. The 3D
models of the tools were then segmented using the shape diameter function (CDF).
The objects that could not be scanned by the robot were obtained manually with
Autodesk Recap Pro®. Detailed procedures for obtaining 3D models can be found in

Chapter 3.

6.2.2 Vision Module

To obtain the pose of an object in the scene, a partial point cloud of the object
needs to be extracted from the environment. To isolate the partial point cloud, a
background point cloud without the object and a foreground point cloud with the

object was captured from a depth sensor. Both point clouds were processed to leave

2MeshLab: https://www.meshlab.net/
3 Autodesk software: https://www.autodesk.com/
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only the workspace, and the desktop was removed with random sample consensus
(RANSAC; Fischler and Bolles, 1981). The partial point cloud of the object was
obtained by subtracting the processed background point cloud from the processed
foreground point cloud.

After obtaining the partial point cloud of the object, the pose of the object was
retrieved by registering the partial point cloud with the triangular mesh of the object
using a modified Iterative Closest Point registration (ICP) algorithm (Rusinkiewicz
and Levoy, 2001). In this study, the pose of an object was represented with a 4 x 4 ho-
mogeneous transformation matrix 7' € SE(3) (superscript: reference frame, subscript:

object), and SE(3) represents the special Euclidean group:

where R is a 3 x 3 rotation matrix representing the orientation, and p is a vector

Tworld

tool on_tapte aNd the manipulandum

representing the position. The pose of the tool

Tworld

manipulandum 10 the world frame were perceived when they were placed on the desktop.

6.2.3 Learning Tool Affordances

The system learned tool affordances with the tool use framework called TRansferrIng
Skilled Tool use Acquired Rapidly (TRI-STAR) framework described in Chapter 3.
The tool use framework includes an affordance taxonomy based on the goal state
of the manipulandum in different frames of reference. It learns how a tool acts
upon a manipulandum in a task using Learning from Demonstration (LfD). Based
on the demonstrations, the framework classifies the tasks according to the affordance
taxonomy and learns the tool-use skills or tool affordances accordingly.

In TRI-STAR, the tool affordances include motor skills and contact poses. Motor

skills include kinematics skills, such as a trajectory that a tool should follow, and
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dynamics skills which considers the forces. Though TRI-STAR currently only consid-
ers kinematics skills, dynamics skills are less relevant in handover tasks as the robot
may not need to know the force that needs to be exerted while the human collabo-
rator using the tool in order to find the appropriate handover configurations. The
other component of tool affordances, which is the contact pose, include the grasping
pose of the tool and the tool-manipulandum contact poses while using the tool. The
grasping pose is dependent on the tool-manipulandum contact poses. Each segment
between the demonstrated key points of the trajectories is represented with exponen-
tial representations that parametrize the segment with a screw axis and an angle. The
segments are then grouped based on similar screw axes. As a result, the entire tra-
jectory is represented with a series of pairs of a screw axis and an angle. The contact
pose is represented by a class. Poses in the same class can be obtained by rotating
about an axis. Based on the demonstrations, the framework needs to calculate the
axis, choose one pose as the starting pose, and decide the range of rotation allowed
about the axis. The range of the rotation depends on the type of task. For example,
a slotted screwdriver may contact a slotted screw in two ways, while a hammer may
approach a nail from infinitely many directions. Though the representations of the
kinematics skills and contact skills are relatively uniform across all tasks, the choice of
the frames of reference is dependent on the type of tasks in the affordance taxonomy.

Given novel tools and manipulanda, the key is to find how the object should
substitute the learned object. In other words, the system should find the pose of the
novel object in the reference frame of the learned object when using the objects in the
tool-use task. The substitution is calculated by aligning the source objects and novel
objects based on the global or local geometric features. When aligning the objects
for global features, the point cloud is stretched or compressed disproportionally along
different axes so that the bounding boxes of the objects match. The point cloud of the

source object and the substitute object is mapped via modified ICP in order to gain
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the best matching result. When aligning the objects for local features, the functional
part of the object is stretched or compressed proportionally so that the longest edges
of the bounding boxes match. The functional part of the source and substitute object
is then mapped via modified ICP. In this way, two substitutions are obtained. One
optimizes the global shape, and one optimizes the local features. The system chooses

the substitution with a better matching result from these two options.

6.2.4 Grasping Configurations

The grasping configuration, which is the end-effector pose Te’g‘i”;fasp when grasping the

world

o asp and the position pid - of the end-effector.

tool, includes the orientation R ce grasp

Grasping Orientations

The tool to be handed over was assumed to be resting on the desk for simplicity. The
grippers grasped the tool from above with the fingers perpendicular to the desktop.
The opening of the gripper should be perpendicular to the primary axis pa of the tool
(i.e., the direction of the longest edge of the minimum bounding box of the object),

which resulted in the orientation Riﬁ‘fgﬁa@; ¢4 of the gripper being unchanged in the

adjusted tool frame. Given the perceived pose of the tool Tord =~ .. the z axis
of the adjusted tool frame R%‘;?ljladjusted was defined as the unit primary axis of the

tool, the 2z axis was defined as the unit vector opposite to the direction of standard
gravity, and the y axis was calculated using the right-hand rule. With the adjusted
tool frame, the orientation of the end-effector R¥"'d__ was calculated as (where x is

ee_grasp

matrix multiplication):

world _ pworld tool adjusted
Reeﬁgrasp - Rtooliadjusted X Reeigrasp
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Grasping Positions

world

ce grasp Was initially chosen as the center

The grasping position of the end-effector p

world

O ontact Of the tool when used on a manipulandum, because

of the contact area p
the contact area was the part of the tool least likely to be the handle. With learned
tool affordances, the TRI-STAR framework calculated the contact area of the tool
based on the manipulandum and the subsequent task. The center of the contact area

prodel . was calculated as the center of the minimum bounding box of the contact

area. The use of a bounding box reduced bias due to the density of a point cloud. The

world

world model
ptool_contact T

was obtained uSing tool_on_table X Ptool contact* To ensure stable grasping,

the fingers of the grippers should distribute evenly around the primary axis of the

world

tool _contact onto the

tool. The grasping position needed to be adjusted by projecting p

world

primary axis pa to obtain an adjusted grasping position pioo" iusted contact’

world world va
world . (ptool_contact - ptool_center) “pa world
tool _adjusted_contact — HpﬁH2 pa + DPtool center

world

o onter Was the center of the minimum bounding box of the tool. The

where p

world
tool _adjusted contact

world

ee grasp and the z was set to be

grasping position p was set to be p

the value where the gripper just touched the desktop.

6.2.5 Presentation Configurations

Presentation configurations are the end-effector poses when the robot presents the tool
to the human collaborator. In order to minimize in-hand tool adjustment, the orien-

tation of the tool Ry%' . ., should be close to the orientation when the human re-

world
tool present

world

ceiver started to use the tool Ryj5™, .qc:

while the location of the handover p

was pre-set since the human receiver was assumed to be at a fixed location. Each

world : world : world ee

Ttool_presmt corresponding to a Tee_candidate was calculated using Tee_candidate x 1o
ee __ world 1 world :

where Ty50 = T2 tasy X Liool “on_tanie SinCe the tool was grasped securely so that
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a. Objects perception. c. Grasping configurations.
Tworld

tool_on_table

................... > Tworld

ee_grasp

Tworld
manipulandum

_______ d. Presentation configurations.

b. Tool affordance from the TRI-STAR framework. :
1. Contact area N » Tworld

......................... ee_present

: pmodel :
—)ghs...ﬁ?‘.’ﬁfﬁ??ﬁﬁ ........ :

2.Trajectory ~  r=——- " .
) Y ! manipulandum e. A human receiver performs the task.

tool_usage

Figure 6.3: Overview of the system (we use the stirring task as an example). (a) It first
perceives the pose of the spoon 7wor? and the large bowl] Tworld (b) The

tool _on_table manipulandum*

TRI-STAR framework described in Chapter 3 provided tool affordances, which were

the contact area of the tool and the orientation of the tool R} " iﬁzﬁdum when using it.

(b1) The TRI-STAR framework aligned the trained tool in red (left) with the tool to
be used in green (left) to obtain the handle part in blue (right) and the contact area of

the tool in red (right). Our system calculates the center of the contact area pimode!

tool usage’
Rmanipulandum
tool usage

the green dot (right), from the contact area. (b2) is the first pose

world
T orasp Was calculated

world model : : world
from Ty00" %, tapie 20d Piogi “usage- (d) The presentation configuration T present Was

world manipulandum .
calculated from T3000 ondum a0 Ry eage - (€) The human receives the tool and
used it to stir.

(top) in the tool trajectory. (c¢) The grasping configuration

ee world ; 3
Tioo was unchanged. Rig%™, .. was selected to be the start orientation of the tool
manipulandum

tool usage of the tool trajeC-

trajectory in the world frame. The start orientation R

tory in the manipulandum frame was generated from the TRI-STAR framework with

manipulandum

world 3 1 world
learned tool affordances. R was obtained using R X Rtool_usage

tool usage manipulandum

The entire pipeline is summarized in Figure 6.3.
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6.3 Results

We implemented and tested our system on a Kuka youBot robot without the mobile
base. A Microsoft Azure RGB-D camera placed on the side of the workspace was
used to perceive the pose of the tools and manipulanda. The human receiver was
assumed to stand at a fixed location since adapting to the human location is beyond
the scope of this study. In the training stage, the robot was trained with twenty
demonstraions per tool in simulation to learn the tool affordances or how to use these
tools in five tasks (i.e., stirring, pushing, cutting, knocking, and driving screws). The
training tools and manipulanda are shown in Figure 6.4. No additional training was
needed to perform handovers after learning the tool affordances. In the testing stage,
the robot was required to hand over novel tools to a human to complete tasks and it

was informed which task that the human receiver would perform.

6.3.1 Robot Validations

We conducted two experiments. Experiment I tested how the robot handed over a
novel tool to complete tasks required either typical (i.e., level I) or improvised (i.e.,
level II) usage of the tool. Experiment II tested how the robot handed over a novel
tool to complete a task with different manipulandum poses (i.e., level III). In order
to show that the system can generate different handover configurations of a tool
for different subsequent tasks, we chose the same tool to perform as many tasks as
possible in the testing phase rather than one novel tool in each task. In experiment
I, a spoon and a screwdriver were chosen as the novel tools. As shown in Figure 6.4,
the human receiver was required to perform the stirring, pushing, and cutting tasks
with the spoon, and to perform the pushing, knocking, and driving screw tasks with
the screwdriver. A single tool was not required to perform all tasks because some

tasks were inappropriate for the tool. In experiment II, even the manipulanda is a
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Spoon Screwdriver

Our Typical Task Our Typical
Configurations Configurations Configurations Configurations

Task

Level |
(Designated Usage)

Level Il
(Improvised Usage)

Level llI
(Manipulanda
Configurations)

Figure 6.5: Comparing handover configurations generated by our system and the
typical handovers in previous studies. The figure includes handovers of level I (top),
level IT (middle), and level I1I (bottom), with the spoon (left) and with the screwdriver
(right) in different tasks. The typical handovers always grasp the same location on a
tool and orient the handle of a tool horizontally to the human receiver. In contrast,
our configurations are customized to the subsequent tasks and thus require minimum
in-hand tool adjustments for the human receiver.

novel object, a xylophone, while the tool is the screwdriver. The xylophone was
placed with two different orientations.

The results showed that the robot was able to handle level 1, level IT and level 111
handovers by adjusting both the grasping and presentation configurations according
to the tasks. We compared our configurations with the typical configurations in
previous studies as shown in Figure 6.5. While our handover configurations were
customized to the subsequent tasks, typical configurations in previous studies followed

heuristic rules that a robot always selected a fixed location on the tool to grasp and
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oriented the handle horizontally towards the human receiver to present it. Therefore,
handovers using our configurations required minimum in-hand tool adjustments when

compared with the handovers using typical configurations.

6.3.2 Survey

To evaluate how naive end-users perceive handovers generated by the robot, we con-
ducted a survey on Amazon Mechanical Turk. Informed consent was obtained elec-
tronically. We recruited 70 participants, and each was compensated with $5. Out of
the 70 participants, 15 were excluded from data analysis due to failing sanity-check
questions. The data from the 55 eligible participants (35 males, 20 females) with an
average age of 35.6 years were analyzed. In the survey, the questions were randomized,
as were the options in each question. We designed multiple-choice questions (MCQ)
and rating questions, which showed pictures or videos of the handovers and how the
human receiver uses the tool in the subsequent tasks. The pictures and videos were
taken from the view of the human receiver. A sample of the questionnaire can be
found here*. The MCQ responses were converted to continuous variables and were
analyzed with one-sample t-tests to compare with the chance level. The ratings were
analyzed with paired samples t-tests.

As shown in Table 6.1, participants chose our handovers over the handovers from
previous studies 88% of the time (¢(54) = 13.843, p < .001) for experiment I. They
were able to predict the subsequent tasks correctly 79% of the time (¢(54) = 11.461,
p < .001) given our handovers. On a five-point Likert scale, participants rated our
configurations (M = 4.38, SD = 0.87) being more appropriate (¢(54) = 5.650, p <
.001) for the subsequent task than the typical configurations (M = 3.04, SD = 1.23).
They also rated our handovers (M = 4.34, SD = 0.91) to be more comfortable (#(54)

= 5.751, p < .001) for the human receiver than the handovers from previous studies

4Survey: https://tinyurl.com/surveyforhandover
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Our Config- - Typical Con-— 5 1 Samples

Statements urations figurations
M(SD) M(SD) -Test
I am comfortable of how the t(54) = 5.751,
tools are handed over to me. 4.34 (0.91) 3:22 (1.13) p < .001
. t(54) = 5.196,
The robot is competent. 4.27 (0.91) 3.27 (1.03) » < 001
The handcfver configurations are £(54) — 5.650,
appropriate for the tasks for ~ 4.38 (0.87) 3.04 (1.23)
p < .001
me to complete.
The human-robot team worked t(54) = 4.810,
fluently together. 4.31 (0.86) 3.24 (1.22) p < .001
The robot contributed to the t(54) = 5.612,
fluency of the interaction. 4.38 (0.89) 313 (1.19) p < .001

Table 6.1: Survey results of rating questions on the Likert scale.

(M = 3.22, SD = 1.13), and the collaboration was perceived to be more fluent (¢(54)
= 4.810, p < .001) when the robot used our handovers (M = 4.31, SD = 0.86) than
when using the typical configurations (M = 3.24, SD = 1.22). For experiment II,
the participants chose preferred handover configurations from two options. Results
showed that the participants preferred our handovers 82% of the time (#(54) = 7.884,

p < .001).

6.4 Discussion

We compiled a taxonomy of different requirements for handovers in general, and
identified three levels of difficulty for task-oriented handovers in particular. We also
integrated a system for task-oriented handovers, and showed that the system was
able to handle level I, level II, and level III task-oriented handovers, and thus made
it possible for the human receiver to complete subsequent tasks more efficiently with
diverse task specifications. Furthermore, the system was trained with tool affor-
dances, rather than demonstrations of handovers, allowing the system to understand

the tool-use tasks and generalize the handovers to novel tools. The online survey
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results showed that participants preferred our handovers over the typical handovers
in previous studies.

Our system presents a contribution towards task-oriented handovers. However,
we would like to acknowledge the limitations of the current study. We focused on
task-oriented handovers, while other handover requirements are beyond the scope of
this study. For example, this study focused on task-oriented handovers and did not
consider other aspects such as adapting to social signals from the human. Moreover,
we acknowledge that the conclusions based on online studies are limited compared

with an in-person study.

6.5 Summary

In this chapter, we leverage the TRI-STAR framework from Chapter 3 and utilize the
learned tool affordance knowledge to assist a human-robot collaboration task. This
work is among the first to demonstrate the importance of understanding tool use in
relevant applications, and we believe tool use can benefit other topics in human-robot
collaborations as well as other sub-areas in robotics. In the next chapter, we discuss
all of our work included in the dissertation. We will focus on our contributions and

limitations, as well as highlight future directions.
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Chapter 7

Conclusion

Using tools greatly expands a robot’s ability and allows it to be deployed in more
application domains. Though tool use tasks share commonalities with general ma-
nipulation tasks, they have unique challenges to solve. The study of robot tool use is

still in a preliminary stage, with many open challenges (Chapter 2).

7.1 Contributions

This dissertation makes the following contributions to address some open challenges:

e We recognize that tool use tasks have unique challenges compared with general

manipulation tasks.
e We define robot tool use with insights from animal tool use.

e We compile a tool use taxonomy and identify the different requirements of each

sub-type of tool use.

e To address open challenges 1 and 2, we develop the TRI-STAR framework to

learn and reason about single-manipulation tool use.
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— In order to perform basic tool use, the framework used a uniform way to
represent the actions in different sub-types of single-manipulation tool use
tasks. Such representation suits tool use better than the traditional way:.
Moreover, TRI-STAR learns tool-manipulanda contact poses, which are

sometimes ignored in previous studies.

— In order to perform transferable tool use and improvisatory tool use, TRI-
STAR considers both global and local features and how to transfer manip-

ulations skills to substitute objects.

— While most tool use focuses on one aspect of single-manipulation tool
use, TRI-STAR is an integrative system with different modules to address

different challenges of tool use.

e To partially address open challenge 4, we develop the TAAMP framework to

expedite the search for sequential tool use.

e To partially address open challenge 5, we present a method for tool selection

based on causal reasoning.

e To provides a solution to open challenge 6, we illustrate the importance of
tool use knowledge with human-robot collaboration tasks, specifically robot-to-

human handovers.

7.2 Future Work

Though we made contributions to robot tool use, there are limitations to the solu-
tions. For example, TRI-STAR does not yet consider the dynamics of tool use. In
TAAMP, the algorithm of affordance planning should be more efficient. In tool se-
lection, our solution currently only considers relatively few causal relations. When

applying tool use knowledge to handover tasks, we did not incorporate requirements
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beyond task-oriented handovers. Future work addressing these limitations will signif-
icantly enhance the system’s applicability or efficiency.

Future work can address other open challenges that are beyond the scope of the
work presented in this dissertation. First, deductive tool use has yet to be solved. To
achieve deductive tool use, a robot can be provided with physical rules such as the
law of conservation of momentum and the work-energy theorem, as in Toussaint et al.
(2018) and Levihn and Stilman (2014). The robot can then generate tool affordances
from physical rules rather than summarize affordances from demonstrations as in
other sub-types of single-manipulation tool use. To make it more interesting, the robot
can even be provided with instances to learn these physical rules rather than directly
provided with the physical rules. Second, multiple-manipulation tool use is another
open challenge with limited studies focusing on this subject. It not only requires a
robot to have a complete understanding of affordances as in single-manipulation tool
use, but also requires more sophisticated manipulation and cognition skills. Third,
a benchmark database is lacking in order to compare and evaluate different tool use
systems. Though Abelha and Guerin (2017) provides three databases of 3D tool
models with different qualities, the tools are limited to four categories that share
common form factors (i.e., tools to roll dough, tools to cut lasagne, tools to hammer
nails, tools to lift pancakes). Moreover, each study designs its own tool use tasks.
A benchmark of task banks helps compare the capabilities of the systems. Fourth,
studies in robot grasping and human-robot collaborations that are relevant to tool
use rarely consider incorporating tool use knowledge, but generally only consider the
default usage of tools.

To conclude this dissertation, we are excited to advance the study of robot tool

use and allow robots to serve our community better.
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Appendix A

Summary Tables of Studies in

Chapter 2

In this chapter, we present five summary tables of the tool use studies in Chapter 2

based on the tool use taxonomy.
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