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Robots have shown great promise in being effective tutors for both children and

adults. For instance, they have been shown to be successful in math tutoring for

children [203], interruptions training for adults with Autism Spectrum Disorder [204],

and assisting the elderly while exercising [87]. Yet, despite the great potential of

tutoring robots, most studies have focused on providing short-term tutoring either

in a laboratory or a school while the researcher is present. For robots to be more

broadly successful, users need to be able to practice skills on a more prolonged basis

and in the wild. This requires robotic systems to autonomously tutor in unstructured

settings, such as in homes and schools. Furthermore, robots need to autonomously

model the user and provide personalized help without a researcher’s presence.

In this dissertation, we investigate several aspects of how to create robots that

can autonomously tutor in complex and dynamic environments. Our work starts by

expanding the types of tasks that robots can train on, as current robotic systems

mainly focus on simple tasks. We present two algorithms that allow robots to tutor

more complex tasks: C-BKT and BKT-POMDP. C-BKT enables a system to model

a user’s skills over time, providing opportunities for a robot to offer personalized

help actions earlier than to prior solutions. BKT-POMDP provides a policy for

deciding a) which task to give users to test their skills, and b) which task should be

chosen to maximize teaching when there are multiple skills per task. Throughout the

dissertation, we provide examples of how we modeled specific complex tasks, including

electronic circuits, social skills, and exercise forms.

In sequence, we investigate which robot characteristics allow for successful tutor-



ing. We explore how the role of a robot influences the interaction when tutoring

adults. We compare a robot that takes on the role of a peer versus taking on the role

of a traditional instructor. Our work provides evidence that a peer robot is generally

viewed more favorably than an instructor robot, and that it increases learning for a

participants with low prior knowledge in the domain. We also investigated how robots

can indirectly influence those around them by showing that robots cause conformity.

People are willing to rely on information provided by robots when they are unsure of

the answer themselves (informational conformity). We also show that robots cause

peer pressure on participants (normative conformity).

Finally, we demonstrate two long-term systems where peer robots operated au-

tonomously in participants’ homes. We show that robots successfully tutored and

influenced participants in their homes while maintaining engagement. In the first

system, a robot provided adults with motivation and coaching while doing dumbbell

exercises. We show that an embodied robot is more effective than the same robot

shown in a video on a tablet screen. In the second system, we built a robotic system

that provided dyadic tutoring to children with Autism Spectrum Disorder and their

caregivers. The robot engaged the user in social skills training via interactive games.

Our clinical measures show that the robot increased children’s social skills during the

30-day robotic intervention.
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Chapter 1

Introduction

Intelligent Tutoring Systems (ITSs) provide one-to-one instruction to users via a dig-

ital platform to increase their knowledge in a particular domain [69]. ITSs have great

potential to supplement the instruction given by human teachers by providing per-

sonalized tutoring to children and adults via technology that trains them on specific

domains. These systems usually create models of a student’s knowledge states, that

is, their evolving expertise across a set of skills. When an ITS has an accurate model

of the student’s skills, it can selectively choose problems or tasks (we will use task

and problem interchangeably throughout the thesis) to focus teaching where needed.

ITSs have been shown to significantly increase the user’s knowledge, and can be just

as effective as a human tutor [254] under the right circumstances.

Tutoring can be especially beneficial when done by an embodied robot. Com-

pared to non-embodied agents, robots generate higher learning gains when tutoring

[158]. Furthermore, an embodied robot has been shown to be seen more positively,

be more enjoyable, generate higher compliance, and cause more engagement than

non-embodied devices [191, 146, 20]. Lastly, a robot has the ability to act on its sur-

rounding environment by providing demonstrations and directly collaborating with

users during tasks that allow for physical interaction.

1



Although robots have been successful at tutoring people in various domains, a

great majority of studies have focused on tutoring in very structured scenarios. Usu-

ally, participants are brought into a laboratory setting where the environment has

been modified to accommodate the interaction. For instance, they interact at a ta-

ble while the robot takes on a teaching role and provides verbal instructions and

help. The chosen tasks for tutoring studies have also been highly structured, featur-

ing tasks such as multiple choice questions or math questions on electronic devices.

Lastly, most studies focused on short-term interactions where the robot only taught

the student for one or a handful of sessions.

Current ITSs work well when teaching facts (such as the capitals of each country

or periodic table names) to users, as they can be learned in a single session. However,

if such a system wants to teach a new skill (e.g., how to program or how to swim)

or impart behavior change (e.g., eating healthy), this can not be done in a single

session. Therefore we need to build tutoring robots that can teach in the long term

by enabling them to not only be effective at teaching in a laboratory setting but also

give it the capabilities to tutor in the home or other in-the-wild settings. To make this

happen, robots need to be accessible, as people might not want to relocate themselves

to interact with the robot on a continuous basis. Furthermore, these systems need to

be easy to use and act autonomously, as there will not always be a roboticist present

to guide the interaction.

Expanding the range of environments the robot can tutor in brings along with

it many new challenges. We need to expand the types of tasks the robot can tutor,

which requires novel computational solutions that can model a user’s skills without

the unambiguous feedback of electronic devices. We need to investigate how a robot

should interact with participants in the home and the best kind of help it can give to

increase learning, compliance, and trust.

This dissertation focuses on how to create robotic tutoring systems that tutor peo-
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ple in unstructured environments. I investigate this through several lenses, including

how to model users’ skills for more complex tasks. I study how robots can interact

with people in-the-wild, what roles they should take on during the interaction, and

whether they can create positive change in people without direct verbal persuasion.

Lastly, I demonstrate how robots can tutor people in two long-term in-home studies.

This work begins with an overview of ITSs, including their main components,

such as how domains are modeled, how a system creates personalized user models,

how it chooses help actions, and the different types of user interfaces. In sequence

we focus on robotic tutoring, by over-viewing both single and multi-session systems.

We examine several of the limitations of prior work, and the challenges associated

with bringing autonomous robotic systems to tutor in-the-wild over the longer term.

These topics are presented in Chapter 2.

Most prior work in intelligent tutoring systems has focused on simple tasks such as

math or multiple-choice questions. However, these are not fully representative of all

the tasks children and adults might encounter in the classroom or the home. During

Chapter 3 and Chapter 4, we enhance prior intelligent tutoring systems to not only

model simple tasks but how to also model more complex tasks. During these chapters,

we focus on an electronic circuit building task as a more complex task. Due to the

complexity of the task and because users are physically interacting with the system

instead of using a user interface, we built a computer vision perception system. The

vision system observed users while they built electronic circuits, assessing which skills

were demonstrated correctly and which were not. This enabled the robotic system to

select personalized actions for each user according to their skill models.

Previous user skill modeling algorithms wait for a user to complete each task be-

fore updating its model. Although this works well for quick tasks, many complex

tasks take multiple minutes to complete. By waiting for the completion of the task,

the system loses out on detailed information of what the user is doing and misses out
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on many opportunities to provide feedback and help throughout the task. In Chapter

3, we expand prior user skill modeling algorithms to allow for model updates through-

out task completion. We call our novel algorithm Continuous Bayesian Knowledge

Tracing (C-BKT). We first demonstrate in extensive simulation experiments that our

algorithm creates a more accurate model of the user’s skills and, therefore, could se-

lect better teaching actions than previous algorithms. Lastly, we show that C-BKT

works on an electronic circuits task with participants during a user study.

Now that we can model a user’s skills during complex tasks, we need to decide

which tasks to assign a user. Task selection is used for both selecting which task to

give a user to create their skill model optimally, and also to select which is the optimal

task to teach the user. Prior task selection algorithms were limited to selecting tasks

with single skills per task. In Chapter 4 we present a system that estimates user skill

models for multiple skills by selecting tasks that maximize the information gain across

the entire skill model. We compare our system’s policy against several baselines and

an optimal policy (where all the user’s skills are known beforehand) in both simulated

and real tasks. Our approach outperforms baselines and performs almost on par with

the optimal policy.

Once a robot can model a user’s skills during more complex tasks, we need to

start thinking about the best ways a robot can deliver the tutoring content. Different

studies have shown that there are many robot characteristics that influence student

learning including robot embodiment [158], personality [64], and gender [206]. There-

fore we need to create a broader understanding of how robots should act when teaching

children and adults. In the next two chapters, we consider different robot aspects,

including which teaching role a robot should take on (Chapter 5) and how a group of

robots can influence people (Chapter 6).

In Chapter 5 we investigate different roles a robot can take on when tutoring,

and which ones are more effective. Taking inspiration from peer learning literature
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in psychology, we investigate whether a robot should act as a traditional teacher or

whether it should take on the role of a peer. We do this with a robot that guides

participants through building electronic circuit building tasks and selects personalized

help actions depending on the user skill model. This chapter shows the advantages

of a robot interacting with adults that acts as a peer instead of a traditional teacher.

Our results show that participants with low prior knowledge learn significantly more

from the peer robot than the tutor robot. Furthermore, the peer robot is generally

viewed more favorably than the tutor robot.

Chapter 6 investigates a critical aspect of creating long-term systems: the abil-

ity to positively influence people. This chapter presents work on how a group of

robots can shape people’s behaviors through conformity. Conformity is when a per-

son modifies their behavior/answer to match others around them. Our study shows

that robots can cause conformity in people and that two different types of conformity

were present. The first is normative conformity, where a person is influenced by a

group of robots due to peer pressure. The second is informational conformity, where

participants change their answers to match the robots because they are unsure of the

answer themselves.

After seeing the potential for peer robots to enhance tutoring and their abilities

to positively influence interactions, our next goal is to bring these robots into the

home. During the following two chapters (Chapter 7 and Chapter 8) we demonstrate

two long-term in-home studies, where robots autonomously interact with participants

over several weeks. The robots are presented as peers to the end-users to guide them

in practicing particular skills. They created personalized models of the user’s skills

and provided appropriate feedback.

In Chapter 7 we present our first in-home system. An autonomous peer robotic

coaching system spent two weeks in the home of adults, guiding them through weight

training sessions. We created a machine learning system that could classify partici-
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pants’ exercises in real-time and provide verbal corrections. We compare the effects

of a physically present robot by having a person exercise either with a robot or a

video of a robot displayed on a tablet. Participants who exercised with the co-located

robot made fewer mistakes than those who exercised with the video-displayed robot.

Furthermore, participants with the co-located robot reported a higher fitness increase

and were more motivated to exercise than participants who interacted with the robot

displayed on a tablet.

Chapter 8 presents our second long-term in-home system. A robotic peer inter-

acted with a child with Autism Spectrum Disorder (ASD) and their caregiver during

a four-week period. The system was designed to be completely autonomous while

modeling user engagement and providing tutoring during social skills tasks. Our sys-

tem successfully increased social skills in the children with ASD, and the children

showed clinical improvement on joint attention skills with adults even when not in

the robot’s presence. These results were also consistent with caregiver questionnaires;

caregivers reported less prompting over time and overall increased communication in

their children.

In Chapter 9 we discuss our results in more detail and the broader implications

of our findings. We also present common themes throughout this thesis, such as the

importance of modeling complex tasks, and the potential of peer robot tutors. Then,

we present the many still open challenges in bringing robots into the home and other

spaces. We end the thesis in Chapter 10, where we present a summary of our work.

The main contributions of this thesis are:

• The creation of novel algorithms that can model a user’s skill and perform task

selection during complex tasks.

• Evidence of the efficacy of a robot tutoring adults as a peer instead of a tradi-

tional tutor.

6



• Evidence that a group of robots cause conformity and that they generate both

normative and informational conformity.

• Evidence showing that a co-located robotic coach causes individuals to perform

fewer exercising mistakes than the same robot presented as a video on a tablet.

• The first system that demonstrates clinical improvements in children with ASD,

using a robot peer tutor.
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Chapter 2

Robots that Tutor in Unstructured

Environments

This chapter provides an overview of tutoring systems, with an emphasis on systems

that use robots. We start with a discussion of the advantages of human tutoring

compared to traditional classroom instruction, including several successful strategies

used by tutors. Despite the success of tutoring, it is not feasible for every student to

have a personal human tutor. We then show how intelligent tutoring systems (ITSs)

have bridged this gap by using technology that plays a similar role to a human tutor,

and how an embodied robot can enhance this process. We discuss literature showing

that an embodied robot increases compliance [19], motivation [231] and learning gains

[158], compared to non-embodied ITSs.

In this chapter, we also present several essential elements of tutoring systems.

We discuss the importance of creating and modeling domain knowledge during the

interaction. We explain how domain knowledge is used to create a personalized user

skill and affect model. The user model can then be used to choose tasks and help

actions to teach the student any skills they have not yet mastered. Lastly, we discuss

several user interfaces that are used for communication between the robot and the
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user, such as text based screens, virtual agents, and robots.

In the last section of this chapter, we provide an overview of creating robots that

can tutor for more than one session in dynamic environments, versus those that do

single-session tutoring. We discuss the limitations of current robotic research and

provide several challenges that need to be addressed in order to make long-term

robotic tutoring widespread.

2.1 Human Tutoring

In one-on-one tutoring, a student receives private tutoring from an expert on a par-

ticular topic. An expert tutor can act as an intermediate between the student and

the content by having the student do as much of the work independently as possible

while providing sufficient guidance to prevent the student from becoming frustrated

or confused [173]. Tutors maintain the student in the zone of proximal development

[256], which is where a student cannot do the tasks on their own but can do them as

long as they have the assistance of someone more knowledgeable in the topic.

Tutors use different tactics to personalize the content to each student to maximize

their learning. They tailor the material they give the student not to be too difficult

and cause frustration and not to be too easy and cause boredom. The tutor can

adjust the material’s granularity level and provide immediate feedback to the student

[62]. Additional effective tutoring strategies include guiding the student in the right

direction, instead of explicitly giving them the correct answer [95], and preventing the

student from spending too much time working on a problem in the wrong direction

[173].

Prior work has shown the advantages of supplementing classroom instruction with

one-on-one tutoring [25, 242, 33]. Those who receive personalized tutoring perform

on average two standard deviations higher on tests than students who only received
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conventional instruction [33]. Tutoring is effective because the tutor can personal-

ize the teaching to each student, whereas in a classroom, the teacher must balance

multiple students’ needs.

2.2 Intelligent Tutoring Systems

Despite the effectiveness of personalized tutoring, it is not feasible for every student to

have an individual human tutor guide them at all times. There are insufficient tutors

for each student, and personal tutors are often expensive, making them inaccessible to

most of the population. One alternative has been intelligent tutoring systems, wherein

technology takes a similar role to a human tutor. The ITS provides content and help

to the user (we will use “user” and “student” interchangeably throughout the thesis) in

the chosen domain. Similar to human tutoring, students that are taught by intelligent

tutoring systems substantially outperform those that only received teaching from

conventional classrooms [144]. There are several comprehensive reviews on intelligent

tutoring systems [62, 12, 13].

ITSs can range from simple text-based interactions given on the internet to an

embodied robot that talks while tutoring∗. Some of the most common types of ITS

include:

• Screen-only - Most intelligent tutoring systems are screen-only systems with

little to no social element to them. They can be displayed on tablets, cell

phones, or computers. They provide the content to the user via text, images,

sounds, and animations. The user responds to the system by typing inside text

boxes, clicking via a mouse, or with touch (if touchscreen).

• Virtual agent - Virtual Agents are software programs that provide automated
∗Sometimes ITSs are defined as screen-based systems, but we will use a broad definition of ITS

that includes any systems that provide tutoring.

10



tutoring to the user via either a chat box or a video of an agent on the screen.

They bring a social element to the interaction and have been shown to increase

learning gains compared to systems that do not present a social element [156].

Systems such as auto-tutor [105] displayed an animated agent that used natural

language to teach the user. This system was shown to increase the student’s

knowledge by almost a letter grade. Virtual agents also have a positive effect

on the perception of a user’s learning experience [156]. Furthermore, virtual

agents can provide nonverbal cues, which result in increased learning [9].

• Robot - Robots are embodied systems that occupy the same physical space

as the user. Robot embodiment has shown several tutoring advantages over

virtual agents [158, 20]. Robots frequently also use a screen to provide content

and help to the user. More details of robotic tutoring systems will be provided

in the next section.

2.3 Robotic Tutoring Systems

A robot takes up physical space in the world. When a robot takes on this physi-

cal instantiation in the world by having a body, we call this embodiment [159]. An

embodied robot can physically interact with the task alongside the user. For ex-

ample, a student learning handwriting can be provided demonstrations on paper for

different letters by the robot [116]. Furthermore, an embodied robot can give move-

ment demonstrations to the user, which can be especially advantageous in the physical

health domain. The robot can teach a user to throw basketball hoops [162] or provide

physical exercise demonstrations to the elderly [87].

Even when the task does not require physical manipulation, there are still many

advantages in the embodiment of the robot compared to a virtual agent [68]. An

embodied robot is more persuasive and therefore causes greater compliance than the
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same robot presented as a video on a computer screen [20]. Compliance is an essential

aspect of tutoring as users must be willing to comply with the robot when it requests

them to complete different tutoring tasks.

A second advantage of an embodied robot is that users who interact with a robot

display higher increases on tests than those that interact with the same robot repre-

sented on a computer screen [158]. This is potentially because humans do not innately

learn from screens [210]. A second possibility is that people view the embodied robot

as more intelligent [140] and trustworthy [132] and therefore are more willing to accept

information from it.

A third advantage of robot embodiment is that it generates more engagement [258]

and enjoyment [258, 191] than a screen. People are more motivated to interact with

an embodied robot than a disembodied agent [231]. Being engaged and entertained

by the system are essential qualities if robots are to be successful in tutoring in the

long term.

Lastly, robots can show certain social behaviors more clearly than agents on a

screen, such as gaze and joint attention. Robots that show socially supportive behav-

ior increase learning gains in students [218]. Additionally, robots that show non-verbal

behaviors (gesture, gaze, touch, orientation) increase learning gains in users compared

to robots who do so to a lesser degree [130]. Robot gestures have been shown to af-

fect long-term memorization, performance, and engagement [67]. However, social

behaviors should be used with caution as too many can lead to less learning [129],

potentially because social behaviors can also be distracting.

Despite the many advantages of having an embodied robot tutor the user, there

are some issues to consider. The first is that an embodied robot generates a more

complex system than one which is screen only. This complexity includes additional

development of hardware and software. The second disadvantage of a robot over a

screen is that both custom-built and off-the-shelf robots are frequently expensive,
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making them inaccessible to most consumers. Lastly, robotic systems require addi-

tional dedicated space in the home or school compared to a tablet or phone.

2.4 Components of Tutoring Systems

A tutoring system is generally composed of four main components: the domain knowl-

edge, the student model, the pedagogical model, and the problem-solving environment

(user interface) [62, 80]. The domain knowledge represents the particulars of the do-

main, including the skills needed to complete each task and the rules of learning

(for example, the problem-solving strategies that people use and the pre-requisites

between skills). The student model has information about which skills the user has

mastered and can also contain affect states of the user, such as whether they are

tired or disengaged. The pedagogical model chooses which task to present the user

and what types of help would benefit the user. Lastly, the user interface presents

the content and help actions to the user. The user usually also interacts and gives

feedback to the system via the interface.

In Figure 2.1 we present the interaction between these four modules. The peda-

gogical model uses the domain knowledge, the user’s estimated skills, and the user’s

affective states to determine what content to present next to the user. The informa-

tion is presented to the user via the interface. The user then answers questions via

the interface, which is used to update the student model.

2.4.1 Domain Knowledge

The domain knowledge component represents the tasks (or problems) that will be

given to the user, the skills that compose each task, and each task’s solution. Al-

though some systems can automatically generate tasks and scenarios [181], usually,

the domain knowledge is designed by a human expert. The expert designs the skills
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Figure 2.1: A tutoring system is composed of four main components: a student model, an
interface, a pedagogical model, and the domain knowledge.

present in each task and how the system can detect when a skill was demonstrated

correctly. Additionally, the domain knowledge component can include a cognitive

model of how to solve each problem and how students proceed with solving it.

Although ITSs have covered a significant range of domains, they mainly have fo-

cused on mathematical domains such as algebra, geometry, and fractions [13, 189],

or in domains where it is possible to give multiple choice answers [40, 232]. These

domains are easy to represent in a model as they are composed of factual knowledge.

Additionally, there is a single correct answer in these domains, making it straightfor-

ward for the user modeling component to model the user’s skills.

Similarly, robotic systems have focused primarily on domains that are easy to rep-

resent and model, including geography [121], nutrition [235], diabetes management

[112], and memory skills [245]. A significant number of studies have also focused on

different mathematics subjects including geometry [99], arithmetic [119], and multi-

plication [199].

More research should tackle tutoring complex domains, also called ill-defined do-

mains. Fournier-Viger et al. define ill-defined domains as those where traditional

tutoring algorithms do not work well [94]. They are harder to model because they
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require more complex representations of skills and correct answers. Domains such

as assembling furniture, building an electronic circuit, or creating a computer pro-

gram can fall under ill-defined domains as modeling algorithms do not capture the

user’s skills well in these domains. They often are order-independent, have multiple

solutions, and are completed over more extended periods.

In recent years, some ITS and robotic studies have tackled ill-defined domains

that do not necessarily have one single correct answer and therefore need a more

complex representation. For example, Gordon et al. modeled a child’s reading skills

and updated their skill model so a robot could personalize its behaviors [103]. Other

studies taught users computer programming by providing feedback on their code [4, 6].

However, these more complex domains still represent the minority of studies.

2.4.2 Student Models

An ITS or a robotic tutoring system needs to create an accurate user model so it can

choose the best type of pedagogical help given the current user state. Many systems

can create models both of a user’s skills and of their current affective state.

User Skill Models

One important aspect of intelligent tutoring systems is assessing which skills the user

has mastered and which they have not. With an accurate model of the user’s skills,

the system can focus on giving problems and help actions to the user to teach them

the skills they have not yet mastered. A system models a user’s skills by observing

them respond to various problems. For each problem, it observes whether the user

answered correctly. The more problems the student answers correctly, the higher

the likelihood that they have mastered that skill. There are several comprehensive

reviews of user skill modeling, including [69] and [190].

One of the most common methods for determining which skills a user has mas-
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tered is Bayesian Knowledge Tracing [61] (BKT). BKT is a probability-based model

in which each skill present in the domain is represented by a probability of mastery.

To model the user’s skills, BKT observes whether the student answered correctly and

updates the probability of mastery for each skill present in that task. BKT accounts

for a student guessing an answer correctly and for a student slipping during a prob-

lem (knowing the answer but accidentally answering incorrectly) by accounting for

probabilities of guessing and slipping. BKT has been extended to account for indi-

vidual learning differences, including parameterizing each student’s speed of learning

to increase the accuracy of the model [267].

An alternative to BKT is Learning Factors Analysis (LFA) [44], which learns a

cognitive model of how users solve problems. It learns each skill’s difficulty and learn-

ing rate using user data. However, LFA does not create individualized models for each

user and, therefore, cannot track mastery during task completion. Performance Fac-

tors Analysis (PFA) [189] addresses LFA’s limitations by both estimating individual

user’s skills and creating a more complex model of skills. In recent years, methods

based on deep learning have also become prevalent [59]. These generate complex

representations of student knowledge. However, this method requires an extensive

amount of prior data in the domain [192].

Although most user skill modeling systems assume a single skill is present in

each problem, several models have extended BKT, LFA, and PFA to allow multiple

interdependent skills in each problem [265, 102, 187]. However, many multi-skill

models assume that all skills must be applied correctly to achieve the correct answer

in a problem [45, 101]. This is a significant limitation as we do not want the model

to assume a user has no mastery over all skills when they might have only failed one.

Furthermore, many multi-skill tasks have either order dependencies or knowledge

dependencies between skills that need to be accounted for.
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Affective States

In addition to user skill models, a system can model the affective state of a user,

including whether they are engaged, tired, or frustrated. These can be measured in

multiple ways. A computer can detect the average number of clicks, mouse moves, or

keyboard inputs to detect when the user has started slowing down or is performing

off task behavior [46]. Computer vision algorithms can detect gaze directions [117],

or use facial action units to detect attention and emotions [236].

Despite the large potential of affective state modeling, most work in the area to

date has focused on detecting disengagement. Several papers have looked at auto-

matic engagement detection when a student interacts with a robot during a tutoring

session [207, 43]. Once disengagement has been detected, a robot can deploy strate-

gies to reengage the student [153, 38]. By detecting valence and engagement, one

study deployed reinforcement learning to personalize its motivational plan for each

student [104]. Engagement algorithms also need to consider whether the student is

learning solo or in a group, as they have different signs of disengagement [155].

2.4.3 Pedagogical Model

The pedagogical module is responsible for structuring the instructional interventions.

It uses the user skill model and domain knowledge to create personalized content

and feedback for the user. The pedagogical model has two main ways it personalizes

instruction: sequencing the content to the user and choosing appropriate help actions

[193].

The most common way to take advantage of the user model is to determine what

task to give a user. For example, Schodde et al. decides which skill to teach next based

on the users’ demonstrated skill [232]. Schadenberg et al. personalize the difficulty of

the content to match the student’s skill [230]. Other methods use a modified Partially

Observable Markov Decision Process to select which gap (skill) to train the user [92]
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and to decide the sequence of problems to present to users depending on skill difficulty

[65].

The pedagogical model is also responsible for providing personalized help to the

user during task completion. The system can give many types of help actions, in-

cluding giving hints, giving an example, a walk-through of the problem, and directly

providing the solution to the current problem. Several pieces of work have shown the

advantages of choosing personalized help actions [180, 197, 56, 148].

2.4.4 User Interface

The user interface is how the system communicates with the user. It displays the

content and help actions provided by the pedagogical model to the user. The user

also responds and communicates with the system using the user interface. As detailed

in Section 2.2, the interface between the user and the system can vary from a simple

text screen to a robot.

There are multiple ways the system can output information to the user. Most

systems display content and help actions via a screen (of a tablet, phone, or com-

puter), displaying text, images, animations, and videos. However, several systems

have expanded beyond only screen visuals, allowing students to use natural language

to type and communicate with the system. For example, CIRCSIM-Tutor uses nat-

ural language dialogue for input and output with the user [82]. Other systems have

expanded beyond written text and use verbal dialogue to provide tutoring help, and

explanations to the user [161]. When robots are used, they mostly use speech and

sounds for communication.

The user also communicates with the system using the interface. When the system

only has a screen, it usually receives user input via mouse clicks, typing inside text

boxes, mouse or touchscreen item dragging, and so on. Some systems allow users to

have a natural language dialogue via a text-based chat [82]. However, few systems
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have the user provide verbal answers as speech recognition and interpretation are

difficult, especially when coming from children [93].

In addition to direct user input, some systems also collect indirect user input.

For example, by following a user’s gaze [74] and interpreting facial expressions [261].

This information can be used for user skill modeling but is most frequently used for

affective state recognition. Indirect user input is frequently collected via traditional

or depth cameras and processed by computer vision algorithms. Additionally, there

are more invasive methods to collect affective data, such as using electrocardiogram

(ECG) and galvanic skin response devices to collect user data [10].

2.5 Challenges of Long-term robotic tutors

Although ITSs are able to tutor in any environment as they usually are provided via

online applications, bringing robots into the wild is much more difficult. Nonetheless,

several studies have moved robot tutoring systems out of the lab into homes [204, 133,

66, 120], schools [246, 96, 122, 119, 7], and other in-the-wild spaces [109, 257, 137, 30].

This has allowed robots to tutor for multiple sessions spread over days instead of single

sessions. There are several advantages of long-term tutoring, including understanding

how people engage with robots after the novelty effect has worn off [152], whether

students retain the tutoring material in the long term [229, 203], and the impacts of

longer-term personalization [26, 118].

Even though there are several robotic tutoring studies conducted over multiple

sessions, they mostly had a low number of sessions. A significant number of studies

conducted five or fewer tutoring sessions [202, 119, 152, 122, 225]. Furthermore, most

studies were conducted over short periods, lasting less than a week. Although some

studies analyzed the interaction over months, most of these focused on either low

numbers of participants [211, 176], or were non-controlled studies where the robot
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interacted freely with a group of people [109, 126, 257]. Few controlled studies ana-

lyzed the effect of robots for at least two weeks [224, 204, 229, 133]. Future studies

should continue to study the impact of systems that tutor for more extended periods

and over larger numbers of sessions, to understand the effects of tutoring robots in

the long term.

The following sections describe several challenges in bringing robots outside a

laboratory setting while tutoring over multiple weeks, months, or years. These chal-

lenges are some of the reasons why autonomous in-home or in-school robotic tutoring

systems are not more widespread. Some of the challenges we present are primar-

ily relevant to robotic systems (autonomy, robustness, cost), and others are relevant

to any tutoring system in the home (flexibility, task complexity, content generation,

personalization, adherence).

2.5.1 Autonomy

One essential characteristic for long-term robots to succeed is the system’s ability to

act completely autonomously. Having a human operator always present is very time-

consuming and inconvenient. Either the person would need to enter the user’s school

and homes frequently, causing disruptions to the user, or they could teleoperate the

robot, which still is time-consuming as a researcher needs to control the robot every

time a session occurs.

Despite the necessity of autonomy for long-term systems, many studies still had a

researcher present for robot operation. In many studies, the robot was controlled via

Wizard-of-Oz (WoZ) [235, 170, 119, 211, 137, 176]. In WoZ, a human operator hides

and controls the actions and utterances of the robot to give the impression that the

robot acts autonomously [208]. In many other systems, although the interaction was

autonomous, there was always a researcher present to set up the tutoring session and

intervene if the robot had any failures [201, 203, 7]. Only a minority of studies had
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a fully autonomous robot with no researcher present to assist the system [204, 133,

120, 229, 224].

There are multiple reasons why autonomy is difficult to achieve. The first is that

a robotic system requires many components, including sensors, computers, robots,

and screens. Creating a system that seamlessly incorporates all these components

can be challenging to build and program. The second is that sensing is frequently

required, whether speech understanding or video processing, adding an additional

layer of complexity to the system. Sensing becomes especially complex when done

in real-time and in an unpredictable environment. Third, autonomous systems must

be easy to start and use for the user. Many robotic systems require initiating many

different components in a particular order. Autonomous robots need to be easily

turned on and off by the user without requiring them to have technical knowledge.

2.5.2 Robustness

It is commonplace for robotic systems to fail while interacting with users. When this

occurs in a laboratory setting, the researcher can often quickly correct the error or,

when necessary, restart the entire system so that the user can continue interacting

with the robot. However, failures cause much more significant disturbances in the

home, as they will disrupt the interaction, and most end-users do not know how to

fix them. Therefore, an error often implies that the research team needs to visit

the user’s home, which is time-consuming and can be seen as an invasion of privacy.

For robots to tutor successfully in the long term, they need to be robust to errors.

Moreover, if these errors occur, they need to be easy to resolve without too much

interference from the research team.
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2.5.3 Flexibility

It is possible to create a very controlled environment in a laboratory setting. The

robot and cameras are in a fixed spot with a constant background. You can ensure op-

timal lighting and clean backgrounds for the cameras, making it easier for perception

systems to interpret the data from the environment. Similarly, it is possible to control

the acoustics and noise in a laboratory setting, making it easier for microphones to

pick up clean audio data. However, it is not possible to control the environment when

bringing the robot into homes or schools. This makes perception systems much more

difficult to build as they must be flexible and work in any lighting, visual background,

and background noise.

Building machine learning (ML) algorithms that work in the wild is much more

challenging than making them work in the lab. ML algorithms assume the training

data has been collected in a similar environment or setting that it will be used in.

Therefore, when training ML models, the data is also best collected in the home or

school environments, which are much harder for researchers to access. Additionally,

because of the wide variety of in-the-wild settings, ML algorithms often need much

more data to be collected for them to perform well. Despite a large variety of data,

ML algorithms still frequently fail, as many unexpected situations occur in the home

or schools they likely will not have prepared for.

2.5.4 Task Complexity

As mentioned in Section 2.4.1, most tutoring systems focus on simple tasks, such as

mathematical domains in which the user memorizes facts. These types of domains

can usually be learned in one or a few sessions. However, having a robot in the

home provides the opportunity to teach more complex tasks. For example, over

many sessions, the robot could teach the user how to play an instrument, program a

computer, or dance the waltz.
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There are several difficulties associated with teaching these more complex tasks.

Simple skills are usually much easier to model, as they have a clear, correct answer

that can be given using a user interface. Additionally, there is a one-to-one mapping

between the correct answer and demonstrating the skill. Ill-defined domains, on the

contrary, can have multiple possible solutions. They also need more complex sensors

to model what the user is doing. A computer vision system or a natural language

system is often necessary to understand what the user is currently working on and to

detect whether what they are doing is valid. Moreover, complex models are needed

to map the users actions on a task to skills in the domain. To create successful long-

term in-home robotic systems, we need to model these complex skills so the robot

can provide personalized help throughout task completion.

Despite the opportunities that long-term systems create in teaching complex tasks,

most current multi-session robotic studies have focused on simple tasks. Most studies

focused on subjects that are traditionally part of school curricula such as math [202,

26, 119], geography [122], and word learning [179].

2.5.5 Personalization

Many robotic studies have demonstrated the benefits of personalizing content to each

student [104, 198, 26]. These benefits extend to long-term studies. Baxter et al.

showed that children who interacted with a personalized peer robot demonstrated

higher learning gains than children who interacted with the non-personalized version

[26]. Furthermore, the personalized robot was more accepted by the children. In a

study by Ramachandran et al., a robot that adapted its actions to the child’s emo-

tional and skill states during a five-session study caused significantly higher learning

gains than the non-adaptive robot [203].

Despite the benefits of personalization, many long-term tutoring studies do not

have automated user modeling systems [120, 7, 66]. To enable personalization, sys-
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tems must first detect the user’s skill or affect states. They then must decide how

to use the user’s state to give that personal feedback. This is made more difficult in

long-term studies, as the number of user states can be significantly higher, causing

additional setup and fine-tuning for each state.

2.5.6 Content Generation

In many ITSs, the content provided to the students is explicitly designed and pro-

grammed by the providers of the system. Although this is feasible for shorter-term

studies, this can become cumbersome when generating content for studies that last

months or even years. Content generation becomes especially complicated when cou-

pled with systems that personalize to the user. Not only does the domain expert need

to generate sufficient problems to give to the user for several weeks or months, but

they also need to generate those problems for all different skill levels.

One solution is to create algorithms that automatically generate content. Al-

though some studies have investigated automatic content generation [186] and au-

tomatic feedback generation [138], most of these have focused on simple tasks like

mathematics. Therefore, more research is needed on automatically generating appro-

priate content for users of different skill levels.

2.5.7 Adherence and Compliance

When the tutoring interaction is done in one or a limited number of sessions, most

users stay engaged and adhere to it, especially when done in the lab or when re-

searchers are present. In the home (or other in-the-wild settings), users choose daily

whether to turn on the system and participate in the session. Unlike the laboratory

setting, the user does not have a pre-scheduled time or someone monitoring them to

ensure they complete their necessary sessions. The system needs to be engaging or

have a sufficient benefits that the user decides to incorporate the robotic system into
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their daily schedule, despite the lack of supervision.

It is also necessary to consider the novelty effect. Research has shown that users

frequently will adhere to and use the system at the start, but that excitement wanes

over time [100]. More research is necessary on making these systems sufficiently

engaging in the long run so that users will decide to use the system as frequently as

required.

2.5.8 Cost

Another important consideration when creating a long-term system is the cost of the

final design. If the system is to assist people in dynamic environments, it needs to be

financially accessible to the user. The cost of the robot, the sensors, the computer,

and additional peripherals should be considered when designing long-term systems.

The final system also needs to be relatively compact so as not to provide a disruption

when placed in the home or schools.

Despite the importance of reducing costs, most robotic platforms are still quite

expensive. The most common robot used in multi-session studies is the NAO robot

[7, 201, 203, 118, 170, 119, 122]. It is a 54cm tall humanoid robot that has speech

capabilities. It is commonly used as it is prevalent in many research labs and is easy

to program and use. However, it is also an expensive robot, costing thousands of

dollars and making it outside the purchasing capabilities of most of the population.

Other platforms used in long-term studies are Robovie [126, 125, 217] and iCat [152,

151], which also cost several thousand dollars. Future research should invest in more

affordable platforms accessible to the general public.
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2.6 Summary

In this chapter, we reviewed the relevant literature regarding robotic tutoring systems.

We discussed relevant background literature and techniques in human tutoring and

intelligent tutoring systems. We present how robots were used to tutor children

and adults, and the advantages of the robot being physically present while tutoring.

Lastly, we presented a review of long-term robotic tutoring systems and the challenges

present of creating longer term robotic systems that tutor in the wild.

In the following chapters, we will address several of the challenges in building

long-term in-home robots. We explore how to create systems that can model users in

more dynamic environments during less well-defined domains, and how a robot can

provide personalized help actions in them. We will explore some aspects of how a

robot should provide tutoring content and its capability to influence its users. Lastly,

we will demonstrate in two user studies how an autonomous robot can tutor in the

home for several weeks while providing personalized help.
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Chapter 3

Skill Modeling: Continuous User Skill

Modeling During Complex Tasks

The first step for an Intelligent Tutoring System (ITS) to provide personalized help

to a user is creating an accurate user skill model. Once the system has a precise

model of which skills the user knows, it can focus on teaching where needed. There

are numerous user skill modeling techniques [69], however, they primarily focus on

simple tasks. Furthermore, the most common techniques, such as Bayesian Knowledge

Tracing [12] and Learning Factors Analysis [44], wait until the end of the task to

update the user model. For robotic tutoring systems to become pervasive, especially

in novel spaces, they need the ability to model all different types of tasks. Many of

these tasks will be more complex and take much longer to complete. If the tutoring

robot waits until task completion to provide help, it loses out on many opportunities

to offer assistance. Furthermore, if we are to bring robots into places such as the

home or industry, we cannot limit users to interacting with the robot only through a

computer screen. The robotic system needs to interact with the user through other

inputs methods such as natural language or computer vision. The disadvantage of

these modes is that they are less accurate and often generate noisy observations of
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the user’s answers.

This chapter presents a novel algorithm called Continuous Bayesian Knowledge

Tracing (C-BKT) that tracks users’ skills throughout more complex tasks. Our pro-

posed solution has two main innovations: the first is that it considers how long each

skill takes on average to be attempted. This means that the algorithm can model the

user throughout task completion. The second is that we average the previously seen

observations, which means that noise has a smaller impact on the model’s accuracy.

We show in simulation that C-BKT has a more accurate model of the user’s skills

and, therefore, can select better teaching actions than previous algorithms. Lastly, we

show that C-BKT works on building a user skill model during and electronic circuits

task during a user study.

3.1 Introduction

Prior intelligent tutoring systems have primarily focused on simple tasks such as

arithmetic or multiple-choice questions. In these domains, there is a single correct

answer. The answer is given either through a tablet or web interface, therefore gener-

ating unambiguous observations about the user’s answer. The ITS system uses these

end-of-task observations and updates the user skill model depending on whether the

answer was correct or incorrect for each skill. For example, if the task tests a division

skill by asking: "what is 14/2?" the user will answer 7, a different number, or leave it

empty. If the answer was 7, the system increases its estimate about the user’s division

skills; otherwise, it decreases it.

Consider a more complex task, such as electronic circuit building or computer

programming. These tasks generate opportunities for the system to intervene with

help by tracking user skills before the user provides a final answer. Several difficulties

arise from modeling throughout task completion. There are often multiple possible
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ways to complete each task correctly. Frequently these tasks test more than one skill,

some of which are expected to be completed earlier than others. Each observation

does not tell a complete story about the user’s skills as they apply different skills over

time. Lastly, observations can be noisy as sensing systems like computer vision or

interpreters are necessary. These are exemplified in a programming task: there are

multiple possible solutions; the user needs time to apply each skill, with some skills

like creating a loop likely taking longer than others such as creating variables; users

will likely break and rebuild pieces of code during the task; the observations are noisy

as a language interpreter is necessary.

Previous skill estimation algorithms were not designed to model these more com-

plex tasks. Therefore, this chapter proposes Continuous Bayesian Knowledge Tracing

(C-BKT), which can model a user during more complex domains. There are two main

novelties in our proposed solution. First, we created an “attempted parameter” that

captures the expected time for users to apply each skill if they have mastery over

it. This means that the system does not immediately assume the user does not have

mastery of a skill if they do not demonstrate it in the first time-step. Additionally,

the system takes longer to penalize incorrect skills demonstrations when the skills are

more complex or dependent on other skills. Our second algorithm novelty is that we

average the skill estimates of the user over multiple time-steps. By averaging esti-

mates, the system is less vulnerable to sensor errors caused by noisy observations, as

one incorrect measure will have a more negligible effect on the estimate. Furthermore,

the user needs to demonstrate the correct application of a skill multiple times in a

row before the system makes decisive conclusions about the user’s skills.

To validate C-BKT, we compare it against three variations of Bayesian Knowledge

Tracing [12] (a commonly used method in ITS): the standard BKT model as originally

proposed where it is only updated at the end of the task, one where the user model

is updated at each time-step based on the model value of the previous time-step,
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and one where the model is updated from the initial belief at every time-step. We

perform three sets of experiments. The first two were done in simulation, where we

randomly generated tasks, skills, and users. The first experiment shows that C-BKT

has a more accurate model of the user’s skills throughout the interaction. The second

simulation experiment shows that C-BKT chooses significantly better skills to teach

the simulated user than the other algorithms. In our third experiment, we collect

data from human participants and show that C-BKT teaches new electronic circuit

skills to participants∗.

3.2 Continuous Bayesian Knowledge Tracing

In this section we first present the traditional Bayesian Knowledge Tracing (BKT)

framework. In sequence, we will review some of the disadvantages that the conven-

tional methods present. Lastly, we present our model called Continuous Bayesian

Knowledge Tracing, which solves some of the problems that more complex tasks pro-

duce.

3.2.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) learns whether a user has mastery of a specific

skill by observing the user completing tasks [61]. The estimate of the user’s skill at

time t is represented by p(Lt) and is initialized by p(L0). Each skill has a probability

of being guessed correctly p(G) and a probability of the user slipping p(Sl) (making

a mistake despite the skill being known). Additionally, the model has a probability

of transitioning (p(T )) from a non-mastered state to a mastered state whenever the

user has an opportunity to try it.
∗The code and the data can be found at https://github.com/ScazLab/C-BKT.
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Mastery Probability Initialization

The probability of mastery of the user is set to its prior at the start of the interaction

(Equation 3.1).

p(L1) = p(L0) (3.1)

Mastery Probability Update

The model observes whether the user got the correct or incorrect answer after com-

pleting the task and uses it to update the probability of mastery. To update the

mastery when the observation is incorrect (Equation 3.4), the new estimate is the

prior times the probability that they slipped, divided by the total probability of an

incorrect answer (Equation 3.2). When the observation is correct (Equation 3.5), the

updated probability of mastery is the prior probability of mastery times the prob-

ability that they did not slip, divided by the total probability of a correct answer

(Equation 3.3).

p(ot = 0) = p(Lt) · p(Sl) + (1− p(Lt)) · (1− p(G)) (3.2)

p(ot = 1) = p(Lt) · (1− p(Sl)) + (1− p(Lt)) · p(G) (3.3)

p(Lt|ot = 0) =
p(Lt−1) · p(Sl)

p(ot = 0)
(3.4)

p(Lt|ot = 1) =
p(Lt−1) · (1− p(Sl))

p(ot = 1)
(3.5)
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Transition Probability

The probability of the user going from an non-mastered state to a mastered state

is calculated from the probability of them already having mastered the skill plus

the probability of them not having mastered the skill times the probability of them

transitioning (Equation 3.6).

p(Lt+1) = p(Lt|ot) + (1− p(Lt|ot)) · p(T ) (3.6)

3.2.2 Bayesian Knowledge Tracing Limitations

The BKT model was designed for tasks where unambiguous observations of the user

are given at the end of each task. It would be advantageous for the system to create

an accurate model and provide help throughout the task. With some simple modifi-

cations, the BKT expression could be adapted to allow for continuous modeling. One

option would be to use the BKT update equations after every time-step. However,

this quickly brings the estimate to one of the extremes (p(Lt) = 0 or p(Lt) = 1),

especially if many identical observations are seen in a row. Another option is to up-

date it every time-step using the initial mastery estimate (L0). When doing this, the

mastery jumps between high and low mastery every time the observations change.

Furthermore, neither of these two proposed solutions considers whether the user is

currently at the start or end of the task. Towards the end of the task, the user has

had more time to demonstrate their skill mastery.

3.2.3 C-BKT

We propose an extension of BKT that continuously updates its estimate of the user’s

skills during task completion. We call it Continuous Bayesian knowledge Tracing

(C-BKT). In addition to the BKT parameters, we introduce a new variable called
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attempted. The attempted parameter (E[k]) is the expected number of time-steps it

would take for the user to have had time to attempt the skill k. It can be estimated

from prior data or by an expert in the field. For example, in the programming domain,

we would not expect the user to have completed a FOR loop after the first second

of the task. Rather, it would likely take them a minute or more to attempt it. The

second main modification to BKT is that we average the n previous time steps to

determine the current estimate of the user’s skills. This prevents the system from

jumping between low and high mastery states.

Probability of an Observation

When the user has attempted the current task, the probabilities of the correct and

incorrect observation are identical to BKT (Equations 3.7 and 3.8). When they have

not attempted it, the probability of an incorrect observation is guaranteed, whereas

the probability of a correct observation is zero (Equations 3.9 and 3.10).

p(ot = 0|A = 1) = p(L) · p(Sl) + (1− p(L)) · (1− p(G)) (3.7)

p(ot = 1|A = 1) = p(L) · (1− p(Sl)) + (1− p(L)) · p(G) (3.8)

p(ot = 0|A = 0) = 1 (3.9)

p(ot = 1|A = 0) = 0 (3.10)

Attempted Probability

The probability of a skill having been attempted is the current time-step divided

by the number of expected time-steps to complete it. If the number of time-steps
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passed has exceeded the attempted parameter, it is assumed that the user would

have attempted it if they had mastered that skill (Equation 3.11).

P (A|t) =


t

E[k]
, if t ≤ E[k]

1, if t > E[k]

(3.11)

Mastery Probability Initialization

Similar to BKT, the probability of mastery is equal to the prior estimate (Equa-

tion 3.12). However, it will not change over time. We create a new variable called

P (Ht), which denotes the current estimate of the user’s skills at time t. p(L) is used

to update the current temporary mastery P (Ht) over time.

p(L) = p(L0) (3.12)

Mastery Probability Update

As seen in Equation 3.13, instead of looking at each time step individually, the algo-

rithm updates its current estimate (p(Ht)) by averaging the previous n time-steps. If

the current observation is that the user applied the skill correctly, then the task must

have been attempted, and the traditional BKT equation is used (Equation 3.14).

When the observation is incorrect, there are two possibilities: either the task has

been attempted, but the person did not demonstrate the skill, or the task has not

been attempted yet. Equation 3.15 measures the probability of mastery considering

both scenarios and divides it by the total probability of an incorrect observation.

p(Ht) =
t∑

i=t−n

p(Hi|L, oi, i) (3.13)

p(Ht|L, ot = 1, t) =
p(L) · (1− p(Sl))

p(ot = 1)
(3.14)
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p(Ht|L, ot = 0, t) =
p(L) · [p(A|t) · p(Sl) + (1− p(A|t))]
p(A|t) · p(ot = 0) + (1− p(A|t))

(3.15)

3.3 Comparison to Traditional Methods

C-BKT will be compared to several different variations of the traditional Bayesian

Knowledge Tracing model given a specific observation. We will compare the following

models:

• T-BKT - The traditional BKT where the model updates only at the end, using

the final observation.

• I-BKT - Modification of BKT, where it updates its current estimate using the

initial belief value during each time-step.

• E-BKT - Modification of BKT, where it uses the model value of the previous

time-step to update the value of the current time-step.

• C-BKT-AT (Only Attempted) - The C-BKT model with only the attempted

parameter.

• C-BKT-AV (Only average) - The C-BKT model, but only averaging the

beliefs over time. It averages the previous 10 time-steps.

• C-BKT - Our proposed algorithm, were it also average the previous 10 time-

steps.

First, we give an intuitive demonstration via a toy example of the pitfalls of

traditional BKT when the interaction is multiple time-steps long. We graphically

show how C-BKT solves those problems. Let us consider a task where a person is

building an electronic circuit that requires a resistor, and the user is given 60 time-

steps to complete the task. The user adds the resistor at time-step 22, removes it
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Observation

T-BKT

I-BKT

E-BKT

C-BKT-AT

C-BKT-AV

C-BKT

Figure 3.1: A comparison of how different variations of traditional BKT update the belief
of a particular skill after specific observations at each time-step. We also demonstrate the
effect of the different modifications of C-BKT and how the final C-BKT updates its belief.

at time-step 30, and then returns it to the same position at time-step 45 for the

remainder of the time. The observation is 0 when the resistor is not on the board

and 1 when the resistor is on it.

We set E[k] = 60, meaning that if the user has mastered the skill, they are ex-

pected to have demonstrated it within 60 time-steps. We set P (L0) = 0.5, meaning

that the system has complete uncertainty of the user’s skills at the start of the inter-

action. Lastly, we set P (G) = P (Sl) = 0.1, meaning that there is a 10% chance the

user will guess correctly or accidentally slip during the task.

In Figure 3.1, the C-BKT and conventional BKT methods are compared with

respect to their belief of the resistor skill over the task completion. T-BKT is shown

to update only at the end, which means it loses the opportunity to make informed
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decisions throughout the task. Because E-BKT is updated every time-step, when

several incorrect observations are made in a row at the start, it quickly brings the

belief to zero. It would need many correct observations to recover. Lastly, I-BKT

jumps between higher and lower belief states with correct or incorrect observations,

since it uses the initial belief to update rather than using any history.

Examining the trace for the C-BKT-AT approach, the effect of the attempted

parameter can be observed. The belief lowers very slowly at the start (as the person

has likely not had an opportunity to demonstrate their skills yet) and then decreases

faster when more time-steps have passed. The C-BKT-AV approach shows the result

of averaging the current belief of the previous ten time-steps. Instead of jumping

from high to low states, it takes several rounds of the same observation to impact the

belief significantly. Finally, C-BKT shows the result of the attempted parameter and

the average combined. The model creates a smoother model of the user’s skills and

considers how far along the user is in the task.

3.4 Simulation

We examine the presented algorithms under two experimental conditions. The first

focused on user modeling and the second on the effects of teaching. The performance

of each algorithm is examined across 1000 rounds of simulated tasks, each initialized

with randomized skills, tasks and users.

Skills - During each round, different skills were created. Each skill had associated

with it a probability of guessing and a probability of slipping, randomly chosen from

a uniform distribution between 0.1 and 0.25. The attempted parameter was set to a

random uniform distribution between 40 and 150.

Tasks - During each round, a new task was created. The task was assigned

between five to ten skills. Each simulated user was given 180 time-steps to complete
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the task.

User - During each round, a simulated user was generated. For each skill, they

were randomly assigned as mastered or not with equal probability. We specify as T i

the true state of the user for skill i. The belief state b of the user was set to 0.5 for

all skills at the start of the round.

Observations - During each time-step an observation is generated for the user.

The observation was generated via the probability of a correct or incorrect observation

(Equations 7-10), times the probability of the skill having been attempted (Equation

15).

Teaching - Every 20 time-steps, the user is taught one of the skills. The chosen

skill is the one with the lowest estimated mastery state. The probability of learning

a skill (when it was not previously known) is randomly drawn from a uniform distri-

bution between 0.15 − 0.35. If they have learned it, then their mastery of that skill

goes from 0 to 1.

3.4.1 Experiment 1: User Skill Modeling

We calculate how C-BKT compares to T-BKT, I-BKT, and E-BKT in how far the

estimate is from the true belief T i at every time-step. In Experiment 1, we assume

that no teaching has occurred and focused on skill modeling accuracy. At each time-

step, the distance between the belief at time-step t and the true state of the user

(Equation 3.16) is measured by Kullback-Leibler Divergence (KLD) [145].

D(b, T ) =
∑

i∈skills

bit · log
bit
T i

+ (1− bit) · log
1− bit
1− T i

(3.16)

Figure 3.2 shows the KLD of estimate b at each time-step for the different BKT

variations. T-BKT only updates its belief at the end, and therefore remains constant

throughout the interaction. At the start, E-BKT performs the worst of all the algo-
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T-BKT
I-BKT
E-BKT
C-BKT

Figure 3.2: A comparison between the models of the KLD distances from their estimated
state and the user’s real state.

rithms but corrects its mistakes at the end when observations are more reliable. Both

C-BKT and I-BKT improve their estimates as time progresses. However, C-BKT

outperforms I-BKT throughout all time-steps.

At four different time-steps (time-step 30, 80, 130, and 180), we measure whether

the KLD skill accuracy was significantly different between the different models using

an ANOVA with a post-hoc Tukey HSD test. At all different time points, the different

models were statistically significant from each other (p < 0.05). C-BKT significantly

outperforms T-BKT, I-BKT, and E-BKT after 30, 80, and 130 time-steps. However,

after 180 time-steps, E-BKT had a better model of the user’s skills.

3.4.2 Experiment 2: Skill Modeling with Teaching

During Experiment 2, the simulated user was taught a skill every 20 time-steps. To

measure how much a simulated user has learned, we measure the number of skills they

had mastered at the start of the interaction (time-step 0) compared to the number of

skills they had mastered at the end of the round (time-step 180) using Equation 3.17.

We also measure how many skills the user would have learned if the system had a
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Figure 3.3: The BKT variations compared with respect to the average number of skills
learned over 1000 time-steps.

perfect model of the user’s skills. We call this the optimal model, as it can choose

the best skills to teach.

D(Sstart, Send) =
∑

s∈skills

Send
s − Sstart

s (3.17)

Figure 3.3 shows the number of skills the user has learned on average for C-BKT

and the different traditional BKT variations. On average, the simulated users in T-

BKT learned 0.42 (SD = 0.49) new skills; users in I-BKT learned 0.91 (SD = 0.57)

new skills; users in E-BKT learned 1.00 (SD = 1.15) new skills; users in C-BKT

learned 1.44 (SD = 0.82) new skills; and users with the Optimal model learned

1.89 (SD = 1.15) new skills. The models differed statistically significantly using an

ANOVA with post-hoc Tukey HSD Test in all cases, except between the I-BKT and

the E-BKT models. C-BKT outperforms all the variations, and is only behind the

optimal model.
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Figure 3.4: An example of a completed circuit using snap circuits [78]. This circuit plays
music and blinks a light in the rhythm of the music, when the switch is turned on.

3.5 User Study

We demonstrate how C-BKT was implemented on a real task with human partic-

ipants. Participants were asked to complete electronic circuit tasks. We use snap

circuits [78], where the pieces can be snapped together on a board to form circuits.

An example of a built snap circuit board can be seen in Figure 3.4. Electronic circuits

encapsulate well how to model skills during more complex tasks, as there are multiple

correct ways to create a circuit. Users will be adding, moving, and removing pieces

on the board during the interaction. Moreover, the observations are noisy since a

computer vision system detects what pieces are added to a circuit board.

Skills - There were eight different pieces that a person could add to a board: a

switch, a button, a resistor, an LED, a music circuit, a speaker, a motor, and wires.

Different skills were tested, including adding correct pieces, creating a closed circuit,

LED directionality, how to create AND and OR gates, and so on. A total of 17 skills

were being tested. The parameters for each skill were determined by consulting an

electronic engineering major.

Tasks - There were 32 variations of tasks, of which each user completed 10. Each
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task required a combination of different skills. Participants were told which task to

complete next via an app on a tablet. They were given up to three minutes for each

task. Some examples of tasks were: "Build a circuit that plays music when a switch

is turned on" and "Build a circuit that spins a motor when a switch is turned on or

a button is pressed". Each task had a degree of difficulty associated with it, and the

next task was chosen according to the user’s skill.

Users - There were 37 participants in the experiment (18 male, 18 female, 1 non-

binary). The study was approved by the university’s Institutional Review Board, and

participants signed a consent form. They were not provided with any information

on how electronic circuits worked, other than the piece’s name and the ports on the

pieces. Participants completed a pre-test and a post-test to determine their knowledge

of circuits before and after the interaction.

Observations - An overhead camera observed the user as they completed each

task. A vector of observations was generated at each time-step for the task. If the

user demonstrated the correct skill, the observation for that skill would be 1; if they

did not demonstrate the skill, it would be 0; and if a skill was not tested during that

task, it would be a 2.

Teaching - Every 30 seconds, a robot provided help. The help action varied

between pointing out wrong pieces on the board, suggesting pieces to add, explaining

how to connect pieces, and affirming that a skill they had demonstrated was correct.

The user had the option to press a “finished" button on a tablet. Upon indicating they

had finished, the robot would provide further help if one of the skills was incorrect.

If the task was correct, it would move on to the next task.

3.5.1 Procedure

First, participants completed a pre-test without the robot to assess their skills on

electronic circuits ahead of the tutoring interaction. The pre-test was composed of
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the participant building circuits, and responding to questions about circuits. Then

they built ten electronic circuit tasks alongside a robot, while the computer vision

estimated their skills via C-BKT, and the robot provided help. After the interaction,

participants completed a post-test to assess how many new skills they had learned.

The pre-test and post-test were nearly identical and tested the same skills.

3.5.2 Finished Signal

One simple addition to C-BKT was that the user could signal via a tablet when they

were finished with the task. We interpret the user pressing the button, as signalling

that they have attempted all the skills. Therefore, when the participant pressed the

button, we update the prior p(L) with Equation 3.18.

p(L) = P (Ht|ot) (3.18)

3.5.3 Results

Participants demonstrated wide variability in their skills on electronic circuits, varying

from only demonstrating 6% of skills on the pre-test to showing 71% of skills. We

compare how many skills the participant correctly demonstrates from the pre-test to

the post-test. On average the participant demonstrates correctly 5.83 (SD = 3.24)

skills on the pre-test, and 9.67 (SD = 4.49) skills on the post-test. A t-test shows

that participants knew significantly more skills during the post-test than during the

pre-test (t(18) = 8.64, p = .006). These results are shown in Figure 3.5(a). Figure

3.5(b) shows the improvement of each participant between the pre-test and post-

test. 83% of participants improved their skills after the interaction, 6% did not learn

any additional skills, and 11% showed fewer skills on the post-test compared to the

pre-test.

In Figure 3.6, we give an example of how C-BKT tracked one participant’s LED
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Pre-Test Post-Test Pre-Test Post-Test

(a) (b)

Figure 3.5: (a) Participants demonstrated a significantly higher number of skills in the
post-test compared to the pre-test. (b) The pre-test and post-test scores for each of the
participants.

skill’s estimate. The dashed lines in the figure are the moments the participant pressed

the finished button. In the observation graph, it can be seen that the participant

removed the LED on and off the circuit several times. The computer vision also

detected the user as having their hand on top of the board 32% of the time. Despite

the noisy observations, C-BKT still was able to track their skills and had a high

estimated belief that the user knew how to use the LED.

3.6 Discussion

We first discuss our proposed solution, and in sequence present some discussion on

the attempted parameter.
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Figure 3.6: An example of the observation and C-BKT’s resulting skill estimate of a
participant LED’s skill during a particular task.

3.6.1 Continuous-Bayesian Knowledge Tracing

In this chapter, we have shown that C-BKT can model a user’s skills during complex

tasks. Experiment 1 shows that C-BKT models a user’s skill more accurately than

traditional Bayesian Knowledge Tracing systems. This is because the conventional

BKT approach was designed to only model a user’s skills at the end of the task when

it has received an unambiguous answer from the user. In Experiment 2, it is shown

that accurately modeling a user’s skill during the task allows the system to choose

good skills to teach a user. It teaches significantly more skills to the user compared

to traditional BKT variations.

Lastly, we validated C-BKT on a user study with participants building electronic

circuit tasks. This demonstrated the applicability of the algorithm to real-world tasks

where participant data must be recovered using a sensing system. By modeling users

using C-BKT, the system taught users skills relating to electronic circuit design, and

demonstrated to have significantly increased participant knowledge on circuits from
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pre-test to post-test.

3.6.2 Attempted Parameter

The attempted parameter captures the expected amount of time before the user would

have tried out a skill. This allows C-BKT to modify the weight of user observations

at the start of the interaction and therefore make fewer mistakes. In our algorithm,

we assume the attempted parameter is a fixed value throughout the task. However,

for future systems, a more advanced computer vision system may be able to provide

greater activity resolution by detecting what the user is doing at every time-step.

This would provide a more accurate probability that they have attempted each of the

skills of the current task. A second addition that we leave as future research is to

enhance the attempted parameter by defining order dependencies between the skills.

Often the ability of the user to attempt one skill is dependant on another skill being

demonstrated first. For example, it is not possible to correctly have an LED on a

board in the correct direction before the LED is added. These order dependencies

would make the attempted parameter more accurate.

3.7 Summary

For a tutoring system to give appropriate help actions, it first needs an accurate

model of a user’s current skills. In this chapter, we extend previous knowledge trac-

ing algorithms to account for more complex tasks that take longer to complete and

have noisy observations of the user’s skills. We first demonstrated that our C-BKT

algorithm created more accurate models than prior solutions in a simulation. Next,

we showed in a simulation that our system can choose better tasks to teach than

previous solutions. Lastly, we demonstrate on the task of electronic circuit building

that our solution creates models of user’s skills with live participants. Using each

46



participant’s model, our system selected personalized help actions. Participants show

significant electronic circuit knowledge increases from pre-test to post-test.

The C-BKT model is helpful in many different scenarios. The main application

(and the one that was the focus of this chapter) is intelligent tutoring systems. Having

an accurate model of a user is essential to tutoring. As ITSs become more predominant

and are used for a broader range of tasks and ages, it is vital that not only simple tasks

be considered, such as math or multiple choice, but also more intricate tasks where

more fine-grained feedback may be required. Especially in light of the COVID-19

pandemic, ITSs can remove a bit of the strain on teachers and parents by providing

personalized help to a student.

C-BKT can also be used in scenarios other than in tutoring, such as in collabora-

tive manufacturing. Collaborative manufacturing tasks are very different from those

seen in classrooms and take much longer to complete. Some examples include: assem-

bling cars or furniture, building circuits, or doing laboratory testing. An algorithm

such as C-BKT could model the user throughout these complex tasks and provide

feedback to the operator. With an accurate model, a robot could then take over tasks

that the user is less confident in, or provide instruction where help is needed.

This chapter focused on user modeling in simulation or in a laboratory setting.

However, creating an accurate user model is only the first step in building better

tutoring systems. In the next chapter (Chapter 4), we investigate how to do action

selection given more complex tasks. In Chapter 5, we provide further details of how

C-BKT was used to tutor participants during the electronic circuit building task.
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Chapter 4

Skill Modeling: Task Selection for

Optimal User Information Gain∗

The last Chapter presented C-BKT, which could create an accurate model of a user’s

skills. The tutoring system can use this model to focus training on essential and

deficient skills. This Chapter focuses on how a system can select the optimal task

to maximize learning. Prior work offers mechanisms for optimally creating models of

users on a single skill. Other work has conducted tutoring with tasks that contain

multiple skills per task, but these do not perform optimal task selection. To the best

of our knowledge, there is no work done in choosing what tasks to assign a user when

there are multiple skills present per task.

This chapter presents a system that estimates user skill models for multiple skills

by selecting tasks that maximize the information gain across the entire skill model.

We modify a Partially Observable Markov Decision Process (POMDP) to make it

computationally tractable in selecting which task to hand a user. We compare our

system’s policy against several baselines and an optimal policy (that assumes full
∗Parts of this chapter were originally published as: Nicole Salomons, Emir Akdere, Brian Scassel-

lati. (2021). BKT-POMDP: Fast Action Selection for User Skill Modelling over Tasks with Multiple
Skills. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI)
[219].
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prior knowledge of the user’s skills) in both simulated and actual tasks. Our method

outperforms baselines and performs almost on par with the optimal policy when

selecting which task to test and train users on. We demonstrate in a user study that

our solution optimally selects tasks in real time.

4.1 Introduction

There has been prior work on selecting which task to present a user to maximize

their learning [232, 65]. However, these systems consider that each task assigned to

a student maps one-to-one with a modelled skill, an assumption that frequently does

not hold. Consider a simple math task: (3 ∗ 9)/(1 + 3). To successfully complete it,

the user would need knowledge of addition, multiplication, and division. However,

prior research usually tests one skill at a time when accounting for several skills.

Testing skills individually takes longer than if multiple skills are tested concurrently.

Furthermore, there are domains where it is not possible to separate skills and test

them individually. For example, swimming might consist of a skill for arm movement,

leg movement and taking breaths, but these are challenging to test completely inde-

pendently. Prior work on tasks containing multiple skills [265, 102] did not include

action selections policies to select what the best task is to present to the user, and

usually present tasks to the user at random.

Selecting the correct action when multiple skills are present is a hard problem

for several reasons. One (in)correct observation alone is not sufficient to determine

mastery as there is the chance that the participant has slipped or guessed during the

task. Action selection when the true state (in this case which skills are mastered)

is unknown is usually solved using a Partially Observable Markov Decision Process

(POMDP) [16]. However, the number of states is exponential in the number of skills

and a POMDP is exponential in the number of states, making it computationally
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intractable.

In this chapter we present a modified version of POMDPs, allowing action selection

on tasks with multiple skills to be done online. Our system selects the best action,

which is the one that minimizes the uncertainty of the user’s knowledge state, that

is, the task that will give the system the most information gain of the user’s skill

capabilities. The model is also extended to not only test skills but to allow for users

to learn throughout the interaction, enabling teaching to occur.

During each time-step, a task is selected for the user. After observing the user

complete the task, the system updates each skill’s probability of mastery. Using

the updated skill levels, the system proceeds to select a new task. In our system,

the likelihood of skills being mastered or not is updated using Bayesian Knowledge

Tracing (BKT) [61]. Actions are selected using a modified POMDP. We call our

system Bayesian Knowledge Tracing - Partially Observable Markov Decision Process

(BKT-POMDP).

To validate BKT-POMDP, we compare it against three other action selection poli-

cies: a random policy, a hand-crafted policy, and an optimal policy. We perform three

sets of experiments. The first was done in simulation, where we randomly generate

tasks, skills, and users. The second was a human-subjects experiment where partic-

ipants complete an electronic circuit building task. In the third experiment, BKT-

POMDP accounts for learning throughout a simulated interaction. In all three exper-

iments, BKT-POMDP learned the user’s state faster and more accurately than the

random policy and the hand-crafted policy, and it performed comparably to the opti-

mal policy in terms of accuracy and speed. Therefore, we show that BKT-POMDP is

a suitable action selection mechanism to create a model of a user’s capabilities across

multiple skills.
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4.2 Formalisms

In this section we will first present the Markov Decision Processes (MDP) and Par-

tially Observable Markov Decision (POMDP) formalisms. In sequence, we present

our model which is based on BKT (formalism presented in Chapter 3) and POMDPs.

4.2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a discrete-time stochastic process used for

decision making given a probability distribution of states. At each time-step, the

system uses the probability distribution of different states to decide what an optimal

action is, given the rewards associated with state-action pairings. An MDP is a

5-tuple (S,A, Ta, Ra, γ), where

• S - is the state space of the system.

• A - is the action space of the system.

• T(s,s’) : P (St+1 = s′|At = a, St = s) - is the transition function. Given

the current state and the action take, it calculates the resulting distribution of

states.

• R(s,s’) : E(Rt+1 = r|At = a, St = s) - is the expected reward given the state

distribution and the action.

• γ ∈ [0, 1] - discount factor.

The policy function denoted by π, maps the state space to an action. Optimal

actions are not only dependant on the immediate reward, but over rewards that are

over a potentially infinite horizon. Therefore, the optimal action usually considers

the expected reward by summing over discounted future rewards:

51



E

[
∞∑
t=0

γtRat(st, st+1)

]
(4.1)

There have been multiple proposed ways of solving and MDP. One common so-

lution is to use Bellman Equations [29], which use a value function to calculate the

optimal solution for a particular state.

V ∗(s) := max
a

{
Ra(s, s

′) +
∑
s′∈S

Ta(s, s
′) · γ · V ∗(s′)

}
(4.2)

Partially Observable Decision Processes

Markov Decision Processes assume that the state of the system is known at all times.

However, it is not always possible to recover the exact state of the system. An

extension to MDPs called Partially Observable Markov Decision Process (POMDP)

has been proposed where the state of the system is unknown [123]. Different sensor

outputs provide observations about the state of the system. A POMDP is represented

by a 7-tuple (S,A,T,R,γ,Ω ,O), where the first five variables are the same as an MDP.

In addition we have:

• Ω - The set of possible observations.

• O : O(o | s′, a) - The probability distribution of getting an observation o given

the state s′ and the action taken a.

A POMDP maintains a belief distribution b over the possible states. The belief

distribution is updated using observations:

b′(s′) = ηO(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s) (4.3)

where η is the normalization constant (η = 1/Pr(o | b, a)). The probability of an

observation given the prior belief and the action is calculated by:
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Pr(o | b, a) =
∑
s′∈S

O(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s). (4.4)

The optimal policy of a POMDP can also be calculated by Bellman’s Equations:

V ∗(b) = max
a∈A

{∑
s∈S

b(s)Ra(s, s
′) + γ

∑
o∈Ω

Pr(o | b, a)V ∗(τ(b, a, o))

}
(4.5)

where τ(b, a, o) =
∑

o∈Ω Pr(b′|b, a, o) Pr(o|a, b). POMDPs are in general considered

intractable to solve optimally and therefore approximate solutions are frequently used.

4.3 Bayesian Knowledge Tracing - Partially Observ-

able Decision Process (BKT-POMDP)

We describe here a system that selects optimal actions when creating a model of user

capabilities across multiple skills. Our model makes several assumptions: 1) The user

skill state is constant, and they will not learn during the interaction. We later present

an extension to the model that allows for learning. 2) Each skill’s importance is equal;

however, this can be changed easily if an application requires it. 3) One task is given

to the user at each time-step (differently from the previous chapter, here, we consider

a time-step a more extended period where the user has time to complete the task),

and the task can contain one or multiple skills. 4) Lastly, skills are independent of

each other; that is, one skill’s mastery is independent of another’s skill mastery.

This system draws inspiration from Partially Observable Markov Decision Pro-

cesses (POMDPs) [123] and belief state MDPs [171] in that the system does not have

full knowledge of the state S, and uses observations o to create an estimate b of what

the state is. To learn the model, it selects actions a that maximize the expected

information gain reward r of the new belief b′ compared to the prior belief b. The

model can be seen in Figure 4.1.
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Figure 4.1: The state of the user S (their skill state) is constant throughout the interaction.
The system selects tasks a to give the user which generate observations about the user’s skills.
These observations o are used to update the belief b of the user’s skills. The system selects
at each time step the task a which it estimates will result in the highest information gain of
the user’s state, represented by reward r.

This section presents our system called Bayesian Knowledge Training - Partially

Observable Markov Decision Process (BKT-POMDP). Similar to the POMDP, our

model is composed of the following:

• S - The true skill state of the user. A state is represented as a binary vector,

with each element i in the vector representing whether skill i is mastered (1) or

not (0).

• A - The set of actions that can be taken. Each action is a task that can be

presented to the user that contains multiple skills. Each action is a vector, with

1s for the skills being tested, and 0s for those that are not.

• T : b′ = P (b|o) - The transition function updates the belief, given the current

belief and the observation. In BKT-POMDP, the transition will be updated

using the Bayesian Knowledge Tracing formulation.
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• R - The reward function. In traditional POMDPs, the reward is a function of

either the current state or of the current state plus action. However, our reward

is a function of the current belief and the previous belief. Our reward function

maximizes the information gain of the user’s state at each time-step.

• γ ∈ [0, 1] - discount factor.

• Ω - The set of possible observations. An observation will be a vector of 0s,

1s, and 2s, where 0 represents the wrong answer for that particular skill, 1

represents the right answer, and 2 represents a skill not being tested during

that time-step.

• O : P (o|b, a) - Observation probabilities. The probability of an observation

given the current belief distribution and the action chosen. The observation

probabilities are based on Bayesian Knowledge Tracing.

4.3.1 Skill Belief Vector

The skill belief vector is represented by b. This is the current estimate the system

has of S. Each element in the vector represents the estimated probability of skill i

being mastered.

Even though the number of possible states is exponential in the number of skills

tested, it can be represented as a belief vector with a belief value for each skill. For

example, if the belief for skill i is currently 0.95, that means that it is very likely that

the user has mastered that skill. If the value is 0.3, it is more likely that they do

not know that skill, but the system is not certain of this. The skill belief vector is

initialized to 0.5 for all skills, representing complete uncertainty at the start of the

interaction. In our formulation of the POMDP, all computations can be done on the

belief vector rather than over all the possible states. This makes BKT-POMDP much

faster to solve than traditional POMDP, as POMDP computes over all the possible
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skill states (2|S| different possible states), and our calculations are done on just the

belief vector.

4.3.2 BKT-POMDP Action Selection

The optimal value function of the POMDP will select the action (the task), which

has the highest expected reduction in uncertainty of the user’s skill state (Equation

4.6). It iterates over all possible actions (in this case, the possible combinations of

skills to test) and selects the one which it expects to have the highest Q value. The

Q value (Equation 4.7) is the expected reward when taking a specific action. Upon

selecting an action, it will consider all the possible observations and calculate the

resulting belief from that observation b′ = T (b, o). It will calculate the likelihood of

the observation multiplied with the observation’s reward. The reward is calculated

by the expected increase of certainty of the user’s skill state after taking an action.

V ∗(b) = max
a∈A

(Q∗(b, a)) (4.6)

Q∗(b, a) =
∑
o∈O

[P (o|b, a) ·R(b, b′)] (4.7)

4.3.3 Belief Update

Each of the tested skills in the belief vector is updated independently using the BKT

framework [267]. In BKT, the probability of knowing a skill is dependant on whether

the observation was incorrect (oi = 0) or correct (oi = 1), and also on the probability

of guessing (P (Gi)) or slipping (P (Sli)) for that skill. When the skill is not being

tested (oi = 2), that particular skill’s belief value remains the same. Equation 4.8

shows the belief update.
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b′i =



bi · p(Sli)
bi · p(Sli) + (1− bi) · (1− p(Gi))

, if oi = 0

bi · (1− p(Sli))

bi · (1− p(Sli)) + (1− bi) · p(Gi)
, if oi = 1

bi, if oi = 2

(4.8)

4.3.4 Reward Function

In the traditional POMDP model, the reward usually is related to the specific state.

Conversely, in the BKT-POMDP, the reward relates to how much the certainty of

the skill state has increased compared to the previous time step. That is, the more

certain the system is of the user’s skill compared to the previous time step, the higher

the reward will be. We use Kullback-Leibler divergence (KLD) [145] to calculate the

information gain of the new belief compared to the previous belief (Equation 4.9).

KLD is first calculated for both the old belief and the new belief compared to the

belief vector of complete uncertainty (U), where U = [0.5, 0.5, ...0.5]. The reward

is how much information is gained with the new belief compared to the old belief

(Equation 4.10).

DKL(b ∥ U) =
∑
i

bi ln

(
bi
0.5

)
+ (1− bi) ln

(
(1− bi)

0.5

)
(4.9)

R(b, b′) = DKL(b
′ ∥ U)−DKL(b ∥ U) (4.10)

4.3.5 Observation Function

The probability of a specific observation is the product of all of the individual skill

observations that were tested during that round (ai = 1) given the current belief state
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(Equation 4.11). The probability of observing the incorrect answer (oi = 0) is the

probability that the user possessed the skill but slipped plus the probability that they

did not possess the skill and did not guess correctly. The probability of observing the

correct answer (oi = 1), is the likelihood that they possessed the skill and did not slip

plus the probability they did not possess the skill but guessed correctly. When the

skill was not tested (ai = 0), it did not influence the observation’s probability. The

observation’s update function can be seen in Equation 4.12.

P (o|b, a) =
∏
i

(p(oi|bi, ai)) (4.11)

p(oi|bi, ai) =



1, if ai = 0

bi · p(Sli) + (1− bi) · (1− p(Gi)), elif oi = 0

bi · (1− p(Sli)) + (1− bi) · p(Gi), elif oi = 1

(4.12)

4.4 Metrics

In this section, we present the baselines and the measures used for evaluating BKT-

POMDP.

4.4.1 Baselines

We compare our policy (BKT-POMDP) against three different policies: two baselines

(a random policy and a hand-crafted policy) and the optimal policy. We assume there

is no repetition of tasks, although the policies could easily be modified to allow it.

• Random - A task is selected randomly and presented to the user. The Ran-
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dom policy is the most commonly used action selection mechanism in tutoring

systems.

• Hand-Crafted - It selects the task with the skills least recently tested. It does

so by assigning each skill a counter that is initialized at 0. During each time-

step, all non-tested skills’ counters are increased by one. If the skill is tested,

the counter is reset to zero. This policy will use the unweighted sum of these

counters to choose its next action.

• BKT-POMDP - Our policy creates a model of the user’s skills and chooses

tasks that it expects will result in the highest information gain of the user’s skill

state. This is the policy presented in Section 4.2.

• Optimal - This policy selects the optimal action at each time-step. In Experi-

ments 1 and 2, where the goal is skill estimation, it will choose the action that

brings the estimate of the user’s model b as close to the real model of the user

S. In Experiment 3, where the goal is to maximize learning, it will choose the

action with the highest expected increase of skills mastered. This policy can

select optimal actions as we assume it has full access to S from he start. This

assumption does not hold in real scenarios and therefore this policy serves only

to illustrate what the optimal policy would be.

4.4.2 Measures

We used the following measures to validate BKT-POMDP. They were calculated each

round after the user completed the selected task, and the model’s belief was updated.

Distance to True State - How close the current belief b is from the correct skill

state S for each user. It is calculated by the difference between b and S. This metric

is used in the first two experiments where the goal is correctly estimating the user’s

true state.
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Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 4.2: Experiment 1 - The average distance of belief b to the true state S for each
of the four policies. Overall the optimal and BKT-POMDP policies chose the best actions
learning the user skill states the quickest. The third best policy was the hand-crafted policy,
and the random policy performed the worst.

Dist(b, S) =
∑
i

(|bi − Si|) (4.13)

User Mastery - The number of skills that are mastered. This metric is used in

the third experiment, where the goal is teaching all the skills to the user.

Mast(b) =
∑
i

(Si) (4.14)

4.5 Experiment 1 - Skill Estimation in Simulation

We ran a total of 100 rounds of simulations, where different simulated skills, tasks

and users were generated. In each round a different user was generated, and they

completed 40 different tasks for each of the four policies.

Skills - 20 different skills were created each round. Each skill had associated with

it a probability of guessing it correctly and also a probability of slipping while doing
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it. The probability of guessing and slipping was randomly chosen from a uniform

distribution between 0 and 0.3.

Tasks - 200 different tasks were created. Each one had randomly assigned to it

between 1 and 5 skills. During each time-step, a task was selected until a total of 40

different tasks were chosen for that round.

User - During each round, a simulated user was generated. For each skill, they

were randomly assigned as mastered or not with equal probability. Each user was

associated with an observation for each task they would complete. The observation

was created using the probability distribution of guessing or slipping depending on

whether they were assigned as having mastered that skill.

4.5.1 Results

We measured the accuracy of the belief state compared to true state using Equation

4.13. All four action selection mechanisms learned the user’s skills accurately over

time. However, the random policy took significantly longer to approach the true

user state. The hand-crafted policy performed better than the random policy. BKT-

POMDP performed almost as well as the optimal policy. These results can be seen

in Figure 4.2.

During three different points (after 10 tasks, after 20 tasks, and after 30 tasks)

we compare whether the accuracy of the policies were statistically significant from

each other using an ANOVA with Bonferroni Corrections. In all three cases, the

optimal and the BKT-POMDP policies performed statistically significantly better

than the hand-crafted and the random policies, and the hand-crafted solution per-

formed statistically significantly better than the random policy. The optimal and the

BKT-POMDP policies did not significantly differ from each other.
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Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 4.3: Experiment 2 - The average distance of belief b to the correct state S for
each of the 12 task actions. The optimal policy performed the best, closely followed by the
BKT-POMDP policy. The hand-crafted policy was the third best policy and the random
policy was last.

4.6 Experiment 2 - Skill Estimation with Human

Participants

We compare BKT-POMDP on a real task with participants completing electronic cir-

cuit tasks [78], using enlarged electronic pieces including wires, resistors, and switches.

The pieces can be snapped together on a board to form circuits. We chose circuits

because they require the user to be proficient in a variety of skills, many of the skills

are order independent, and there are several possible assemblies.

Skills - There were six different pieces being tested: a switch, a resistor, an LED,

a music circuit, a speaker, and a photo-resistor. There were three different types of

skills necessary for accurately completing the tasks: placing the correct piece on the

board, placing the piece in the correct location, and placing the piece in the correct

orientation. Placement of pieces was dependent on choosing the correct piece. The

orientation of pieces was dependent on the participant having chosen the correct piece
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and placing it in the correct location. Therefore if the participant did not choose

the correct piece, then we also defined that they were incorrect in the placement

of the piece and the orientation of the piece (this slightly breaks our independence

assumption, but does not change the computational cost of the algorithm). Only the

LED and the music circuit were directional. Therefore there were a total of 14 skills

(six pieces chosen + six pieces placed + two pieces orientation) being tested. We

consider a participant to have mastery of a skill if they apply it correctly at least

70% of the time (most skills were tested on average five times, so this allowed at

least one slip or guess). The guess and slip probabilities for each particular skill were

determined by the number of times participants did not have mastery and guessed

correctly and when they did have mastery and slipped in our experiment. The average

probability of guessing was 0.28, and the average probability of slipping was 0.10.

Tasks - There were 12 different tasks for the user to complete. Each task required

a combination of different skills. A board was given to the participant with wires and

a battery piece (without batteries inside) that were already placed. The participant

was then asked to complete a task. For example, there was a task where the user

was asked to create a circuit with a light that could be turned off and on. Therefore

they needed to choose the correct pieces: an LED, a resistor, and a switch; place each

in the correct location; and place the LED with the correct orientation. In addition

to the six different pieces that were being tested, we gave the user four additional

distractor pieces (making guessing correctly less likely).

Users - 23 participants completed the 12 circuit tasks, of which 14 were male

and 9 were female. The study was approved by the university’s Institutional Review

Board and participants signed a consent form agreeing to participate. They were

not provided with any information on how electronic circuits worked, other than the

piece’s name and the ports on the pieces. We also assumed that no learning happened

throughout the experiment, as no help or feedback was provided. The participants’
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expertise on circuits was varied, with some participants having mastery of none of the

skills, and some having full mastery. All 23 participants’ data was used for the four

policies by simulating which task the system would have chosen during each time-step

for each participant.

4.6.1 Results

We annotated for every participant whether they had mastery over each skill (they

were considered to have mastery if they got the skill right over 70% of the time).

For every participant, observations were created by annotating whether they demon-

strated the skills successfully in each task. On average, participants were able to

choose the right pieces 77.39% (SD = 14.59%) of the time. Participants placed the

piece in one of the correct locations 38.75% (SD = 33.91%) of the time. And partic-

ipants placed the directional pieces in the correct orientation 35.36% (SD = 32.43%)

of the time.

During the last few rounds all four policies had high certainty on the user’s skills.

Therefore we compare rounds 3, 5 and 7 for statistical significance using ANOVAs

and Bonferroni Corrections, measuring the distance of the belief compared to the true

state (Equation 6). After taking three actions, the optimal policy performed signifi-

cantly better than the hand-crafted and random policies. BKT-POMDP performed

significantly better than the random policy. The other comparisons were not signif-

icant. After five rounds, the optimal policy performed significantly better than the

random policy. The other comparisons were not significant. There were no significant

differences after seven rounds.
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4.7 Experiment 3 - Learning in Simulation

There are many situations, especially in ITS, where we do not only want to create

a model of skills, but also select the tasks which will teach the most. We extend

BKT-POMDP by changing the reward function and the belief update function to

account for learning. These modification allow BKT-POMDP to select the task with

the skills that it estimates will bring all the skills’ mastery’s closest to 1.

4.7.1 Reward Function for Teaching

The reward function is replaced with Equation 4.15. It rewards increases in the belief

of the skills. Therefore, it rewards the user having higher mastery over the skills. At

the start of the interaction the skill belief vector is set to low probability of mastery

(0.05) for all the skills.

R(b, b′) =
∑
i

[(b′[i]− b[i])] if(b′[i] > b[i]) (4.15)

4.7.2 Belief Update

The belief update still follows Equation 4.8, however it includes the learning update

from BKT [267]. Each time the participant practices a skill, they have a chance of

learning it represented by P (Li).

P (b′i) = P (bi|oi) + (1− P (bi|oi)) · P (Li) (4.16)

Rounds

100 rounds of simulation were run during which 40 different tasks were chosen using

the different policies. During each round the following were generated:

Skills - 20 different skills were generated. The probability of guessing and slipping
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Optimal
BKT-POMDP
Hand-Crafted
Random

Figure 4.4: Experiment 3 - The graph shows the number of mastered skills. The BKT-
POMDP and the optimal policies selected tasks that brought the user skill closer to mastery
of all skills quicker than the hand-crafted and the random policies.

was randomly chosen from a uniform distribution between 0 and 0.3. Additionally the

probability of learning (P (Li)) was generated from a uniform distribution between

0.15 and 0.3.

Tasks - 200 tasks were generated, each with between one and five skills.

User - In each round a user was generated. All skills for the user were set as not

mastered. After each task, each non-mastered skill in the chosen task was updated

by having a P (Li) chance of the user having learned it.

4.7.3 Results

We tested which of the policies selected tasks that increased the knowledge of the

participants the fastest. We did this by measure the number of skills with mastery

using Equation 4.14. The results are shown in Figure 4.4, which shows that the

optimal condition selected the best tasks to teach closely followed by BKT-POMDP.

The hand-crafted condition performed third, and random performed the worst.

During three different points (after 10 tasks, after 20 tasks, and after 30 tasks) we

66



compare whether the conditions were statistically significant from each other using an

ANOVA with Bonferroni Corrections. All six pairwise comparisons were statistically

significant from each other, except the BKT-POMDP and the hand-crafted policies

after 10 rounds. This indicates that the optimal policy performed the best, followed

by BKT-POMDP, hand-crafted and random.

4.8 Discussion

In the first set of experiments, BKT-POMDP and the optimal condition converged

on the user’s true state after 40 tasks. random and hand-crafted were approaching

convergence and would do so with more assigned tasks. This means that the policies

were able to correctly learn a model of the user’s skills. However, BKT-POMDP did

so much faster than the other algorithms, and almost performed as well as the optimal

policy. As the optimal policy is not possible to use in real scenarios (as it requires a

perfect model of the user), BKT-POMDP is a good policy to model a user’s skills.

In the circuit experiment, BKT-POMDP and the optimal policy also outperformed

the other baselines. This experiment shows that BKT-POMDP translates well to

real world applications. Unfortunately none of the models completely converged in

12 rounds, due to the low number of rounds and the high guess rate for some of the

skills.

In the third experiment, we show that BKT-POMDP can easily be modified to

allow for different goals. We show that modifying the reward function accounts for

user learning. Instead of maximizing student skill, it now maximizes the expected

amount of learning the user will have over all skills. In the experiments, BKT-POMDP

outperforms the other baselines and performs on par with the optimal model.
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4.9 Summary

An intelligent tutoring system selects tasks to give to a student to test and teach

them. If a system selects tasks to effectively create an accurate model of a user’s

skills, it can focus teaching on skills the user has not yet mastered. In this chapter,

we presented BKT-POMDP, a system that can select which task to give to a user in

order to maximize the system’s information gain about the user’s skills. It advances

prior algorithms in that it can choose tasks where there are multiple skills presented.

We show that BKT-POMDP can select tasks such that it creates a model more quickly

and accurately than baselines. In an electronic circuit building task, we demonstrate

that BKT-POMDP can choose tasks with actual participants during a user study.

BKT-POMDP is a flexible system that can be used for several different applica-

tions, and where individual parts can be changed to suit each application. In ITS, the

main goal is to teach skills the student does not have mastery over. BKT-POMDP

can quickly and accurately create a model of a student’s capabilities, so that the

ITS can focus on teaching the non-mastered skills. Modifying the reward function

allowed BKT-POMDP to not only create a model of user skills but also to account

for learning. It selected the tasks that would teach the user the most, and bring the

user closer to having full mastery of all skills. Therefore, it can be used in intelligent

tutoring systems to select which task to teach when there are multiple skills present.

BKT-POMDP could also be used beyond tutoring applications, such as in man-

ufacturing settings. The system could quickly model which skills an employee has

and assign tasks within the employee’s expertise while also avoiding tasks that they

would not be able to do. Additionally, when multiple people are present, the system

can assign tasks to each person according to their expertise across all tasks or create

teams whose members have an equal balance of skills. In manufacturing settings,

some skills are more important than others, given that they appear in many tasks.

The user model over these skills could be prioritized by giving different weights to
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each skill in the reward function instead of having equal value. Therefore, prioritizing

the user learning the higher weight skills first.

In this and the previous chapter, we have explored how to create user skill models

for complex tasks and, given the estimated user skills, how to select which task to

teach optimally. In the following two chapters of the thesis (Chapter 5 and 6), we

shift directions and investigate the ways a robot should teach. We study different

aspects of tutoring, such as how a robot can positively influence students and what

roles a robot should take on when teaching.
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Chapter 5

Social Robot Characteristics:

Comparing Robot Roles for Adult

Tutoring∗

Prior work has shown that not only the content influences how much a student learns

but also the traits of the agent who is delivering the material. For example, robot

embodiment plays a role in the student’s learning rate, with research showing that

people learn more from a physically co-located robot than the same robot on a screen

[158]. Another study shows that participants whose gender differ from the robot had

a higher willingness to learn from it [206].

In this chapter we focus on a particular aspect of how a robot should teach a

user: what role it should take. Research in human-to-human tutoring and child-

robot tutoring show the advantages of an agent interacting as a peer when teaching

[22, 194, 50, 268]. Therefore, we explore how a robot should engage with users

while tutoring: as a peer or a tutor. We created a controlled study where adults
∗Parts of this chapter were originally published as: Nicole Salomons, Kaitlynn Sierra, Adérónké

Adéjàre, Brian Scassellati. (2022). “We Make a Great Team!”: Adults with Low Prior Domain
Knowledge Learn more from a Peer Robot than a Tutor Robot. In International Conference of
Human-Robot Interaction [220].
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interacted with a robot that was either introduced to them as a peer or introduced as

a traditional instructor, while they learned electronic circuit skills. The help actions of

the robot were consistent across conditions; however, the robots would slightly differ

in how they addressed participants. In the peer condition, the robot would refer to

the participant as a teammate and use "we/us" utterances. Whereas in the tutor

condition, it would refer to the participant as a student and use "you" utterances.

Our results show that participants in both conditions learned during the interac-

tion with the robot. Further data analysis revealed that participants with low prior

domain knowledge learned significantly more from the peer robot than from the tutor

robot. Furthermore, participants in the peer condition saw the robot as friendlier,

more respectful, and more intelligent. This study shows the benefits of introducing

the robot as a peer instead of a traditional teacher when tutoring adults.

5.1 Introduction

In peer-to-peer tutoring, children or adults teach each other rather than being taught

by a teacher [185]. There are benefits of peer instruction for both the student who

is teaching and the student who is learning. Throughout this chapter, we will call

a student instructing another student as the peer-teacher or peer, the student who

is being instructed as the learner, and a traditional teacher as tutor. When a peer-

teacher prepares content and teaches a colleague, they demonstrate higher learning

gains than when they only learn the content for themselves [22]. Likewise, the learner

who is taught by a peer frequently learned more than the one who is taught by a

teacher, especially if they had higher prior domain knowledge [149]. Furthermore,

peer instruction lowers failing rates [194], creates an increased sense of community

[238], and increases student self-esteem [85].

Most work in robot tutoring has focused on having the robot take on the role
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Figure 5.1: Participants built electronic circuits with either a peer robot or a tutor robot.
The robot would provide personalized help based on the user’s skills. In the figure, we see
the robot suggesting the user add a resistor to the board.

of a traditional tutor [31]. While a few studies investigated the robot’s role as a

peer, these focused on child-robot interactions [50, 268, 188]. Similar to peer tutoring

among adults, children learned more [26], became more engaged [268], and developed

a stronger growth mindset [188], when interacting with a peer robot compared to a

tutor robot.

While children appear to benefit from peer-based child-robot interactions, it is

unclear whether the same results will hold for adults. Adults may have higher expec-

tations for a peer that a robot could struggle to meet. Adults may also have more

practical experience working with peers and as such might not easily accept a robot

peer. Lastly, working with adults will also require working in a more challenging

educational domain, with harder and more complex problems to be taught, which

may not easily transfer to a robot. To study how peer robots are viewed by adults,

we designed a between-participant study where participants interacted with either a

peer robot or a tutor robot, during an electronic circuit building task.
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Participants built ten electronic circuits with an autonomous robot, as seen in

Figure 5.1. The system modeled the user’s skills throughout each task using Con-

tinuous Bayesian Knowledge Tracing [221]. The robot then provided personalized

help to the user depending on their skill state and the skills needed for each task.

The robot provided nearly identical advice in both conditions. However, in the peer

condition, the advice was delivered using pronouns that indicated that the robot was

an equal and invested colleague (“we/us”), and in the other indicated that the robot

was a more knowledgeable authority figure (“you”). Participants completed a pre-test

and a post-test to detect skills learned. They also completed questionnaires about

their perceptions of the robot.

While participants in both conditions demonstrated significantly more skills in the

post-test than in the pre-test, there were no significant increases of skills between the

conditions. However, when analyzing only participants with low initial pre-test scores,

they learned significantly more in the peer condition than in the tutor condition.

Furthermore, participants viewed the peer robot as more intelligent, more social, and

friendlier than the tutor robot, independent of prior skill knowledge. Additionally,

participants who interacted with the peer robot felt more respected by it than the

tutor robot.

5.2 Related Work

In this section, we introduce background on peer-to-peer tutoring and show some

advantages of this learning strategy. We then review literature on how the peer-to-

peer tutoring strategy has been extended to human-robot tutoring.
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5.2.1 Peer-to-Peer Tutoring

Peer-to-peer learning is defined as “an educational practice in which students interact

with other students to attain educational goals” [185]. It is typically used as a supple-

ment to the classroom learning process between a teacher and students. Peer-to-peer

learning is a favorable educational practice because it prepares students for learning

from others in workplaces and communities [185].

There are numerous benefits to peer-to-peer learning. Peer-teachers who studied

in preparation to teach something and then taught the information generally scored

higher on a retention test than students who prepared only for themselves [22, 90, 14].

In reciprocal peer tutoring (RPT), students are paired together to review content and

to practice skills [85]. This strategy resulted in greater improvements in cognitive

gains, lower levels of subjective distress, and higher course satisfaction [85]. In addi-

tion to increasing student achievement, peer-to-peer learning has many social benefits,

including positive race relations in desegregated schools, mutual concern among stu-

dents, and student self-esteem [239]. Interventions were most effective with younger,

urban, low-income, and minority students [213].

Peer-to-peer learning is also effective for adult learning. Lasry et al. showed that

peer-taught university students had higher learning gains than traditionally taught

students [149]. Additionally, they show a significant increase in learning gains for

students with high background knowledge but not for students with low background

knowledge. Another potential benefit for peer tutoring is that adults learn better in

an informal environment and need to be respected when learning new things [58].

Awan [18] commends the use of peer-to-peer learning in radiology residencies because

it promotes active and relevant learning. This practice also prepares future physicians

for explaining medical topics to their patients [39].
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5.2.2 Robotic Peer-to-Peer Tutoring

Social robots have been found to be effective tutors via individualized tutoring inter-

actions [203, 199, 232]. Tutoring robots can take on several different roles, including

a learner, a peer, or a teacher [268, 50, 49, 5]. However, approximately 86% of the

studies conducted with robots to facilitate human learning consist of the robot taking

on the role of tutor [31].

Although the use of robots as peers represents a minority of the literature, there

has been some work analyzing peer tutoring robots. A peer-teacher social robot has

been shown to positively benefit a child’s language learning [139]. A peer robot can

also enhance a child’s own creative thinking [8]. Zaga et al. showed how children

demonstrated increased engagement when playing with a peer robot to complete a

Tangram puzzle compared to when playing with a tutor robot [268]. In a long-

term study, a peer-teacher humanoid social robot with the ability to personalize its

interactions with children in a classroom increased the children’s learning of novel

topics [26]. Park et al. [188] determined that children who played with a social

robotic peer that exhibited a growth mindset (a belief that success arises from effort

and perseverance) developed a stronger growth mindset of their own. Chen et al.

[49] noted that the children who interacted with their adaptive peer-teacher robot

not only had more expressive faces than the children who interacted with their tutor

robot, but they also learned more and retained advanced vocabulary.

While robots can be used as a peer-teacher during child learning scenarios, they

can also play the role of a tutee or naive peer. In this case, a person takes the role

of a peer-teacher and educates their robotic peer, resulting in the enhancement of

the person’s learning through the reinforcement of concepts. Japanese children at an

English language school improved their spontaneous learning of new English vocab-

ulary words after teaching them to a robot [247]. The forms of teaching naturally

implemented by the children involved direct teaching, gesturing, and verbal teaching.
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Section Part Peer RobotTutor Robot

Experimenter: “Hello, This is Urie, the robot. 
Urie will be teaching you about how to build 
some electronic circuits today.” 

Introduction to 
Robot

Experimenter: “Hello, This is Urie, the robot. You 
and Urie will be collaborating in building some 
eletronic circuits today.”

“When should you add a speaker to the circuit?”Reinforcement 
Question

“When should we add a speaker to the circuit?”

“Can you explain to me what a button does? Do 
you think you need it for the current task?”

Wrong Piece “Can you explain to me what a button does? Do 
you think we need it for the current task?”

“Here, try to add the resistor to the circuit.”Piece 
Recommendation

“Here, let’s try to add the resistor to the circuit.”

“To power the music circuit you need to make sure 
that its positive port is connected to the positive 
port of the battery.”

Help Utterance “To power the music circuit we need to make sure 
that its positive port is connected to the positive 
port of the battery.”
“Awesome, we make a good team.”Task Finished 

Correctly
“Awesome, you are a good student.”

Figure 5.2: We present some of the different utterances between conditions. The robot
was introduced differently to the participant depending on the condition. The remaining
utterances were very similar and often only differed in the pronoun used. Some examples of
help actions included asking questions to reinforce a correctly applied skill, pointing out a
wrong piece on the board, recommending a piece, and giving a description of an incorrectly
applied skill.

Robots have been used in the role of the tutee where the children taught the robot

handwriting [116, 118, 47]. The children demonstrated to an autonomous robotic

agent how to write certain letters or words, helping develop their own writing ability.

Although these studies focused on interactions with children, a peer robot can

nevertheless provide unique learning benefits separate from those of a tutor robot.

5.3 Methodology

Higher learning gains and positive traits have been seen when interacting with a

peer-teacher both in human tutoring [22, 149] and in robot-child tutoring [50, 268,

188]. Therefore, we predict that participants interacting with a peer robot will learn

more new skills than participants interacting with a tutor robot. Furthermore, an

adult peer-teacher was especially beneficial when the adult learner had higher prior

knowledge in the domain [149]. Therefore, we also predict that adults with higher
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knowledge will benefit more from a peer robot.

Research has shown that adults learn better in an informal environment and high-

light the importance of feeling respected [58]. We hypothesize that adults interacting

with the peer robot will feel treated more as an equal and therefore feel more respected

than those interacting with a tutor robot.

Prior work has shown that students who interacted with a peer robot were more

engaged [268] and were able to create rapport with it [139]. Therefore, we hypothesize

that participants interacting with a peer robot will be more engaged and view the

robot more positively than participants with the tutor robot. Lastly, people often

have very high expectations out of robots [11, 147, 205]. When the participant is told

the robot is a tutor, those expectations might be higher, as the robot is presented as

an expert at the task. Therefore, we hypothesize that a peer robot might be seen as

more intelligent than a tutor robot as there will be lower expectations put on it.

We have five main hypotheses for this study:

Hypothesis 1a: Adults in both conditions will show significant improvement in

electronic circuit skills from pre-test to post-test.

Hypothesis 1b: Adults will learn more from a peer robot than a tutor robot.

Hypothesis 1c: Adults with high initial knowledge will especially benefit from a

peer robot, compared to adults with high initial knowledge interacting with the tutor

robot.

Hypothesis 2: Adults will view a peer robot more positively than a tutor robot.

Hypothesis 3: Adults will be more engaged with a peer robot than a tutor robot.

Hypothesis 4: Adults will feel more respected by a peer robot than a tutor robot.

Hypothesis 5: Adults will see a peer robot as more intelligent than a tutor robot.

To test our hypotheses, we split participants into two conditions: one where they

interact with the robot as a tutor, and one where they interact with the robot as

a peer. Participants built electronic circuits using a modular circuit-building toy
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called Snap Circuits [78], initially presented in Chapter 3. We chose circuit design

because it is a task that is challenging for most adults; there are varying levels of

initial knowledge, with some participants having high initial knowledge and others

low initial knowledge on circuits; and a robot can model the task using a sensing

system.

5.3.1 Conditions

Participants were split randomly into two conditions:

• Tutor Robot - The robot acted as a traditional tutor and provided instructions

to the participant. The robot was introduced as a teacher to the participant,

and its utterances towards the participant used second person singular pronouns

like “you”.

• Peer Robot - The robot acted like a peer who is working together with the

participant on the circuit. The robot was introduced as a collaborator, and its

utterances used first-person plural pronouns (“we/us”).

The difference between conditions was minimal, especially considering the robot

had few anthropomorphic features. In both conditions, the robot’s utterances were

very similar, mostly changing pronouns from “we” in the peer condition, and “you” in

the tutor condition. The robot always presented correct help suggestions independent

of condition. Some examples of utterances can be seen in Figure 5.2.

5.3.2 Robot System

Participants interacted with the robot on a large table. Figure 5.3 shows an illustra-

tion of the experimental setup. Participants were given each task via a tablet, and

on the tablet, they could indicate that they had finished the current task and start
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the next task. The tablet provided no help with the task. Participants used wires

and electronic circuit pieces to build their circuits on a board in the middle of the

table. An overhead Kinect Azure camera detected what pieces were on the board and

how they were connected. A green hand strip at the bottom of the board was used

to detect when the participants’ hands were on top of the board, and therefore the

camera’s observations would be inaccurate. A second camera faced the participant

to record the interaction.

A UR5e robot from Universal Robots was used in this study. It is a lightweight

industrial robotic arm with 6-DOF. It could pick up the snap circuit pieces with its

gripper and hand them to the participant. The robot was able to communicate to

the participant via a text-to-speech voice. Additionally, the robot displayed idling

behavior with random movements every few seconds, occasionally looking at the

circuit board, pieces, or the participant, by pointing the gripper at it. The robot

acted completely autonomously throughout the study.

5.3.3 Snap Circuits Tasks and Skills

We created 32 different electronic circuit tasks of varying difficulty, of which par-

ticipants completed ten. There were more tasks than the number the participant

completed, so the robot could adjust to each person’s skill level. Section 5.3.6 de-

scribes how tasks were chosen for each participant. For each task, the participant was

given an empty circuit board with only a battery on it, many wires of different sizes,

and seven pieces: an LED, a switch, a button, a motor, a resistor, a music circuit,

and a speaker. Each piece could be snapped together on the board to form circuits.

An example of a completed circuit can be seen in Figure 5.4.

The participant was instructed what task to complete next via a tablet. They

were given three minutes for each task unless they correctly completed it before the

time expired. Some examples of tasks are: "Build a circuit that plays music when a
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UR5e Robot

Circuit Pieces

Wires

Tablet with 
Instructions

Overhead 
Kinect 
Camera

Build a circuit th
at has a 

constant lig
ht on

START

FINISHED

Camera

Basic Piece
Instructions

Circuit 
Building 

Area

Figure 5.3: The experimental setup. Participants were given tasks via a tablet application.
In the middle of the table, they built circuits using wires and circuit pieces. They were
provided basic instructions with the piece names. An overhead camera focused on the
circuit and modeled which skills were correctly applied. The camera also detected whether
a user was working on the circuit by seeing whether a green bar was occluded below the
circuit building area. A UR5e robot provided them with help every 30 seconds based on
what was needed for the current task. An additional camera collected video and audio data
from the participant.

switch is turned on" and "Build a circuit that spins a motor when a switch is turned

on or a button is pressed".

Each task required the participant to demonstrate different skills. Some examples

of these skills are: adding a speaker when it is needed, creating a closed circuit,

knowing the directionality of an LED, powering the music circuit, and creating AND

and OR gates. A total of 17 skills were tested. Section 5.3.5 explains how we model

participants’ skills throughout the tasks.
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Figure 5.4: An example of a completed circuit. This circuit plays music and blinks a light
in the rhythm of the music when the switch is turned on.

5.3.4 Experimental Procedure

Each session took approximately 60 minutes. The procedure of the experiment con-

sisted of the following:

1. The participant completed the consent form and a demographic questionnaire.

2. The participant completed six pre-test electronic circuit tasks and questions.

These are detailed in Section 5.3.8.

3. The experimenter introduced the robot. Depending on the condition, the robot

was introduced as either a peer/collaborator or as a teacher.

4. The participant built ten electronic circuits alongside the robot. The robot

provided personalized help actions.

5. The participant answered post-study questionnaires.

6. The participant did six post-test electronic circuit tasks.
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7. At the end of the interaction, participants were debriefed and paid $10 for their

time.

5.3.5 Skill Estimation

A computer vision system with an overhead camera observed the user as they placed

pieces on the board. It tracked which pieces were on the board, and which pieces were

connected to each other. User skills were modeled using an extension of Bayesian

Knowledge Tracing called Continuous Bayesian Knowledge Tracing (C-BKT) [221].

C-BKT was used as it allows skill modeling of complex tasks where the observations

are noisy, and skills vary in the amount of time needed to demonstrate them. The

system individually modeled each of the 17 skills by creating an estimate of whether

the user had mastered each skill. We represented this estimate as a vector b, where

each skill was initialized to 0.5, representing complete uncertainty of the user’s skill

state. Each second, b was updated using observations from the computer vision

system detailing which skills were applied correctly and which ones were not.

5.3.6 Task Selection

Prior work shows that selecting tasks with appropriate difficulty leads to higher learn-

ing gains [65, 219]. Therefore tasks were chosen for each participant according to their

demonstrated capabilities. To rate the difficulty of each task, each of the 17 skills was

given a difficulty rating from a scale of 1.0 to 5.0, with 5.0 being the most difficult.

These were determined by consulting an electrical engineering major. The ratings

were stored in a difficulty vector d. For example, the skill for whether a participant

knew when to use an LED was given a difficulty rating of 1, while the skill for whether

the participant knew how to create an OR gate was given a 4.5. The current belief

estimate b was used to select the next task.

In order to determine which task to give next to a participant, all remaining tasks
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are assigned a difficulty rating R based on the skills Sk that a task t incorporated.

The rating was calculated based on the difficulty of each skill and the participant’s

current belief value b. Participants with higher belief values would likely find the task

easier. Therefore, we used 1− b(i) to measure how difficult the task would be for the

participant. As we are summing over the difficulty of each skill for a task, the more

skills a task tests, the more difficult it will likely be. The difficulty rating R for a

specific task is calculated as follows:

Rt =
∑
i∈Sk

(1− b(i)) ∗ d(i) (5.1)

There is also a fixed ideal rating value V that was set equal to five after initial trial

and error. The V is intended to help ensure that an appropriate task is selected next

for the respective participant so that the task is not too easy nor too overwhelming

[174]. The task whose r value is closest to V is selected as the next task and removed

from the possible remaining tasks for the next iteration.

NextTask = min
t∈T

(|Rt − V |) (5.2)

In the case where several tasks are equally close to V , one of these potential

tasks is selected at random. The process is repeated until the interaction with the

participant ends.

5.3.7 Help Action Selection

Personalizing help in tutoring systems leads to higher learning gains [203, 56]. There-

fore the robot provides assistance to the participant according to the skills they had

demonstrated during the current task. The robot provided a help action every 30

seconds. There were six different types of help actions, of which the system selected

one at random. The different kinds of help actions were:
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• Reinforcement Question - The robot asked a question about a skill the

participant had demonstrated.

• Reinforcement Utterance - The robot confirms that a skill the participant

had demonstrated is correct.

• Wrong Piece Point - The robot pointed to a piece on the board and said it

was not needed.

• Wrong Piece Utterance - The robot said that one of the pieces on the board

was not needed.

• Help Movement - The robot gave help to the participant by explaining some-

thing about a skill they had not demonstrated. While explaining it, the robot

pointed to something on the board or handed the participant a piece.

• Help Utterance - The robot gave help to the participant by explaining a skill

the participant had not demonstrated. The robot did not move in this case.

The robot did not select a reinforcement help action if the participant did not

have any correct skills displayed during the task. Likewise, it would also remove

wrong piece help actions from the randomization options if all the current pieces

on the board were needed. Additionally, when the participant pressed the finished

button on the tablet, but the task was incorrect or incomplete, the robot randomly

selected either a help movement or a help utterance for one of the skills that were

demonstrated incorrectly. Examples of different types of robot help actions can be

seen in Figure 5.2.

5.3.8 Metrics

We had three different types of metrics: test metrics, behavioral metrics, and survey

metrics.

84



(a) Pre-Test (b) Post-Test

Figure 5.5: The pre-test and the post-test were identical except that boards were rotated
180 degrees. In this case participants were asked to complete the circuit such that it would
play music when a button was pressed.

Test Metrics

• Pre-test and Post-test - To test how much people have learned, we conducted

a pre-test and a post-test [73]. Our pre-test and post-test were composed of six

very similar questions. The first two questions on both tests were the same.

They asked participants to build from scratch a circuit that shines a constant

light and a circuit that plays music, respectively. Participants were given five

minutes to do both tasks. The third and fourth tasks on both tests required

participants to add pieces to the board to complete the circuits. These tasks

were identical between pre-test and post-test, other than the circuit boards

being rotated 180 degrees to the participant in the post-test (the two versions

of the third task are shown in Figure 5.5. For the fifth and sixth tasks, we

presented pictures of pre-built circuits and asked participants to write down

what the circuits did. These were similar between pre-test and post-test, but

the pieces were arranged differently on the board. Participants were given five

minutes to complete tasks three through six.

We classify participants into either having high prior circuit knowledge or low
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prior circuit knowledge based on their pre-test. If participants got less than half

of the skills correctly on the pre-test, they were considered to have low prior

circuit knowledge. Otherwise, they were considered to have high prior circuit

knowledge.

Behavioral Metrics

• Speaking - We measured how much participants talked to the robot. Partici-

pants were classified as engaging in conversation with the robot if they said at

least ten sentences to it, and as not engaging in conversation if they talked to

it less.

Survey Metrics

• Demographics - Before the interaction, we administered a demographics ques-

tionnaire that asked participants questions about their gender, age, occupation

or major (if student), and country of origin. We also asked how often they

used a computer, their familiarity with robots, and their level of expertise on

electrical circuits.

• Post Interaction Questionnaire - We administered the RoSAS questionnaire

about their feelings towards robots [42]. The RoSAS measured participants’

perceptions of the robot’s warmth, competence, and discomfort. We also asked

the participant to rate the following on a 1-7 Likert Scale with 1 being “Not

Applicable” and 7 being “Most Applicable”: The robot acted like my colleague;

The robot treated me like an equal; I felt like I was being judged by the robot;

I felt like the robot respected my capabilities; The robot was friendly; I felt

engaged while interacting with the robot; I felt like the robot was boring; I felt

like the robot was smart; I felt like the robot was good at electronic circuits; The

robot was better than me at electronic circuits. Finally, we had an open-ended
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question for participants: Is there anything you wished the robot would have

done differently?

5.3.9 Participants

There were 37 participants who completed the experiment. Interactions with the

robot lasted on average 37 min and 37s (SD = 5 min and 6s). The university’s

Institutional Review Board approved the study, and participants signed a consent

form agreeing to participate. There were nine male and eight female participants

in the peer condition, and their average age was 28.00 (SD = 12.90). There were

nine male, ten female, and one non-binary participants in the tutor condition, and

their average age was 25.00 (SD = 10.60). Participants in the peer condition rated

themselves as an average of 2.47 (SD = 1.23) on a 1-5 scale on their prior electronic

circuit knowledge, whereas participants in the tutor condition rated themselves an

average of 2.40 (SD = 1.60). There were no significant differences in gender, age, or

prior circuit expertise between conditions.

5.4 Results

5.4.1 Manipulation Check

First, we check whether the peer robot and the tutor robot were perceived differently.

We asked each participant on a scale of 1-7 whether they perceived the robot as a

peer and whether they felt like they were treated as an equal. Participants in the peer

robot condition perceived it significantly more as a peer (M = 4.59, SD = 2.18), than

participants who interacted with the tutor robot (M = 2.65, SD = 1.39), t(37) =

3.27, p = 0.002. And participants in the peer condition (M = 5.00, SD = 1.83)

perceived the robot as treating them as an equal significantly more than participants

in the tutor condition (M = 3.58, SD = 2.09), t(35) = 4.50, p = .041. Therefore, we
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Peer Robot Tutor Robot

Figure 5.6: (a) Participants significantly improved their circuit knowledge skills from pre-
test to post-test in both conditions. (b) There were no significant differences in number of
skills learned between conditions.

believe our manipulation check was successful.

5.4.2 Test Results

We compared the skill increase in each condition from pre-test to post-test on the

17 skills. A skill is attributed as known when the participant has correctly applied

it at least half of the time. On average, participants in the peer robot condition

scored 7.29(SD = 3.16) on the pre-test and 11.82(SD = 2.74) on the post-test.

Participants in the tutor condition scored on average 8.55(SD = 2.93) on the pre-test

and 11.70(SD = 3.31) on the post-test. An ANOVA comparing moment (pre-test

and post-test) and condition found significant differences F (3, 74) = 10.01, p < 0.001.

A Tukey HSD test revealed that both the peer condition (p = 0.001) and the tutor

condition (p = 0.009) significantly improved from pre-test to post-test, as seen in

Figure 5.6. There were no significant differences between conditions for the pre-test

(p = 0.587) or the post-test (p = 0.900).
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Peer Robot Tutor RobotPeer Robot

Pre-Test Post-TestPre-Test Post-Test

Low Initial Skill
High Initial Skill

Low Initial Skill
High Initial Skill

Figure 5.7: The pre-test and post-test scores for the peer and tutor conditions. There were
no significant differences in skills gained between conditions. However, participants with low
skill knowledge improved their skills significantly more with the peer robot than the tutor
robot.

Participants in the peer condition learned on average 4.53 (SD = 3.22) new skills,

whereas participants in the tutor condition learned on average 3.15 (SD = 2.37)

new skills. These differences were not significant t(37) = 1.46, p = 0.154. Next,

we compare participants with prior low electronic circuit knowledge and participants

with high prior electronic circuit knowledge. We compared the number of learned

skills between condition and prior knowledge using an ANOVA and found significant

differences F (3, 37) = 5.47, p = 0.004. A Tukey HSD test revealed that participants

with low prior knowledge learned significantly more in the peer condition than the

tutor condition (p=0.023), but no significant differences were found for high prior

knowledge participants (p=0.900). These results can be seen in Figure 5.7.
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Peer Robot
Tutor Robot

Peer Robot
Tutor Robot

(a) (b)

Figure 5.8: Questionnaire results. (a) The peer robot was perceived as significantly more
social and intelligent than the tutor robot. (b) The peer robot was perceived as significantly
smarter, more respectful, friendly than the tutor robot, in addition to participants feeling
more like they were treated as an equal.

5.4.3 Behavioral Results

In the peer condition, there were six participants who engaged in conversation with the

robot, and nine participants who did not. There were two participants whose audio

data was corrupted. In the tutor condition there were eight participants who engaged

in conversation with the robot and twelve who did not. Using a Chi-Squared test,

these results were not statistically significantly different from each other X2(1, N =

35) = 0, p = 1.000.

5.4.4 Questionnaire Results

On the RoSAS questionnaire, participants rated the robot as more warm in the peer

condition (M = 3.74, SD = 1.37) compared to the tutor condition (M = 2.90, SD =

0.96). Participants also rated the robot as more competent in the peer condition

(M = 4.59, SD = 1.27) than the tutor condition (M = 3.76, SD = 1.12). Lastly,

participants rated the robot similarly in regards to discomfort between the peer

(M = 2.11, SD = 1.03) and tutor conditions (M = 2.20, SD = 1.19). Their ratings

were significantly different for warmth t(37) = 2.18, p = 0.036, and for competence

t(37) = 2.09, p = 0.044, but not for discomfort t(37) = −0.25, p = 0.804. The RoSAS
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questionnaire results are seen in Figure 5.8(a).

On the post-experiment questionnaire, participants in the peer condition (M =

5.35, SD = 1.58) rated the robot significantly smarter than the tutor condition (M =

4.25, SD = 1.68), t(37) = 2.04, p = 0.049. Participants rated the robot as being

better than them at electronic circuits in the peer condition (M = 6.06, SD = 1.03)

than the tutor conditions (M = 4.95, SD = 2.06), but these differences were not quite

significant t(37) = 2.01, p = 0.052. Lastly, participants rated the robot a 5.42(SD =

1.42) on being good at circuits in the peer condition, and a 4.60(SD = 1.88) in the

tutor condition. These differences were not significant t(37) = 1.46, p = 0.152.

Participants felt more respected by the peer robot (M = 5.53, SD = 1.74) than

the tutor robot (M = 3.95, SD = 1.93), and this difference was significant t(37) =

2.59, p = 0.014. Participants in the peer condition rated the robot a 3.06 (SD = 1.98)

for feeling judged and a 3.60 (SD=2.52) in the tutor condition, t(37) = −0.72, p =

0.479. Lastly, participants in the peer condition (M = 5.00, SD = 1.83) perceived

the robot as treating them as an equal significantly more than participants in the

tutor condition (M = 3.58, SD = 2.09), t(35) = 4.50, p = .041.

Participants viewed the robot as more friendly in the peer condition (M = 5.59, SD =

1.50) than the tutor condition (M = 4.15, SD = 1.84), t(37) = 2.57, p = 0.015. Par-

ticipants did not think the robot was more boring in one condition than the other

(peer: M = 2.24, SD = 1.56; tutor: M = 2.50, SD = 1.96), t(37) = −0.45, p = 0.657,

nor did they feel more engaged in one condition than another (peer: M = 5.29,

SD = 1.83; tutor: M = 4.80, SD = 1.99; t(37) = 0.77, p = 0.447). These results can

be seen in Figure 5.8(b).
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5.5 Discussion

This work is the first to show multiple benefits in peer tutoring while only manipu-

lating minor aspects of the robot (small differences in its utterances and of how the

experimenter presented the robot). Most research in peer robot tutoring was con-

ducted with children and was either not focused on peer vs. tutor [147, 8] or had

many differences between conditions [50, 268]. Additionally, we believe this is the first

HRI work comparing peers and tutors that shows significant differences in learning

using a pre-test and post-test rather than other measures (such as engagement and

facial expressions).

5.5.1 Hypotheses

Participants in both the peer condition and the tutor condition significantly improved

their electronic circuit skills from pre-test to post-test. This shows that the robot

in both conditions successfully taught the adults. Therefore Hypothesis 1a is true:

Adults in both conditions showed significant improvement in electronic circuit skills

from pre-test to post-test. Participants did not learn more skills in the peer condi-

tion compared to the tutor condition. Therefore we cannot confirm Hypothesis 1b;

Adults did not learn more from a peer robot than a tutor robot. Participants with

high skill knowledge did not have significantly different skill increase between condi-

tions. Therefore in regards to Hypothesis 1c, Adults with high initial knowledge did

not especially benefit from a peer robot, compared to adults with high initial knowl-

edge interacting with the tutor robot. On the contrary, participants with low circuit

knowledge learned significantly more with the peer robot. These results differ from

those seen in human adult peer-to-peer tutoring. Therefore, the robot taking on the

role of a peer should be especially considered in scenarios where the person likely has

low prior knowledge in the domain.
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Participants did rate the peer robot more positively in several dimensions. On

the post-experiment questionnaire, participants rated the peer robot as significantly

more social and as significantly friendlier than the tutor robot. Therefore we believe

that Hypothesis 2 is true: Adults viewed a peer robot more positively than a tutor

robot. It is important that people view the robot positively when interacting with it,

as they will likely be more engaged and learn from the robot in the long term.

In most human-robot interaction studies, engagement is assessed using gaze pat-

terns [207]. However, due to the COVID-19 pandemic, participants wore masks during

the interactions, which made computer vision systems that tracked participant faces

unreliable. Therefore we measured engagement using the amount participants talked

to the robot and their self-assessed engagement on the questionnaire. Participants did

not significantly view the robot as being more boring in one condition than another.

Neither did they report being more engaged. There were also no significant differences

between engaging in conversation with the robot between conditions. Therefore, we

do not support Hypothesis 3; Adults were not more engaged with a peer robot than a

tutor robot.

Participants reported feeling significantly more respected by the peer robot com-

pared to the tutor robot. Additionally, participants felt that they were treated signif-

icantly more as an equal when interacting with the peer robot. Therefore, we confirm

Hypothesis 4: Adults felt more respected from a peer robot than a tutor robot. This is

important, as feeling respected is an essential factor in learning success [58].

Participants in the peer condition viewed the peer robot as significantly smarter

than participants in the tutor condition. Additionally, participants rated the peer

robot as significantly more competent than the tutor robot. Therefore we confirm

Hypothesis 5: Adults saw a peer robot as more intelligent than a tutor robot.
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5.5.2 Expectations of A Tutoring Robot

One possible reason the peer robot was rated as more intelligent than the tutor

robot was because participants had lower expectations of a peer than a tutor. A

tutor is presented as an expert, whereas there is more uncertainty involved in the

capabilities of a peer-teacher. An open-ended question asking participants whether

they wished the robot had done anything differently confirmed that many wished the

robot had additional capabilities. Participants wished the robot had given examples

of completed circuits, had the ability to answer participants’ questions, and had given

step-by-step instructions for the more complicated circuits.

Domains in adult tutoring are often more complex than those seen in children’s

tutoring, with many requiring computer vision systems to model the interactions.

Therefore giving personalized advice to adults is often not as straightforward as pro-

viding help during child-robot interactions. Presenting the robot as a peer could lower

expectations. As a consequence, people might be more willing to receive advice from

it than they would from a tutor robot whose expectations are not met.

5.5.3 In-group/Out-group effects

In the peer condition, the robot presents itself as being in-group with the participant

when using the pronouns “we/us”. Whereas in the tutor condition, the robot presents

itself as an authority figure by placing itself in the out-group when using the “you”

pronoun. People evaluate robots more positively when they are in-group than when

they are out-group [110]. This is one potential confound in our work, where part of

the results could be due to in-group/out-group membership.
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5.6 Summary

This chapter explored different roles a robot can take when teaching people about

electronic circuits. The robot would either take on the role of a peer or the role of a

tutor. Participants with low prior circuit knowledge learned significantly more with

the peer robot than with the tutor robot. This shows the benefits of peer robots,

especially in domains where the user is likely lower-skilled. Additionally, participants

who interacted with the peer robot viewed it as more friendly, more social, more

intelligent, and felt more respected than participants who interacted with the tutor

robot, independent of prior knowledge. These are all essential qualities for a robot to

have for enabling long-term user learning.

This is the first work that shows significant learning differences when comparing

a robot that acts like a peer versus when it acts like a traditional teacher. However,

according to a review on robot tutoring, 86% of studies still have a robot teaching as

a tutor [31]. Based on our findings, we recommend that future robot tutoring studies,

especially those targeting adults, consider using robots that interact as if they were

a peer.
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Chapter 6

Social Robot Characteristics:

Investigating the Ability of Robots to

Indirectly Influence People∗

For robots to be effective tutors, they need the ability to influence those around them.

People need to be willing to receive information from a robot and trust the robot to

be providing good teaching [71]. However, we still have a limited understanding of

how robots influence those around them, especially when they are not trying to be

explicitly persuasive. Therefore, this chapter investigates one dimension of persuasion

called conformity. Conformity is when a person changes their behaviors or answers

to match those of a group of agents. We investigate whether a group of robots cause

conformity and the reasons people conform to robots.

Psychology literature has shown that people conform their answers to match those

of human group members even when they believe the group’s answer to be wrong [15].
∗Parts of this chapter were originally published as: Nicole Salomons, Sarah Strohkorb Sebo,

Meiying Qin, Brian Scassellati. (2021). A Minority of One against a Majority of Robots: Robots
Cause Normative and Informational Conformity. In ACM Transactions on Human-Robot Interaction
(THRI)[222] and Nicole Salomons, Sarah S. Sebo, Michael van der Linden, Brian Scassellati. (2018).
Humans Conform to Robots: Disambiguating Trust, Truth and Conformity. In Proceedings of the
Thirteenth Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI) [223].
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We tested whether robots can similarly cause humans to conform to them during

a subjective task. We also analyze whether robots cause informational conformity

(believing the group to be correct), normative conformity (feeling peer pressure), or

both. We conducted an experiment where participants (N = 63) played a subjective

game with three robots. We measured humans’ conformity to robots by how many

times participants changed their preliminary answers to match the group of robots’

in their final response.

Our results show that participants change their answers to match the robots more

frequently when they are aware of the robots’ answers than when they are not. There-

fore we show that robots can cause humans to conform to them. In sequence, we in-

vestigate what types of conformity were at play. Participants in conditions that were

given more information about the robots’ answers conformed significantly more than

those given less, indicating that informational conformity is present. Participants in

conditions where they were aware they were a minority in their answers conformed

more than those unaware they were a minority. Additionally, they also reported feel-

ing more pressure to change their answers from the robots. The amount of pressure

they reported was correlated to the frequency they conformed, indicating normative

conformity. Therefore, we conclude that robots can cause both informational and

normative conformity in people.

6.1 Introduction

“Conformity refers to the act of changing one’s behavior to match the responses of

others” (page 606)[55]. One of the most foundational psychological studies measuring

conformity was performed by Asch in the 1950’s [15]. When individually asked to

answer a very simple perceptual question (identifying which line out of a set of lines

matched another line in length), participants responded correctly 99% of the time.
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However, when placed second to last in a group of six to eight confederates, if the

confederates unanimously verbalized an incorrect answer before them, the participant

would choose the same incorrect answer 37% of the time.

Shiomi et al. and Brandstetter et al. attempted to replicate the Asch paradigm

with robot confederates instead of humans [234, 37]. Still, neither study was able

to show conformity to a group of robots. Possible reasons suggested for the lack of

conformity included lack of a social relationship between the participant and robots,

participants not viewing the robots as authoritative entities, and the robots not being

human-like enough [234, 37].

These results are somewhat surprising, as research has shown that individual

robots can persuade people. Siegel et al. shows that participants voluntarily donated

money to a persuasive robot [237]. Another example of persuasive robots can be seen

in research conducted by Chidambaram et al., in which participants comply with a

robot’s suggestions when playing a game [51]. Additionally, in cases such as lexical

entrainment, the influence of robots can persist even after the interaction ends [36].

Therefore, it is unexpected that groups of robots fail to provoke conformity in their

interactions with people.

Hodges and Geyer [115] offer one possible alternative interpretation of Asch’s

conformity experiment, in which they propose that participants were constrained by

multiple influencing factors, including trust, truth, and conformity. They argue that

participants were placed in a challenging situation in which they had to trade off their

trust in the group members, their desire to give a truthful answer, and the pressure to

conform to the group. They support this argument by pointing out the time-varying

nature of participant responses, often interweaving correct (non-conforming) answers

with false (conforming) answers, and the overall low conformity rate (37%).

Robots cause less social pressure than humans, and their trustworthiness level is

unclear compared to a person. We propose to unravel the interplay between truth,
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conformity, and trust in human-robot groups by changing the task to one where there

is no apparent objective truth. This will allow us to investigate whether a group of

robots cause conformity when the answer is less clear.

Furthermore, as previous studies focused on tasks where the correct answer was

clear, this only allowed for one type of conformity: normative conformity. However,

psychology literature identifies two main types of conformity: normative conformity

and informational conformity [70].

Normative conformity is conformity due to feeling pressure to change one’s answer

or behavior to be equal to the rest of the group. One classic example of normative

conformity is shown in Asch’s 1950s line task [15]. In his studies, a participant was

shown a line and was asked which of three other lines was the same length. When

answering alone, only 1% of people chose the wrong answer, but when a group of

confederates all stated the wrong answer, the participants conformed to the group,

answering incorrectly in 37% of the trials. His experiments were a clear example of

conformity due to peer pressure: the answer was obvious, but participants still chose

the incorrect answer a significant number of times to not differ from the rest of the

group.

Informational conformity is conforming due to believing the other group members

know the correct answer or behavior. Informational conformity frequently occurs

when one decides which product to purchase. For example, Cohen and Golden show

that participants were influenced by supposed peer ratings when rating a coffee prod-

uct [57]. Participants rated the coffee product after tasting it and observing a board

with other people’s product ratings. Participants were more likely to score the product

higher when observing others rate it higher than when they had no information about

the others’ ratings. No significant differences were found in whether the participant

was told that their rating would be visible to future raters. Their results suggest that

participants were incorporating the ratings of others’ into their own ratings because
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they believed them to be accurate.

This chapter analyzes whether 1) participants conform to a group of robots when

the task is more subjects, and 2) whether they are being led by informational con-

formity, normative conformity, or both. Therefore we have two hypotheses for this

study:

Hypothesis 1: When provided with the opportunity to conform without providing

an obviously false answer, participants will conform with a group of robots at a rate

similar to the original Asch participants.

Hypothesis 2: Participants conform to the group of robots due to both a) infor-

mational conformity and b) normative conformity.

6.2 Related Work

This section presents a literature overview of previous work conducted on conformity

in both human groups and mixed human-robot groups.

6.2.1 Conformity in Human Groups

Conformity is when one changes their own behavior or choices to match the behavior

or choices of those surrounding them [55]. Asch’s line experiments show that partici-

pants will often change their answers to match a group of confederates answers even

when the group is clearly incorrect [15]. Asch conducted several further experiments

[15] in which he varied the number of trials, the number of human confederates, and

the amount of ambiguity of the lines, among other factors. He concluded that in all

the different variations, people consistently conformed to the answers of the group.

In one of the additional experiments, the participant would write their answer on

paper rather than stating the answer, after hearing the confederates verbalize their

answer. In this experiment, the conformity rate decreased to only 12.5%. The fact
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that conformity was much more frequent when giving public answers indicates that

participants were acting due to feeling peer pressure from the confederates to give the

same answer as the rest of the group.

Research has shown two main reasons people conform to a group: normative

conformity and informational conformity [70]. In normative conformity, the person

is conforming to the expectations of others, usually because they feel peer pressure

to do so. Social impact theory predicts that normative conformity increases due

to three factors: group size, immediacy, and social importance [150]. Other factors

that increase normative conformity are giving answers publicly rather than privately

[70] and having a unanimous group [15]. Asch’s study [15] was a clear example of

normative conformity: the participants did not think the majority was correct but

conformed to the group nonetheless when verbalizing their answer.

Informational conformity is behaving or answering according to the group due to

gaining and accepting information from them. Toelch and Dolan define it as “infor-

mation that is acquired through sampling of the environment with the goal to make

adaptive decisions that are optimized for the current context.” [252]. In informational

conformity, people change their answer/behavior to match the group not because they

are feeling pressured to do so, but because they are adopting that information as their

own. Cialdini stated that the main factors that influence informational conformity are

uncertainty in the correct behavior/answer and similarity with the group [54]. Other

factors in informational conformity are group size and expertise of the group. An

example of informational conformity can be observed in work by Lucas et al. [166], in

which they studied conformity in a math task. Their results show that participants

were more likely to conform to a group when the math problems were difficult and

when their self-efficacy in that particular skill was low.

Normative and Informational conformity are the two main types of conformity.

However, they are not always easily distinguishable, as people are frequently in-
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fluenced by both at the same time [127]. For example, when buying clothes, pre-

adolescents are influenced by their friends’ opinions on style and what their friends

like to wear [175], which are a mix of information and normative reasons. Further-

more, there may be other reasons to conform to a group [128, 165]. In this chapter,

we focus on normative and informational conformity and try to disambiguate between

them in a subjective task.

6.2.2 Conformity with Non-Human Agents

Similar experiments to Asch’s conformity experiment were conducted by Beckner et

al. [28] and Brandstetter et al. [37], where conformity was tested with both a group

of robots and a group of human actors. They administered Asch’s conformity line

test and also tested a verbal task where participants determined verb tenses. There

were four NAO robots present, which all stated the same wrong answer in some of

the rounds. Participants conformed to human confederates during the experiment

but did not conform to the robots. Rather, the amount of conformity to robots

was not significantly different from a baseline condition where participants pressed a

button instead of verbalizing their answer. Shiomi and Hagita also tested conformity

with robots using Asch’s line task [234]. Conformity was tested in 12 out of 18 rounds

with two conditions: one where the robots synchronized their actions (by first looking

at the previous agents and then the next agent before answering), and one condition

where the actions were not synchronized. Neither condition demonstrated conformity

compared to a condition where no robots were present.

Children are more likely to conform to robots compared to adults. Vollmer et al.

[255] tested Asch’s study with robots as the confederates on children seven to nine

years old in addition to adults. Similar to previous studies, adults did not conform to

the robots. However, children did demonstrate a significant frequency of conformity

to robots, suggesting that children are more susceptible to the influence of robotic
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agents. Williams et al. [262] also show child-robot conformity (ages 4-10) when

answering socio-conventional and moral questions with a robotic doll.

Hertz and Wiese also studied Asch’s line task with robots in addition to humans

and computers, where they compared high ambiguity and low ambiguity lines [113].

Participants observed videos of either one robot, one person, or one computer answer-

ing the line task before answering themselves. Ambiguity was introduced by how long

participants saw the lines: 1000ms (low) vs. 400ms (high). Their results show that

there was a low overall conformity rate of 22.3%, but that there were significantly

higher differences in conformity with high ambiguity lines compared to low ambiguity

lines. Further experiments by Hertz and Wiese analyzed different tasks than Asch’s

line experiment [114]. They compared conformity towards three different groups of

agents: humans, robots, and computers. They tested two different task types; the

first was a social task in which participants observed images of people’s eyes and

selected the emotion they believed the eyes were expressing and a second analytical

task in which participants conducted addition and subtraction with a series of dots

on the screen. Before participants selected their own answer, they observed either a

robot hand, a human hand, or a computer code select an answer, depending on con-

dition. Similar to Asch, in 24 out of 36 rounds, the agents would unanimously select

the incorrect answers. Their results show that overall there is no significant difference

between conformity rates in the different agents, showing that robots and computers

are capable of causing conformity similar to humans. However, there was a difference

in conformity for the different types of tasks: participants conformed less to robots

and computers in the social task, while in the analytical tasks, the conformity rates

were very similar. There are several limitations to the studies conducted by Hertz

and Wiese [114, 113]. The robots were not present in person but only shown through

videos; there was only one other agent in the videos, but conformity is usually related

to groups; the second study [114] only showed videos of hands and not of the whole
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Figure 6.1: In this experiment, participants sat around a table playing a game with three
myKeepon robots. In certain rounds of the game, the three robots choose a different answer
than the one the participant chose. Participants often changed their answers to match the
answer of the robots, demonstrating conformity to the group of robots.

robot; and there was no feeling of perception that the agents or robots observed the

participants’ answer, making normative conformity unlikely.

6.3 Methodology

In this study we aim to study whether groups of robots can cause conformity in

human participants. And if participants conform to robots are they conforming to

the robots to have the correct answer (informational conformity) or because they are

feeling peer pressure from the robots (normative conformity).

In our experiment, participants sat around a table with three robots playing a

subjective game that did not have a clear, correct answer. A subjective game meant

that prior knowledge of the game was not a main factor. Participants played 20

rounds of the game, and each round was composed of two stages. In the first stage,

the participant gave a preliminary answer, and in the second stage, they gave their
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final answer. This mechanic permitted us to measure when they changed their mind

directly and allowed us to manipulate the robots’ answers depending on the partic-

ipant’s answer in order to maintain consistency across participants. In some of the

rounds of the game, which we call critical rounds, all of the robots chose a differ-

ent answer than the participant. It was in these rounds that we tested whether the

participant conformed to the robots.

We devised four different experimental conditions to test the degrees to which

people conform to robots. In three of these conditions, we varied the amount of in-

formation participants received about the robots’ answers. People seek information

from the environment when uncertain [252]. Therefore, we tested whether partici-

pants believed the robots to have the correct answer by varying the visibility of the

robots’ answers. If participants trust in the answers of the robots, when provided suf-

ficient information about the robots’ answers, they will conform to them. However,

when provided limited information about the robots’ answers, they will not be able

to conform. If participants do not trust in the answers of the robots, then they will

not conform due to informational reasons independent of the amount of information

provided by the robots.

The three conditions with varying amounts of information could also lead to a

change in normative conformity, with more information leading to more conformity

as the participant would be aware they were a minority in their answer. In the

conditions with more information, if the participant does not conform, it would be

visible to the whole group that they chose a different answer. Thus having increased

information may lead to feeling more peer pressure. The increase of information

about the robots’ answers influences both normative and informational conformity.

Completely separating information and normative conformity is difficult as they are

both frequently present [252, 127].

The fourth condition was similar to the condition with the highest amount of
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Figure 6.2: Participants were given a word by a robot on a screen and then chose out of
six pictures the one they best believed corresponded to the word. In certain rounds, the
three robots would select an opposing answer than them, and the participant had to decide
whether to conform to the robots or to continue with their initial answer.

information, but a peer pressure behavior was included in the form of staring. Eye

gaze is a tactic often adopted when trying to persuade [136] and has been shown

to increase compliance [233]. Therefore, we tested whether staring increased the

frequency of normative conformity.

To further disambiguate between normative and informational conformity, partici-

pants completed post-experiment questionnaires assessing the reasons they conformed

and whether they felt pressure to change their answers because of the robots.

6.3.1 Procedure

Participants were seated around a table with three myKeepon robots [142]. My-

Keepon robots are small yellow robots, which were dressed in colored hats to give

each robot a unique personality. The robots were present in the same room as the

participant, as it has been shown that being physically close to the group increases

conformity [150]. Additionally, the number of robots was chosen to be three because

previous studies have shown that conformity increases with the number of agents

but that there are no significant differences after having more than three agents [15].
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Each of the robots and the participant were given a personal tablet, and there was a

shared screen that all the agents could observe.

Participants played a game with the robots in which, in each round, they were

shown a set of six cards with drawings. Along with the six cards, a fourth robot

(called the “game master”) gave the group a word for the six cards, such as “Irony”

or “Leader” (as seen in Figure 6.2). They were asked to select the card they believed

the game master had selected as the correct answer. The cards used were digitalized

images from a commercial board game called Dixit manufactured by Libellud [160]. ∗

They contain detailed drawings, which often did not have one singular interpretation.

After having chosen a preliminary answer on a personal tablet, the participant was

given some information about the robots’ answers on a shared screen. In sequence,

the participant selected the final answer, and then the game master robot gave the

group the “correct” answer. As the game is subjective, there is no absolute correct

answer, so it was defined as the one the game master thought was the correct answer.

Participants played a total of 20 rounds of the game with the robots, in which the

word, the specific cards, and the answers for the round were chosen beforehand.

The sequence of the task

After completion of the consent form, the experimenter led the participant into the

testing room and greeted the robots and the participant. The experimenter explained

the game, and then the participants and the robots completed a practice round. After

the practice round, the experimenter gave the robots and the participants a chance

to ask questions. One of the robots was pre-programmed to ask whether it was OK

to change their answer, and the experimenter said that they could all change their

answers as many times as they wished. If the participants had any further questions,

they were answered. Afterward, the experimenter left the room, and the participant
∗Participants might have been familiar with the cards because of the board game, however the

task they did with the robots was novel to them.
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The word 
is: Irony

The answer 
is card 2

1

2

3

4

5 6

Figure 6.3: The sequence of each round. (1) A “game master” robot gave a word on the
shared screen. (2) The participants chose the card that they believed best corresponded to
the word on their tablets. (3) Information about the robots’ answers was given. In this
case, the quantitative condition is shown where red “X’s” were shown for the chosen cards
on the shared screen. (4) The participant chose their final answers on their tablets. (5) The
game master gave the correct answer on the shared screen. (6) Each agents’ final answer
was shown by displaying their name on top of the card they chose on the shared screen.

played 20 rounds of the game with the group of robots (the sequence of what happened

in each round can be seen in Figure 6.3). Each round proceeded as follows:

1. A word was announced by a video of a fourth robot (the “game master”) on the

shared screen.

2. The participant and the three robots individually chose one of the six cards that

they felt best represented the word out of six cards on their personal tablets.

3. Participants were given full, partial, or no information on the robots’ answers

depending on the condition they were in. Robots directed their gaze as deter-

mined by the experimental condition.

4. The participant and the robots were given the opportunity to change their

answer to one of the other cards (for the same word).

5. The correct answer was given by a video of the “game master” robot on the

shared screen.

6. The robots’ and participant’s answers were shown publicly to everyone by dis-

playing their names on top of the cards they chose for their final answer.
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After the participant had played 20 rounds with the robots, they completed a

post-experiment questionnaire, which is detailed in Section 6.3.5.

User Interfaces: Tablet and Shared Screen

There were two different user interfaces used in the study: the tablet user interface

and the shared screen. Each of the agents (the participant and the three robots) had

their own tablet through which they gave their preliminary and their final answers.

The tablet showed a blue screen when the participant was not selecting an answer. A

tablet was used instead of physical cards, as the robots did not have the dexterity to

manipulate cards. The tablets also provided a mechanism for each agent to provide

their answer without it being visible to the other agents.

There was a shared interface that was visible to the participant and to all the

robots, called the shared screen. The shared screen showed videos of a fourth robot

called the “game master” which gave the word at the start of each round and also

provided the correct answers at the end of each round. Additionally, the shared screen

showed the preliminary answers (Figure 6.4a) and the final answers publicly (Figure

6.4b).

The shared screen facilitated social pressure on the participant as the participant

and the robots all looked at the same screen. The participant felt as if the robots

clearly could see when the participant chose a different answer than them; thus they

may have felt peer pressure from the group.

6.3.2 Conditions

In this study, we present a between-subjects study in which 63 participants were

spread across four different conditions.

• Blind Condition: Participants were given no information about the robots’

preliminary answers. Instead, they were just shown a screen with the cards
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(a) Preliminary Answer

JOHN

PAUL

CHUCK

JULIA

(b) Final Answer

Figure 6.4: In this example of the quantitative condition, the preliminary answer (a) of
all of the robots and the participant was publicly shown on the shared screen. After having
chosen their final answer, each of the answers of the agents was shown on the shared screen.
The names of each of the robots (Paul, Chuck, and Julia) were shown on top of their chosen
cards, and the participants’ answer was also marked with their name (John in this case).
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A

B

C

D

Figure 6.5: Examples of the preliminary answers of the robots in the four conditions. In
the blind condition (A), no information was shown about the robots’ preliminary answers,
and the robots looked at the shared screen after the participant had selected their answer.
In the selected condition (B), the selected cards (that were chosen by at least one robot
or the participant) were shown with yellow squares around them, and the robots looked at
the screen after the participant had selected their answer. In the quantitative condition
(C), each robot’s answer and the participants’ answer was represented with a red X on top
of their chosen card, and the robots looked at the screen after the participant had selected
their answer. In the staring condition (D), the robots’ and participants’ answers were
represented with a red X on top of the chosen card. During critical rounds, all three robots
first looked at the screen briefly and then turned around and stared at the participant
for several seconds. During non-critical rounds, the robots looked at the screen after the
participant had selected their answer.
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again (Figure 6.5A). During each round, the robots looked at the screen when

the screen showed the cards again.

• Selected Condition: Participants could see which preliminary answers were

selected by at least one robot but not how many robots chose each card. Figure

6.5B shows that both the first and second cards were chosen by at least one

person/robot, but no information was given about how many chose each of the

answers. The robots looked at the screen when the preliminary answers were

shown.

• Quantitative Condition: Participants were shown an “X” on top of each card

chosen by a robot. An example can be seen in Figure 6.5C, where three players

chose the first card, one player chose the second card, and none chose the last

card, but no information was given about which red “X” corresponded to whom.

The robots looked at the screen when the preliminary answers were shown.

• Staring Condition: Participants also saw the robots’ answers in the form

of red “X”s on the screen (identical to the quantitative condition). However,

whenever the robots all chose a different preliminary answer than the participant

in the critical rounds, they all first looked at the screen briefly and then stared

at the participant for several seconds. If the participant continued choosing a

different answer than the robots for their final answer, the robots would stare

again at the participant after the final answers were revealed. During all the

non-critical rounds, the robots did not exhibit the staring behavior.

We only created the condition that included the staring behavior in the case where

the red X’s appeared for each answer. In the other two cases, the robots would not

have sufficient information to know there was a minority present, and therefore the

staring behavior would not make sense.
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6.3.3 Rounds

Participants played 20 rounds of the game with the robots. For each round, the cards

that were shown and the word were chosen beforehand. There was a variety in the

types of rounds to make the game feel more realistic. For example, there were rounds

where the correct answer was very clear, and all three robots chose the same card.

There were rounds where all their answers diverged. Furthermore, there were rounds

where one or more of the robots changed their answers, and there were rounds where

they did not change their answers. This showed that it was permissible to either

change or keep your original answer. The “correct” answers for the rounds were also

chosen beforehand. For the easier rounds, the most plausible answer was usually

correct. For some of the rounds, the answer that the participant chose was correct,

and for others, the answer that the robots chose was correct.

The different rounds were based on Table 6.1. Because the robots adapted to

the choices of the participant, the robots’ choices did not always perfectly follow the

pre-planned rounds.

• Unanimous Rounds - There was one picture that seemed more correct than

the others. All three of the robots chose the same preliminary answer and

did not change their answer for their final answer. The participant was also

expected to choose this answer.

• One Robot Converges - During the preliminary round, two robots chose one

answer, and one chose a different answer. The robot with the different answers

converged to match the group for its final answer.

• Two Robots Converge - During the preliminary round, one robot chose the

same answer as the participant, and the two other robots chose a different

answer. The two differing robots changed their answer to be the same as the

participant.
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• One Robot different - One robot was different from the other robots. The

participant could have aligned their answer with the two robots or with the one

robot. The different robot did not change its answer.

• All different - All the robots chose a different answer from each other. In some

of the rounds, one of the robot’s answer might overlap with the participant’s

answer. In some of these rounds, one of the robots changes their answer to

either match a participant or to match another robot.

• Critical Rounds - All the robots chose the same opposing answer from the

participant. These are the rounds in which we were testing conformity.

The answers of the robots were adjusted to the answers of the participant to make the

experience of the participants as similar as possible. For example, in the “two robots

converge” case, when the robot chose a particular answer, one of the other robots

also chose it. The two remaining robots chose a separate reasonable answer. And

in the “One robot different” case, two of the robots were assigned the same answer

that the participant chose, and the third robot was assigned a different answer. By

adjusting the behavior of the robots, participants experienced the same scenarios

independent of their own preliminary answers, and they observed the robots get

the answers right/wrong the same amount of times and on the same rounds. The

exception to this was on the unanimous rounds where the answer was very apparent,

and the robots consistently chose the correct answer as a clear wrong answer might

make the participants question the robots’ capabilities.

Critical Rounds

Out of the 20 rounds, six were critical rounds. In these rounds, the three robots

were programmed to unanimously choose a different plausible answer opposing the

participant’s answer. For example, in one of the rounds, the word was “Immense,” and
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Round Numbers Type of Rounds
1,3,6,8,18 Unanimous Round

2,4 One Robot converges
11,19 Two Robots Converge

12 One robot different
7,14,15,17 All different

5, 9, 10, 13, 16, 20 Critical Round

Table 6.1: The round number with the type of round.

one of the options was a large landscape with a night sky above it, and another option

was a monster with its mouth open. When the participant chose the landscape, then

all three robots would choose the monster and vice versa. The six critical rounds

where the robots unanimously diverged their answers were the rounds in which we

observed whether participants conformed to the robots. In three of the six rounds,

the participants’ initial guess was right, and in the other three rounds, the robots’

preliminary guess was correct. This was kept balanced to prevent participants from

believing that the robots were always correct or always incorrect.

6.3.4 MyKeepon Robots

During the experiment, three myKeepon robots were used. MyKeepon robots have

four degrees of freedom and are commercialized versions derived from a research robot

called Keepon Pro [142]. The robot is a 15cm tall robot composed of two spheres

giving it a snowman-like appearance with a soft yellow exterior foam. The three

robots used are shown in Figure 6.7. Each robot was capable of moving to look at the

different robots and also to look at the different screens. Additionally, the robot was

programmed to sway side-to-side when an audio file played to simulate talking. Each

of the robots had a unique name, a different recorded voice, was dressed differently,

and had different styles of utterances (for example, one made some jokes, and one

was a bit shy), so they appeared to have different personalities. Previous studies have
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ESCAPE

IMMENSE

LONELY

Figure 6.6: Examples of several of the critical rounds, with their words and images. The
pictures highlighted in yellow were the two most reasonable answers. Whichever of the
two that the participant chose for their preliminary answer, the three robots unanimously
selected the other one. When a participant chose neither of the two, the robots had a
predetermined one of the two that they chose.

shown that diverse human groups are attributed more agency [177] and that diverse

robots are perceived as more intelligent [97] than entitative robots. Therefore we chose

to have the robots look and behave slightly different from each other. They performed

utterances during the game such as “I am not sure about this one,” “hmmm,” or “this

one I think I know.” During the critical rounds, the robots did not say anything to

avoid confounds created by verbal persuasion.

We chose to have three robots in the experiment, as three robots are the minimum

necessary for them to be considered a group [264]. In Asch’s studies, he founds that

more confederates present increased conformity, but few differences were found when

the group was larger than three confederates [15]. Two of the robots were assigned
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Figure 6.7: In this human subjects study, a human participant interacted with a group of
MyKeepon robots. Each of the robots was dressed uniquely and had a different voice.

to be male, and one of the robots was assigned to be female. The game master robot

was also assigned to be female to keep the genders balanced during the interaction.

The three robots were on the table around the participant, and each had a tablet in

front of it to play the game with the participant.

6.3.5 Measures

During the interaction, we collected both behavioral (mainly what participants chose

as their final answer during critical and non-critical rounds) and questionnaire data.

Answer Changes

Our primary measurement was whether or not participants changed their answers to

the answer of the group of robots in the six critical rounds. We measured how often

participants continue conforming to the group in the next critical round, depending on

if they got the answer right or wrong when conforming in the previous critical round.

We also measured how frequently participants changed their answers to match at

least one of the robots in the rounds that are not critical rounds. Additionally, we
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measured how frequently participants conformed in the round following the critical

round. We did this to test whether participants in the selected and blind conditions

who did not know they are in the minority in the current critical round would attempt

to be similar to the robots in the following round.

Questionnaire

After playing 20 rounds of the game with the robots, the participants completed

a post-experiment survey. The survey included the Godspeed questionnaire with

questions on the perceived animacy, likeability, and intelligence of the robots [24].

The survey also asked the participants to rate the following questions on a Likert

scale from 1 (disagree) to 5 (agree): “I felt pressure to change my answers because

of the robots” and “The robots were better at playing the game than me.” The last

question asked for an open-ended response: “Did you ever change your answer because

of the robot and why?”.

6.3.6 Participants

A total of 66 participants were recruited, out of which three participants were ex-

cluded due to technical problems. Of the remaining 63, 27 were male, and 37 were

female, with an average age of 26.3 years old (SD = 8.8). Most of the participants were

students from a local university and people from its surrounding community. There

were no significant differences in age and gender between conditions. Participants

were randomly assigned to conditions: 15 participants were in the staring condition

(6 male and 9 female), 17 participants (6 male and 11 female) were in the quantita-

tive condition, 16 participants (9 male and 7 female) were in the selected condition,

and 15 participants were in the blind condition (6 male and 9 female). The Univer-

sity Institutional Review Board approved this study. Participants signed a consent

form agreeing to participate in the study and received five dollars compensation for
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p<0.05
p<0.01

Figure 6.8: (a) - Participants were significantly more likely to conform to the robots’
answers when they were aware they were a minority compared to when they only knew at
least one robot had chosen a different answer than them. They were also significantly more
likely to conform than the participants who had no information about the robots’ answers.

their time. The game with the robots and the questionnaire took approximately 30

minutes.

6.4 Results

In this section, the findings on the conformity rates for the different conditions and

post-experiment questionnaire results are presented.

6.4.1 Behavioral Results

First, we tested whether there was a difference in the conditions for the number of

times people changed their answers to be the same as at least one of the robots

throughout all the rounds. A logistic regression was conducted with condition (quan-
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Figure 6.9: (b) Adding the staring behavior to the quantitative condition did not signifi-
cantly increase conformity in the critical rounds.

titative+staring†, selected and blind) and whether it was a critical round as inde-

pendent variables; the independent variable was whether they conformed during that

round. The logistic regression showed that there was an effect on the amount of in-

formation about the robots’ answers shown to the participants (logodds : 0.61, SE :

0.16, Z : 3.84, p < .001). It also showed that there was a significant difference for the

conditions in the conformity rate depending on if it was a critical trial or a neutral

trial (logodds : 0.60, SE : 0.16, Z : 3.84, p < .001), indicating that people were chang-

ing their answers more frequently to match the robots in the critical trials than in

the neutral trials. Lastly, a logistic regression with staring as an independent vari-

able shows that the staring behavior had no significant influence on the interaction

(logodds : 0.19, SE : 0.20, Z : 0.95, p = 0.340).

Since there was a significant difference in the conditions on the conformity rate dur-

ing the critical trials, we further investigated how the varying amounts of information
†quantitative+staring encompassed both the pure quantitative and the staring conditions as

they both provide the same amount of information of the robots answers
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given to the participants influenced their conformity rates. On average, participants

conformed to the robots less in the blind condition (M = 0.33, SD = 0.72) and the

selected condition (M = 1.00, SD = 0.89) compared to the quantitative condition

(M = 1.94, SD = 1.48). An ANOVA test with the conditions as the independent

variable and number of changes as the dependent variable showed that there was

a significant difference in conformity between conditions during the critical rounds

[F (2, 48) = 8.70, p < 0.001]. A post-hoc Tukey HSD test showed that there was a sig-

nificant difference between the quantitative and selected conditions (p = 0.046), a sig-

nificant difference between the selected and blind conditions (p = 0.001), but no signif-

icant difference between the selected and blind conditions (p = 0.221). These results

showed that participants conformed significantly more to the robots when they were

aware they were a minority in their answer. These results are presented in Figure 6.8.

In the quantitative conditions, the robot would either stare at the participant or not

when their answers differed. However, the staring behavior did not cause a significant

increase in frequency of conformity in the critical trials [F (1, 30) = 0.22, p = 0.640].

These results are presented in Figure 6.9.

Participants changed their answers (on critical and non-critical rounds) to match

at least one robot a similar number of times on average in the three conditions

where information was provided: staring (M = 4.2, SD = 2.018), quantitative

(M = 3.53, SD = 2.29), and selected (M = 3.94, SD = 3.21). However, in the staring

and quantitative condition, participants were making a large number of these changes

in critical rounds (52.8% and 55.0%, respectively), whereas most of the changes in

the selected condition were not in critical rounds (25.40% in critical rounds). Using

Chi-Squared with Bonferroni corrections, we compared the number of critical and

non-critical round changes in the three conditions: the difference was significant be-

tween the staring and selected conditions X2 (2, N = 126) = 9.6512, p = 0.006, the

difference was also significant between the quantitative and the selected conditions
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Figure 6.10: (a) - Despite participants having changed their answers a similar number
of times to match the robots in the three conditions with information, participants in the
selected condition significantly changed their answers more in non-critical rounds than in
critical rounds compared to the staring and quantitative conditions.

X2 (2, N = 123) = 11.24, p = 0.002. There was no significant difference between the

staring and quantitative conditions. These results are presented in Figure 6.10.

Further investigation of which rounds participants in the selected and blind con-

ditions changed their answers to match at least one of the robots showed that they

were frequently changing their answers in the rounds immediately after the criti-

cal rounds ‡. A logistic regression showed that there was a difference in conformity

between the round immediately after the critical round and the remaining neutral

rounds (logodds : 0.50428, SE : 0.17, Z : 2.90, p = 0.004). Participants in the selected

and blind conditions were frequently making changes in the round immediately after

the critical round, compared to the quantitative and staring conditions: 34.4% of the
‡One subsequent round was excluded because it was both a critical round and the round after

the critical round.
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p < 0.01
p < 0.01

p < 0.01
p < 0.05

Figure 6.11: (b) - Participants in the selected and blind conditions significantly more
frequently changed their answers in the round right after the critical round than in the
critical rounds, compared to the staring and quantitative conditions.

time in the selected condition, 23.3% of the time in the blind condition, 19.1% in the

quantitative condition, and 16.7% in the staring condition. Performing a chi-squared

analysis with Bonferroni corrections showed that participants were significantly more

likely to change their answer in the critical round than in the round immediately

after the critical round in the quantitative condition compared to the selected con-

dition X2 (2, N = 83) = 8.31, p = 0.024 and compared to the blind condition X2

(2, N = 64) = 12.24, p = 0.003. They were also significantly more likely to change

in the critical round rather than in the round after the critical round in the staring

condition compared to the selected condition X2 (2, N = 81) = 10.13, p = 0.009, and

the blind condition X2 (2, N = 62) = 14.12, p = 0.001. In summary, participants

in the blind and selected conditions were frequently changing their answers to match

at least one of the robots in the round immediately after the critical round, while

in the quantitative and staring conditions, they were more frequently changing their
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Figure 6.12: (a) - Participants felt significantly more pressure to change their answers
because of the robots in the Staring conditions than they did in the Selected and Blind
conditions. Additionally, participants in the quantitative condition felt more pressure than
the blind condition.

answers in the critical round. These results can be seen in Figure 6.11. Whether the

robot achieved the right or wrong answer did not appear to play a significant role in

the participant deciding to change their answer in following rounds (12 and 10 times

respectively after observing the robots’ answers were right and wrong in the selected

condition, and 8 and 6 in the blind condition).

Another element to consider is how the round number influenced the number

of times participants changed their answers. There was not a significant correlation

between the round number and the number of changes for all rounds (R = −0.02, N =

20, p = .93). Neither was there a significant correlation between the round number

and the number of changes during critical rounds (R = −0.48, N = 6, p = .34).

Therefore, the round’s number did not play a strong role in the number of changes

during the interaction.
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n.s.

Figure 6.13: (b) - Participants in all four conditions viewed robots similarly in terms of if
they were better at the game than them.

6.4.2 Questionnaire Results

In the post-experimental questionnaire, participants reported on a scale from 1-5 on

how much pressure they felt to change their answers because of the robots. In the

staring condition, participants reported feeling the highest amount of pressure to

change (M = 3.53, SD = 1.25), followed by participants in the quantitative condition

(M = 2.82, SD = 1.29), then participants in the selected condition (M = 2.16, SD =

1.18), and lastly participants in the blind condition (M = 1.6, SD = 0.83). Perform-

ing an ANOVA with condition as the independent variable showed that there were

differences between conditions in the amount of pressure they felt from the robots

[F (4, 63) = 7.94, p < 0.001]. Post-hoc Tukey tests showed that participants in the

staring conditions felt a significantly higher amount of pressure to change compared

to the blind (p = 0.001) and selected conditions (p = 0.008). Participants in the

quantitative condition also felt a significantly higher amount of pressure compared

to the blind condition (p = 0.021). There were no significant differences between

the remaining conditions. These results are presented in Figure 6.12. There was a

125



correlation in the staring condition and the quantitative condition between report-

ing pressure to change and critical round changes. Using Pearson correlation, in the

staring condition there was a moderately positive correlation between critical round

changes and pressure to change (R = 0.52, N = 15, p = 0.048), and also in the quanti-

tative condition there was a positive correlation (R = 0.65, N = 17, p = 0.005). There

were no significant correlations between feeling pressure and critical round changes

for the selected and blind conditions.

Lastly, participants were asked whether the robots were better at playing the

game than them on a 5-point Likert scale. On average, participants across the three

conditions responded similarly that the robots were on par as them at the game

(staring: M = 2.73, SD = 1.28; quantitative: M = 2.94, SD = 1.20; selected : M =

3.2, SD = 1.26; blind: M = 3.27, SD = 0.88). An ANOVA showed no differences

between all four conditions in how participants rated the robots in if they were better

at the game than them [F (4, 63) = 0.81, p = 0.495]. These results are shown in Figure

6.13.

Although prior work has shown females to conform more than males [76, 35], in

our study, there were no significant differences in gender for the number of times

participants conformed. Additionally, prior work has shown that people are more

influenced by those they perceive as more likeable and intelligent [53]; however, in

our study, there were no significant correlations between conformity and the perceived

animacy, intelligence, or likeability of the robots.

6.5 Discussion

In this section we discuss how robots can cause people to conform to them, and

the different types of conformity that are involved. We also discuss how different

tasks affect the conformity rates in human-robot interaction. Last we discuss some
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potential future directions.

6.5.1 People Conform to Robots

The main metric was whether participants conformed to the consensus of the group

of robots during the six critical rounds. On average participants conformed more

frequently to the answers of the robots in the staring and quantitative conditions

than in the selected and blind conditions. In these results we see strong indications

that people do conform their answers to match those of the robots in the critical

rounds. They change their answers significantly more when knowing the robots’

answers, than when they do not know the answers. Asch’s participants conformed on

average in 37% of the rounds, and participants in our study conform on average in

32% (quantitative) and 38% (staring) of the rounds. Therefore we have evidence to

support that Hypothesis 1 is true: When provided with the opportunity to conform

without providing an obviously false answer, participants will conform with a group

of robots at a rate similar to the original Asch participants.

6.5.2 Informational Conformity

We believe robots were causing informational conformity due to three main reasons.

First, when participants were given more information about the robots’ answers, they

conformed significantly more. Second, participants viewed the robots as being capable

of this task, which is an element that enables informational conformity. And third,

the subjective nature of the task increases the willingness to accept information from

the robots, which was confirmed by many participants in the open-ended question.

To measure whether robots were causing informational conformity, the current

analysis focused on the quantitative, selected, and blind conditions, where the amount

of information given to the participant varied. Participants conformed significantly

more in the quantitative conditions than they did in the blind and selected conditions.
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Even though participants in the selected condition did conform a higher number of

times on average than the blind condition, this difference was not significant, implying

that being aware that at least one robot chose a different answer was not sufficient

to sway the participant to change their answer. However, when the participant was

aware that all the robots chose a different answer than they did, they more frequently

conformed to the robots. The results suggest that having the information that one was

in the minority in their answer increased the likelihood of accepting information from

the majority as they had more information from the environment to make decisions

[252].

One of the factors that is believed to influence informational conformity is the

expertise of the group [263, 53]. Participants viewed the robots as performing well

at this particular task: in the questionnaire, participants rated the robots as being

similar to themselves at how good the robots were at the game. These results are

surprising, considering robots do not usually perform well at high-level tasks such as

understanding the meanings of images. Additionally, participants gave similar scores

to the robots’ capabilities across the conditions, indicating that they are not viewing

the robots as better at the game in one condition compared to another. However,

participants conformed more in the quantitative condition compared to the selected

and blind conditions. Once participants were given more information (such as how

many robots chose each answer), they utilized this information and conformed to

the robots. This indicated that participants believed the robots to have the correct

answer but only had sufficient information to conform in the conditions with more

information.

One of the main factors that influences informational conformity is uncertainty in

the answer [54]. Individuals are more likely to copy others when they are uncertain

[251]. Therefore it was likely that the subjective nature of the game increased the par-

ticipants’ likelihood of accepting information from the robots. Our results are in line
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with how participants responded to the open-ended question, where they frequently

state they were using the robots’ answers to decide their own final answer. For exam-

ple, one participant in the quantitative condition wrote: "Yes, from life experiences,

majority is usually correct." Another participant in the quantitative condition wrote:

“Yes, because I thought the way they decided was going to be right.” There were also

participants in the selected condition who responded that they changed their answer

due to information of the robots’ answers: “when they highlighted a different option,

and then I felt that it was more apt than the one I chose.”

Therefore we believe Hypothesis 2a is true: Participants conform to the group

of robots due to informational conformity.

6.5.3 Normative Conformity

Our results show that normative conformity was playing a role in the participants’

decisions to conform to the robots in the staring and quantitative conditions: partic-

ipants conformed significantly more in critical rounds in the staring and quantitative

conditions compared to the other rounds. Participants reported feeling pressure to

change because of the robots and acted upon it. Additionally, participants in the

selected and blind conditions that did not have the information to conform during

critical rounds changed their answers frequently to the answer of at least one of the

robots in the next round.

To measure whether robots were causing normative conformity, this analysis was

focused on the comparison of the staring, quantitative, and selected conditions (as

in the blind condition, participants had no information on the robots’ answers, and

therefore normative conformity was highly unlikely). In the quantitative condition,

there were significantly more changes in participant answers during critical rounds

than in the selected condition, demonstrating that being aware of the number of robots

choosing certain answers influenced participant’s decisions to conform. Therefore
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being aware that one was in the minority in a group of robots increased the likelihood

of conforming to them, compared to only knowing that at least one robot chose a

different answer.

Participants in the staring, quantitative, and selected conditions were making, on

average, a similar number of changes across all the rounds (critical and non-critical).

However, participants in the staring and quantitative conditions were making many

more of these changes in critical rounds. Providing participants with the information

of how many robots chose each card did not increase overall changes but specifically

increased the number of changes to the robots in the rounds where they were the

minority. This is in line with previous research showing that having a unanimous

group increases normative conformity [15].

There were no significant differences in the frequency of conformity between the

staring and quantitative conditions. Therefore adding the staring behavior did not

significantly increase conformity. There are multiple possible interpretations of this.

The first being that participants did not feel additional peer pressure because of the

staring behavior either because it was not very observable or because they did not

perceive it as a persuasive behavior. Another interpretation is that the quantitative

behavior alone was already causing a large amount of peer pressure, and adding the

staring behavior did not increase the frequency of conformity significantly. A previous

study has shown that eye contact can actually create resistance to the person who

is trying to persuade [48]; therefore, the staring behavior might have caused some

participants to conform less. An additional possibility is that the staring behavior

is causing psychological reactance in some of the participants towards the robots.

Studies have shown that very apparent persuasive behaviors can decrease the amount

of compliance [98]. Additional studies should be conducted to determine which social

behaviors of robots cause increased peer pressure.

Participants in the staring and quantitative conditions were making most of their
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changes in critical rounds, whereas participants in the selected and blind conditions

were frequently changing their answers in the round right after the critical round.

Participants in the selected and blind conditions did not have the necessary informa-

tion to see they were a minority in the critical rounds in time for them to change

their answers. However, when the final answer was shown, the participants observed

that all the robots had chosen a different answer than they did. We believe this

caused the participants in these conditions to change their answers in the following

round, attempting to choose the same answer as the robots. Additionally, the robots

getting the answer right or wrong in the critical rounds did not appear to play a

role in deciding to change their answer in the subsequent round. Therefore the main

reason they were changing their answer was not necessarily because they thought

accuracy would be increased. Instead, we believe this was an indication of normative

conformity where participants wanted to be in-group with the robots.

Participants in the staring and quantitative conditions reported higher pressure

to change their answers because of the robots than the selected and blind conditions.

Additionally, the amount of pressure to change was correlated with the number of

critical round changes. This was an indication of normative conformity, where par-

ticipants were feeling pressure to change and acting upon that pressure. Participants

in the staring and quantitative conditions also mentioned feeling peer pressure in the

open-ended question. Several participants commented that they changed their an-

swers to match the robots’ answers when they were part of the minority, indicating

that participants were changing to become part of the majority. For example, one

participant in the staring condition wrote: “Yes, because they’d look at me judgmen-

tally when I had a different answer, so it made me doubt myself.” Another participant

in the staring condition commented: “Sometimes when they all chose the rose field,

I felt dumb for picking the ballet shoes.” A participant in the quantitative condition

wrote: “Yes (I changed) if they outnumbered me on one particular picture.”
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Therefore we believe Hypothesis 2b is true: Participants conform to the group

of robots due to normative conformity.

6.5.4 Influence of Task in Conformity

Several studies have been conducted attempting conformity with robots, of which

some observed conformity [223, 262, 114] and some did not [37, 28, 234]. The main

difference between the experiments which observed conformity and those which did

not was the task being tested. It is necessary to have a task where the participant is

not certain of the correct answer. The robotic studies which failed to show conformity

mostly tested Asch’s line task, which has a clear, correct answer. Whereas the studies

which did show conformity with robots had a task in which the answer was not

as clear. Our study used a subjective word-card matching task. Hertz and Weise

presented the questions to the participants for only 2.5 seconds, and the accuracy

rate of responding solely was 63% for the analytical task and 68% for the social task

[114]. And Williams et al. tasks used socio-conventional and moral questions [262].

Therefore we believe it is necessary to have a more subjective task to cause conformity.

This is in line with human psychology, where more difficult and subjective tasks have

higher rates of conformity [23].

Other characteristics of our task that could have influenced the number of times

participants conformed were that they were all sat at the same table close together

[150], the answers were publicly shown on a shared screen [70]. Additionally, the an-

swers of the robots were highlighted on the screen, focusing the participants’ attention

on those answers, which could have influenced conformity [53].

6.5.5 Future Work

There are several different areas of potential future work, following our results. The

robots used in the study were very simple, but despite their size and simplicity,
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they caused both informational and normative conformity. Factors that increases

informational conformity are the similarity with the group [54] and the expertise of

the group [263]. Future studies should analyze whether having robots with increased

similarity to humans or with higher appearance of capabilities will also lead to more

informational conformity.

Factors that increase normative conformity are group size, the immediacy of the

group, and their social importance [150]. Future studies could analyze how changing

the perceived social importance of the group, changing the number of robots, and

changing how close the robots are will influence the frequency of normative conformity.

Another factor that influences normative conformity is whether the other members

are considered in-group or out-group [3]. Several studies have shown that in-group

robots are rated more anthropomorphic and are favored over out-group members [84,

83]. Therefore it should be studied how group membership and anthropomorphism

influence conformity.

Our results indicate that conformity is directly linked with the type of task being

tested. Future work could analyze how conformity changes depending on the type

of task. And to further investigate if conformity to robots can be used in pro-social

ways [60]. Lastly, conformity is influenced by individual characteristics [251]. Culture

[35], age [63], gender [76, 35], and other personal factors have been shown to influence

the decision to conform in human groups. More studies on different personal factors

should be studied to see how they influence conformity to robot groups.

6.6 Summary

In this chapter, we showed that robots cause people to conform to them in a subjective

task. Participants played a card game with three robots in which they were given

varying amounts about the robot’s answers. Additionally, in one condition, the robots
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stared at them to cause peer pressure. Informational conformity was shown to be at

play because participants conformed more when they were given more information

about the robots’ answers, and they considered the robots on par with them at the

game. Normative conformity was shown to be at play because participants conformed

significantly more when they were aware they were a minority and because they

reported feeling pressure by the robots in the questionnaire. We conclude that adults

conform to robots due to both informational conformity and normative conformity.

Informational influence plays an essential role during robotic tutoring sessions, as

users need to be willing to accept and believe the information provided by the robot.

If the user does not trust the robot to be providing the correct information, they will

not trust it to learn from them. Normative influence can also play an important role

as the robot might need to influence the user to study the material or to pay attention

during the lesson. Normative influence can be especially significant if a robot needs

to create long-term behavior change.

In the following two chapters, we build in-home robotic systems that promote

behavior change in their users over several weeks. In Chapter 7, we investigate how a

robot influences the motivation and exercise accuracy of a user that does daily exer-

cises with it. In Chapter 8 we show how a robot can encourage children with Autism

Spectrum Disorder to learn several positive social skills by exemplifying different

emotions and demonstrating joint attention.
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Chapter 7

Long-term In-Home Robots: Robotic

Coach to Guide Users While Doing

Dumbbell Exercises∗

In this chapter, we present our first robotic system that shapes people’s interactions

in the home. There are several challenges in having a robot that operates in the home

compared to a structured lab setting. The first is that it needs to be able to model

a wide range of different and often complex tasks. The system needs to model these

tasks without making significant changes to the environment as that would be an

imposition on the user. A second challenge is that the user needs to want to interact

with such a system on a long-term base. Therefore, we need to give the robot a

personality that maintains engagement even after the novelty effect wears off. Lastly,

it needs to be given the capabilities to influence the user to complete daily exercises

with it. And to be persuasive for the user to correct any mistakes they perform while

exercising.
∗Parts of this chapter were originally published as: Nicole Salomons*, Tom Wallenstein*, De-

basmita Ghose*, Brian Scassellati. (2022). The Impact of an In-Home Co-Located Robotic Coach
in Helping People Make Fewer Exercise Mistakes. In International Conference on Robot and Human
Interactive Communication [224].
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We present a robotic system that motivates people to complete daily weight train-

ing with it. We created a computer vision system that tracks users while they exercise

and classifies in real-time whether each repetition of an exercise was performed cor-

rectly. The robot provides personalized feedback when the user makes mistakes while

exercising. We designed the robot to take on the role of a peer while exercising, giv-

ing it the backstory that it wanted to be “big and strong” just like its older brother.

The backstory was designed to be engaging and interactive. This study focused on

whether a robot would be more effective at correcting exercise mistakes when being

physically present or whether it would be just as effective when on a tablet screen.

Other domains have shown several advantages in having a robot co-located with

its user compared to having it on a screen. Some benefits of co-located robots in-

clude higher learning gains [158] and increased user motivation [132]. This study

investigates whether a physically co-located robot generates fewer exercise mistakes.

We also assess the different perceptions users have of different robot embodiments.

Participants (n=25) had a robotic system in their homes for two weeks and were

asked to exercise with the robot daily for around 20 minutes. Our results show that

participants who exercised with the co-located robot made fewer mistakes than those

who exercised with the video-displayed robot. Furthermore, participants in the robot

condition reported a higher fitness increase and were more motivated to exercise than

participants in the tablet condition.

7.1 Introduction

An large number of studies have outlined the benefits of exercise [215, 216] including

improved cardio-respiratory fitness [184], improved mental health [168], and preven-

tion of lifestyle diseases such as diabetes [52] and hypertension [260]. Despite the

many benefits of exercising, there are risks associated with performing exercises with
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the wrong body posture or movement patterns [253, 266]. Studies have shown that

weight-training-related exercises, when performed without supervision and corrective

feedback from a trained professional, can put one at risk of sustaining musculoskele-

tal injuries [209]. Therefore, many choose to exercise with a personal trainer, who

helps them learn correct techniques and tailors their regime according to their body

type and strength levels, thus mitigating the risks associated with performing weight-

training exercises without supervision [81].

However, in the COVID-19 pandemic, when access to gyms and personal trainers

became limited, many people resorted to exercising at home with limited access to

equipment and exercise partners [75, 183]. Additionally, as the pandemic accelerated

the growth of virtual fitness programs, videos created by trainers from across the

world gained popularity among a broader audience. When people started learning

to exercise with trainers virtually, they risked sustaining exercise-related injuries as

they received little to no feedback on their posture or technique while learning new

exercises.

One potential enhancement to virtual fitness training systems could be robotic

coaches. Social robots have been shown to be effective in providing corrective feedback

to help people learn a task effectively while motivating them to complete tasks [172,

17]. Therefore, we designed a physically present social robot system that helps people

adhere to an exercise routine while providing corrective feedback on their form. We

deployed this system in homes over a 14-day study while providing corrective feedback

using a machine learning algorithm. We compare our co-located robotic coach to a

video of the same robot displayed on a tablet screen. To the best of our knowledge,

this is the first in-home study to analyze the effects of a robot’s physical presence in

helping people maintain correct exercising techniques.

Our results show that participants in the robot condition made significantly fewer

mistakes while exercising than participants in the tablet condition. Additionally, our
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Figure 7.1: Participants completed dumbbell exercises with a robotic coach during a two
week in-home study

questionnaire results show that participants in the robot condition reported finding

the workouts less difficult and reported a higher fitness increase than tablet condi-

tion participants. Finally, participants in the robot condition felt more motivated to

exercise and found the system more entertaining.

7.2 Related Work

This section provides a literature overview on the efficacy of robots in exercise training

and the impact of physically present robots in helping people learn a task correctly.

7.2.1 Use of Robots in Physical Exercise Training

There have been a growing number of studies that show robots as personal coaches

[17, 141], including assisting during repetitive, self-directed exercises in rehabilitative

therapies [108, 89]. Other studies have deployed robot systems to engage the elderly
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in physical exercise [91, 86].

Several studies show that a robot can effectively help people learn correct move-

ment patterns and exercise postures by providing real-time corrective feedback to the

participant [17, 107]. However, most studies in this domain asked the participants to

perform simple, rehabilitative, or injury-preventive exercises without external weights.

Furthermore, previous robotic coaches were mainly conducted in a controlled lab set-

ting during one session. For robots to be effective coaches, they need to operate in

unstructured environments for more extended periods and provide guidance during

mainstream fitness exercises. Thus, we explore the impact of an in-home co-located

robot in helping people practice weight-training exercises done typically at the gym.

7.2.2 Benefits of Physically Present Robots

A robot being physically located with the participant has many advantages. For

example, research has shown that a physically present robot led to greater compliance

[20] than a robot on a screen in a book moving task. Participants that interacted

with an in-person robot had higher learning gains than a robot that was on a video

[158] in a tutoring task. Studies have also shown that corrective feedback provided

by co-located robots is more effective in helping people learn a given task correctly

over video-displayed robots [258, 244].

This work studies if a physically present robot will also show benefits when acting

like an exercise coach. Specifically, we aim to investigate if the feedback provided

by a co-located robotic coach would impact the number of exercise mistakes people

would make as compared to people exercising with videos of a robot on a tablet.
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(a) (b)

Figure 7.2: (a) The co-located robot as part of the system. (b) The robot displayed on a
tablet screen

7.3 Methodology

In our study, participants interacted with a system in their homes over 14 days and

the participants were expected to do one coaching session every day. Each coaching

session took between 15-25 minutes, to complete five upper or lower body exercises.

We compared a co-located robot (Robot Condition) to the video of same robot dis-

played on a tablet screen (Tablet Condition).

We had three hypotheses based on prior work showing that physically present

robots can lead to higher learning gains [158], and maybe seen as more perceptive

and helpful [258], and can be more motivating [132] over a video-displayed robot.

Hypothesis 1: Participants will perform fewer exercise mistakes with the co-

located robot than with the video-displayed robot.

Hypothesis 2: Participants will perceive the co-located robot as smarter and more

helpful than the video-displayed robot.
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Figure 7.3: Participants were shown how to complete each exercise correctly via demon-
strations of an expert on the tablet.

Hypothesis 3: Participants will be more motivated to exercise with the co-located

robot than the video-displayed robot.

7.3.1 Conditions

We compared our exercise system with a physically present robot which we call the

Robot Condition, to a similar system which displays a video of the same robot on a

tablet, which we call the Tablet Condition. The video-displayed robot was recorded

using a high-resolution camera. The physically present robot and the video-displayed

robot appeared to be of similar size and performed the same exercise movements and

utterances across the two conditions. The robots in the two conditions are shown in

Figure 7.2.

7.3.2 Exercises

A professional coach helped design the exercise routine, including a good sequence

of exercises, the number of repetitions, appropriate break times and helped identify
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Figure 7.4: a) System for the Robot Condition was composed of a Keepon Robot, a
speaker, a RealSense camera, and a tablet interface. b) System for the Tablet Condition
was composed of a tablet interface, a speaker, and a RealSense camera

common mistakes. These are seen in Figure 7.5. The number of common mistakes

varied between the different exercises. We classified two mistakes for bicep curls front

raises and one mistake for shoulder presses, single-arm triceps extensions, squats,

and lunges. Calf raises, and single-leg raises had no possible mistakes because of

the simplicity of these exercises. Over a 14-day study period, the system guided

participants through upper-body exercises on odd days and lower-body exercises on

even days. An example of a demonstration of bicep curls given to participants via

video can be seen in Figure 7.3. For each exercise, the participants could choose to

use an appropriate dumbbell set provided weighing between 2-10 lbs or perform the

exercises without weights. The entire interaction was expected to take 15-25 minutes

each day.

7.3.3 System Design

We used the MyKeepon robot, a 4-DOF, 15cm tall yellow-colored desk robot derived

from a commercialized robot called the KeeponPro [142], as seen in Figure 7.2a. The

robot does not have limbs, but it can move up and down, side to side, or front and back
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during the exercise to give the participant the appropriate speed of each repetition.

The MyKeepon robot was chosen due to its low cost and small form factor, making it

an appropriate robot coach in people’s homes. Also, there might be benefits of having

a robot that is not perfectly human-like. When interacting with an anthropomorphic

robot, users might assume the robot can perfectly demonstrate an exercise, which it

often can’t due to joint constraints. Therefore, it might induce mistakes if the user

tries to replicate its movement.

To deploy the robotic system in participants’ homes in the Robot Condition, we

built a compact 16in x 12in junction box to house a mini-computer, a router, and

some support equipment as shown in Figure 7.4a. Outside the box, we had the

MyKeepon robot, a 12-inch tablet for the participant to interact with the robot, an

Intel RealSense camera [131] to track the participant’s pose while exercising, and an

external speaker. The setup for the participants in the Tablet Condition was identical

except that the video of the robot was shown on the tablet instead of the robot being

physically present as shown in Figure 7.4b. Additionally, in the Tablet Condition,

the same tablet was used to display the video of the human trainer demonstrating

the exercises and the video of the robot exercising. Notably, when the video of the

human trainer was displayed for demonstrating an exercise, the video-displayed robot

was not shown to the participants.

7.3.4 Procedure

After delivering the system to the participants’ home, they filled out a consent form

and a pre-study demographics questionnaire. The participants were asked to interact

with the system every day for 14 days. Each day a given participant experienced the

following interaction sequence:

1. The participant would turn on the system and start an application on the tablet.
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Day MistakesExercise Name
Bicep CurlsUpper Body Arm Swinging

Arm Half-Down

Front Raises Arm Swinging

Arm Above Shoulder

Shoulder Presses Elbows Out

Single-Arm
Tricep Extensions
(Right/Left)

Elbows Out

Knees Unstable

Reps 
12

12

12

10

15SquatsLower Body

Lunges Knees Unstable

Calf Raises

Single-Leg Raises
(Right/Left)

10

12

20s

Arm swings instead of moving 
only lower arm and keeping
upper arm attached to body
Movement doesn’t cover the full 
range of the arm’s motion
Arm swings to use momentum 
instead of controlled movement
Weights raised above the shoulder

Elbows point outward instead of 
keeping them at shoulder-width

Elbows point outward not upward, 
upper arm far away from head 

Knees move around or point inward
while going down
Struggles to keep balance, knee 
moves around while stepping back

Mistake Description Classifier
SVC

FNN

KNN

KNN

FNN

KNN

Validation Accuracy
83.7%

86.2%

92.3%

right: 91.6%
left: 87.8%

98.1%

73.5%

Figure 7.5: Participants completed upper body exercises on odd days and lower body
exercises on even days. Upper body days had several different mistakes that were classified
using our computer vision system. Whereas some lower body days had mistakes, and other
ones did not. Each exercise had an appropriate number of repetitions that were completed
according to the advice of professional coaches. Additionally we present which machine
learning classifier was used to classify each exercise, and their accuracy on the validation
set.

2. The robot would introduce itself on the first day and explain how the interaction

is expected to proceed briefly. Each subsequent day, the robot would begin with

a 1-2 minute long motivational greeting.

3. The robot would then guide the person to position themselves at an appropriate

distance from the camera with the help of prompts on the tablet.

4. The robot would guide the participant through two sets of exercises, each set

containing five exercises. For each of the exercises:

(a) A video of a human trainer performing the exercise was shown on the

tablet for 15 seconds.

(b) After the participant is prompted to begin exercising, the robot would

either move up and down, side to side, or front and back indicating the

primary body movement in a given exercise.
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Figure 7.6: an example of keypoints predicted by the pre-trained MoveNet [1] model on
the images captured by the Intel Real Sense Camera.

(c) The robot would then instruct the participant to perform the same exercise

following the pace of its movements.

(d) The robot would perform a short celebratory dance after the participant

completed an exercise, and that would be followed by a minute-long rest

period.

5. The robot would bid goodbye for the day and shut off the system automatically.

7.3.5 Mistake Correction

During the interaction, the images captured by the camera were used to track the

pose of the participant. We used MoveNet [1] based on TensorFlow.js’s [240] pose

detection API. An example of our system doing body tracking for squats can be seen

in Figure 7.6. Given a two-dimensional image, we run inference on a pre-trained
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MoveNet model to predict 17 keypoints on the human body with high accuracy in

real-time. These keypoints were used in two ways:

Evaluating the participant’s position with respect to the camera

To evaluate if the person’s positioning was valid, we observed whether all 17 keypoints

were present in the camera’s field of view with high confidence. If the participant’s

position was not valid, they were asked to adjust their position appropriately until it

was valid.

Evaluating the participant’s form while exercising

Participants were given corrective feedback on their form during most exercises. We

designed an algorithm that separated the participants’ movements into repetitions

and classified those repetitions according to the pre-defined mistakes in real-time.

Given the predicted keypoints, the algorithm used the following steps to identify the

appropriate feedback:

Preprocessing: We normalized the predicted keypoints to reduce the dependence

of the analysis on the position and person’s height with respect to the camera. First,

we translated each of the keypoints with respect to the center of the body, which

we defined to be the middle point of the quadrangle formed by the shoulder and hip

keypoints. Then, we divided the translated keypoint positions by the body’s torso

length (distance between the shoulder and hip keypoints) to account for different peo-

ple’s heights. Afterward, we used a Kalman filter [32] to smooth out jitters between

predicted keypoints for different frames of the video.

Repetition Detection: To identify when a person had completed a valid repe-

tition of an exercise, we calculated the minima and maxima for each movement by

analyzing in real-time the trajectory of a chosen keypoint whose value changed promi-

nently along the y-axis during a single repetition. We focused on the value of the
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wrist keypoint for all upper body exercises and the nose keypoint for all lower body

exercises. For example, in a correct bicep curl movement, the y-values of the wrist in

the trajectory must first strictly increase, then strictly decrease in the y-dimension.

Therefore, a bicep-curl repetition is considered valid when a minimum is followed by

a maximum and then another minimum.

Mistake Classification: After a valid repetition has been detected, we use ma-

chine learning classifiers to detect if it was performed correctly. We detect mistakes for

seven of the ten exercises. For each, we trained a different machine learning classifier.

We collected data from twelve people under the supervision of a trainer. We asked

each person to perform 10-15 repetitions of each exercise correctly and an additional

10-15 repetitions purposefully performing the pre-defined exercise mistakes. We ex-

perimented with three different classifiers for each exercise: support vector classifier

(SVC) [182], k-nearest neighbor time series classifier (KNN) with k = 5 [249], and a

feedforward neural network (FNN) [243]. The FNN consisted of two hidden layers,

with 64 and 32 neurons respectively, used a sliding window approach with a window

size of n = 15, and was trained using cross-entropy loss. The chosen classifier for each

exercise and its performance for leave-one-subject-out cross-validation on the training

data is reported in Figure 7.5.

Providing Feedback: If the participant performed a given exercise correctly for

at least three repetitions, the robot would provide a motivating utterance like “Keep

going! You are doing well! ”. However, if a specific exercise mistake is detected twice

or more per set, the robot would provide a corrective utterance to the participant.

An example utterance for the arm swinging mistake during biceps curls was “Don’t

swing your arms so much! Keep your upper arm attached to the sides of your body”.
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7.3.6 Measures

We collected both behavioral and questionnaire measures. Behavioral Measures:

Our behavioral measures included the percentage of days the participant exercised

with the robot and the percentage of exercises performed correctly. To measure

correct exercise execution, three people coded the first two days and the last two days

the system was in each person’s home. One person coded front raises and shoulder

presses; one coded right triceps and left triceps; one coded squats and lunges. Bicep

curls were not coded due to the difficulty of detecting swinging due to the low video

frame rate. The coders were blind to condition. All three coders coded all exercises

done by two participants for the first and the last two days of system deployment

to measure the coders’ agreement with each other. The three coders had moderate

agreement (Fleiss’ Kappa = 0.44, p < 0.001). There were several difficulties in coding,

including the variability in camera angles and positions. The percentage of correct

exercises is only relating to the six exercises that were coded.

Questionnaire Measures: Our questionnaire measures included a demographics

questionnaire asking age, gender; a RoSAS questionnaire [42], assessing robot’s per-

ceived warmth, competence, and discomfort; and a post-experiment survey that asked

participants to answer the following questions regarding their perceptions of the inter-

action using a 1-7 Likert responding format: How difficult did you find the workouts?

Do you feel an increase in strength and fitness after the last two weeks? How helpful

did you view the instructions the robot gave you for doing the exercises? How helpful

did you view the exercise corrections the robot gave you while doing the exercises?

How important were the workouts in your daily routine? Did the robot motivate you

to work out? Do you feel more motivated to continue exercising on a regular basis

after the last two weeks? Did you exercise because the robot made you feel guilty if

you did not?
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Figure 7.7: Participants in the robot condition on average performed the exercises signifi-
cantly more correctly than participants in the tablet condition.

7.3.7 Participants

There were 25 total participants in our study. 14 participants were in the robot

condition, of which five were male, eight were female, and one was non-binary. Their

average age was 21.91 years (SD=2.84). 11 participants were in the tablet condition,

of which four were male, and seven were female. Their average age was 23.56 years

(SD=5.85). There were no significant differences regarding robot familiarity (Robot

Condition: M=3.64, SD=1.96; Tablet Condition: M=3.33, SD=1.00; p=.340).

7.4 Results

We first present our behavioral results, followed by our post-experiment questionnaire

results.
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7.4.1 Behavioral Results

Participants in the robot condition completed on average 68.65% (SD = 11.41%) of

the coded exercises correctly, while participants in the tablet condition completed

57.46% (SD = 16.78) of the coded exercises correctly. These differences were sta-

tistically significant t(25) = 1.98, p = .03. On the first two days participants in the

robot condition completed more exercises correctly than the tablet condition (Robot

- M:71.25%, SD:12.82%; Tablet - M:56.90%, SD: 20.54%; t(25) = 2.14, p = .022).

Participants in the robot condition also completed more exercises correctly during

the last two days than the tablet condition (Robot - M:68.11%, SD:15.25%; Tablet -

M:52.90%, SD: 21.15%; t(25) = 2.05, p = .026). These results are presented in Figure

7.7.

On average, participants in the robot condition exercised 71.74% (SD = 19.79)

days out of the days the system was in their home. Participants in the tablet con-

ditions exercised on average 66.46% (SD = 23.48) days. These differences were not

significant using a t-test t(25) = 0.61, p = 0.273.

7.4.2 Post-Experiment Questionnaire

Regarding the RoSAS questionnaire, there were no significant differences in warmth

(Robot: M = 4.56, SD = 0.98; Tablet: M = 3.82, SD = 1.38; t(25) = 1.58, p =

0.064), competence (Robot: M = 4.73, SD = 1.26; Tablet: M = 3.98, SD =

1.36; t(25) = 1.41, p = 0.086), or discomfort (Robot: M = 1.71, SD = 0.51; Tablet:

M = 2.17, SD = 1.30; t(25) = −1.19, p = 0.123).

On the post-experiment questionnaire, participants in the robot condition found

the exercises less difficult (Robot: M = 2.43, SD = 1.02; Tablet: M = 3.27, SD =

1.42; p=0.048) and felt a larger fitness increase (Robot: M = 4.86, SD = 0.86;

Tablet: M = 3.91, SD = 1.51; p=0.030) than participants in the tablet condition.

There were no significant differences between conditions in how helpful they found the
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instructions (Robot: M = 5.57, SD = 1.40; Tablet: M = 4.73, SD = 1.79; p=0.099)

or the corrections (Robot: M = 3.93, SD = 1.90; Tablet: M = 3.64, SD = 1.86;

p=0.352) given by the robot.

Participants felt more motivated to workout in the robot condition than the tablet

conditions (Robot: M = 4.64, SD = 1.65; Tablet: M = 3.27, SD = 2.05; p=0.038),

but there were no significant differences in motivation to continue exercising post-

experiment (Robot: M = 5.57, SD = 1.40; Tablet: M = 4.73, SD = 1.79; p=0.099).

Participants in the robot condition reported seeing the workouts as more important

in their daily routine (Robot: M = 3.93, SD = 1.21; Tablet: M = 2.55, SD = 1.29;

p=0.006), and that they felt guiltier when they did not (Robot: M = 5.21, SD = 2.02;

Tablet: M = 2.73, SD = 1.49; p=0.039).

7.5 Discussion

We first discuss whether our results confirm our different hypotheses. In sequence we

discuss the impact of robot embodiment on exercising mistakes.

7.5.1 Hypotheses

Participants in the robot condition made fewer mistakes overall than participants in

the tablet condition. Furthermore, participants in the robot condition made fewer

mistakes in the first two days and the last two days than in the tablet condition. The

in-home systems were not deployed for a long-enough duration to see any reductions in

the number of mistakes people made in either condition over the study period. Both

conditions were consistent in the number of mistakes shown across the two weeks.

On the questionnaire, Robot Condition participants reported finding the workouts

less difficult and felt a higher strength and fitness increase. These results support

Hypothesis 1: Participants performed fewer exercise mistakes with the co-located robot
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than with the video-displayed robot.

There were no significant differences regarding competence on the ROSaS ques-

tionnaire. Participants also did not report any significant differences regarding the

helpfulness of the instructions or the exercise corrections. Therefore we do not believe

Hypothesis 2 to be true: Participants did not perceive the co-located robot as smarter

and more helpful than the video-displayed robot.

There were no significant differences between conditions regarding the percentage

of days the participants exercised with the robot. However, participants in the robot

condition did report feeling more motivated to work out, placed more importance on

exercising with the robot, and felt guiltier when they did not. Therefore we have

partial support for Hypothesis 3: Participants felt more motivated to exercise with

the co-located robot than the video-displayed robot.

7.5.2 Impact of Robot Co-Location on Exercising Mistakes

Having a co-located robot significantly reduced the number of mistakes people made

while exercising. On average, participants in the tablet condition performed 43%

of their exercises incorrectly. This means, if a person exercising with a co-located

robot performed two days of exercises (one lower-body day and one upper-body day)

and did two sets each day, they would have performed 61 more incorrect repetitions

as compared to a person in the tablet condition. Performing this large amount of

incorrect repetitions could lead to injuries and sub-optimal strength improvements.

This was confirmed by questionnaire results where participants in the tablet condition

found the exercises more difficult and felt lower fitness and strength increase than

participants in the robot condition.

There are multiple reasons why a person would have performed fewer mistakes

with the co-located robot. One possibility is that they felt more engaged and enter-

tained by the physically present robot and therefore were paying more attention to
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the exercise demonstrations and corrections. Literature also shows that physically

present robots increase learning gains [158], and therefore people might have learned

more from the robot’s corrections. Lastly, research shows that co-located robots cause

higher amounts of compliance [20]. Thus, participants in the robot condition could

have been more willing to receive corrections from the robot.

One potential confound of the study is that participants in the robot condition

had more time with the robot, as in the tablet condition, the robot was shortly

not visible during the exercising demonstrations. However, we do not believe this

significantly impacted the study, as the demonstrations were short and the robot was

mostly static during them. A second potential confound is that the movements of

the robot representing repetition speed might have been more visible in 3D rather

than in 2D on the tablet screen. However, this would have a minimal effect as most

exercise speed movements were from left to right or up and down which were equally

visible in both conditions.

7.6 Summary

This chapter demonstrated how a low-cost peer robot can create behavior change in

users during a two-week-long study. We investigated the effects of robot embodiment

on exercising mistakes and motivation to exercise. Our results show that people

make fewer exercising mistakes both at the beginning of the two weeks and at the

end of the two weeks when interacting with an in-person robot versus a robot on a

tablet screen. Participants also reported feeling more motivated to exercise with the

co-located robot.

This study highlights the benefits of having a low-cost co-located robot present

when exercising. Even if the robot cannot demonstrate the exercises themselves - due

to the lack of a humanoid form - the presence alone had people making fewer mistakes
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while exercising. Reducing errors increases exercise gains and reduces the potential

for injuries. Throughout this study, we have also demonstrated how a peer robot can

positively influence people’s daily habits and shows the promise for such systems in

the future.
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Chapter 8

Long-term In-Home Robots: Socially

Assistive Robotics for Children with

Autism Spectrum Disorder∗

This chapter presents our second long-term in-home deployment of a robotic sys-

tem. We created an intervention system for children with autism spectrum disorder

(ASD). Although numerous prior studies have investigated robots for children with

ASD, most of them have used short, isolated encounters in controlled laboratory set-

tings. Our study focused on a 1-month, home-based intervention for increasing social

communication skills of 12 children with ASD between 6 and 12 years old, using

an autonomous social robot. The children engaged in a triadic interaction with a

caregiver and the robot for 30 minutes every day to complete activities on emotional

storytelling, perspective-taking, and sequencing. The robot encouraged engagement,

adapted the difficulty of the activities to the child’s past performance, and modeled

positive social skills. The system maintained engagement over the 1-month deploy-
∗Parts of this chapter were originally published as: Brian Scassellati, Laura Boccanfuso, Chien-

Ming Huang, Marilena Mademtzi, Meiying Qin, Nicole Salomons, Pamela Ventola, Frederick Shic.
(2018). Improving Social Skills in Children with ASD Using a Long-Term, In-Home Social Robot.
In Science Robotics [229].
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ment, and children showed improvement on joint attention skills with adults when

not in the presence of the robot. These results were also consistent with caregiver

questionnaires; caregivers reported less prompting over time and overall increased

communication

8.1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by

social interaction and communication deficits and the presence of restricted, repetitive

patterns of behavior [77]. Children and adults with ASD often have difficulty in

responding to social overtures, recognizing the emotional states of others from visual

or auditory cues, and understanding the importance of gaze as a social cue [124].

Therapies are diverse, but are typically time-, resource- and labor-intensive, and can

put significant strain on families and caregivers [167].

Technology-based interventions for ASD, and robotics in particular, have been

seen as a potential approach for augmenting the efforts of families and clinicians to

provide on-demand, personalized, social skills training [227]. The robots envisioned

by these efforts are part of a new field called socially assistive robotics (SAR), which

aims to construct systems that support social and cognitive growth using social rather

than physical means [88, 169, 248]. These robots share characteristics of educational

robots, which attempt to convey information typically via a tutor-student relationship

[31], and rehabilitation robots, which provide structured physical therapy for deficits

such as stroke and paralysis [250].

Exploratory studies from dozens of research groups have shown that many indi-

viduals with ASD enjoy interacting with robots and in many cases even demonstrate

more appropriate social behaviors with robots than they do with peers or caregivers

[228, 134]. These initial exploratory studies focused on short interactions, spanning
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Figure 8.1: Robotic system. The robot provided personalized social skills training to
children with ASD over 30 days.

tens of minutes or less, under controlled laboratory or clinic conditions, often involv-

ing sample sizes of five children or fewer, and focused exclusively on robot-directed

behavior [248]. While these studies generated considerable excitement, they held lit-

tle clinical value. Results tended to fade with repeated exposures and may have been

the result of novelty, appropriate control conditions were rarely considered, and ex-

periments failed to demonstrate learning that generalized to human-directed actions

[72]. While a few studies did examine longer-term interactions [259], or demonstrated

improved adult-directed social behavior [135], none were able to demonstrate skill

acquisition that could be considered clinically meaningful that generalized beyond

the specific robot encounter.

We report here a demonstration of directly assessed improvements in social skills in

children with ASD after an in-home, 1-month intervention in which daily social skills

games were conducted by an autonomous, socially assistive robot (Figure 8.1). This

study differs from previous work in this domain in four important aspects. First, this

study used a fully autonomous robot system that operates for a 1-month deployment

duration with no adjustments made by clinical or research staff. Many socially assis-
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tive robots still operate under teleoperative control, because autonomous operation

for this duration is a substantial challenge in the robotics community even when static

program requirements are used throughout the deployment [169]. Second, unlike pre-

vious work where predefined protocols are followed explicitly [269], the system used

here must adapt to the strengths and weaknesses of the individual child by changing

the difficulty of individual tasks based on the child’s preferences and performance.

Because individuals with ASD have substantial individual differences in the type and

severity of their social skill deficits, the need to adapt to an individual child is essential

to enabling a positive learning outcome. Further, the interaction between the need

for autonomy and the need for adaptation creates additional technical challenges.

Third, this study provided therapy directly in homes with a fully autonomous robot.

Whereas clinical and laboratory spaces represent known environmental conditions

that can be controlled or explicitly planned for, the unconstrained home environment

requires more complex sensing and behavioral routines to deal with greater variation

in environmental conditions. Last, this study focused primarily on demonstrations

of clinically meaningful measures of performance using standard evaluation metrics

that are conducted by an independent assessor away from the robot. This represents

a challenging evaluation standard, because a child must not only learn a skill while

practicing with the robot but also be capable of generalizing that skill to interactions

with an adult in an environment that differs from the practice games used by the

robot.

8.2 Methodology

Our robot-assisted intervention included a 30-minute session everyday for 30 days and

involved triadic interactions among the social robot, the child, and the caregiver, pro-

viding opportunities for the child to interact and share experience with the caregiver

158



Figure 8.2: A typical interaction between the robot, the child, and the caregiver
during our deployment. Our robot system was design to engage and facilitate interac-
tions between the child and the caregiver, therefore providing opportunities for the child to
practice social skills in a fun, natural way.

(Figure 8.2). The robot modeled social gaze behaviors such as making eye contact

(Figure 8.3) and sharing attention throughout the sessions, and provided feedback

to and guided the participants in six interactive games. The six games targeted dif-

ferent social skills including social and emotional understanding, perspective taking,

and ordering and sequencing (Figure 8.6). Each session began with the robot telling a

daily story to engage the participants. The session continued with three games, which

varied from day to day, and concluded with a caregiver survey, where the caregivers

rated their observations of the child’s social communication skills.

8.2.1 Objectives and study design

The objectives of this study were to investigate how a social robot may deliver be-

havioral intervention to children with ASD both autonomously and effectively out-

side clinical settings, as well as how such robot-assisted intervention can improve these

children’s social communicative abilities. This study was modeled after single-subject

withdrawal (ABA) designs [41, 241]. This design included pretest (A), test (B), and
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Figure 8.3: Robot-initiated joint attention. The robot models appropriate social
gaze behavior by demonstrating context-contingent gaze and facilitates mutual gaze and
experience sharing between the child and the caregiver. When the child is engaged with
the robot (A), the robot directs the child’s attention to relevant task content on the screen
(B). As the child’s attention shifts to the robot-directed focus on the screen, the robot then
attempts to redirect gaze to the caregiver (C) in the hope of redirecting the child’s visual
attention to the caregiver (D). (These demonstration images were recreated in the laboratory
to show both robot and child behavior, as this perspective was not recorded by the deployed
system.)

posttest (A) phases, each phase lasting for about 30 days. The pretest phase served as

a comparison baseline, capturing possible maturation of social communication abili-

ties and the effectiveness of any other therapies or interventions that the family may

have been using. The test phase involved the in-home deployment of a socially assis-

tive robot system that engaged the participating child in our intervention program,

which was based on intervention activities commonly used in clinical settings. The

posttest phase sought to explore whether the benefits provided by our robot-assisted

intervention would be sustained after the removal of the system. This study design

is suitable for investigating the effects of a single intervention and for when there

are wide variances in participants’ characteristics and responses to the intervention.

Informed consent from families and assent from minors were obtained in all cases, as
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approved by the Yale University Institutional Review Board.

8.2.2 Assessment

To assess a child’s ability to respond to joint attention bids in their familiar envi-

ronments, we employed the validated, naturalistic joint attention assessment of Bean

and Eigsti [27]. This assessment includes six naturalistic prompts that can be deliv-

ered at any point during an interaction with the child and is designed particularly

for school-age children and adolescents. The six prompts examine different aspects of

joint attention, including gaze following, response to name and a greeting opportu-

nity, and recognition of the other person’s current interest. This assessment of joint

attention was administered four times throughout the study while a researcher was

interacting with a child in play-based activities.

To understand whether or not a child’s behaviors of social communication changed

over time outside intervention sessions, we asked the child’s caregiver to fill out a

survey regarding his/her own observations of the child’s communicative behaviors at

the end of each daily session. The survey questions sought to measure the broader

influence of our robot-assisted intervention outside of intervention sessions, focusing

on the child’s ability to make eye contact with, initiate communication with, and

respond to communication bids from the caregiver and others.

8.2.3 Robot-Assisted Intervention System

Our intervention system consisted of a social robot, a 24-inch touch screen, two ex-

ternal RGB cameras, and two computers (Figure 8.4). The social robot used was an

early prototype of the Jibo robot [2]. The Jibo robot is a 12-inch table-top robot

with three degrees of freedom, capable of turning its head and body around 360 de-

grees. The robot can exhibit expressive behaviors through body movements, a ring of

color-changing LED lights, and a pair of animated eyes (e.g., blinking and dilation).
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Figure 8.4: Robot-assisted intervention system. Our system consists of a social robot,
touchscreen monitor, and two RGB cameras. The system supports triadic interactions be-
tween the robot, the child, and the caregiver. Software running on the perception computer
uses an elevated camera to track both the child’s and caregiver’s attentional foci, while the
other camera records the intervention session (Fig. 2). The main computer controls the
flow of the intervention as well as the robot’s behavior to ensure presentation of coherent,
meaningful intervention.

These capabilities allow the robot to make eye contact with the participants and sig-

nal shared attention. Additionally, the robot can deliver information verbally to the

participants through its internal speakers. The 24-inch touch screen presented educa-

tional content and served as a shared medium where the robot and the participants

could all interact with and reference to. One of the cameras tracked both the child’s

and the caregiver’s attentional foci as approximated by head orientations, while the

other camera recorded the intervention session.

Our software system (Figure 8.5), which involved attention tracking and interven-

tion presentation, was implemented in the Robot Operating System (ROS) framework

[196]. The attention tracking subsystem, running on one of the computers, continu-

ously approximated users’ attentional targets in the environment. Using RGB camera
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Figure 8.5: Diagram of Software Components. Our software system consists of several
components responsible for attention tracking of the participants, robot behavior control,
and intervention presentation. These components together create rich, engaging interactions
for our robot-assisted autism therapy. These components operate within the ROS frame-
work.

stream input, the system estimated and tracked head poses and orientations using

Constrained-Local-Model (CLM) face tracking and landmark detection algorithms

[21], and approximated attentional targets according to the estimated head poses

and orientations. The intervention presentation subsystem, running on the other

computer, ensured smooth delivery of curricular content. It controlled the robot’s

behaviors, scheduled intervention content, and adjusted difficulty levels of the social

skills games.

In our implementation, we manually prepared interaction scripts that specified

predefined behavioral animations for the robot, daily opening stories, and verbal

encouragement and feedback to the participants. When the robot was not displaying

pre-specified behaviors in a prepared interaction script, it maintained eye contact

with the child to show engagement. The robot also shared attention with the child

by looking toward the visual content on the screen from time to time throughout
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each session. These behaviors of making eye contact and sharing visual attention

were meant to model social gaze behaviors for the child.

8.2.4 Interactive Games

In addition to targeting the core social skill of joint attention, we designed and de-

veloped six interactive games that provide opportunities for the child to practice

social and emotional understanding, perspective taking, and ordering and sequenc-

ing while interacting with the robot and the caregiver (Figure 8.6). The six games

are an emotional understanding game (“Story”), two barrier games that facilitate

perspective taking (“House” and “Rocket”), and three ordering and sequencing games

(“Train,” “Spaceship,” and “Traveler”). Each game involves multiple levels of difficulty,

ranging from 1-4 to 1-8, except for “Spaceship” and “Traveler” which had only one

difficulty setting. Depending on the child’s performance in the game, the system ad-

justs the difficulty level accordingly. As inspired by the challenge point theory [106],

our personalization module was focused on delivering learning contents with appro-

priate levels of difficulty to increase learning gains while reducing frustration. The

personalization module kept track of the child’s performance in game activities, pro-

viding approximate measures of their abilities of social and emotional understanding,

perspective-taking, and ordering and sequencing. Using these performance measures,

the module followed a simple decision tree mechanism to decide the difficulty level of

the game for the next round of interaction. In our implementation, we used 25% and

75% as criteria for decreasing and increasing a difficulty level, respectively. Similar

approaches of discrete adaptation have been used in robot-child tutoring applications

[199, 200, 202].
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Figure 8.6: Screenshots of social skills games. A set of interactive games were de-
veloped to allow children with ASD to practice social skills through play. The games were
designed to support interactions between the caregiver and the child as well as between the
robot and the child. The games targeted three social skills, including social and emotional
understanding (A) (“Story”), perspective taking (B) (“Rocket”), and ordering and sequencing
(C) (“Train”)

Social and emotional understanding

The Story game targets the skills of social and emotional understanding. A typical

example of this game is as follows. The robot provides a social situation, displayed

as cartoon-like images on the touchscreen, and asks the child to choose what he/she

thinks the story character is feeling at different points in the story by selecting one

of multiple options displayed on the screen. As the child progresses, the social sto-

ries become longer and more complex. To succeed in this game, the child needs to

understand the social situations and emotional states of the characters.

Perspective taking

Two virtual barrier games, Rocket and House, target the ability of taking the other

person’s perspective on a joint task. Modeled after physical barrier games commonly

used in clinical interventions, these games provide spatial information to one of either

the child or caregiver and ask them to relay that information to the other verbally.

In both games, the robot facilitates interactions between the child and their caregiver

and acts as a game moderator by keeping time and providing motivational support.

In Rocket, the child and the caregiver take turns building a rocket ship. The first

player builds a rocket by dragging modular component parts onto a rocket template

while the second player looks away. The screen is then reset to hide this design and
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the first player must explain to the second player how to recreate the design. If the

two designs are identical, the players have succeeded and win the game. Similarly,

in House, the child and the robot take turns in the roles of builder and guesser. The

builder builds a virtual house that comprises of various designs and materials while

the guesser looks away. The game then shows six possible designs, one of which

was constructed by the builder. The guesser then asks questions about whether the

builder’s house has a particular design or material in order to guess which of the

shown designs is the builder’s. These games provide opportunities for the child not

only to understand that the caregiver or the robot has a different perspective but also

to practice turn taking and verbal communication.

Ordering and sequencing

The Train sequencing game targets the skills of ordering and sequencing. In this game,

the robot instructs the child to build a train by dragging parts onto a template. To

succeed in this game, the child needs to follow the robot’s instructions carefully in

sequence. Two additional games, Spaceship and Traveler, involve various tasks such

as sorting objects in order. In an ordering task, the child needs to place objects in

the right order to complete the task successfully.

8.2.5 Participants Information

Fourteen families with a child with ASD enrolled in this study. Two families withdrew,

one due to unrelated health problems of a caregiver and one due to technical difficul-

ties with the robot installation. Among the 12 families who finished the study, 5 of

the children with ASD were females and 7 were males. These participants’ age ranged

from 6 years to 12 years old (M = 9.02, SD = 1.41). All had nonverbal IQ scores ≥

70 as determined by the Differential Ability Scales [79] (M = 94.17, SD = 20.06). Di-

agnosis of ASD was based on standard-in-field clinical best-estimate (CBE) diagnosis
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by licensed clinical psychologists and/or speech-language pathologists with extensive

experience in autism diagnosis. Measures used in the diagnostic process included the

Autism Diagnostic Interview - Revised (ADI–R; [164]) caregiver interview and the

Autism Diagnostic Observation Schedule (ADOS; [163]) semi-structured play obser-

vation.Scores on the ADI-R and the ADOS reflect the presence of autism symptoms,

with higher scores reflecting greater autism severity. The ADI-R is broken down into

4 domains: reciprocal social interactions (M = 17.64, SD = 6.98; cutoff for ASD =

10); communication (M = 16.36, SD = 4.74; cutoff for ASD = 8); restricted, repet-

itive, and stereotyped behaviors (M = 6.00, SD = 1.41; cutoff for ASD = 3); and

history of early abnormal development (M = 3.44, SD = .73; cutoff =1). The ADOS

yields outputs including a calibrated severity score (M = 7.08, SD = 2.02; scale from

1 to 10, cutoff for ASD = 4). All participants, in addition to receiving a CBE of ASD,

scored above the ASD-cutoff on either the ADOS or the ADI-R.

All participants were recruited from a large database of children with ASD who

have either participated in previous research studies with our laboratory or expressed

interest in participation. Eligible families were contacted via email to inquire about

their interest in participating. Given the scope of the project, the first 12 eligible fam-

ilies were enrolled. Inclusionary criteria were (i) age between 4 and 12 years old, (ii)

good medical health, (iii) cooperative with testing, (iv) English is a language spoken

in the family, and (v) having been diagnosed with ASD and meet the characterization

cutoffs described above. Exclusionary criteria were (i) a fragile health status and (ii)

suspected or diagnosed hearing loss or visual impairment or diagnosed neurological

abnormality significantly affecting visual or auditory acuity.

All children in the study were enrolled in school programming full time and re-

ceived intensive special education services as consistent with the state standards for

educating children with ASD. Because the scope and form of these services and ther-

apies varied substantially across participants based not only on their individual needs
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but also on family preferences and local resource availability, we used a single-subject

withdrawal design (ABA) that allowed each child to serve as their own control (see

Materials and Methods for details). Caregivers were instructed to maintain consistent

intervention services during their participation in the study.

8.3 Results

In this section, we first present our results regarding the improvements the children

demonstrated in the interactive games and their engagement results. In sequence, we

give our joint attention results. Last, we provide our results from the daily caregiver

surveys.

8.3.1 Engagement and skills performance

A total of 127 hours of data was collected from the interaction between the 12 chil-

dren, the robot, and their caregivers. These data included video and audio data,

head orientation of both child and caregiver, interaction logs containing the robot

utterances and actions, game logs for the tablet-based games, and caregiver survey

responses. Because our primary study design was focused on showing the efficacy of

this intervention, we focus in this chapter on the analysis of child social performance

as measured by game performance, caregiver reports, and clinical measures.

The children combined initiated a total of 653 games with the robot, which resulted

in 540 complete games for analysis. (Games that were shortened because of the end of

time in the session were not considered for analysis.) On average, each child performed

23.25 sessions with the robot across the month, and each session lasted, on average,

for 27 min and 42 s. After a month of interacting with the robot on a daily basis,

the robot was able to maintain engagement with the child during the interactions:

Children played with the robot for an average of 27 min during the first five sessions

168



Figure 8.7: Proportion of maximum level achieved as a function of game session.
Curves were modeled in a binomial generalized linear mixed model with session and game
as fixed and random effects. 95% confidence intervals are shown. Children advanced in the
level of each game when they achieved over 75% of correct answers, and regressed a level
when giving less than 25% correct answers. When achieving between 25% and 75% of the
correct answers, the children would remain at the same level.

and an average of 25 min during the last five sessions.

The robot adapted the difficulty of each individual game based on the child’s

history of performance in each skill set. On the emotion understanding game “Story”,

86% of children reached the most difficult level of the game by the last session. On

the perspective taking games, 58% and 92% of children reached the highest level on

“Rocket” and “House” respectively. On the sequencing and ordering game “Train”,

67% of the children reached the highest level. The “Spaceship” and “Traveler” games

used only a single difficulty level and are excluded from this analysis.

Binomial generalized linear mixed models (Figure 8.7) were used to model the

level attained by children as a proportion of the maximum possible level as a function

of the specific game and session number. Game and session number were included as
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Figure 8.8: Result of joint attention assessment. Probe Scores for the child at four
different time points: 30 days before the robot intervention started, on the start day of
the robot intervention, on the last day of the robot intervention, and 30 days after the end
of the robot intervention. There was a significant increase in joint attention scores when
comparing before the robot intervention and after it.

both fixed and random effects. Likelihood ratio tests on the resultant model indicated

significant main effects of game, session, and their interaction (all p < 0.001). In terms

of overall performance (i.e., intercept) and gains over sessions (i.e., slope), the House

game was easier than other games [intercept, slope: p = 0.001, p = 0.030 (versus

Story); p < 0.001, p < 0.001 (versus Rocket); p = 0.014, p = 0.030 (versus Train)].

8.3.2 Joint Attention

Performance on the joint attention probe was measured and recorded at four time

points: (i) T0, 30 days before intervention began; (ii) T1, on the first day of robot

intervention; (iii) T2, on the last day of intervention; and (iv) T3, 30 days after the end

of the intervention. The difference between time points T0 and T1 was computed to

measure change in joint attention during a period of time with no robot intervention

and is denoted as the pretest. The difference between time points T1 and T2 was
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calculated to measure joint attention changes resulting from the robot-administered

intervention and is denoted as the test phase. Last, the difference between time points

T1 and T3 was evaluated to measure the stability of any changes recorded during the

robot-administered intervention and is denoted as the posttest.

Two participants were excluded for lack of data at one or more time points. An-

other participant was excluded for being out of the age range in which the task was

normed (7 to 12 years of age). Group means were as follows: for T0, M = 16.89

and SD = 4.46; for T1, M = 15.67 and SD = 3.81; for T2, M = 20.89 and

SD = 3.79; and for T3, M = 18.22 and SD = 5.02. A linear mixed model with

compound symmetry repeated covariance effects indicated a significant time point

effect [F (3, 24) = 5.03, p = 0.008]. Planned comparisons showed that, although no

pretest or posttest effect was observed (T1 − T0, p = 0.395; T3 − T1, p = 0.083), joint

attention improvements occurred in the test phase (T2 − T1, p = 0.001; Figure 8.8).

Test phase changes were negatively associated with nonverbal reasoning performance

on the DAS [r(9) = −0.750, p = 0.020]. These results are consistent with greater joint

attention gains made by children with lower nonverbal ability. Exploration of rela-

tionships between baseline nonverbal ability and average baseline (T0 and T1) joint at-

tention performance indicated a strong positive relationship [r(9) = 0.831, p = 0.005],

suggesting that children with lower nonverbal reasoning skills had more capacity to

grow in terms of joint attention skills. Joint attention performance at T1 was also

positively Pearson’s correlated with modeled participant overall performance on the

House [r(9) = 0.702, p = 0.035] and Story [r(9) = 0.705, p = 0.034] games, suggesting

shared variance in performance.

8.3.3 Caregivers Survey

Caregivers completed an on-screen survey immediately after each day’s intervention

session during the test phase. In all but one family, these interactions were conducted
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Figure 8.9: Result of caregiver survey. Caregivers reported increased eye contact,
increased initiation of communication, and increased response to communication bids with
them (A) and with other people (B). Based on comparisons of ratings from the last day of
the robot intervention (T2) to the first day of the intervention (T1), these results showed
that caregivers were able to observe improved communication abilities of the children beyond
our robot-assisted intervention sessions over the period of 30 days.

with the same caregiver (one father, one grandmother, and nine mothers).

The survey consisted of five-point Likert scale ratings. The questions were grouped

into two categories: questions on how children interacted with caregivers during the

past 24 hours, parallel questions about interactions with other people, and one final

question regarding engagement. We compared the ratings scored by the caregivers

on the first day and the last day of interventions with paired sample t tests. All 12

caregivers’ responses were included in the analysis

Caregivers reported increased social skill performance between their child and

themselves, including more eye contact [t(11) = −2.462, p = 0.03] with them on

the last day of the intervention (M = 3.75, SD = 1.06) compared with the first

day (M = 3.00, SD = 0.00), more attempts to initiate communication [t(11) =

−− 2.930, p = 0.014] with them on the last day (M = 4.08, SD = 1.00) than on the

first day (M = 3.17, SD = 0.39), and more frequent responses to communication bids

from the caregiver [t(11) = −3.000, p = 0.012] on the last day (M = 3.83, SD = 0.94)

than on the first day (M = 3.08, SD = 0.29). These results can be seen in Figure

8.9A.

Caregivers also reported increased social skill performance between their child
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and other people, including more eye contact [t(11) = −3.447, p = 0.005] with other

people on the last day of the intervention (M = 3.83, SD = 0.83) when compared

with the first day (M = 3.08, SD = 0.29), more attempts to initiate communication

[t(11) = −3.527, p = 0.005] with other people on the last day (M = 3.91, SD =

0.90) than on the first day (M = 3.00, SD = 0.00), and more frequent responses to

communication bids from other people [t(11) = −3.458, p = 0.005] on the last day

(M = 3.75, SD = 0.75) than on the first day (M = 2.91, SD = 0.29). These results

can be seen in Figure 8.9B.

Last, caregivers were asked daily to rate how easy it was to engage their child

with the robot therapy session. To confirm that the continued length of engagement

was not solely a result of compliance to the protocol instruction, we modeled the

engagement rating with a cumulative link mixed model fitted with an adaptive Gauss-

Hermite quadrature approximation as a function of day with random participant

effects. This model revealed no significant effect of day on engagement (p = 0.822).

This suggests that participant engagement did not change in a systematic fashion

throughout the study.

8.4 Discussion

The potential benefit of a socially assistive robot lies in the ability to provide personal-

ized, on-demand, and structured cognitive or social support to augment the efforts of

clinicians, teachers, and families. In the ideal case, robots could provide personalized

support, whenever and wherever needed, and could be capable of producing lasting

enhancements in social and communicative skills not only in human-robot interac-

tions but also in human-human interactions [227]. The system presented here takes

steps in this direction beyond the current state of the art, but also does not yet live

up to all of these grand visions. We focus our discussion around the points in which
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the current work makes substantial improvements and also describe the limitations

and areas requiring continued focus as this field progresses.

8.4.1 Autonomous interaction

Our deployed robots operated autonomously without any experimenter intervention

for a total of 127 hours over 279 sessions. Caregivers contacted our 24/7 help line

a total of eight times: six times for confirmation that they were using the system

correctly, which required no action from our team, and two times for a technical issue

that was prompted by the sudden disappearance of an online software library, which

required a software update and was resolved quickly. Robot assisted autism interven-

tion in previous studies was mostly short episodic interactions that rarely lasted more

than 30 min [34, 135] and usually required experimenters to supervise robot-directed

actions (although see [143] and [212] for exceptions). Moving from teleoperated to

autonomous interactions presents substantial challenges in computational perception

and robot control to create meaningful therapeutic training. Although challenging,

increasing robot autonomy in assisted therapy has potential to reduce therapists’

cognitive load and ensures consistent therapy for the children with autism (21). Our

system demonstrated the possibility and potential of autonomous robot interventions

for autism, which would enable the implementation and application of robot-assisted

intervention at a large scale in various environments, accelerating us toward the goal

of achieving clinical significance.

8.4.2 Adaptive intervention

Sustaining engagement with participants is key to effective interventions. Repetitive

and unchallenging tasks are likely to bore participants, who then would disengage from

the intervention and miss opportunities to practice and improve on targeted skills.

As informed by the challenge point theory [106], optimal learning occurs when the
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task is neither too easy nor too difficult. Our system sought to keep the participating

children challenged and adapted the difficulty level of practice games to the children’s

skill performances as measured in the games. This adaptation allowed the children

to practice and improve the target skills at their own pace. Our results confirmed

that the children continued to engage with our system throughout the test phase. We

speculate that such engagement with our robot-assisted intervention was crucial to

the observed improvements in the children’s social skills.

8.4.3 Deployment in uncontrolled environments

Deployment of robotic systems outside controlled, laboratory settings is challeng-

ing. Our deployment needed to address various environmental constraints and meet

different human considerations. For example, the setup location of our system was

constrained by electrical power, network connectivity, and family preferences. For

instance, one child was particularly sensitive to light; therefore, our system had to be

set up in a dimmed room, which created additional challenges for our perception sys-

tem. Furthermore, our deployment needed to accommodate other family members’

needs, especially the participating child’s siblings. We provided robotic toys to the

siblings, so that they would not interrupt daily intervention sessions. We also made

the operation of the system user-friendly by automating startup procedures and by

providing a simple checklist to ensure that caregivers would feel comfortable operating

the systems on their own on a daily basis. These challenges, constraints, and con-

siderations are unique to field deployment of robotic systems aiming to interact with

non-specialist users every day over a long period of time. Yet, meeting these require-

ments are a practical necessity for the integration of robots into our environments to

provide daily support.
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8.4.4 Contributions of the social robot

Although the focus of this study is not to understand the specific influence that any

of the individual components of our system (including the robot, tablet-based games,

perception system, etc.) have on our robot-mediated intervention, we believe that the

social robot contributed positively to the observed behavior based on three converging

lines of research. First, in triadic interactions between a child, an adult, and a third

interaction partner, children with ASD demonstrate more social behavior toward the

adult when the third interaction partner is a robot rather than a tablet-based game

or another adult [135]. Second, the embodiment of the robot provides necessary affor-

dance to convey gaze cues that are central to our behavioral intervention. Known as

the Mona Lisa gaze effect [178], agents on a flat screen are limited in accurate commu-

nication of gaze directionality. Third, in tutoring interactions with both adults and

typically developing children, physically embodied robots increase learning outcomes

[158, 199], increase compliance to instructions [19], and increase user engagement dur-

ing the interaction [195, 191] over screen-based agents. Nonetheless, we acknowledge

that, in this study, the impact of the robot (or any other system component) cannot

be measured independently. We present this as a limitation of this study and an area

for future work.

8.4.5 Improvements in caregiver-reported social behavior

Over the month of the robot-based intervention, caregivers reported improved social

behavior directed both toward themselves and toward others in areas including eye

contact, initiation of communication, and responses to communication. The change in

reported behavior on the caregiver survey could be, in part, related to the caregiver

attending more to the child’s social communication skills. It is unlikely that the

change is due solely to this increased focus given the nature of the sample; caregivers

of children with ASD provide ongoing support to their children in this area and
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generally monitor social communication development

8.4.6 Improvements in clinical measures

Our results showed improvements of children’s joint attention in the absence of the

robot, indicating that the children were able to demonstrate greater skill in the con-

text of human interactions. These results advanced and differed significantly from

prior research in robot-assisted autism therapy, where behavioral improvements in

children with ASD were mostly documented in the context of robot-directed inter-

actions [143]. Successful demonstration of improvement in human interactions is the

ultimate goal of robot-assisted intervention, evolving beyond the mediation and scaf-

folds that assistive robots offer during interactions with other people. Our results

provide evidence illustrating possible transferable social skills beyond robot-mediated

interactions in naturalistic human interactions.

The present results have multiple clinical implications. Joint attention is the criti-

cal foundation for many higher-level social communication skills, including reciprocal

exchanges and perspective-taking. Therefore, with improvements in joint attention

following this intervention, in time, we may see downstream effects on other higher-

level skills. In fact, we did see broader gains in the context of the current study, even

in this 1-month intervention. Future work with larger and longer trials will clarify

this promising, yet preliminary, result. These results give promise to the potential for

robot intervention studies in group treatment to facilitate interactions between peers

and improve both foundational and high-level social skills in this context.

The specific developmental growth seen in the children during their participation

in this study is likely due to our system, as opposed to other treatments they received,

as the children did not show the same magnitude of gains during the pretest phase, just

the test phase, and the children’s concomitant treatments remained stable throughout

their participation in the study. That said, from a clinical intervention perspective,
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our study is an open-label pilot. Future studies extending the duration of the study

and with randomization with appropriate control groups are necessary to verify the

gains we have observed and attributed to our intervention. Also, future randomized

controlled studies will better control for practice effects of the tasks.

Although our results provide evidence of benefits and the possibility of using

robot-assisted autism therapy for clinical intervention, limitations of our system mo-

tivate future research on the development of effective robot-based interventions. In

particular, our system relied on prespecified interaction content, which included daily

opening stories and a fixed set of behavioral responses. This approach was appropri-

ate for our target scenarios, but it would not scale well for interventions that span a

longer period of time (e.g., over 30 min per day and over 30 days). How to generate

coherent, engaging interaction content automatically is a core challenge for realizing

a long-term, autonomous robot-assisted intervention or human-robot interaction in

general. Second, our intervention personalization was focused on adjusting difficulty

levels of the practice games, analogous to personalization of educational contents in

intelligent tutoring systems (ITS). Our personalization algorithm was simplistic, al-

though it matched the complexity of personalization algorithms successfully used to

demonstrate learning gains in other ITS systems (e.g., [157]). More complex and

detailed modeling of a child’s capabilities would likely provide a more substantial

impact. Furthermore, to effectively support the wide variety of behavioral character-

istics of individuals with ASD, adaptive models that prioritize and personalize needs

and preferences in addition to skill performance are necessary to maximize the po-

tential of robot-assisted interventions. Third, our system was designed to provide

targeted interventions, involving interactions between the robot, child, and caregiver

for about 30 min each day. Although this design provided structures for targeted

intervention, it missed naturalistic intervention opportunities outside of the intended

sessions. These three limitations necessitate smart, adaptive systems that can provide
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personalized, engaging interventions to children with ASD in a variety of situations

over long periods of time.

8.4.7 Long-term In-Home Deployments

Substantial effort was placed into making the system robust and easy to use. Be-

fore the deployment described in this chapter, we conducted multiple pilot tests of

the system and the installation process in the homes of the research team. We at-

tempted to make the system easy for families to use by limiting the startup required

to four button presses, providing in-home training on the first day, and continuous

system state logging to allow for most troubleshooting to require only powering the

system off and then on again with no loss of data. Multiple efforts were made to

minimize disruptions to normal operations after installation: Backup power supplies

in the system base guarded against short power failures; hardware components (in-

cluding the cameras, robots, and tablets) were secured in place to the table; and a

troubleshooting sheet and a 24/7 technical support line (via email and phone) were

provided to participating families. Last, the system limited play use to conform to

the study design; the robot would play games only for one session each day and only

for a maximum of 30 min.

8.5 Summary

In this chapter, we presented a novel in-home long-term autonomous system where

a socially assistive robot tutored children with ASD (Autism Spectrum Disorder).

Children and their caregivers played daily games with the robot that trained social,

perspective-taking, and sequencing skills. The system modeled user skills and adapted

to the strengths and weaknesses of the individual child by changing the difficulty of

individual tasks based on the child’s performance. Children improved their skills in
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the games throughout the one month the robot was in their home. This was the first

study that showed that robots could significantly improve the social skills of children

with ASD using clinically verified measures. Furthermore, parents reported seeing

significant improvements in their children’s social skills due to the system’s training.

These last two chapters presented demonstrations of how robots can positively

influence people in their homes. They were each several weeks long, and were able to

keep user’s engaged during the deployment. By creating personalized models of users’

skills, the robotic systems could personalize their actions to maximize the benefits for

the user. In the next chapter, we further discuss common themes within this thesis.

We also present several open challenges that are still present when bringing robotic

systems into the wild.
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Chapter 9

Discussion

In this dissertation, we sought to enhance current robotic systems so they could tutor

not only for a few sessions but also for the long term. We also analyzed several needed

steps so that robots could teach in the wild instead of only in laboratory settings.

We conducted two studies that examined how robots could tutor and create user

skill models for more complex tasks. Next, we studied how different robot and setup

characteristics influenced the interactions, focusing on robot roles and how robots

influence people. Lastly, we presented two long-term in-home studies where a robot

provided autonomous and personalized help to users.

In this chapter, we first review our main contributions. Next, we discuss several

common themes. Lastly, we discuss open areas of research to be explored in future

work.

9.1 Contributions

The main contributions of this thesis are:

• An algorithm that creates user skill models during complex tasks, called C-

BKT. We demonstrate how our algorithm is more effective than baselines in
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both simulations and during an electronic circuit building task with human

participants.

• A novel task selection mechanism (BKT-POMDP) that considers which task

to assign a user when multiple skills are present. We show that our policy

performs better than baselines in quickly creating a user skill model in both

simulations and with participants. We also demonstrate in simulation that our

policy selects better tasks to teach a user than baselines and performs nearly

on par with the optimal algorithm.

• A controlled study comparing robot roles when tutoring adults. We compared

how much a person learned and their views of robots when the robot took on

the role of a traditional teacher and when they took on the role of a peer. We

demonstrated that a peer robot is viewed more favorably (friendlier, smarter,

and more respectful) than the instructor robot. Furthermore, participants with

low prior domain knowledge learned significantly more from the peer robot

than the instructor robot. This study highlights the importance of more robots

taking on the role of peers rather than instructors when tutoring adults.

• The first study showing that a group of robots can cause humans to conform to

them. We also show that robots cause two types of conformity: normative and

informational conformity. In normative conformity, participants switched their

answers to match the robots because they felt peer pressure. In informational

conformity, participants believed the robots’ answers to be correct and therefore

changed to match them.

• We built a robotic system that provided personalized feedback to users on their

exercise form in their homes for two weeks. We show that an embodied robot

caused participants to display significantly fewer exercising mistakes than a

video of the robot on a tablet screen. We also show that participants interacting
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with the physically present robot reported a higher fitness increase and were

more motivated to exercise than participants interacting with the robot’s video

on the tablet.

• A long-term, in-home study that analyzed the effect of a robot that provided

social skills training for children with Autism Spectrum Disorder (ASD). This

study was the first to demonstrate clinically verified improvements in social

skills in children with ASD. We also show that the robot maintained engagement

throughout the month-long study.

9.2 Common Themes

In this section we will discuss several common themes and contributions that span

multiple chapters throughout the thesis.

9.2.1 The importance of modeling ill-defined tasks

We reviewed prior work on intelligent tutoring systems and on robotic tutoring sys-

tems in Chapter 2. Most previous studies focused on tutoring users in domains with

a single correct answer, such as mathematics, or where multiple-choice questions were

asked. Most robotic applications have also concentrated their user modeling on more

simple skills.

Many opportunities arise when tutoring over multiple sessions rather than a single

session. Additional time allows the robot to tutor more complex skills. For example,

a robot, when provided sufficient sessions, could teach a person how to play the

piano, play golf, or program a computer. However, there are several limitations in

user modeling algorithms. These have lacked the ability to model multiple skills per

task and the ability to create a model during task execution. In Chapters 3 and 4,

we have tackled some of these challenges to allow a robotic system to model a user
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during ill-defined tasks that often appear in dynamic environments.

During this thesis, we have modeled several ill-defined domains. We have focused

on creating computer vision systems that could correctly understand what the user

was doing throughout each task. Computer vision systems do not give perfect obser-

vations; therefore, we accounted for the uncertainty they create. Below we describe

some of the tasks we modeled throughout the thesis.

• Snap circuits - In Chapters 3, 4, and 5, participants completed electronic

circuit tasks. There are multiple ways to build each circuit, and the robot

needs to detect whether each user solution is valid. As each circuit task can

take several minutes to complete, we modeled the user throughout the whole

task. A computer vision system detected every time the user added, removed, or

moved a piece on the circuit. We created several different subskills to represent

different components that were needed for each task to be completed correctly.

For the more complex subskills (such as whether a circuit is closed), we created

a graph algorithm that simulated how current passed through the system. This

allowed us to detect whether the pieces were connected correctly and which

pieces were powered. The robot provided personalized help by detecting the

skills the user lacked and provided varied help actions such as handing the user

a piece, or giving a verbal description of which pieces needed to be connected.

• Exercising form - In Chapter 7 we built a system for in-home exercise correc-

tion. When analyzing exercising form, there is no single correct perfect solution.

We must consider whether the user’s form falls within a range of valid forms.

We also need to consider user characteristics, such as height and weight. Dur-

ing this study, we used a depth camera and body tracking algorithms to detect

whenever a user had completed a repetition of an exercise. We assumed the user

had completed a repetition whenever they changed their body tracking point in

a particular direction. Additionally, we trained machine learning algorithms to
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detect if the repetition of an exercise was correct by comparing it to many dif-

ferent demonstrations collected as training data. While designing the machine

learning algorithm, we needed to consider different factors such as different user

body types, backgrounds, and lighting conditions.

• Social skills - In Chapter 8, the focus was on teaching social skills to chil-

dren with Autism Spectrum Disorder (ASD). We taught several social skills,

including perspective-taking, joint attention, emotional understanding, and se-

quencing. For most of these skills, the child’s inputs into a large touchscreen was

used to model their skills. For example, during the emotion understanding task,

the child answered multiple-choice questions about how a character felt during

different stories the robot told. For the perspective-taking skills, we compared

where a child placed pieces onto a spaceship and if their resulting spaceship

was similar to the one their caregiver built. We also modeled the child’s joint

attention by creating a computer vision system that detected where the child

looked (at the robot, the screen, or the caregiver).

During this thesis, we modeled several less traditional skills that required com-

puter vision systems to detect what the user knows and what they do not. However,

user skill modeling is not a solved problem. The skills we did model have room for

improvement and there are many other tasks that we cannot yet model accurately.

Future work should continue working on improved algorithms that can vary all types

of tasks under many different conditions.

9.2.2 A robot interacting with the user as a peer

Most robotic tutoring studies have the robot interacting with the user as if it were

a teacher or a tutor [31]. However, in Chapter 5, we showed the many advantages

of a robot interacting with the user as a peer, including that participants viewed
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the robot more favorably (friendlier, smarter, and more respectful) and that a subset

of participants learned more with the peer robot than the tutor robot. Therefore,

throughout this thesis, the robot often took on the role of a peer when interacting

with users. Below, we detail how the robot interacted as a peer or colleague in several

instances.

• Peer robots inducing conformity - In Chapter 6, participants interacted

with three robots at a table. The robots were introduced to the participants as

peers who would play a game with them. This allowed us to analyze the different

types of conformity peer robots cause. One study showed that a peer robot is

also more persuasive than an authority figure robot [226]. Furthermore, the

robot being introduced as a peer would give the impression that they had the

same amount of prior information about the game as the participant, allowing

us to study the amount of informational conformity robots cause. Future studies

should analyze how robot role influences conformity.

• Peer robotic coach - In Chapter 7, the robot was introduced as a peer that

would exercise alongside the person for a week. The robot was given a backstory

in which it wanted to exercise to get big and strong like its older brother. There

are several reasons why we chose to have the robot take on the peer role. The

first is that participants might feel less judged while exercising with a peer

than with an authoritative trainer. The second is that we could not have the

robot demonstrate the exercises due to the physical limitations of the robot we

chose. Our peer robot would redirect their gaze to videos on a tablet where the

exercises were demonstrated.

• Peer robot for children with ASD - In Chapter 8, the robot was introduced

to the children and the caregiver as being a peer child robot from another planet.

The robot was visiting earth to learn more about “earth people”. The backstory
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allowed the children to welcome the robot into their home. It also gave the

robot a good excuse that it would leave after a limited amount of time, making

the separation process easier on the child. Additionally, children with ASD are

often in therapy for multiple hours a day with human therapists making them

wary of additional therapy. A robot presented as a peer who would play games

with them might would have seemed more fun and engaging compared to a

robot who was presented as therapist. Our study shows that the peer robot

was able to maintain engagement over the one-month-long study.

9.3 Open Challenges

We identify several open challenges and research opportunities in building robots that

tutor for the long term in dynamic environments, including multi-person tutoring,

broadening the spaces in which robots can tutor, and ethical considerations.

9.3.1 Multi-person Tutoring

The great majority of robot tutoring studies have focused on one-on-one interactions

(such as [201] and [170]). Although several robotic studies have been conducted with

either small groups of children [154] or with classrooms of children [125], they are

part of the minority of studies. When interacting in the home or other in-the-wild

scenarios, the robot needs to be prepared to provide personalized tutoring to each

group member.

To the best of the author’s knowledge, there has been no work done to create skill

models of users while multiple people collaborate on a task. Several people might

be working in the same workspace and sometimes working together on particular

tasks. The perception system needs to account for the complexity of tracking multiple

people and the increased noise as team members might partially block the camera’s
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view of other members. User skill modeling algorithms use the perception system to

understand individual and joint member contributions to parts of the tasks so that

individualized models can be created for each person.

There are also open questions about providing optimal help to each member. The

optimal help action for one person might not be the best help for another. Therefore,

algorithms need to be developed to maximize the learning gains for all users while

ensuring that no single user is left behind. Additionally, there are questions about

how to do optimal task assignment [214], that is, dividing the tasks for each team

member to complete. Task assignments can be done either to maximize the learning

of each member or to ensure quick task completion by handing each person tasks

according to their strengths.

9.3.2 Novel Spaces

The focus of this work has been on bringing long-term tutoring systems that operate

in the home. Future work should investigate how to continue getting all different

types of robotic platforms into the home and other spaces such as industrial settings,

classrooms, and the wild. Each space provides novel opportunities and domains for

the robot to teach, increasing the users’ knowledge around it.

With the spread of collaborative robots in industry, many opportunities arise for

these robots to teach while collaborating. There are opportunities to broaden the

capabilities of each employee and increase work safety by detecting who is ready for

each task and having the robot teach those who are not. Future work should develop

systems that can create accurate models of a user’s skill state and additionally model

the user’s emotional state, such as whether they are tired or stressed, to increase

workplace satisfaction and safety. Another element to consider is how robots are

perceived when interacting in the workplace. We should explore how different robot

roles make employees feel as that will affect trust and acceptance within the workplace

188



environment.

Several pieces of work have brought robots into schools, but most were shorter term

and always had a researcher present [198, 119]. There are many advantages of having

a robotic system in the school. Children perceive schools as learning environments,

so they will be more disposed to study. Additionally, one robotic system can help

many children throughout the day, as opposed to the home where they are limited to

a family. There are many open challenges in building long-term systems for schools,

such as facilitating content creation between the teacher and the system and learning

how a robot should individualize its teaching for each student.

Lastly, we should also create robotic systems that are not constrained to a partic-

ular environment but can be placed anywhere, including outside of buildings. These

systems could focus on encouraging positive behaviors instead of solely on tutoring.

For example, a robot in a school playground can discourage bullying behavior and

encourage the inclusion of children who look left out of the group. A robot placed on

a street can promote positive environmental attitudes, such as recycling or reducing

car usage. With the increase of robots in novel spaces, we should study how to use

robots to benefit society.

9.3.3 Ethical Considerations

There are several ethical questions to consider when creating long-term robotic sys-

tems. These concerns might be heightened when a researcher or developer is not

always present when the robot is interacting with its user. In this section, we will

discuss some main concerns, including those about robots replacing jobs, the increase

in education inequality, and building systems that consider diverse students.

One common concern about robotic tutoring systems is the fear that they will

start replacing teachers. Our goal when building robotic systems is not to replace

teachers but to provide additional support to students who are behind in the content
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compared to their peers. A human teacher cannot provide individual feedback and

personalize the content to each student during class. They also frequently lack the

time or resources to do so after class time. A robot can provide additional personalized

support to students. Nonetheless, teachers still have many fears that researchers

are building these systems as their substitutes. Therefore, research should analyze

how to engage instructors to be part of the design process to build robots that are

complementary to teachers rather than replacements.

A critical ethical question is how to build long-term robotic systems that do not in-

crease the education inequality between the privileged and the less privileged. Robotic

systems are still costly and only in the purchasing power of the minority. If only the

elite purchase private robotic tutors for their children, it could increase the disparity

in education. Future research should consider making robotic platforms accessible to

everyone by lowering the prices of the components. Additionally, when researchers

deploy and test tutoring robots in schools, they need to include schools in low- and

high-income neighborhoods.

A common problem we encountered when using pre-built computer vision packages

for our research was that although it often worked well for most of the population,

it frequently failed for minorities. This is because the data was mostly trained on

researchers and college students who are not representative of the general population.

When creating user modeling systems, we need to consider how to build algorithms

that work well for diverse people. It is also vital that robotic systems are deployed

and tested in varied populations, so the results are not relevant to only a subset of

the population.
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9.4 Summary

This dissertation provides findings on how we can build robots that can tutor for

multiple weeks in a dynamic environment. We present several contributions, such as

creating systems that can model ill-defined domains and exploring robot characteris-

tics that improve tutoring. In two long-term, in-home studies, we demonstrate how a

robot can successfully tutor the user and improve their skills. We have discussed com-

mon themes throughout the thesis, including the importance of modeling ill-defined

tasks and the advantages of having the robot interact with the user as a peer. We

also presented several open challenges that identify future research areas to increase

the number of robots that tutor in dynamic environments for long periods of time.
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Chapter 10

Conclusion

Robots have shown great promise to be effective tutors in many different scenarios,

whether it is teaching toddlers new words [246], teaching children math [202], or

teaching adults a new language [111]. However, most studies to date have been

conducted in highly controlled laboratory settings. The remaining have primarily

focused on tutoring in schools, with a researcher always present. In this thesis, we took

several steps to allow robots to autonomously tutor in unstructured environments.

Throughout the thesis, we have focused on conducting numerous user studies to

better understand different aspects of robot tutoring. Some of our studies were single

session and conducted in laboratory settings (Chapters 3 - 6), while others had an

autonomous robot tutoring in the home for multiple weeks (Chapters 7 and 8).

The results of our user studies provided novel algorithms and insight into devel-

oping systems that can tutor in the wild. We built an algorithm (C-BKT) that can

model users’ skills during complex tasks, allowing the robot to provide more precise

help (Chapter 3). We also created an algorithm (BKT-POMDP) to select the optimal

action (whether the right task or the correct type of help) during complex tasks with

multiple skills (Chapter 4). Next, we designed a user study to analyze different robot

roles and demonstrated that when tutoring adults, a robot should likely take on the
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role of a peer rather than the role of an instructor. The peer robot was seen more

positively, and participants with low prior knowledge learned more from it (Chapter

5). In Chapter 6 we show that peer robots can indirectly influence people by causing

people to conform to them during a game setting.

Lastly, we presented two robotic systems where an autonomous peer robot pro-

vided personalized tutoring in the home for several weeks. In the first system, a

robot detected when a user was exercising incorrectly. We show that a physically

present robot caused participants to demonstrate fewer exercise mistakes than the

same robot shown in a video on a tablet (Chapter 7). In the second study, we cre-

ated a robotic system that provided social skills training to children with ASD. We

validate the effectiveness of our robot using clinical measures, showing that children

improved their social probe scores after a month with the robot (Chapter 8). These

chapters provided frameworks for creating long-term robotic systems that interacted

autonomously with users for long periods.
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Appendix A

User Study Data

Below we present the results from our user studies. We include both pre-test and post-

test scores where these were given to participants. We also present our questionnaire

answers for each participant, where relevant to the results presented throughout the

thesis.

Table A.1: Participant pre-test and post-test scores, along with their difference for the
user study referenced in Chapters 3 and 5.

PID Condition Pre-test Post-test Difference
P1 Peer 9 14 5
P2 Tutor 6 6 0
P3 Tutor 8 10 2
P4 Peer 3 8 5
P5 Tutor 7 13 6
P6 Peer 10 13 3
P7 Peer 6 14 8
P8 Tutor 12 17 5
P9 Tutor 6 8 2
P10 Peer 3 4 1
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PID Condition Pre-test Post-test Difference
P11 Tutor 12 15 3
P12 Peer 9 8 -1
P13 Peer 10 14 4
P14 Tutor 7 9 2
P15 Tutor 6 12 6
P16 Peer 10 12 2
P17 Tutor 5 5 0
P18 Peer 10 11 1
P19 Tutor 5 11 6
P20 Tutor 13 14 1
P21 Peer 10 14 4
P22 Peer 10 12 2
P23 Peer 6 13 7
P24 Peer 5 12 7
P25 Tutor 11 14 3
P26 Tutor 9 14 5
P27 Peer 11 13 2
P28 Tutor 11 13 2
P29 Peer 4 14 10
P30 Tutor 4 10 6
P31 Tutor 12 14 2
P32 Tutor 8 7 -1
P33 Peer 7 13 6
P34 Tutor 6 14 8
P35 Peer 1 12 11
P36 Tutor 11 13 2
P37 Tutor 12 15 3
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Table A.2: The participant study data related to Chapter 6. We present the Condition, the
number of critical round changes (CR changes), the number of non-critical Round Changes
(non-CR Changes). We also provide 1-5 Likert Scale questionnaire answers for two state-
ments: “I felt pressure to change my answers because of the robots” (Pressure), and “The
robots are better at playing this game than me” (Better).

PID Condition CR Changes non-CR Changes Pressure Better
P1 Quantitative 2 0 4 3
P2 Quantitative 3 6 2 3
P3 Quantitative 0 0 1 5
P4 Quantitative 2 0 2 2
P5 Quantitative 0 2 1 5
P6 Quantitative 3 2 2 4
P7 Quantitative 3 1 4 2
P8 Quantitative 2 2 4 3
P16 Quantitative 2 4 4 3
P17 Quantitative 2 2 3 1
P20 Quantitative 0 1 2 2
P23 Quantitative 5 3 5 4
P26 Quantitative 1 0 4 3
P27 Quantitative 1 5 2 1
P30 Quantitative 1 4 1 4
P47 Quantitative 3 2 3 3
P48 Quantitative 4 3 4 2
P9 Blind 1 1 1 3
P10 Blind 0 1 1 5
P11 Blind 0 2 1 3
P12 Blind 3 3 2 2
P13 Blind 3 6 3 3
P14 Blind 0 1 2 2
P15 Blind 1 0 1 3
P18 Blind 0 3 3 4
P19 Blind 0 2 1 3
P21 Blind 2 1 2 4
P22 Blind 0 0 1 3
P24 Blind 1 0 1 4
P25 Blind 1 3 3 4
P28 Blind 1 0 1 2
P29 Blind 0 0 1 4
P31 Selected 0 0 1
P32 Selected 2 5 1 3
P33 Selected 1 3 1 5
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PID Condition CR Changes non-CR Changes Pressure Better
P34 Selected 2 2 4 2
P35 Selected 0 3 2 2
P36 Selected 0 2 4 5
P37 Selected 1 6 3 5
P38 Selected 1 3 2 4
P39 Selected 1 2 2 2
P40 Selected 0 1 1 2
P41 Selected 3 4 2 3
P42 Selected 1 2 2 3
P43 Selected 5 12 1 3
P44 Selected 1 1 4 4
P45 Selected 0 1 1 1
P46 Selected 1 2 3.5 4
P50 Staring 3 4 2
P52 Staring 0 3 5 2
P54 Staring 3 2 4 4
P55 Staring 2 1 4 1
P56 Staring 2 4 5 4
P57 Staring 4 2 4 4
P58 Staring 2 1 3 3
P59 Staring 0 2 1 1
P60 Staring 1 2 1 2
P61 Staring 4 2 4 3
P62 Staring 2 2 3 1
P63 Staring 6 3 5 5
P64 Staring 2 0 4 4
P65 Staring 2 4 3 3
P66 Staring 1 2 3 2
P67 Staring 3 0 4 2
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Table A.3: The participant study data related to Chapter 7. We present the Condition,
the percentage of days they exercised with the robot while it was with them in their home
(Exercised), the percentage of exercises done correctly in the first two days (C- First 2), and
the percentage of exercises done correctly in the last two days (C - Last 2).

PID Condition Exercises C - First 2 C - Last 2
P1 Robot 0.77 0.79 0.84
P2 Robot 1.00 0.84 0.66
P3 Robot 0.69 0.65 0.74
P4 Robot 1.00 0.81 0.70
P13 Robot 0.53 0.55 0.64
P16 Robot 0.40 0.77 0.58
P17 Robot 0.42 0.63 0.71
P20 Robot 0.77 0.86 0.82
P21 Robot 0.64 0.56 0.64
P23 Robot 0.76 0.79 1.00
P25 Robot 0.79 0.64 0.61
P29 Robot 0.71 0.94 0.72
P35 Robot 1.00 0.61 0.39
P36 Robot 0.56 0.54 0.47
P6 Tablet 1.00 0.67 0.56
P7 Tablet 0.86 0.58 0.21
P18 Tablet 0.38 0.68
P19 Tablet 0.57 0.71 0.57
P22 Tablet 0.69 0.52 0.81
P24 Tablet 0.71 0.17 0.41
P26 Tablet 0.33 0.42 0.54
P30 Tablet 0.93 0.72 0.54
P33 Tablet 0.73 0.28 0.25
P31 Tablet 0.33 0.85 0.89
P32 Tablet 0.78 0.66 0.51
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Table A.4: The participant score data relating to Chapter 8. In this table, we have the
age of each participant and their nonverbal reasoning performance on the DAS. In sequence,
we have the joint attention scores for thirty days before the intervention began (JA - 1), the
first day of the intervention (JA - 2), the last day of the intervention (JA - 3), and thirthy
days after the end of the intervention (JA - 4).

PID age DAS JA - 1 JA - 2 JA - 3 JA - 4
EXP01 8.7 104 22 12 25 23
EXP03 8.3 89 18 16 21 22
EXP04 7.3 85 9 12 13 10
EXP05 10.3 71 12 11 25 16
EXP06 8.11 111 22 20 22 22
EXP08 9.2 111 18 17 17 12
EXP11 12 102 20 21 21 22
EXP12 10.3 100 17 19 22 22
EXP14 8.6 78 14 13 22 15
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Table A.5: The caregiver scores for the first day and last day of the daily surveys relating
to Chapter 8. Q2 - How easy was it to engage your child with the robot today? Q8 -
Have you noticed any changes in your son/daughter’s eye contact with you? Q9 - Have
you noticed any changes in your son/daughter’s initiation of communication with you?
Q10 - Have you noticed any changes in your son/daughter’s responding to communication
bids from you? Q12 - Have you noticed any changes in your son/daughter’s eye contact
with others? Q13 - Have you noticed any changes in your son/daughter’s initiation of
communication with others? Q14 - Have you noticed any changes in your son/daughter’s
response to communication bids from others?

Q2 Q8 Q9 Q10 Q12 Q13 Q14

Participant 1 first day 3 3 3 3 3 3 3
last day 5 3 3 4 4 4 4

Participant 2 first day 5 3 3 3 3 3 3
last day 5 5 5 5 5 5 5

Participant 3 first day 5 3 3 3 3 3 3
last day 5 4 5 5 4 5 4

Participant 4 first day 4 3 3 3 3 3 3
last day 5 5 5 5 5 5 5

Participant 5 first day 5 3 3 3 3 3 3
last day 4 4 4 4 4 3 4

Participant 6 first day 3 3 4 4 4 3 2
last day 5 5 5 5 5 4 4

Participant 7 first day 5 3 3 3 3 3 3
last day 5 3 5 3 3 3 3

Participant 8 first day 5 3 3 3 3 3 3
last day 5 3 3 3 3 3 3

Participant 9 first day 5 3 3 3 3 3 3
last day 3 5 5 3 4 5 3

Participant 10 first day 5 3 3 3 3 3 3
last day 5 3 3 3 3 3 3

Participant 11 first day 5 3 4 3 3 3 3
last day 3 3 3 3 3 4 4

Participant 12 first day 5 3 3 3 3 3 3
last day 5 2 3 3 3 3 3
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Appendix B

Snap Circuit Task

In this appendix we present details regarding the Snap Circuit task that was used in

Chapters 3 and 5.

B.1 Skills

We tested the following skills in the Snap Circuits domain:

• 1-LED - When a LED is required for the task.

• 2-LED Directionality - To understand which direction the LED should be

facing within the circuit.

• 3-LED needs resistor - When an LED is placed on the board, it needs a

resistor.

• 4-Resistor - How a resistor can be used to lower the light or music.

• 5-Motor - When a motor should be used.

• 6-Switch - When a switch should be used.

• 7-Button - When a button should be used.

201



• 8-Speaker - When a speaker should be used.

• 9-MC - When a music circuit should be used.

• 10-Connect - How to correctly connect two pieces together.

• 11-Closed - A circuit must be closed, forming a complete loop from the positive

side of the battery to the negative of the battery.

• 12-Power MC - How to connect the Music Circuit (MC) to power. The

positive of the MC should be connected to the positive of the batter, and the

negative of the MC should be connected to the negative of the battery.

• 13-Signal MC - How to connect the positive of the battery to the signal of

the MC (which enables music to be played in a rhythm).

• 14-Trigger MC - How to correctly connect the positive side of the battery to

the Trigger input on the MC.

• 15-Hold MC - How to correctly connect the positive side of the battery to the

Hold input on the MC.

• 16-AND gate - How to create an AND gate using pieces. This was for tasks

that asked a switch to be on and a button pressed for the circuit to work.

• 17-OR gate - How to create an OR gate using pieces. This was for tasks that

asked a switch to be on or a button pressed for the circuit to work.

B.2 Tasks

Below are presented all the tasks that could be given to participants.

• Task 1 - "Build a circuit that you can turn a light on and off using a switch."
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• Task 2 - "Build a circuit that you can turn a light on and off using a button."

• Task 3 - "Build a circuit that you can turn a motor on and off using a switch."

• Task 4 - "Build a circuit that you can turn a motor on and off using a button."

• Task 5 - "Build a circuit that constantly will have a motor spinning."

• Task 6 - "Build a circuit that has a constant light on."

• Task 7 - "Build a circuit that plays music."

• Task 8 - "Build a circuit that plays music when a button is pressed."

• Task 9 - "Build a circuit that plays music when a switch is turned on."

• Task 10 - "Build a circuit that plays low sounding music."

• Task 11 - "Build a circuit that plays low music when a button is pressed."

• Task 12 - "Build a circuit that plays low music when a switch is turned on."

• Task 13 - "Build a circuit that blinks a light in a rhythm of a song."

• Task 14 - "Build a circuit that blinks a light in the rhythm of a song when a

button is pressed."

• Task 15 - "Build a circuit that blinks a light in the rhythm of a song when a

switch is turned on."

• Task 16 - "Build a circuit that blinks a low light in the rhythm of a song."

• Task 17 - "Build a circuit that blinks a low light in the rhythm of a song when

a button is pressed."

• Task 18 - "Build a circuit that blinks a low light in the rhythm of a song when

a switch is turned on."
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• Task 19 - "Build a circuit that plays music while the button is pressed. But

stops playing when it is not pressed."

• Task 20 - "Build a circuit that triggers a song being played each time you spin

a motor."

• Task 21 - "Build a circuit that blinks a light in the rhythm of a song while the

button is pressed. But stops playing when it is not pressed."

• Task 22 - "Build a circuit that triggers a light to blink in the rhythm of a song

each time you spin a motor."

• Task 23 - "Build a circuit that turns on a light when a switch is turned on

AND a button is pressed."

• Task 24 - "Build a circuit that turns on a light when a switch is turned on OR

a button is pressed."

• Task 25 - "Build a circuit that spins a motor when a switch is turned on AND

a button is pressed."

• Task 26 - "Build a circuit that spins a motor when a switch is turned on OR

a button is pressed."

• Task 27 - "Build a circuit that plays music when a switch is turned on AND a

button is pressed."

• Task 28 - "Build a circuit that plays music when a switch is turned on OR a

button is pressed."

• Task 29 - "Build a circuit that blinks a light in a rhythm of a song when a

switch is turned on AND a button is pressed."
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• Task 30 - "Build a circuit that blinks a light in a rhythm of a song when a

switch is turned on OR a button is pressed."

B.3 Robot Utterances and Actions

Below are presented all the utterances for both conditions.

Reinforcement Question 1

Peer - "An LED seems like the right piece, can you explain to me what it does?"

Peer - "Does the LED emit a light?"

Peer - "What does an LED do?"

Tutor - "An LED seems like the right piece, can you explain to me what it does?"

Tutor - "Does the LED emit a light?"

Tutor - "What does an LED do?"

Reinforcement Question 2

Peer - "Why did you choose to orient the LED like that?"

Peer - "What direction should the LED be pointing from compared to the positive

side of the battery?"

Tutor - "Why did you choose to orient the LED like that?"

Tutor - "What direction should the LED be pointing from compared to the positive

side of the battery?"

Reinforcement Question 3

Peer - "Ah cool, I see you added both a resistor and an LED, why did we add the

resistor?"

Peer - "When we have an LED in the circuit, should we always have a resistor?"

Peer - "How come we added a resistor to the circuit?"
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Tutor - "Ah cool, I see you added both a resistor and an LED, why did you add the

resistor?"

Tutor - "When you have an LED in the circuit, should you always have a resistor?"

Tutor - "How come you added a resistor to the circuit?"

Reinforcement Question 4

Peer - "Is the resistor the piece that makes the music lower?"

Peer - "I see a resistor in the circuit, how does it affect the circuit?"

Tutor - "Is the resistor the piece that makes the music lower?"

Tutor - "I see a resistor in the circuit, how does it affect the circuit?"

Reinforcement Question 5

Peer - "Can you explain to me what a motor does?"

Peer - "The motor seems like a good idea, can you explain to me how it works?"

Peer - "Interesting. In general, when should a motor be used?"

Tutor - "Can you explain to me what a motor does?"

Tutor - "The motor seems like a good idea, can you explain to me how it works?"

Tutor - "Interesting. In general, when should a motor be used?"

Reinforcement Question 6

Peer - "Nice idea with the switch. What happens when we turn it on?"

Peer - "When should a switch be used?"

Peer - "I see a switch! How does the switch work?"

Tutor - "Nice idea with the switch. What happens when you turn it on?"

Tutor - "When should a switch be used?"

Tutor - "I see a switch! How does the switch work?"
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Reinforcement Question 7

Peer - "Good choice to add a button to the circuit. What happens if we press it?"

Peer - "Can you explain to me what a button does?"

Peer - "When should we use a button in a circuit?"

Tutor - "Good choice to add a button to the circuit. What happens if you press it?"

Tutor - "Can you explain to me what a button does?"

Tutor - "When should you use a button in a circuit?"

Reinforcement Question 8

Peer - "I like the speaker. How does it work?"

Peer - "Is the speaker the piece that will play music?"

Peer - "When should we add a speaker to the circuit?"

Tutor - "I like the speaker. How does it work?"

Tutor - "Is the speaker the piece that will play music?"

Tutor - "When should you add a speaker to the circuit?"

Reinforcement Question 9

Peer - "What is the difference between the speaker and the music circuit?"

Peer - "What is the functionality of the music circuit?"

Peer - "Music circuits are tricky. Can you explain to me what it does?"

Tutor - "What is the difference between the speaker and the music circuit?"

Tutor - "What is the functionality of the music circuit?"

Tutor - "Music circuits are tricky. Can you explain to me what it does?"

Reinforcement Question 10

Peer - "Do we use the blue wires to connect pieces together?"

Peer - "How do the blue wires affect the circuit?"
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Peer - "Why do we need to connect pieces together?"

Tutor - "Do you use the blue wires to connect pieces together?"

Tutor - "How do the blue wires affect the circuit?"

Tutor - "Why do you need to connect pieces together?"

Reinforcement Question 11

Peer - "How come you connected all the pieces together like that?"

Peer - "I see that all the pieces are connected to form a circuit. Should we always

do that?"

Peer - "Why did you form a circuit out of all the pieces?"

Tutor - "How come you connected all the pieces together like that?"

Tutor - "I see that all the pieces are connected to form a circuit. Should you always

do that?"

Tutor - "Why did you form a circuit out of all the pieces?"

Reinforcement Question 12

Peer - "I see that the positive signal of the music circuit is connected to the positive

in the battery. How come?"

Peer - "I see that the negative signal of the music circuit is connected to the negative

in the battery. Should we always do that?"

Peer - "Can you explain to me, how we power a music circuit?"

Tutor - "I see that the positive signal of the music circuit is connected to the positive

in the battery. How come?"

Tutor - "I see that the negative signal of the music circuit is connected to the nega-

tive in the battery. Should you always do that?"

Tutor - "Can you explain to me, how you power a music circuit?"
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Reinforcement Question 13

Peer - "I see that we connected the output port of the music circuit to the positive

side of the battery. Why did you do that?"

Peer - "Can you explain to me how we connect the output port of the music circuit?"

Peer - "What does the output port of the music circuit do?"

Tutor - "I see that you connected the output port of the music circuit to the positive

side of the battery. Why did you do that?"

Tutor - "Can you explain to me how you connect the output port of the music cir-

cuit?"

Tutor - "What does the output port of the music circuit do?"

Reinforcement Question 14

Peer - "What is the trigger port of the music circuit?"

Peer - "What do we connect to the trigger port in the music circuit?"

Tutor - "What is the trigger port of the music circuit?"

Tutor - "What should you connect to the trigger port in the music circuit?"

Reinforcement Question 15

Peer - "What is the hold port of the music circuit?"

Peer - "What do we connect to the hold port in the music circuit?"

Tutor - "What is the hold port of the music circuit?"

Tutor - "What do you connect to the hold port in the music circuit?"

Reinforcement Question 16

Peer - "What happens if we press the button and turn on the switch?"

Tutor - "What happens if you press the button and turn on the switch?"
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Reinforcement Question 17

Peer - "What happens if we press the button or turn on the switch?"

Tutor - "What happens if you press the button or turn on the switch?"

Reinforcement Good 1

Peer - "Interesting, yes, an LED should emit a light"

Peer - "Adding the LED was a good idea!"

Peer - "The LED created a light in the circuit"

Tutor - "Interesting, yes, an LED will emit a light"

Tutor - "Adding the LED was a good idea!"

Tutor - "The LED created a light in the circuit"

Reinforcement Good 2

Peer - "The LED seems to be pointing in the correct direction"

Peer - "Yes, I agree that the battery positive port should be connected to the positive

port of the LED"

Tutor - "The LED seems to be pointing in the correct direction"

Tutor - "Yes, I agree that the battery positive port should be connected to the pos-

itive port of the LED"

Reinforcement Good 3

Peer - "Yes. We should always add a resistor when there is a LED in the circuit."

Peer - "I see both a resistor and an LED, I will remember that."

Peer - "I have learned that a resistor should be added when there is an LED."

Tutor - "Yes. You should always add a resistor when there is a LED in the circuit."

Tutor - "I see both a resistor and an LED, That is correct."

Tutor - "You have learned that a resistor should be added when there is an LED."
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Reinforcement Good 4

Peer - "The resistor lowers the music."

Peer - "The resistor will do the job of lowering volume of the music in this circuit."

Peer - "I can see that a resistor should be added when we want to lower the music."

Tutor - "The resistor lowers the music."

Tutor - "The resistor will do the job of lowering volume of the music in this circuit."

Tutor - "I can see you know that a resistor should be added when you want to lower

the music."

Reinforcement Good 5

Peer - "I see a motor in the circuit just like the task asked."

Peer - "Adding a motor was a good idea."

Peer - "Yes, we needed to have the motor in the circuit."

Tutor - "I see a motor in the circuit just like the task asked."

Tutor - "Adding a motor was a good idea."

Tutor - "Yes, you needed to have the motor in the circuit."

Reinforcement Good 6

Peer - "I agree that a switch was needed."

Peer - "There is a switch just like the task asked."

Peer - "Now we can turn the circuit on and off using the switch."

Tutor - "I agree that a switch was needed."

Tutor - "There is a switch just like the task asked."

Tutor - "Now you can turn the circuit on and off using the switch."

Reinforcement Good 7
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Peer - "Clicking the button will let us turn the circuit on and off."

Peer - "Adding a button was a good idea."

Tutor - "Clicking the button will let you turn the circuit on and off."

Tutor - "Adding a button was a good idea."

Reinforcement Good 8

Peer - "The speaker will play music in the circuit."

Peer - "There is a speaker on the circuit just like the task asked."

Tutor - "The speaker will play music in the circuit."

Tutor - "There is a speaker on the circuit just like the task asked."

Reinforcement Good 9

Peer - "Good job on adding the music circuit, that is a hard piece."

Peer - "Yea, having a music circuit is a good idea."

Peer - "The music circuit will send a signal to the speaker to play music."

Tutor - "Good job on adding the music circuit, that is a hard piece"

Tutor - "Yea, having a music circuit is a good idea."

Tutor - "The music circuit will send a signal to the speaker to play music."

Reinforcement Good 10

Peer - "I like how we connected several of the pieces using wires."

Peer - "The blue wires connect several of the pieces together."

Peer - "Good job, The pieces can all send signals to each other when they are con-

nected with the wires."

Tutor - "I like how you connected several of the pieces using wires."

Tutor - "The blue wires connect several of the pieces together."

Tutor - "Good job, The pieces can all send signals to each other when they are con-
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nected with the wires."

Reinforcement Good 11

Peer - "Impressive, we built a complete circuit together."

Peer - "Yay, I think we did a good job having all the pieces connected together to

the battery."

Peer - "It looks like we build a good circuit."

Tutor - "Impressive, you built a complete circuit."

Tutor - "Yay, I think you did a good job having all the pieces connected together to

the battery."

Tutor - "It looks like you build a good circuit."

Reinforcement Good 12

Peer - "The music circuit seems to be powered correctly."

Peer - "Yay, the music circuits positive and negative ports are connected to the bat-

tery."

Peer - "I like how we connected the music circuit."

Tutor - "The music circuit is powered correctly."

Tutor - "Yay, the music circuits positive and negative ports are connected to the

battery."

Tutor - "I like how you connected the music circuit."

Reinforcement Good 13

Peer - "Awesome, the music circuit can now send signals to play a rhythm of a song."

Peer - "We are doing a good job connecting the out port of the music circuit."

Tutor - "Awesome, the music circuit can now send signals to play a rhythm of a

song."
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Tutor - "You are doing a good job connecting the out port of the music circuit."

Reinforcement Good 14

Peer - "The trigger port of the music circuit it connected correctly."

Peer - "Lets try spinning that motor, and see if it triggers the music circuit to start

playing."

Peer - "The motor on the trigger port was a good idea."

Tutor - "The trigger port of the music circuit it connected correctly."

Tutor - "Try spinning that motor, and see if it triggers the music circuit to start

playing."

Tutor - "The motor on the trigger port was a good idea."

Reinforcement Good 15

Peer - "The hold port of the music circuit it connected correctly."

Peer - "Lets try pressing the button, while its pressed it should play music."

Peer - "The button on the hold port was a good idea."

Tutor - "The hold port of the music circuit it connected correctly."

Tutor - "Try pressing the button, while its pressed it should play music."

Tutor - "The button on the hold port was a good idea."

Reinforcement Good 16

Peer - "Lets press the button and turn on the switch to see what happens."

Peer - "Yes, the switch and the button seem to be correct."

Tutor - "Press the button and turn on the switch to see what happens."

Tutor - "Yes, the switch and the button are correct."

Reinforcement Good 17

214



Peer - "Lets press the button and turn on the switch to see what happens."

Peer - "Yes, the switch and the button seem to be correct."

Tutor - "Press the button and turn on the switch to see what happens."

Tutor - "Yes, the switch and the button seem to be correct."

Wrong Piece [Robot Points at Piece]

Peer - "I am not so sure about this [piece_name] over here, should it be on the

board?"

Peer - "Let’s take another look at the task. Do you think it needs this [piece_name]?"

Peer - "This [piece_name] over here might be useful in other moments, but I don’t

think its needed this time."

Peer - "Over here we have a [piece_name]. I don’t think its needed right now."

Tutor - "I am not so sure about this [piece_name] over here, should it be on the

board?"

Tutor - "Take another look at the task. Do you think it needs this [piece_name]?"

Tutor - "This [piece_name] over here is useful in other moments, but its not needed

this time."

Tutor - "Over here you have a [piece_name]. It is not needed right now."

Wrong Piece [No Pointing]

Peer - "I see we have added a [piece_name]. Let’s think about if it is needed for the

current task."

Peer - "Can you explain to me what a [piece_name] does?. Do you think we need it

for the current task?"

Peer - "I am pretty sure the [piece_name] should not be on the board for the task

we are doing right now."

Tutor - "I see you have added a [piece_name]. Think about if it is needed for the
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current task."

Tutor - "Can you explain to me what a [piece_name] does?. Do you think you need

it for the current task?"

Tutor - "I am pretty sure the [piece_name] should not be on the board for the task

you are doing right now."

Help Utterance 1

Peer - "An LED might be needed on the board."

Peer - "Looks like we dont have an LED on the board yet, how do you feel about

adding one?"

Peer - "Adding an LED, will satisfy having something that gives us a light."

Peer - "An LED creates a little light when it is connected correctly."

Peer - "The task is mentioning having something that creates a light. Do you think

the LED might do that?"

Tutor - "An LED might be needed on the board."

Tutor - "Looks like you dont have an LED on the board yet, how do you feel about

adding one?"

Tutor - "Adding an LED, will satisfy having something that gives you a light."

Tutor - "An LED creates a little light when it is connected correctly."

Tutor - "The task is mentioning having something that creates a light. Do you think

the LED might do that?"

Help Utterance 2

Peer - "We need to make sure we have the LED facing the correct direction. It does

not seem to be right now."

Peer - "The LED positive side should be connected via wires to the batteries positive

side."
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Peer - "There is a little positive symbol on one of the LED sides. Lets try connecting

that to the positive side of the battery using wires."

Tutor - "You need to make sure you have the LED facing the correct direction. It

does not seem to be right now."

Tutor - "The LED positive side should be connected via wires to the batteries posi-

tive side."

Tutor - "There is a little positive symbol on one of the LED sides. Try connecting

that to the positive side of the battery using wires."

Help Utterance 3

Peer - "The LED can not take all the current passing through it, so we must add a

resistor to lower it."

Peer - "I have learned that anytime we add an LED to the board, we must also add

something that lowers the amount of current going through."

Peer - "Because we have added an LED, we should also add a resistor."

Tutor - "The LED can not take all the current passing through it, so you must add

a resistor to lower it."

Tutor - "Anytime you add an LED to the board, you must also add something that

lowers the amount of current going through."

Tutor - "Because you have added an LED, you should also add a resistor."

Help Utterance 4

Peer - "The task wants us to play low music. The resistor lowers the amount of

current passing through the circuit."

Peer - "So we need to play low music. What piece do you think could lower the

music?"

Peer - "We need to add a resistor. It would lower the music."
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Tutor - "The task wants you to play low music. The resistor lowers the amount of

current passing through the circuit."

Tutor - "So you need to play low music. What piece do you think could lower the

music?"

Tutor - "You need to add a resistor. It would lower the music."

Help Utterance 5

Peer - "So the task requires a motor. The only piece that looks like a motor is the

yellow one with the spinny thing on top."

Peer - "We need to add the motor to the circuit."

Peer - "It looks like the task wants a motor, lets try adding it to the circuit."

Tutor - "So the task requires a motor. The only piece that looks like a motor is the

yellow one with the spinny thing on top."

Tutor - "You need to add the motor to the circuit."

Tutor - "It looks like the task wants a motor, try adding it to the circuit."

Help Utterance 6

Peer - "So we need to turn the circuit on and off. How about using the switch?"

Peer - "Lets try adding the switch to the circuit."

Peer - "How about the switch? It would turn the circuit on and off."

Tutor - "So you need to turn the circuit on and off. How about using the switch?"

Tutor - "Try adding the switch to the circuit."

Tutor - "How about the switch? It would turn the circuit on and off."

Help Utterance 7

Peer - "So we need to turn the circuit on by pressing the button. Lets add the

button?"
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Peer - "Lets try adding the button to the circuit."

Peer - "How about the button? It would turn the circuit on when we press on it."

Tutor - "So you need to turn the circuit on by pressing the button. Add the button?"

Tutor - "Try adding the button to the circuit."

Tutor - "How about the button? It would turn the circuit on when you press on it."

Help Utterance 8

Peer - "We need a piece that can play some music. How about the speaker?"

Peer - "The speaker can play music. Lets add it to the circuit."

Peer - "Can we try adding the red speaker to the circuit?"

Tutor - "You need a piece that can play some music. How about the speaker?"

Tutor - "The speaker can play music. Add it to the circuit."

Tutor - "Can you try adding the red speaker to the circuit?"

Help Utterance 9

Peer - "The music circuit will create the song for the speaker to play."

Peer - "Lets try adding the music circuit to the board. It will create the song waves."

Peer - "We still need to add a music circuit to the board."

Tutor - "The music circuit will create the song for the speaker to play."

Tutor - "Try adding the music circuit to the board. It will create the song waves."

Tutor - "You still need to add a music circuit to the board"

Help Utterance 10

Peer - "Some of the pieces on the board aren’t connected to each other. Can we try

connecting them together using the blue wires."

Peer - "We can connect pieces together using the blue wires. They snap to each

other at the ends."
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Peer - "The pieces need to be connected to each other and to the battery."

Tutor - "Some of the pieces on the board aren’t connected to each other. Can you

try connecting them together using the blue wires."

Tutor - "You can connect pieces together using the blue wires. They snap to each

other at the ends."

Tutor - "The pieces need to be connected to each other and to the battery."

Help Utterance 11

Peer - "Lets make sure all the pieces are connected together in a loop. The battery

needs to be part of the loop."

Peer - "Some pieces are not connected to the battery. Lets connect them all together

using wires."

Peer - "Using the blue wires, we should connect all the pieces together in a circle,

and at the end of the circle we should have the battery."

Tutor - "Make sure all the pieces are connected together in a loop. The battery

needs to be part of the loop."

Tutor - "Some pieces are not connected to the battery. Connect them all together

using wires."

Tutor - "Using the blue wires, you should connect all the pieces together in a circle,

and at the end of the circle you should have the battery."

Help Utterance 12

Peer - "To power the music circuit we need to make sure that its positive port is

connected to the positive port of the battery."

Peer - "Connect the negative port of the music circuit to the negative port of the

battery."

Peer - "Lets connect the positives and the negatives of the music circuit and the
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battery together using wires."

Tutor - "To power the music circuit you need to make sure that its positive port is

connected to the positive port of the battery."

Tutor - "Connect the negative port of the music circuit to the negative port of the

battery."

Tutor - "Connect the positives and the negatives of the music circuit and the battery

together using wires."

Help Utterance 13

Peer - "Lets Connect the speaker to the output port of the music circuit, and the

other end of the speaker to the battery."

Peer - "The speaker should be in between the output port of the music circuit and

the positive side of the battery."

Peer - "Using wires, lets connect the speaker to the output port of the battery."

Peer - "Using wires, connect one side of the speaker to the positive side of the bat-

tery."

Tutor - "Connect the speaker to the output port of the music circuit, and the other

end of the speaker to the battery."

Tutor - "The speaker should be in between the output port of the music circuit and

the positive side of the battery."

Tutor - "Using wires, connect the speaker to the output port of the battery."

Tutor - "Using wires, connect one side of the speaker to the positive side of the

battery."

Help Utterance 14

Peer - "We need to connect the motor to the trigger input of the music circuit."

Peer - "If the motor is connect to the trigger input of the music circuit, spinning the
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motor will start the music."

Peer - "Lets add a motor between the trigger of the music circuit and the positive

side of the battery."

Tutor - "You need to connect the motor to the trigger input of the music circuit."

Tutor - "If the motor is connect to the trigger input of the music circuit, spinning

the motor will start the music."

Tutor - "Add a motor between the trigger of the music circuit and the positive side

of the battery."

Help Utterance 15

Peer - "While we are holding down the button, the music needs to play."

Peer - "Lets add the button to the hold port of the music circuit, the other side of

the button we can connect to the battery."

Peer - "Lets have a button in between the hold port of the music circuit and the

positive side of the battery."

Tutor - "While you are holding down the button, the music needs to play."

Tutor - "Add the button to the hold port of the music circuit, the other side of the

button you can connect to the battery."

Tutor - "Have a button in between the hold port of the music circuit and the positive

side of the battery."

Help Utterance 16

Peer - "For this task the circuit will only work when both the button is pressed and

the switch is on."

Peer - "There should be a button and switch in the main loop of the circuit."

Peer - "For this task, lets have a button and a switch connected together."

Tutor - "For this task the circuit will only work when both the button is pressed and
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the switch is on."

Tutor - "There should be a button and switch in the main loop of the circuit."

Tutor - "For this task, have a button and a switch connected together."

Help Utterance 17

Peer - "In this task either the button needs to be pressed, or, the switch needs to be

turned on for the circuit to work."

Peer - "For this one, we need to split one of the wires, into two wires, and connect

the button and the switch to each end. Afterwards you can bring the wires together

again."

Peer - "One way to do this, is to connect both the ends of switch and the button

together using wires. That way as long as one is pressed, current can pass through."

Peer - "Lets place the switch and button side by side, and connect them using wires

at both ends. Now connect each end to the positive and negative sides of the battery."

Tutor - "In this task either the button needs to be pressed, or, the switch needs to

be turned on for the circuit to work."

Tutor - "For this one, you need to split one of the wires, into two wires, and connect

the button and the switch to each end. Afterwards you can bring the wires together

again."

Tutor - "One way to do this, is to connect both the ends of switch and the button

together using wires. That way as long as one is pressed, current can pass through."

Tutor - "Lets place the switch and button side by side, and connect them using wires

at both ends. Now connect each end to the positive and negative sides of the battery."

Help Movement 1 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the LED to the circuit."

Peer - "How about adding this LED to the circuit to create the light."
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Peer - "This LED is needed on the board."

Tutor - "Here, try to add the LED to the circuit."

Tutor - "How about adding this LED to the circuit to create the light."

Tutor - "This LED is needed on the board."

Help Movement 2 [Robot Points to LED]

Peer - "We want to have the positive side of the battery connected to the positive

side of the LED, and we want to have the negative side of the battery connected to

the negative side of the LED"

Tutor - "You want to have the positive side of the battery connected to the positive

side of the LED, and you want to have the negative side of the battery connected to

the negative side of the LED."

Help Movement 3 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the resistor to the circuit."

Peer - "Whenever there is an LED, we also need a resistor."

Peer - "This resistor is needed on the board."

Tutor - "Here, try to add the resistor to the circuit."

Tutor - "Whenever there is an LED, you also need a resistor."

Tutor - "This resistor is needed on the board."

Help Movement 4 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the resistor to the circuit."

Peer - "How about adding this resistor to the circuit as it will make the music play

softer."

Peer - "This resistor is needed on the board."

Tutor - "Here, try to add the resistor to the circuit."
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Tutor - "How about adding this resistor to the circuit as it will make the music play

softer."

Tutor - "This resistor is needed on the board."

Help Movement 5 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the motor to the circuit."

Peer - "How about adding this motor to the circuit as the task is asking for a motor."

Peer - "This motor is needed on the board."

Tutor - "Here, try to add the motor to the circuit."

Tutor - "How about adding this motor to the circuit as the task is asking for a mo-

tor."

Tutor - "This motor is needed on the board."

Help Movement 6 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the switch to the circuit."

Peer - "How about adding this switch to the circuit so we can turn it off and on."

Peer - "This switch is needed on the board."

Tutor - "Here, try to add the switch to the circuit."

Tutor - "How about adding this switch to the circuit so you can turn it off and on."

Tutor - "This switch is needed on the board."

Help Movement 7 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the button to the circuit."

Peer - "How about adding this button to the circuit so the circuit is on while we are

pressing it."

Peer - "This button is needed on the board."

Tutor - "Here, try to add the button to the circuit."
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Tutor - "How about adding this button to the circuit so the circuit is on while you

are pressing it."

Tutor - "This button is needed on the board."

Help Movement 8 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the speaker to the circuit."

Peer - "How about adding this speaker to the circuit as it can play us some music."

Peer - "This speaker is needed on the board."

Tutor - "Here, try to add the speaker to the circuit."

Tutor - "How about adding this speaker to the circuit as it can play you some music."

Tutor - "This speaker is needed on the board."

Help Movement 9 [Robot Grabs Piece and Hands Over]

Peer - "Here, lets try to add the music circuit to the circuit."

Peer - "How about adding this music circuit to the circuit and it can send a song for

the speaker to play."

Peer - "This music circuit is needed on the board."

Tutor - "Here, try to add the music circuit to the circuit."

Tutor - "How about adding this music circuit to the circuit and it can send a song

for the speaker to play."

Tutor - "This music circuit is needed on the board."

Help Movement 10 [Points to Board]

Peer - "We have several pieces on the board. But they aren’t connect to each other.

Can we try connecting them together using the blue wires."

Peer - "We can connect pieces together using the blue wires. They snap to each

other at the ends."
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Peer - "The pieces need to be connected to each other and to the battery."

Tutor - "You have several pieces on the board. But they aren’t connect to each

other. Can you try connecting them together using the blue wires."

Tutor - "You can connect pieces together using the blue wires. They snap to each

other at the ends."

Tutor - "The pieces need to be connected to each other and to the battery."

Help Movement 11 [Robot Creates a Loop Above the Board

with Gripper]

Peer - "For a circuit to work, all the pieces need to be connected together to form a

loop like this. And the battery needs to be part of the loop."

Peer - "We need to connect all the pieces together in a circle such that they form a

loop with the battery included in the loop."

Peer - "Using the blue wires, we should connect all the pieces together in a circle,

and at the end of the circle we should have the battery."

Tutor - "For a circuit to work, all the pieces need to be connected together to form

a loop like this. And the battery needs to be part of the loop."

Tutor - "You need to connect all the pieces together in a circle such that they form

a loop with the battery included in the loop."

Tutor - "Using the blue wires, you should connect all the pieces together in a circle,

and at the end of the circle you should have the battery."

Help Movement 12 [Robot points from Music Circuit to Pos-

itive Side of Battery]

Peer - "To power the music circuit, lets connect its positive to the positive on the

battery, and its negative to the negative on the battery."

Peer - "The music circuit does not have power. Lets connect the positives and the
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negatives of the music circuit to the battery."

Peer - "For the music circuit to work, the positive of the music circuit should be

connected to the positive of the battery."

Peer - "For the music circuit to work, the negative of the music circuit should be

connected to the negative of the battery."

Tutor - "To power the music circuit, connect its positive to the positive on the bat-

tery, and its negative to the negative on the battery."

Tutor - "The music circuit does not have power. Connect the positives and the

negatives of the music circuit to the battery."

Tutor - "For the music circuit to work, the positive of the music circuit should be

connected to the positive of the battery."

Tutor - "For the music circuit to work, the negative of the music circuit should be

connected to the negative of the battery."

Help Movement 13 [Robot points from Speaker to the Posi-

tive Side of Battery]

Peer - "For the speaker to work it should be connected on one side to the positive

of the battery and the other side to the out port of the music circuit."

Peer - "Lets have the speaker in between the positive side of the battery and the out

port of the music circuit."

Peer - "The speaker plays the music that the music circuit created. Lets connect the

speaker to the out port of the music circuit."

Tutor - "For the speaker to work it should be connected on one side to the positive

of the battery and the other side to the out port of the music circuit."

Tutor - "You should have the speaker in between the positive side of the battery and

the out port of the music circuit."

Tutor - "The speaker plays the music that the music circuit created. Connect the
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speaker to the out port of the music circuit."

Help Movement 14 [Robot Points from Music Circuit to the

Positive Side of the Battery]

Peer - "When you use your finger to spin the motor, the speaker should start playing

music."

Peer - "The motor should be connected to the trigger port of the music circuit."

Peer - "Lets connect one side of the motor to the positive side of the battery, and

the other side to the trigger port of the music circuit."

Tutor - "When you use your finger to spin the motor, the speaker should start play-

ing music."

Tutor - "The motor should be connected to the trigger port of the music circuit."

Tutor - "Connect one side of the motor to the positive side of the battery, and the

other side to the trigger port of the music circuit."

Help Movement 15 [Robot Points from Music Circuit to the

Positive Side of the Battery]

Peer - "While we are holding the button down, the music should play. When we let

it go it should stop."

Peer - "The button should be placed on the hold port of the music circuit."

Peer - "Lets have the button between the positive side of the battery and the hold

port of the music circuit."

Tutor - "While you are holding the button down, the music should play. When you

let it go it should stop."

Tutor - "The button should be placed on the hold port of the music circuit."

Tutor - "You should have the button between the positive side of the battery and

the hold port of the music circuit."

229



Help Movement 16

Peer - "The circuit should only work if the button is pressed and the switch is turned

on."

Peer - "Lets connect the switch and button together in the loop of the circuit."

Peer - "We should connect the end of the switch to one end of the button in this

circuit."

Tutor - "The circuit should only work if the button is pressed and the switch is

turned on."

Tutor - "Connect the switch and button together in the loop of the circuit."

Tutor - "You should connect the end of the switch to one end of the button in this

circuit."

Help Movement 17

Peer - "In this task the circuit should work if either the button is pressed or the

switch is on."

Peer - "To create the or behavior, we should split a wire in two, and connect the

button and switch to each end, and then bring them together using wires."

Peer - "Lets try placing the button and switch side by side, and connecting their

ends together. Then we can connect them to the battery and the rest of the circuit."

Tutor - "In this task the circuit should work if either the button is pressed or the

switch is on."

Tutor - "To create the or behavior, you should split a wire in two, and connect the

button and switch to each end, and then bring them together using wires."

Tutor - "Try placing the button and switch side by side, and connecting their ends

together. Then you can connect them to the battery and the rest of the circuit."
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Start of New Task

Peer - "Hmmm, lets see what we need to do for our next task."

Peer - "Looks like we have the next task, we can do this!"

Peer - "Next task is up!"

Peer - "We have our next task."

Peer - "Let’s see what we need to do next."

Tutor - "Hmmm, lets see what you need to do for your next task."

Tutor - "Looks like you have the next task, you can do this!"

Tutor - "Next task is up!"

Tutor - "You have your next task."

Tutor - "Let’s see what you need to do next."

Finished Task (correct)

Peer - "Yay, we did a great job. Lets clear up the board for the next task."

Peer - "Awesome, looks like we did that perfectly. Can you help me removing the

pieces back onto the styrofoam?"

Peer - "Nice, we did the task just like it was meant. Lets clear up the pieces."

Peer - "Yay, go us. Can you take each piece and put it back onto the styrofoam?"

Peer - "Awesome, we make a good team."

Tutor - "Yay, you did a great job. Clear up the board for the next task."

Tutor - "Awesome, looks like you did that perfectly. Could you remove the pieces

back onto the styrofoam?"

Tutor - "Nice, you did the task just like it was meant. Clear up the pieces."

Tutor - "Yay, go you!Can you take each piece and put it back onto the styrofoam?"

Tutor - "Awesome, you are a good student."

Finished Task (incorrect)
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Peer - "Oh no, we were not able to finish it correctly in time. Lets clear up the board

for the next one."

Peer - "We ran out of time. So we did not do this one, but hopefully we can do the

next one."

Peer - "Times up. That was a hard one, hopefully the next one is easier. Please help

me remove all the pieces back on to the styrofoam."

Peer - "Looks like we did that wrong and that we ran out of time."

Tutor - "Oh no, you were not able to finish it correctly in time. Clear up the board

for the next one."

Tutor - "You ran out of time. So you did not do this one, but hopefully you can do

the next one."

Tutor - "Times up. That was a hard one, hopefully the next one is easier. Please

remove all the pieces back on to the styrofoam."

Tutor - "Looks like you did that wrong and that you ran out of time."

Out of Time

Peer - "It looks like there still is a mistake that we need to fix."

Peer - "We are not doing what the task asks."

Peer - "There are still some mistakes."

Peer - "Let’s look at what the task is asking again."

Peer - "I don’t think we are done yet."

Peer - "It’s not fully working yet."

Peer - "Let’s continue trying a bit more."

Tutor - "It looks like there still is a mistake that you need to fix."

Tutor - "You are not doing what the task asks."

Tutor - "There are still some mistakes."

Tutor - "Look at what the task is asking again."
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Tutor - "I don’t think you are done yet."

Tutor - "It’s not fully working yet."

Tutor - "Continue trying a bit more."

Start of Session

Peer - "Hello, nice to meet you! I am excited to work with you today to create some

electronic circuits. I am sure we will be a great team!"

Tutor - "Hello, nice to meet you! I am excited to teach you today on how to create

some electronic circuits. I am sure you will be a great student!"

End of Session

Peer - "Looks like we are finished for today. Thanks so much for building these

circuits with me, it was a lot of fun! Shall we call the experimenter back?"

Tutor - "Looks like you are finished for today. Thanks so much for building these

circuits for me, it was a lot of fun teaching you! Shall we call the experimenter back?"

B.4 Pre-test and Post-test

The pre-test (1-6) and the post-test (7-12) questions were identical. The differences

between the pre- and post-test were regarding the arrangement of pieces on the board.

• 1/7) Create a circuit that shines a constant light. [On Empty Board]

• 2/8) Create a circuit that will play music. [On Empty Board]

• 3/9) Add pieces to the circuit such that the circuit will play low music only

while a button is being held down. [Figure B.1]
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Figure B.1: The pre-test and post-test boards for tasks 3 and 9.

Figure B.2: The pre-test and post-test boards for tasks 4 and 10.

• 4/10) Add pieces to the circuit such that the circuit will play music whenever

you spin a motor. [Figure B.2]

• 5/11) Please identify what the circuit does: [Picture of circuits with an AND

gate.]

• 6/12) Please identify what the circuit does: [Picture of circuits with an OR

gate.]
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