
Planning with Critical Decision Points:
Robots that Influence Humans to Infer Their Strategy

Debasmita Ghose∗, Michal Lewkowicz∗, David Dong, Andy Cheng, Tran Doan, Emma Adams,
Marynel Vázquez and Brian Scassellati

Abstract— To enable sophisticated interactions between hu-
mans and robots in a shared environment, robots must infer
the intentions and strategies of their human counterparts. This
inference can provide a competitive edge to the robot or enhance
human-robot collaboration by reducing the necessity for explicit
communication about task decisions. In this work, we identify
specific states within the shared environment, which we refer to
as Critical Decision Points, where the actions of a human would
be especially indicative of their high-level strategy. A robot
can significantly reduce uncertainty regarding the human’s
strategy by observing actions at these points. To demonstrate
the practical value of Critical Decision Points, we propose a
Receding Horizon Planning (RHP) approach for the robot to
influence the movement of a human opponent in a competitive
game of hide-and-seek in a partially observable setting. The
human plays as the hider and the robot plays as the seeker.
We show that the seeker can influence the hider to move
towards Critical Decision Points, and this can facilitate a more
accurate estimation of the hider’s strategy. In turn, this helps
the seeker catch the hider faster than estimating the hider’s
strategy whenever the hider is visible or when the seeker only
optimizes for minimizing its distance to the hider.

I. INTRODUCTION

In an interactive task between a human and a robot,
it is beneficial for the robot to reason about the human’s
high-level behavior strategy. For instance, if the human and
the robot are competing, inferring the human’s strategy can
give the robot an advantage over the human competitor.
During human-robot collaboration, if the robot could infer a
human partner’s strategy by observing their actions, precise
communication between the human and the robot would not
be as critical, helping make the collaboration seamless.

Prior work has typically represented a human’s strategy
by a policy that maps the state of the world to the human’s
actions [14] and investigated ways for robots to infer this
strategy in fully observable settings [13], [18]. Typically, the
robot uses passive observations of the human’s actions to
solve this inference problem (e.g., [6], [9]), putting more
emphasis on how humans may model the robot in the
interactive setup than on how robots can leverage information
about the environment to better infer the human’s strategy. In
scenarios with limited observability among the interactants,
though, we suspect that more explicit reasoning about human
strategies in relation to the environment could facilitate better
reasoning about the human’s behavior.

In this work, we hypothesize that robots should reason
about Critical Decision Points when trying to infer a human’s

∗Authors Contributed Equally
The authors are with the Department of Computer Science, Yale Univer-

sity, New Haven, CT, USA

a

b

c

d

Turtlebot robot

S
H

Robot Seeker
Human Hider

Fig. 1. The robot seeker (S) influences the human hider (H) towards
a Critical Decision Point (CDP) in a hide-and-seek game: a), b) The
human-controlled hider sees the robot seeker on its way to its goal while
following its high-level strategy. c) The robot seeker actively influences the
human-controlled hider to escape towards a CDP (gray area). d) When the
hider is at the CDP, the robot seeker optimizes for not being seen by the
hider. So, the hider continues to navigate toward its goal. The robot seeker
sees the hider take action toward its goal and identifies its strategy.

strategy in an interactive task. These Critical Decision Points
are states in the physical environment where human actions
are particularly revealing about their high-level strategy.

The distribution of Critical Decision Points depends on
the complexity of the shared environment and the possible
human strategies for the task of interest. In some cases,
most human strategies may result in different actions for
many states of the environment, making most of the states
Critical Decision Points. In turn, one would expect passive
observation of the human to reveal their strategy quickly. In
other cases, human strategies may result in the same action
across many states, leading to few Critical Decision Points.

Our work investigates the value of Critical Decision Points
when they are sparsely located across a partially-observable
environment, as these are challenging situations for inferring
a human’s strategy. Our main hypothesis is that in these
cases, an active approach in which the robot influences
the human toward Critical Decision Points is particularly
beneficial. Thus, we propose a method for the robot to do
this based on Receding Horizon Planning (RHP) [10] and
demonstrate it in a partially-observable setting through a
hide-and-seek game between a human and a robot (Fig. 1). In
this game, the seeker robot tries to catch a human-controlled
hider by estimating their strategy.

Our experiments in simulation and our demonstration in
the real-world show that when the robot seeker influences
the hider toward Critical Decision Points, the seeker can
catch the hider faster than when the robot tries to estimate
the human’s strategy while randomly exploring the map
or minimizing the distance between itself and the hider.
Overall, our findings suggest that robots can leverage the
properties of a shared environment in interactive human-
robot tasks in order to estimate a human’s strategy under
partial observability.

II. RELATED WORK

Robots Influencing Humans. In recent years, there has
been a growing interest in enabling robots to select actions
that influence human behaviors [22] in both collaborative and
competitive scenarios. A common approach is to explicitly
model the human’s reward [1] and then optimize for robot ac-
tions that, at least in the near future, steer the human towards
states where they are more likely to act in a desired manner
[16]. More recently, high-level strategies of humans have
been inferred from repeated interactions using unsupervised
learning, with the inferred strategies being used to influence
their behavior [14], [23]. Prior work has also leveraged
offline reinforcement learning to train robots to influence
opponent behavior more optimally [8], [22]. Building upon
this line of research, we frame the problem of influencing
the human toward Critical Decision Points as a Receding
Horizon Planning problem [10]. This enables an observing
robot to select actions that drive a human toward Critical
Decision Points, where their actions are more revealing about
their strategy than in other states of the environment.

Opponent Modeling. While we believe that Critical Deci-
sion Points can be useful in both collaborative and compet-
itive settings, our work demonstrates their value in compet-
itive settings specifically. In competitive settings, opponent
modeling is typically key. That is, agents build a model of
an opponent’s behavior using observations of their actions
[11], [18], [25]. Over the years, opponent modeling has
been extensively studied for applications such as playing
stochastic games between agents [20], negotiations between
agents [12] and for cooperative tasks [21], [24]. For human-
robot interaction tasks, prior work uses Theory of Mind [13],
[15], [20] to recursively reason about the human’s actions
based on the robot’s behavior. Some methods estimate a
human’s reward model [2], [3] and then use the reward model
to estimate optimal robot behavior via reinforcement learning
techniques. Building on these ideas, we use a Bayesian
approach to recursively estimate the likelihood of a human’s
strategy in a competitive setting.

III. METHOD

Problem Definition. In this work, we are concerned with
enabling a robot to identify a human’s high-level strategy in
a shared environment. We assume that a human strategy is
represented by a policy, πi, which maps states to actions.
Also, the robot has access to a policy bank P with a set
of reasonable policies π1, π2, ..., πn that the human may

follow to achieve their objective(s) in the environment. We
represent the full state of the environment, s = (sw, sh, sr),
as a combination of the world state sw, which contains
information about the physical properties of the environment
in a discrete representation (ex. occupancy map), the state of
the human sh, and the state of the robot sr. We assume that
the robot always has access to sw and sr, but can only reason
about sh through observations of the human’s behavior.

Given the above setup, the robot’s goal is to identify
the best strategy from the policy bank that most accurately
represents the human’s observed behavior in a partially
observable environment. The robot keeps track of a belief,
or a probability distribution, over the policies in P , the
maximum of which is the policy the robot believes the human
is most likely following, denoted as π̂h. Another important
assumption we make is that the human’s actual strategy, πh,
remains constant during an interaction.

Critical Decision Points. The main insight of our work is
that there are states in the environment in which observing
a human take an action can reveal important information
about their high-level strategy. We refer to those states as
Critical Decision Points (Scrit), for which the divergence
in the human’s potential actions (as per the policy bank
P) is maximized. Mathematically, let the environment state
sw be represented by a grid, with each grid cell having
semantic information about that specific location in the
world. For example, if the grid is 2-dimensional, then each
cell can contain occupancy information. If the grid is higher-
dimensional, then more or alternative semantic features about
the environment can be included in the representation. Then,
for each possible grid cell s(i,j)w in the environment state, we
compute (Scrit) as:

Scrit = {s(i,j)w | strategy div(P, s(i,j)) > θ}, (1)

where s(i,j) represents the full state of the world with
the human agent being located at the grid cell s

(i,j)
w ,

strategy div(P, s(i,j)) measures the divergence in the
strategies of the policy bank P , and θ is a threshold for
the divergence. Depending on the task, strategy div() can
be calculated as the count of the number of actions differing
at a given state or quantified as some similarity measure of
the next states. The central hypothesis of our work is that at
Critical Decision Points, the human’s actions will be more
revealing about their strategy to an observing robot than other
states in the environment, as shown in Fig. 2.

Influencing the Human Towards Critical Decision Points.
We develop a method for the robot to drive a human towards
Critical Decision Points, such that the robot can reduce the
entropy of its belief over the human’s current strategy, given
the set of reasonable human policies in the policy bank P .

We frame the above problem as a discrete-time planning
problem, which we solve using a Receding Horizon Planning
(RHP) approach [10]. RHP takes inspiration from Model
Predictive Control [5] but concerns discrete decision-making
rather than continuous control. Generally, to perform RHP, an
agent iteratively solves a planning problem over a receding

Fig. 2. Critical Decision Point Computation. For every policy of the
human in the policy bank, we compute what states in the environment
produce the most divergent actions. For instance, if there were four
reasonable policies the human could be following, at s1, all four of them
produce different actions, making s1 a Critical Decision Point (as compared
to s2 and s3 where most policies predict the same action).

horizon, considering possible future actions by expanding a
search tree. After planning on a given time step, the first
action leading to the best possible outcome is executed, the
horizon window moves forward, and planning is performed
again for the next possible futures.

Alg. 1 summarizes our approach for a robot to influence
a human towards Critical Decision Points. At a given time
t, the robot rolls out all possible future actions that can be
taken by the human per the policy bank P along with its
own responses to the human’s possible actions. These steps
are repeated to grow the search tree to a certain horizon D.
For every leaf node in the tree that results from the human
acting according to a policy πi, the robot computes a cost
Cπi(s

t) that describes how good that specific future is based
on 1) the distance between the projected human position at
time t+D and the closest Critical Decision Point (scrit) and
2) the satisfaction of other task-related objectives:

Cπi
(st) = (λ1dist(s

t+D
h , scrit) + λ2Ctask)

1

bel(πt
i)

(2)

where dist(st+D
h , scrit) is the shortest path between the

human and the closest Critical Decision Point D steps in
the future when the human acts according to πi and the
robot takes corresponding actions, Ctask is a task-specific
cost function, and λ1, λ2 are weights to balance the two
objectives. The cost C is scaled by the likelihood of the
human policy bel(πt

i), such that less likely policies result
in higher cost. We compute bel(πt

i) recursively over time
with a Bayesian update, similar to a Bayes Filter [17] with
an identity transition function as we assume that the human
does not change the actual underlying strategy πh during an
interaction:

bel(πt
i) = P (πt

i |s1 . . . st) ∝ P (st|πi) bel(π
t−1
i)

=⇒ bel(πt
i) = P (st|πi) bel(π

t−1
i)

(3)

where bel(πt−1
i) is the prior belief at time t − 1, and the

probability of a state given a human policy, P (st|πi), is

Algorithm 1: Influencing Humans to Critical Deci-
sion Points using Receding Horizon Planning (RHP)

Input : Policy bank P = {π1, π2, ..., πn}, Full state of
the environment s = (sw, sh, sr), Weights
λ1, λ2, Action space for robot Ar , Task-specific
cost function Ctask, Planning Horizon D

Output : Actions taken by the robot that influence the
opponent ar

1 Initialize bel(πi) over policy bank P with uniform
distribution

2 Identify Critical Decision Points Scrit for each
environment cell in sw based on divergence θ as in 1

3 Sr = [sinit
r]

4 a1
r = ainit

r

5 for t = 1, . . . , T do
6 Execute at

r while human executes at
h

7 Observe sth
8 for πi ∈ P do
9 bel(πt

i) = P (πt
i |s1 . . . st) ∝ P (st|πi) bel(π

t−1
i)

10 for d = 0, . . . ,D do
11 t′ = t+ d

12 at′
h = πi(s

t′
h)

13 st
′+1
h = execute action(st

′
h , at′

h)
14 St′+1

r = []
15 for at′

r ∈ At′
r do

16 for st
′
r ∈ St′

r do
17 st

′+1
r = execute action(st

′
r , at′

r)
18 St′+1

r .add(st
′+1
r)

19 end for
20 end for
21 St′

r ← St′+1
r

22 end for
23 Cπi(s

t) = (λ1·dist(st+D
h , scrit)+λ2·Ctask)· 1

bel(πt
i)

24 end for
25 Choose a∗

r as the robot action that responds to the
predicted human policy π̂h at time t, such that
π̂h = argminπi∈P Cπi(s

t).
26 at

r = a∗
r

27 end for

computed empirically based on state visitation frequencies
of the human when they are following the given policy.

Finally, the robot selects its best response action a∗r at
time t as the action that minimizes the cost function Cπi(s

t)
for all possible πi ∈ P over the horizon D. This allows
it to influence the human toward Critical Decision Points,
because the cost is dependent on where the human ends up
being after D steps in the future.

IV. EVALUATION

A. Task and Experimental Setup

Task: We use the game of hide and seek as our experimental
setup. The game warrants the construction of arbitrarily
complex environments, requires the agents to take a large
variety of environment-dependent strategies, and requires
that agents not communicate about their strategies.

We developed the hide-and-seek task in a photo-realistic
simulation and the real world. In both settings, we embodied
the agents with Turtlebot3 robots such that there is no

Simulated Environments Real Environment

Critical Decision Points Heatmap

a)small-dense-room b) medium-dense-room c) large-sparse-room d) crossroad e) physical environment

Fig. 3. (Top) Photo-realistic Simulated and real-world environments for the hide-and-seek task. (Bottom) Heatmaps of Critical Decision Points for
corresponding environments. States closer to red denote the most Critical Decision Points and states closer to blue denote the least critical points. Note:
Even though the figure shows Critical Decision Points for every state, typically, it is sufficient to compute them in a small region around the robot.

advantage due to different agent morphology in the game.
The robots have a forward-facing camera, giving access
to a first-person view of the environment. The placement
of objects in the environment and agents’ access to visual
information through their cameras makes the hide-and-seek
game partially observable for both agents.

The photo-realistic simulation environments were created
by modifying the SEAN 2.0 simulator [19] to support
multiple robots. In simulation, an autonomous agent assumes
the role of the seeker, while a simulated human controls the
hider. For real-world experiments, we setup a lab environ-
ment similar to one of the simulated worlds. One of the
researchers controlled the hider robot in this case, while the
seeker robot made decisions autonomously.
Environments: We constructed four environments in sim-
ulation, as shown in the top half of Fig. 3. The first
environment is a small-dense-room with several objects
densely placed in a small room. The second environment is a
medium-dense-room with objects spread across the map.
The third is a large-sparse-room, which is sparse and
has the same objects as medium-dense-room but wider
open spaces. The last one is the crossroad environment,
with four hallways emanating from a single crossroad and
distinct objects or environmental geometries at the end
of the hallways. The laboratory environment for physical
experiments is similar to the small-dense-room.
Policy Bank: We model the various strategies of the human-
controlled hider using behavior trees [4]. Each behavior tree
takes the hider to various hiding locations within a given
map, determined by the presence of particular objects in
those locations or locations with different environmental oc-
clusions. If the hider were to spot the seeker while navigating
to a pre-defined location, the behavior tree would enable
the hider to perform a fixed evasive maneuver to escape
the seeker’s field of view. Each behavior tree was executed
multiple times with different starting locations on the map
for both the hider and the seeker to collect a dataset of states
and actions for each behavior of the hider. To construct the

hider’s policy bank, each policy was trained using the state-
action trajectories in the corresponding dataset with a Long
Short-Term Memory network [7] and behavioral cloning [1].

B. Implementation Details

The map of the shared environment is discretized into a
n × n grid, and each map cell is represented as a node in
an undirected graph. Each node in the environment graph
contains information about the center position of the cell, the
objects present in the cell, and a visibility score of that cell,
computed from every other cell in the map using ray casting
in a raster grid. The state space SH of the hider agent is 6-
dimensional, containing (xh, yh, θh, x̂s, ŷs, θ̂s), where xh, yh
denote the position of the hider, θh is their heading, x̂s, ŷs
is the estimated position of the seeker by the hider, and θs is
the estimated heading of the seeker by the hider. To obtain
the perceived position and heading of the hider, we first train
a real-time object detection model to predict a bounding box
and a heading estimate for a given robot when it is visible
in the first-person view of another robot. Then, based on
the robot’s known physical size, the predicted bounding box
in the image, and the camera parameters, we use a pinhole
camera model to estimate the relative node position of the
hider w.r.t. the seeker. The action space of the seeker consists
of transitions to each adjacent cell from an inhabited cell.

To compute Critical Decision Points, for every node in an
environment we predict the actions that the hider would take
per a given policy, πi ∈ P , assuming that the hider cannot see
the seeker. This results in a map of Critical Decision Points,
as shown in the bottom half of Fig. 3. The map shows that
the environments and the policy bank created for the hide-
and-seek task have afforded the existance of sparsely located
Critical Decision Points.

The seeker jointly optimizes to drive the hider toward the
closest Critical Decision Point (with θ ≥ 4 in Eq. 1) in a fixed
radius around the hider’s current position while minimizing
its distance to the hider (Ctask in eq. 2). Additionally, the

Fig. 4. Example RHP tree rollout for influencing the robot: The green
and the blue agent are playing a hide-and-seek game, where the green agent
(the seeker) is trying to influence the blue agent (the hider) to a Critical
Decision Point (the red cell) using RHP to infer its policy and therefore catch
it faster. The brick walls represent obstacles. The green agent imagines all
possible future actions, assuming the blue agent follows a fixed policy, and
selects the most optimal action in the next timestep to lead to the most
favorable outcome at horizon D = t4. The black arrow at t1 represents the
underlying strategy. Both agents’ fields of view are restricted to all the cells
in the direction they face. At t2, when the blue agent detects the green agent,
it abandons its underlying strategy at t3 to perform an evasive maneuver,
then resumes its original path once out of the green’s field of view at t4.
This allows the green agent to observe the blue agent’s underlying policy at
a critical decision point at t3 without being observed, and ultimately catch it
in t4. Note that the green arrow denotes the optimal next action for the green
agent. After rolling out all possible futures, the green agent determines its
optimal sequence of actions to be a2 → a1 → a1 (highlighted in white).
Since the green agent performs RHP, it takes the first action a2 from the
sequence and constructs the tree from the next state.

seeker optimizes for staying out of the hider’s field of view
when it approaches a Critical Decision Point using RHP.

Whenever the hider is visible, the seeker expands a tree of
all possible future actions it could take in response to a hider
following a given policy up to a certain horizon (D = 5).
Concurrently, the seeker performs a Bayesian update on the
belief of the hider’s policies, given observations of the hider,
to compute the likelihood of each policy being executed from
the policy bank. Finally, this belief is used to evaluate the
cost function for each branch in the tree. Fig. 4 shows an
example of tree expansion. Note that if the hider has been
seen in the past 4 (D − 1) timesteps and is not currently
visible, the seeker uses the stored action queue from the RHP
tree in anticipation of spotting the hider in the future if its
belief over the policy currently being followed by the hider
is correct. Once no more stored actions are in the queue, the
autonomous seeker reverts to a default exploration strategy
where the seeker chooses an object on the map according to
the policy it is following and navigates toward it.

C. Experiments

We evaluate our method in simulation and demonstrate
our approach in a real-world environment.

Simulation: We measure the effectiveness of our approach
by comparing it with two baselines:
1) Baseline 1: The seeker randomly explores the environ-
ment and performs a Bayesian update of the belief over the
hider’s policies whenever it is visible (per eq. 3).
2) Baseline 2: The seeker uses RHP to optimize for
minimizing its distance between itself and the estimated
position of the hider whenever it is visible while computing
the Bayesian update (per eq. 3).
3) Our Method: The seeker selects actions by expanding
the RHP tree to drive the hider towards the closest Critical
Decision Point per eq. (2), and estimates their strategy using
the Bayesian update (per eq. 3).

For our simulated experiments, we assume that a simulated
human controls the hider and follows one of the policies from
the policy bank during an interaction episode. Depending on
the environment, the hider’s policy bank contains between 6
and 8 policies. We run each experiment for 20 episodes or
trials, each of which ends when the seeker lands on the same
node as the hider (indicating it has caught the hider) or after
100 time steps. To compare our method’s performance with
the baselines, we compute the average number of time steps
needed for the seeker to catch the hider in each environment
aggregated along all ground truth policies.
Real World: We demonstrate the applicability of our
method in the real-world environment (shown in Fig. 1).
We used Simultaneous Localization and Mapping to generate
a map of the physical environment. Like the simulation
environments, we discretized the map to create an undirected
graph with the states as nodes and valid actions from the
states as edges. Then, we developed the policy bank of the
hider using the behavior trees and generating policies with
behavioral cloning. One of the researchers controlled the
hider robot through velocity commands using a PlayStation
controller while following a given policy from the policy
bank. The seeker robot selected actions optimized for driving
the opponent toward the Critical Decision Points.

D. Results

Fig. 5 shows that our method outperformed the baselines
across all four simulation environments. When the seeker
influenced the hider toward Critical Decision Points, it caught
the hider faster than when it explored the map (Baseline 1)
or minimized its distance to the hider (Baseline 2).

Qualitatively, we observed that with Baseline 1, when the
seeker randomly traversed the map and updated its belief of
the hider’s policy with each sighting, the seeker could not
accurately estimate the hider’s strategy. In Baseline 2, when
the seeker used RHP to minimize its distance to the perceived
position of the hider, it frequently entered the hider’s field
of view, making the hider trigger a fixed evasive maneuver.
The seeker’s estimate of the hider’s strategy then became
inaccurate. With our method, the seeker entered the hider’s
field of view to trigger an evasion and then exited it to
observe the hider at the Critical Decision Point continue to
its original goal. It then selected actions to intercept the hider
quickly once it learned the hider’s strategy.

0

10

20

30

40

50

60

70

80

90

100

crossroadsmall-dense-room medium-dense-room large-sparse-room

Simulation Environments

Ti
m

es
te

ps
 to

 C
at

ch
 th

e
H

id
er

Baseline 1 Baseline 2 Our Method

Fig. 5. Mean and Standard error of timesteps taken by the seeker to catch
the hider for each experiment aggregated across all hider policies for a given
environment and number of trials (lower is better)

We demonstrated our method on the real robot across
five trials each for six policies, as illustrated in Fig. 1. A
researcher controlled the hider robot, with access to only the
map of the environment and the first-person view from the
robot’s camera. Our method took the seeker 27 ± 3 timesteps
to catch the hider. Baselines 1 and 2 took the seeker 39 ± 2
timesteps and 24 ± 1 timesteps longer than our approach to
catch the hider, respectively. The supplementary video shows
an example trial of the real-world demonstration.

V. DISCUSSION

In this work, we developed a novel method for a robot
to identify a human’s strategy with limited observability of
human actions. Assuming the robot has access to reason-
able policies a human might follow, the robot examines
the actions these policies predict at all states in the en-
vironment. Then, by observing humans at the states most
policies diverge, which we call Critical Decision Points, the
robot can more quickly predict which of the strategies the
human is using in the environment. We demonstrated our
approach in a game of hide-and-seek in simulation and the
real world, assuming that the human’s strategy remained
unchanged throughout a single game. Our results suggested
that influencing a human-controlled hider toward Critical
Decision Points can help an autonomous robot infer the
human’s strategy faster in the game. In the future, we aim
to relax the assumption that the human’s strategy is constant
and sampled from a fixed policy bank.

ACKNOWLEDGMENT
This work was funded by the National Science Foundation

(NSF) under grants No. 1955653 and 2106690 and the
Office of Naval Research (ONR) under grant No. N00014-
24-1-2124. The authors thank Drazen Brzcic, Shasvat Desai,
Nathan Tsoi, Sasha Lew and Cameron Adams for their
assistance and feedback to improve this work.

REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1, 2004.

[2] T. Bonjour, M. Haliem, A. Alsalem, S. Thomas, H. Li, V. Aggarwal,
M. Kejriwal, and B. Bhargava. Decision making in monopoly using a
hybrid deep reinforcement learning approach. IEEE Transactions on
Emerging Topics in Computational Intelligence, 6(6), 2022.

[3] T. V. Bui, T. Mai, and T. H. Nguyen. Imitating opponent to win:
Adversarial policy imitation learning in two-player competitive games.
In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 1285–1293, 2023.

[4] M. Colledanchise and P. Ögren. Behavior trees in robotics and AI:
An introduction. CRC Press, 2018.

[5] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control:
Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[6] D. Ghose, M. A. Lewkowicz, K. Gezahegn, J. Lee, T. Adamson,
M. Vázquez, and B. Scassellati. Tailoring visual object representations
to human requirements: A case study with a recycling robot. In
Conference on Robot Learning, pages 583–593. PMLR, 2023.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[8] J. Hong, S. Levine, and A. Dragan. Learning to influence human
behavior with offline reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

[9] H. Karnan, G. Warnell, X. Xiao, and P. Stone. Voila: Visual-
observation-only imitation learning for autonomous navigation. In
2022 International Conference on Robotics and Automation (ICRA),
pages 2497–2503. IEEE, 2022.

[10] X. Ma and D. A. Castanon. Receding horizon planning for dubins
traveling salesman problems. In Proceedings of the 45th IEEE
Conference on Decision and Control, pages 5453–5458. IEEE, 2006.

[11] S. Nashed and S. Zilberstein. A survey of opponent modeling
in adversarial domains. Journal of Artificial Intelligence Research,
73:277–327, 2022.

[12] Z. Nazari, G. M. Lucas, and J. Gratch. Opponent modeling for virtual
human negotiators. In Intelligent Virtual Agents: 15th International
Conference, IVA 2015, Delft, The Netherlands, August 26-28, 2015,
Proceedings 15, pages 39–49. Springer, 2015.

[13] I. Oguntola, J. Campbell, S. Stepputtis, and K. Sycara. Theory of
mind as intrinsic motivation for multi-agent reinforcement learning.
arXiv preprint arXiv:2307.01158, 2023.

[14] S. Parekh and D. P. Losey. Learning latent representations to co-adapt
to humans. Autonomous Robots, pages 1–26, 2023.

[15] N. Rabinowitz, F. Perbet, F. Song, C. Zhang, S. A. Eslami, and
M. Botvinick. Machine theory of mind. In International conference
on machine learning, pages 4218–4227. PMLR, 2018.

[16] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for
autonomous cars that leverage effects on human actions. In Robotics:
Science and systems, volume 2. Ann Arbor, MI, USA, 2016.

[17] S. Thrun, W. Burgard, and D. Fox. Probalistic robotics. Kybernetes,
35(7/8):1299–1300, 2006.

[18] Y. Tian, K.-R. Kladny, Q. Wang, Z. Huang, and O. Fink. Multi-agent
actor-critic with time dynamical opponent model. Neurocomputing,
517:165–172, 2023.

[19] N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh,
M. Hussein, A. W. Gupta, M. Kapadia, and M. Vázquez. Sean
2.0: Formalizing and generating social situations for robot navigation.
IEEE Robotics and Automation Letters, 7(4):11047–11054, 2022.

[20] F. B. Von Der Osten, M. Kirley, and T. Miller. The minds of many:
Opponent modeling in a stochastic game. In IJCAI, 2017.

[21] W. Z. Wang, M. Beliaev, E. Bıyık, D. A. Lazar, R. Pedarsani, and
D. Sadigh. Emergent prosociality in multi-agent games through
gifting. arXiv preprint arXiv:2105.06593, 2021.

[22] W. Z. Wang, A. Shih, A. Xie, and D. Sadigh. Influencing towards
stable multi-agent interactions. In A. Faust, D. Hsu, and G. Neumann,
editors, Proceedings of the 5th Conference on Robot Learning, volume
164 of Proceedings of Machine Learning Research, pages 1132–1143.
PMLR, 08–11 Nov 2022.

[23] A. Xie, D. Losey, R. Tolsma, C. Finn, and D. Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on
robot learning, pages 575–588. PMLR, 2021.

[24] J. Yang, A. Li, M. Farajtabar, P. Sunehag, E. Hughes, and H. Zha.
Learning to incentivize other learning agents. Advances in Neural
Information Processing Systems, 33:15208–15219, 2020.

[25] X. Yu, J. Jiang, W. Zhang, H. Jiang, and Z. Lu. Model-based
opponent modeling. Advances in Neural Information Processing
Systems, 35:28208–28221, 2022.

	Introduction
	Related Work
	Method
	Evaluation
	Task and Experimental Setup
	Implementation Details
	Experiments
	Results

	Discussion
	References

