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Many real-world applications require robots to use tools. However, robots lack the skills
necessary to learn and perform many essential tool-use tasks. To this end, we present the
TRansferrIng Skilled Tool Use Acquired Rapidly (TRI-STAR) framework for task-general
robot tool use. TRI-STAR has three primary components: 1) the ability to learn and apply
tool-use skills to a wide variety of tasks from a minimal number of training demonstrations,
2) the ability to generalize learned skills to other tools and manipulated objects, and 3) the
ability to transfer learned skills to other robots. These capabilities are enabled by TRI-
STAR’s task-oriented approach, which identifies and leverages structural task knowledge
through the use of our goal-based task taxonomy. We demonstrate this framework with
seven tasks that impose distinct requirements on the usages of the tools, six of which were
each performed on three physical robots with varying kinematic configurations. Our results
demonstrate that TRI-STAR can learn effective tool-use skills from only 20 training
demonstrations. In addition, our framework generalizes tool-use skills to
morphologically distinct objects and transfers them to new platforms, with minor
performance degradation.

Keywords: robot tool use, tool manipulation, tool improvisation, tool substitution, platform-agnostic
representations, learning from demonstration, generalizability

1 INTRODUCTION

Imagine a robot designed to perform household chores. Such a robot will encounter many tasks
requiring the use of a wide variety of tools, for example, cutting and stirring ingredients to help with
cooking, scooping pet food to care for family pets, and driving screws and hammering nails to assist
with house maintenance. In order to be a help and not a hindrance, such a robot would need to be
capable of rapidly learning a wide assortment of tasks. In addition, given the complexity of household
chores and the diverse range of objects that could be encountered, a robot should be able to generalize
learned skills to novel tools and manipulated objects without needing to be retrained. Finally, one
might wish to leverage learned skills from other users or transfer a library of accrued skills to a new
robot without retraining.

A framework that enables such capabilities would have applications that extend far beyond the
household. The search-and-rescue and disaster cleanup domains, for example, could benefit from
such capabilities. Since these scenarios can be highly unpredictable and resource-limited, the robot
should be able to both learn the appropriate tool-use skills rapidly and substitute learned tools for
improvised alternatives. In addition, the ability to transfer learned skills to other robot platforms will
enable rapid deployment of new models to assist or to replace a damaged teammate, regardless of
different robot kinematic configurations.
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This study focuses on learning and applying tool-use skills
in a task-general manner (i.e., to handle a wide variety of tasks
without predefined information for each specific task). In the
course of a task, a single action is taken with objects in order to
achieve a particular goal. The objects include a tool, an object
that is “graspable, portable, manipulable, and usually rigid”
(Gibson, 1979), and a manipulandum, an un-grasped object
being manipulated by the tool. Similar to previous tool-use
studies, we only consider tool-use tasks involving the
following: 1) tools and manipulanda that are unjointed rigid
bodies, 2) the use of contact forces to deterministically change
the state of the manipulandum, and 3) a goal that can be
accomplished with a single tool action, rather than a series of
actions.

We report on a task-general integrative tool-use framework
called TRansferrIng Skilled Tool Use Acquired Rapidly (TRI-
STAR). The framework includes components such as perception,
3D mesh scanning, tool-use skill learning, and tool-use skill
generalization. These components collectively endow a robot
with three capabilities, or Stars, aimed at solving challenging
and commonplace problems in robot tool use. Star 1 is the ability
to learn and apply a wide range of tasks with minimal training.
Star 2 is the ability to generalize the tool-use skills learned with
trained tools (i.e., source, color-coded green in the figures and
movies) in Star 1 to both novel (i.e., substitute, color-coded blue)
tools and manipulanda with no additional training, which is
object substitution. Star 3 is the ability to transfer learned skills
directly to other robot platforms (color-coded yellow), which is
platform generalization.

1.1 Task-Oriented Approach to Tool-Use
Skills
Tool-use skills are actions composed of two components: motor
skills and contact poses. Motor skills concern the tool trajectory
(i.e., a time series of poses of a tool) and dynamics (i.e., the forces
required for successful tool use). The contact poses consider
tool–manipulandum contact poses and gripper–tool contact
poses or graspings, which are dependent on the
tool–manipulandum contact poses. While previous studies
generally focus on one aspect of the skills, our system
considers multiple skills, or the minimum set of tool-use skills
that enables a robot to use a tool, which includes the tool
trajectory and tool–manipulanda contact poses (henceforth
referred to as contact poses).

While some tool-use studies are tool-oriented in that they seek
to model tool use for a specific tool or class of tools (e.g.,
Stoytchev, 2005; Sinapov and Stoytchev, 2008; Jamone et al.,
2016; Zech et al., 2017), we opted for a task-oriented approach
(Detry et al., 2017; Kokic et al., 2017) that learns associations
between tasks and tool-use skills. This is a more natural framing
of the problem as tool use is not driven by the tool itself but
instead by the task. To illustrate, the actions taken using a spoon
on a piece of cake differ when one cuts the cake into smaller pieces
or scoops a piece in order to eat it. In both tasks, the tool (the
spoon) and even the manipulandum (the cake) are the same, so
differences in how the tool is used can only be explained by the

differences in the tasks. In a tool-oriented approach, the tool
would have uniquely determined a single action for both steps.

In a task-oriented approach, goals, objects, and actions are
connected through specific relationships. By our definition of
tasks, the relationship between these three components is
inherently causal with goals as the primary causal antecedent
(as depicted in Figure 1A); a goal causes an agent to select
features of objects (e.g., the goal of cutting requires a tool to be
sharp), and the objects and the goal determine a precise action to
be taken (e.g., the desired position of a block determines how it
should be pushed, and the size of a bowl influences the radius of a
stirring motion). While these goal–object relations, goal–action
relations, and object–action relations, respectively, may differ
across tasks, they remain constant across instances of a particular
task and are useful when learning and generalizing tool-use skills.

Specifying these three relations for each task is impractical and
learning these relations for each task can be data intensive.
However, the causal structure of this approach implies that
tasks with similar goals also share common features of each
type of relation. Therefore, we compiled a task taxonomy (see
Section 2.1.1) that categorizes tasks based on their goals with
respect to manipulanda as shown in Figure 1B and summarized
the common features of each relation in each category as shown
in Figure 1C, which we called taxonomic knowledge. The
advantage of utilizing taxonomic knowledge is that specific
information does not need to be manually specified for new
tasks when either learning a task or applying the learned tool-use
skills. In this way, taxonomic knowledge can help to reduce the
training data needed.

1.2 Star 1: Learning and Applying
Task-General Tool-Use Skills
Star 1 is the ability to learn tool-use skills and apply them to
complete the same task with new configurations using a source
tool and manipulandum. In this section, we first describe relevant
studies, though they often ignored contact poses entirely or
utilized a simplistic contact pose representation or did not
utilize the goal–action relations to apply skills. We then
describe the challenges in learning tool-use skills and briefly
describe the tests we conducted.

Studies focusing on motor skills ignored the learning of
contact poses, though they were applied to tool-use tasks such
as swinging tennis rackets (Ijspeert et al., 2002), batting (Peters
and Schaal, 2006), playing ball-in-a-cup (Kober et al., 2008) or
table tennis (Muelling et al., 2010), pouring (Pastor et al., 2009;
Rozo et al., 2013), writing letters (Lioutikov et al., 2017) or digits
(Droniou et al., 2014), and peg-hole insertion (Gao and Tedrake,
2021) with methods such as dynamical movement primitives
(Schaal, 2006; Ijspeert et al., 2013) or probabilistic movement
primitives (Paraschos et al., 2013). For example, in the peg-hole
insertion study, experimenters hard-coded the contact poses so
that the end of a peg should align with the top of a hole vertically
when learning the peg-hole insertion task.

Studies that did not ignore contact poses (Kemp and Edsinger,
2006; Hoffmann et al., 2014) utilized the tool tip as a simplified
representation of the contact area. Yet, in practice, the contact
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area can comprise any arbitrary area at any location on a tool,
such as the tip of a screwdriver, the blade of a knife, the face of a
hammer, or the concave surface of a ladle. Moreover, with such a
simplification, the relation between the tool and the
manipulandum is reduced to be the angle of contact, which is
insufficient for tasks like screw-driving; a screwdriver should

contact a screw not only perpendicular to the head of the screw
but also with the correct rotation about the tip axis. Additionally,
such simplified representations cannot account for tasks that may
have multiple viable contact poses; a hammer may approach a
nail from infinitely many orientations about the head axis of the
nail and thus have an infinite number of viable contact poses.

FIGURE 1 | Algorithm overview. (A) is a diagram depicting the task-oriented approach to tool-use skill learning and application. The causal relations between the
goals, objects, and actions are represented by the directed edges of the diagram. (B) depicts the task taxonomy whose structure emerges when observing goal-based
motion primitives from different frames of reference. (C) is a chart summarizing taxonomic knowledge for each combination of task category and Star during the tool-use
skill learning or application process. Each cell specifies the specific task-specific knowledge relation needed, if any, denoted by the abbreviations G, O, A, T, and M
defined in (A).
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While the aforementioned studies did not incorporate
goal–action relations into the action generation process,
studies that focused on these relations did not consider action
generation. Two previous studies (Sinapov and Stoytchev, 2007;
Stoytchev, 2008) learned how predefined linear end-effector
trajectories of different tools lead to positional changes of a
manipulandum. Another study (Zech et al., 2017) attempted
to learn relationships between goals and contact poses to aid
in tool selection but predefined a contact pose template. Other
studies (Moldovan et al., 2013; Gonçalves et al., 2014A; Gonçalves
et al., 2014B; Dehban et al., 2016) learned these relations from a
probabilistic approach but also with predefined end-effector
trajectories.

Star 1 learns and applies tool-use skills by locating the task in
the taxonomy and utilizing taxonomic knowledge (i.e., the
goal–action relations) identified by its category. We
demonstrated seven tasks (knocking, stirring, pushing,
scooping, cutting, writing, and screw-driving) that learned
with a small number of training samples and tested different
types of tool-use skills. This range of tasks tested the learning and
application of tool-use skills given different task types, such as
stirring, screw-driving, and pushing, each corresponding to a type
defined in the taxonomy we describe in detail in the methodology.

1.3 Star 2: Task-General Object Substitution
Star 2 is the ability to generalize learned tool-use skills from
source to substitute tools or manipulanda that can complete the
task, including objects that share a common geometric template
(geometrically similar objects, e.g., mugs differing in shape and
size as in the study by Brandi et al. (2014)) or share no common
form-factor (geometrically distinct objects, e.g., pushing an object
with a cake-cutter rather than a toy rake). To generate actions, an
object-substitution algorithm must adjust learned trajectories for
tasks such as stirring in a smaller container and produce contact
poses. The contact poses for many tasks can be obtained by
finding the mapping between the source and substitute objects
based on features for tasks such as cutting, but for some tasks like
pushing, the contact poses are determined by goals of the tasks.
Similar to previous tool-use studies, we focused on geometric
features only.

Many previous studies employed task-specific approaches that
limited the robot’s ability to improvise tools using objects that
share common form-factors. Some of these approaches required
hand-engineered information to find a mapping for each task
(e.g., Hillenbrand and Roa, 2012; Brandi et al., 2014; Stückler and
Behnke, 2014). Providing hand-engineered information for each
task exhibits two disadvantages. First, algorithms requiring hand-
engineered information constrain their user-friendliness for naïve
end-users who lack the knowledge to train these algorithms
adequately. Second, engineering information for each task is
time-consuming and impractical in real-world settings
requiring the use of many tools.

Other approaches that can accommodate tools of various
shapes usually require prohibitively large amounts of data per
task. For example, over 20,000 training examples were needed to
learn and generalize in the pushing task (Xie et al., 2019); 18,000
simulated tools were used to generalize tool use in a sweeping and

nail-hammering task (Fang et al., 2020); 5,000 vectorized
representation tools were used to train a neural network to
generalize tool-use in the scraping, cutting, and scooping tasks
(Abelha and Guerin, 2017; Gajewski et al., 2019). Acquiring a
large training sample set is infeasible when tasks need to be
learned rapidly or whenmany tasks need to be learned. Moreover,
these studies only considered tool substitutions but not
manipulandum substitutions, limiting their applicability to
many real-life tool-use applications.

Star 2 performs object substitution by adjusting tool-use skills
learned by Star 1, using all three relations comprising taxonomic
knowledge without additional training. While the goal–action
relations assisted the generation of actions to different task
configurations in the same way as in Star 1, the two object-
related relations help to generate contact poses and adjust learned
trajectories. This ability to adapt trajectories to accommodate
substitute objects and the ability to perform tool and
manipulandum substitution are two advantages of our
approach that are not typically considered in other studies.
We evaluated Star 2 with five tasks (knocking, stirring,
pushing, scooping, and cutting). The substitute objects differed
from the source objects in size, shape, or a combination of both.
We also tested trajectories requiring adjustments based on
geometric features of the manipulanda (e.g., stirring and
cutting), goals (e.g., pushing), and trajectories requiring no
adjustments (e.g., hammering).

1.4 Star 3: Transferring Tool-Use Skills to
Other Robot Platforms
Star 3 is the ability to transfer tool-use skills to other robot
platforms. This requires a robot-independent representation of
tool-use skills. Although learning trajectories and dynamics in the
joint state space is common in learning motor skills, such
representation makes it challenging to transfer learned skills to
robots with different hardware configurations. Learning in the
Cartesian space is more conducive to cross-platform transfer,
though it suffers from practical limitations.

When learning in the Cartesian space, prior tool-use studies
(e.g., Fitzgerald et al., 2019; Xie et al., 2019) used the gripper pose
as a proxy for the tool pose to simplify the perception problem. In
these studies, rather than learning tool–manipulandum contact
poses and tool trajectories, the gripper–manipulandum relative
pose and gripper trajectories were used to learn tool-use skills.
Using gripper poses assumes that the grasps of a tool remain
consistent across training and testing regimes, which is difficult to
ensure outside of a controlled lab setting even on the same model
of robot. When such an assumption cannot be met and a robot
needs to grasp a tool differently, workarounds are sometimes
employed, such as treating learned tools as novel (Sinapov and
Stoytchev, 2008; Mar et al., 2017), which complicates the skill
transfer process.

In contrast, tool poses are a flexible and direct representation
for tool-use skills. Such a representation is not tied to any
particular robot configuration and does not require grasping
consistency within or across platforms. This flexibility enables
a robot to perform tool-use skills with different grasps of the same
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tool. Crucially, this flexibility also extends to transferring skills to
other robot platforms.

Star 3 performs tool-use skill transfer from a source robot to a
substitute robot by leveraging our platform-agnostic
representation of tool-use skills. The strength of using such a
representation is that it updates a common representational
schema (i.e., Cartesian end-effector trajectories) in a simple
way but nevertheless greatly impacts the flexibility and
generalizability of tool skills. The process of applying the skills
is otherwise the same as in Star 1. We tested the transfer of tool-
use skills learned using a Universal Robotics UR5e arm to both a
Baxter robot and a Kuka youBot robot with six tasks (knocking,
stirring, pushing, scooping, cutting, and writing). These three
robots have different degrees of freedom (DoF) and are
kinematically distinct. UR5e has 6 DoF, and one arm of
Baxter has 7 DoF, which allows the robot to pose its end-
effector freely in the 3D space. YouBot without the mobile
base has only 5 DoF, which thus limits the robot’s ability to
reach arbitrary poses. Depending on conditions, a robot might
abort execution or slightly adjust a trajectory if it cannot be fully
executed.

2 MATERIALS AND METHODS

The TRI-STAR framework focuses on learning geometrically
based tool-use skills via learning from demonstration with
position control1. We first introduce and summarize the
representational schemas we use throughout the system, which
include the goal-based task taxonomy, trajectory, and contact
pose–based tool skills, and our 3D model and 6D pose-based
object representation. Subsequently, we detail the three Stars
enabling the primary capabilities of our system.

2.1 Representations
2.1.1 Task Representation: Goal-Based Task
Taxonomy
We developed a taxonomy of tasks to assist learning and
application of tool-use skills. Our goal-based taxonomy
(Figure 1B) recognizes two fundamental task types using goals
referenced in the world frame. In our study, we focus on tasks
with goals described by pose changes of the manipulandum as
they can be easily perceived via the depth cameras. Since the goals
for everyday tool-use tasks generally require simple motions of
the manipulanda, one screw axis can be used to characterize the
shape of a goal-directed motion primitive. Non-Pose-Based Tasks
are tasks with zero screw axes which represents the case where the
pose of a manipulandum (e.g., a bowl) is not changed as a result of
the tool usage (e.g., stirring liquid in the bowl) in the world frame.
Pose-Based Tasks are tasks with non-zero screw axes such that
the pose of a manipulandum changes as a result of tool usage,
though two further subdivisions emerge when observing in the
manipulandum frame. Finite-Goal Tasks such as screw-driving

are tasks where a unique screw axis in the manipulandum frame
exists to describe goal–action relations while there are still
infinitely many goals in the world frame. Infinite-Goal Tasks,
in contrast, like pushing a toy with a rake to the desired location,
have infinitely many screw axes in the manipulandum frame to
represent goals.

Taxonomic knowledge summarizes the characteristics of
each task type which includes goal–action relations,
goal–object relations (including goal–tool relations and
goal–manipulandum relations), and object–action relations
(including tool–action relations and manipulandum–action
relations). As shown in Figure 1C, learning the tool-use skills
in Star 1 is consistent in all three types of tasks, except that
Infinite-Goal Tasks require modifications based on the
goal–action relations. The contact pose required when
completing a pushing task, for example, depends heavily
on the goal pose of the manipulandum. Applying tool-use
skills, in contrast, requires different task-specific information
depending on task type and the Star, which are summarized
in Figure 1C. The goal–action relations specify how actions
should be updated based on the goal, which are crucial for
Pose-Based Tasks because they determine, for example, the
length of the trajectory when driving a screw into a thick
piece of wood versus a thinner piece. The goal–object
relations specify which object features are relevant for
achieving the goal, such as a sharp edge of a tool in the
case of a cutting task. These relations are important for
generating contact poses for object substitution for all
tasks except the Infinite-Goal Tasks. These tasks do not
require goal–manipulandum relations but require
goal–action relations since the contact pose depends on,
for example, where the manipulanda should be pushed to
in a pushing task. The object–action relations dictate how the
actions should be updated based on different object features,
which are relevant for the Non-Pose-Based Tasks such as
stirring where the radius of a stirring trajectory is dependent
on the size of the container containing the mixture being
stirred. These relations capture common features across tasks
within each category of the taxonomy and can be used to
guide the learning, application, and transferring of tool-use
skills to substitute objects.

2.1.2 Tool-Use Skill Representation: Trajectory and
Contact Poses
A trajectory consists of four components as shown in Figure 2A:
1) the preparation component, which brings the tool in close
proximity to the manipulandum, 2) the contact component,
which initiates contact with the manipulandum, 3) the
functional component, which acts on the manipulandum, and
4) the finishing component, which moves the tool away from the
manipulandum, terminating the trajectory. The main part of the
trajectory is the functional component. We represent this
component using screw axis representations which are
compact and easily adapted for tool use. Although we also
included other components, we consider such components
peripheral to the tool skill proper, and thus, they are not the
focus of this study. Keeping with other tool-use studies that either

1Source code located at https://github.com/ScazLab/Frontiers_Robot_Tool_
Use.git.
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completely ignore such components or hard-code them (e.g.,
Sukhoy et al., 2012), we represented these components simply
using trajectory end points.

We represent the functional components with a series of
segments {(screw axis S, angles θ)} with each segment
parametrized with exponential representations of a pose
change. The advantage of such representation is twofold. First,
since the screw axis includes all six DoF, no coupling between
dimensions is needed as in previous methods (Schaal, 2006;
Ijspeert et al., 2013; Paraschos et al., 2013). Second, in
accordance with other representation schemes, trajectories can
also be easily rescaled and rotated. Such representation may not
be ideal for other robot manipulation tasks such as pick and place,
where learned trajectories are flexibly warped based on different
start and goal poses. However, this representation is suitable for
the tool-use domain, where trajectories may need to be warped in
a structured way based on taxonomic knowledge (e.g., to adapt a
learned straight trajectory to push along a curved one required by
the goal) or extended along the shape outlined by the screw axis,
such as when driving the same screw into boards of different
thicknesses.

The contact poses are represented with equivalence classes of
poses, {Ttool

man}, that treat all poses formed from rotating around
some axis as being equivalent. This is a uniform representation
for finite contact poses such as driving screws and infinite contact
poses such as nail-hammering. Each element Ttool

man is a
manipulandum pose in the tool frame (i.e., the tool frame is

the pose of the tool when initiating contact with the
manipulanda). Such representation is able to accommodate
contact areas of any shape located anywhere on a tool and a
manipulandum and represent any orientation between the two
objects. The transformations in the same class can be obtained by
rotating about an axis Stoolcp . As a result, a class of contact poses
(shown in Figure 2B) is parameterized as an axis Stoolcp , a
transformation Ttool

man as the origin, and a group of angles {θ}
such that a viable contact pose can be obtained by rotating an
angle θ about the axis Stoolcp starting from Ttool

man. In this way, this
class can represent a unique contact pose (i.e., a unique angle
which is zero), limited contact poses (i.e., a limited number of
angles), or an infinite number of contact poses (i.e., the angles
within a range).

2.1.3 Object Representation: 3DModels and 6D Poses
TRI-STAR is designed for a robot to be able to utilize novel tools
without prior training. In order to accomplish this, the algorithm
requires the robot to obtain 3D models of the novel objects under
consideration. We used Microsoft Azure RGB-D cameras, which
are commonly used and relatively inexpensive sensors, to obtain
raw partial 3D point clouds. With the relatively low fidelity of
perceived partial point clouds, available methods could not obtain
full 3D models of sufficiently good quality. Therefore, it was
necessary to design a pipeline to fit our needs.

This pipeline begins with first mounting an object in the
robot’s end-effector. The robot can then rotate its end-effector

FIGURE 2 | Star 1 illustrations. (A) depicts the four component trajectories that comprise a hypothetical demonstration of a pushing task. (B) depicts the
parametrization of a contact pose using a nail-hammering task as an example.
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around an arbitrary axis to ensure that both the back and the front
of the object are visible to the 3D camera. A series of raw point
clouds are obtained while the robot steps through the trajectory.
The background in the point clouds is then pruned to obtain the
partial point clouds of the objects. Given the pose of the end-
effector at each step, the partial point clouds are merged by
transforming these point clouds to the initial pose. To account for
noise, we optimize the rotation axis represented as a screw axis S
using the Han–Powell quasi-Newton method by minimizing the
sum of the Euclidean distances between the bounding boxes of
the partial point clouds and the bounding box of the merged point
cloud. As parts of the objects are occluded by the robot’s own
gripper, the robot obtains two such merged scans and registers
them to create the final complete scan. Supplemental scans using
Autodesk Recap2 photogrammetry software were also used to
obtain point clouds for objects that are challenging for the robot
to grasp. Although we attempted to design the entire process to be
autonomous, the grasping during scanning and tool use requires
an experimenter to assist with mounting an object to the gripper.

To obtain smoothed triangle meshes, the models are post-
processed automatically with a script using meshlabxml3, a
python interface to MeshLab4, similar to a previous study
(Gajewski et al., 2019). The point clouds are upsampled with
Poisson-disk sampling with input 5,000, meshed with Ball-
Pivoting, smoothed with Taubin smoothing, and the holes
filled with the default settings. The meshes are then
centralized and realigned based on their minimum
bound boxes.

We used a non–marker-based perception system and
estimated the pose of the objects from raw sensor input. Two
Azure devices are placed on the two sides of the workspace to
capture a complete point cloud representation of the workspace.
Background and foreground point clouds are retrieved from both
sensors. The workspace is isolated, and the desktop is removed
with random sample consensus (RANSAC; Fischler and Bolles,
1981) from these point clouds. To obtain a partial point cloud of
the manipulanda, the background is subtracted from the
foreground point clouds. The pose of the object in the world
frame Tworld

manipulandum is obtained by rigid registration between the
partial point cloud and the full 3D model. The pose with a higher
fitting score, measured by calculating the ratio of inlier point
correspondences over the total number of target points, is chosen.
If the scores from both sensors are similar, the averaged pose
is used.

The method of obtaining tool poses in the end-effector frame
is similar to the method above, except for the extra step of
removing points belonging to the gripper to isolate the tool.
The pose of the tool in the end-effector frame is then obtained
with Tee

tool � (Tworld
ee )−1 × Tworld

tool where × is matrix multiplication,
and the superscript represents matrix inversion, given the
perceived pose of the end-effector in the world frame Tworld

ee
and the perceived tool pose Tworld

tool . Similar to previous tool-use

studies, we assume a fixed grasp for a tool once it is in the robot’s
end-effector.

2.2 Star 1: Learning and Applying
Task-General Tool-Use Skills
In Star 1, our framework categorizes task demonstrations
using our taxonomy and leverages taxonomic knowledge of
the identified category to learn tool-use skills (i.e., the contact
poses and trajectories) and generate actions with goals not
seen in the training samples. In the following sections, we
describe how tool-use skills are learned (Section 2.2.1) and
applied to novel task configurations (Section 2.2.2). In
Section 2.2.1, we detail the simulated demonstrations used
to train the skills evaluated in this study. Subsequently, we
discuss how demonstrations are categorized using our task
taxonomy and how the corresponding taxonomic knowledge
is leveraged to learn trajectory (Section 2.2.1.1) and contact
pose (Section 2.2.1.2) representations. In Section 2.2.2, we
detail how the system utilizes new task configurations to apply
learned skills by generating new trajectories and
contact poses.

2.2.1 Learning Tool-Use Skills
The input data required by our algorithm include the start and
goal poses of the manipulanda in the world frame and the tool
trajectories as the keyframes in the world frame. Twenty
simulated training samples per task were provided. Training
samples were obtained with kinematic teaching of keyframe
demonstrations in simulation. Each sample was a single
demonstration of a task using a source tool and
manipulandum. The samples were assumed to be successful
demonstrations of a task, as no sophisticated outlier removal
methods were utilized.

With the start and goal poses of the manipulanda, the system
can infer the category of task being demonstrated to be used to
guide the learning of trajectories and contact poses. If the goals of
all demonstrations are zero vectors, then this task is a Non-Pose-
Based Task. Otherwise, it is a Pose-Based Task. If it is the latter,
the goals are converted to the manipulandum frame (i.e., the
manipulanda frame is the start pose of the manipulanda) and are
clustered based on the Euclidean distance between ω parts and
the Euclidean distance between v parts of sample screw axes. If a
unique cluster is found, then this task is considered a Finite-Goal
Task. Otherwise, it is an Infinite-Goal Task.

2.2.1.1 Learning Trajectories
The trajectory between two adjacent keyframes in a given
demonstration is assumed to be interpolated, which may or
may not be linear depending on rotational differences between
the two frames. The keyframes can include only the start and goal
poses of segments or any arbitrary number of midpoints. The
keyframes are first merged into segments automatically. The
different components of the trajectory are then identified by
the framework. However, each component is assumed to have the
same shape across demonstrations except for the functional

2https://www.autodesk.com/.
3https://github.com/3DLIRIOUS/MeshLabXML.
4https://www.meshlab.net/.
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component. Given a demonstrated trajectory comprising
keyframes, the framework first groups the keyframes into
segments with similar transformations between keyframes
(i.e., the grouping stage). A component might be missing for
different types of tasks, which is identified during this grouping
stage. Subsequently, each segment, or partial segment, is then
parametrized with the appropriate component and represented

with Tstart−func
start−prep , Tstart−func

end−prep , {(screw axis S, angles θ)}, and

Tend−func
end−fin ), as illustrated in Figure 2A (i.e., the parametrization

stage).
The first step in the grouping stage is to identify the

preparation component and the finishing component, which is
to find the start pose Tworld

start−prep and the goal pose Tworld
end−prep (which

is also the start of the contact component Tworld
start−con) of the

preparation component, and the start pose Tworld
start−fin (which is

also the end of the functional component Tworld
end−func) and the end

pose Tworld
end−fin of the finishing component. To do this, the

transformations between keyframes in the world frame are
converted to the screw motion representation. Adjacent
transformations with similar screw axes are merged. The
similarity is evaluated with the Euclidean distance between ω
parts and the Euclidean distance between v parts of sample screw
axes. The merging is done by averaging the screw axis and
summing the angles. After the merging, the first segment is
assumed to be the preparation component, while the last is
assumed to be the finishing component. The start and end
poses of these components can thus be found.

The second step in the grouping stage is to identify the other
components. For Non-Pose-Based Tasks, the rest of the segments
are assumed to be the functional component, and the
contact component of this type of task is assumed to be a
segment with no transformations. For Pose-Based Tasks, the
contact poses are assumed to be unchanged once the tool
contacts the manipulanda. Therefore, the start of the
functional component Tworld

start−func (which is also the end of the
contact component Tworld

end−con) can be obtained with
Tworld
start−man × (Tworld

end−man)−1 × Tworld
end−fin. Since the start (i.e., the end

of the preparation component) and the end (i.e., the start of the
functional component) poses of the contact component are
known, the contact component is found by interpolating these
poses, which is obtained by calculating the screw axis of the
transformation between the start and end poses and sampling
angles with 1-degree intervals. Although the start and end poses
of the functional component are known, the functional
component is not a simple interpolation as it may need to
follow a certain trajectory. Therefore, the algorithm allocates
the remaining segments to the functional component, after
excluding the partial segment belonging to the contact
component. The partial segment is found by identifying the
overlap between the first proceeding segment of the
preparation component and the contact component.

In the parametrization stage, the keyframes are converted to
different reference frames for easy application. The start and end
poses of the preparation components are converted to the frame
of the start pose of the functional component, resulting in
Tstart−func
start−prep and Tstart−func

end−prep , respectively. The end pose of the

finishing component is converted to the frame of the end pose
of the functional component, which is Tend−func

end−fin . If multiple
segments comprise the functional component, each segment is
represented with screw motion, and the start pose of this segment
is used as the reference frame. As a result, the trajectory of a
demonstration is represented using Tstart−func

start−prep , Tstart−func
end−prep ,

{(screw axis S, angles θ)}, and Tend−func
end−fin .

The next step of the parametrization stage is to find a template
from all the training samples. The functional components of
Infinite-Goal Tasks are ignored, as they are determined by the
goal, rather than a shared trajectory template. For the rest of the
tasks, the number of the segments comprising the functional
component should be the same for each task. For the minority of
demonstrations that are inconsistent with the number of
segments that the majority of the demonstrations are
associated with, those samples are excluded. For the remaining
valid training samples, each segment of the component derived
from different demonstrations is averaged. The transformations
Tstart−func
start−prep , T

start−func
end−prep , and Tend−func

end−fin are also averaged from each
demonstration.

2.2.1.2 Learning Contact Poses
The current algorithm assumes a single contact area on the source
tool when performing the same task, which could be relaxed in
future studies. The contact area of the tool and the
manipulandum were determined by proximity. For Infinite-
Goal Tasks like object pushing where task success is
contingent on the goals of the manipulandum, a change-of-
basis of the start pose of the manipulandum is performed in
order to incorporate the goal into its representation so that the
contact poses are goal-based. The demonstrated contact poses are
then converted to our representation of a class of contact poses
using Stoolcp , Ttool

man, and a group of {θ}.
For Infinite-Goal Tasks, we perform a change-of-basis on the

start poses of the manipulandum before calculating the contact
poses in order to account for the goal-directed nature of these
tasks. The x axis is chosen to be the moving direction of the
manipulanda, which is the normalized v part of a screw axis
representing the transformation of the manipulandum from the
start to the goal in the world frame. The z axis is chosen to be the
direction of standard gravity. If the x axis and the z axis are
parallel, an arbitrary direction is chosen ahead of time which is
not parallel to the standard gravity. The y axis is obtained using
the right-hand rule, which is the cross product x and z. To ensure
the perpendicularity between x and z, the z axis is recalculated
with the cross product of x and y. The position of the
manipulanda remained the perceived position.

The contact pose of each demonstration Ttool
man is obtained by

(Tworld
start−func)−1 × Tworld

start−man where T
world
start−func is the tool pose at the

start of the functional component and Tworld
start−man is the start pose

of the manipulanda. Then the contact poses from each
demonstration are converted to our representation, a class of
contact poses. The axis between any two contact poses is
calculated, and the poses whose axis deviates too much from
the majority of axes are excluded. An arbitrary pose, generally the
pose of the first demonstration, is chosen as the origin Ttool

man. The
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transformations between valid contact poses and this origin are
calculated in the origin frame and represented using screw
motion. The averaged axis Stoolcp is used as the axis of this class.
For the angles obtained, if the Kolmogorov–Smirnov test on the
group of angles showed no significant difference from a uniform
distribution, then the range of this angle is used to represent {θ}.
Otherwise, the groups of angles are clustered using density-based
spatial clustering of applications with noise (DBSCAN; Ester
et al., 1996), and the mean of each cluster is included in {θ}.

2.2.2 Applying Tool-Use Skills
To apply the learned tool-use skills with the source tool and
manipulanda, configurations of a task should be provided, which
includes the start poseTworld

start−man and the goal poseT
world
goal−man of the

manipulandum Tworld
goal−man. The goal pose Tworld

goal−man can be

provided by perception (e.g., placed at the desired location) or
by the experimenter in the form of a transformation matrix. The
start pose Tworld

start−man is always perceived. The goal is always
assumed valid for the given task and could be achieved by the
given tool.

To use a tool, the contact poses and tool trajectories should be
found. The contact poses are generated based on learned contact
poses and taxonomic knowledge. Since multiple possible contact
poses Ttool

man exist for each task, multiple corresponding tool
trajectories are generated. These tool trajectories are then
converted into end-effector trajectories to be executed by the
robot given the current perceived tool grasping pose.
Trajectories are considered candidates if their functional
components can be executed since the complete execution of
the functional component is crucial to performing a task. The
final trajectory is chosen from the candidates that minimize the
required joint changes. If none of the functional components
can be executed in full, the robot simply aborts execution.
Otherwise, the robot attempts to execute as many
components or partial components as possible since the full
execution of other components is not central to successfully
completing the task.

2.2.2.1 Trajectory Generation
Given a contact pose Ttool

manobtained from above, which is
equivalent to Tstart−func

start−man , and the start pose Tworld
start−man and the

goal pose Tworld
goal−man of a manipulandum, the start Tstart−man

start−prep and
the end Tstart−man

end−prep of the preparation component in the
manipulandum frame are calculated using the learned
trajectories by (Tstart−func

start−man )−1 × Tstart−func
start−prep and (Tstart−func

start−man )−1 ×
Tstart−func
end−prep (the information from the learned trajectories is

labeled with an enclosed rectangle), respectively. The
preparation component in the manipulandum frame is then
found by finding the interpolation between its start and end
poses. The contact component in the manipulandum frame is
obtained using the same method, with its start pose being the end
pose of the preparation component and the end pose being the
start of the functional component. In terms of the functional
component, each segment of {[screw axis S, angle θ]} is found
by interpolating the learned trajectory {[screw axis S, angle θ]}
and converting those transformations to the manipulandum

frame for the Non-Pose-Based Task. For Finite-Goal Tasks,
the length of the trajectory, which is the angle in the screw
motion representation, is adjusted according to the goal while the
learned shape described by the screw axis remains the same. For
Infinite-Goal Tasks (e.g., pushing), both the shape and length are
determined by the goal with the end pose of the functional
component being (Tworld

start−man)−1 × Tworld
end−man × (Tstart−func

start−man )−1,
and the trajectory is found by interpolating the start and end
poses. The end pose of the finishing component is calculated
using the learned trajectory as Tstart−man

end−func × Tend−func
end−fin . In the end,

each pose in the trajectory Tstart−man
pose is converted to the world

frame with Tworld
start−man × Tstart−man

pose . In the writing task, when a
different scale of the trajectory (e.g., write a larger or smaller “R”)
is requested, the angle θ in {(screw axis S, angles θ)} is scaled if
the screw axis represents translational changes only, otherwise the
] part of the S in {(screw axis S, angles θ)} is scaled. This works
because the screw axis is in the previous pose’s frame, and the ]
represents the velocity at the origin. To rotate the trajectory (e.g.,
to produce a tilted “R”), one can simply rotate Tworld

start−func. The
corresponding start and end poses of other components need to
be updated accordingly.

2.2.2.2 Contact Pose Estimation
For the learned class of contact poses whose {θ} is composed of
discrete values, the contact pose in the matrix form
corresponding to each value is calculated. If the {θ} is a range,
the contact poses are treated as discrete values by sampling angles
from the range by 1-degree intervals. For Pose-Based Tasks, the
contact poses are adjusted along the tool-moving direction so that
a tool is guaranteed to touch the manipulandum (e.g., when
pushing, an irregular object may require a slightly different
relative position between the tool and the manipulandum).

2.3 Star 2: Task-General Object Substitution
Star 2 utilizes the tool-use skills learned by Star 1 and calculates
the appropriate contact poses by finding the alignment between
the source and substitute objects (Section 2.3.1), and adjusts the
tool trajectory by leveraging the relevant taxonomic knowledge
identified for each category of tasks (2.3.2). Star 2 requires the
samemanual inputs as the application in Star 1, which include the
start and goal poses of the manipulanda, the desired number of
circles for the stirring task, and the desired scale and rotation of
the written letter for the writing task, as well as the grasping of
the tool.

2.3.1 Three-Step Alignment Algorithm
For all tasks except Infinite-Goal Tasks whose contact poses
additionally depend on the goals, contact poses are obtained
by calculating the alignment between the source and substitute
objects.When the two tools are of the same type or share a generic
form factor such as two different types of hammers, often
considering the entire shape of both tools (i.e., their global
features) produces the best results. In the case of tasks like
pushing where no generic tool form-factor exists, utilizing
features like the contact area (i.e., local features) of the source
tool is necessary. Therefore, we designed a three-step alignment
algorithm that produces mappings between source and
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substitute objects using both global (step one) and local features
(step two) and selects the most appropriate one (step three). Since
we consider local features, object meshes need to be segmented
prior to applying this algorithm. The application of the three-step
mapping algorithm differs slightly for tools and manipulanda.

In order to segment a mesh, we utilized a method similar to
that used in a previous study (Abelha and Guerin, 2017), using
the shape diameter function (CDF) with the CGAL library5. The
number of clusters k ranged from 2 to 8 with step 1, and the
smoothness parameter λ ranged from 0.1 to 0.7 with step 0.1.
Since no direct relation exists between the number of clusters k
and the results of the segmentation, the number of clusters with
the greatest number of results was chosen as kchosen. Since, in most
instances, the object with only one cluster is undesirable, kchosen
was allowed to be one only if the number of results with one
cluster was significantly more than the number of clusters with
the second greatest number of results. The segmentation was

randomly chosen from all the segmentations with kchosen clusters
due to similarity.

Figure 3 depicts and gives examples of our process for finding
contact poses given segmented tool models, by finding the
mapping Tsrc−tool

sub−tool between the source and substitute meshes.
When aligning the source and substitute objects in the first
step, the substitute objects are rescaled disproportionally so
that their bounding boxes share the same size as the bounding
box of the source objects and reoriented along the axes of the
bounding box. As an object can be rescaled and reoriented in
multiple ways, the contact pose resulting from the rescaled and
reoriented mesh that is most similar to the source object is chosen
as contact pose one. The similarity is measured by the averaged
minimum Euclidean distance between the points of the two point
clouds when the centers of the two objects are aligned. The
contact area on the substitute object is chosen by proximity to the
contact area on the source object. The segment containing the
contact area is chosen to be the action part which is used in step
two. If the contact area is distributed across multiple segments,
then the action part is chosen to be the contact area itself rather

Source Tool
Contact Area

Manipulandum
Push

Substitute

Tool

Step 1: mapping based on global features 

Bounding Box

Step 1.1: disproportional rescale of the substitute tool
1. 2.

3. 4.

Step 1.2: find contact pose 1

Step 1.3: find the action part of the substitute tool for step 2 

Parts of a Tool

Step 2: mapping based on local features 

Step 2.1: Proportionally rescale the substitute tool's ACTION PART such that the longest side of its bounding box matches the

                  longest side of the source's bounding box and reorient it for best mapping

Step 2.2: find contact pose 2

Step 3: choose between the two contact pose

Parts of a Tool

: connection to other parts
: action part

A

A

A

A

A

A

AA

A A

Or

Rescale BackMapping with the Scaled Substitute Tool

Choose the Part with the Contact Area Action Part

Proportional Scale Mapping the Orientation

Rescale Back

Mapping the

Substitute  Action Part Find the Contact Pose

Contact Pose One Contact Pose Two

Contact Pose One

Contact Pose Two

FIGURE 3 | Mapping procedure for a hypothetical 2D tool substitution problem.

5https://doc.cgal.org/latest/Surface_mesh_segmentation/index.html.
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than any individual segment. As a result, we do not rely on the
correctness of the segmentation. In the second step, in order to
find contact pose two and the corresponding contact area, the
two action parts are mapped in a similar manner, except that the
substitute action part is rescaled proportionally, and the
alignment of the two action parts uses modified iterative
closest point (ICP) registration. In step three, of the two
contact areas found in the two steps, the candidate with the
highest similarity score is chosen along with its corresponding
contact pose, and the mapping of the tools Tsrc−tool

sub−tool is
thus found.

The manipulanda do not need to be decomposed into action
and grasping parts like tools do. Therefore, the contact area is
used as the action part, and the algorithm to find the mapping
poses of the substitute manipulanda Tsrc−man

sub−man is otherwise the
same as finding the mapping of the substitute tool. For Infinite-
Goal Tasks, the mapping of the manipulanda is not needed since
the geometric features of the manipulanda do not decide the
mapping. Therefore, it is handled in the same manner as the
source manipulanda in that the start pose is updated to
incorporate the goal. The mapping, in this case, is set to be
the identity matrix.

2.3.2 Generating Tool Trajectories
Given the mapping resulting from the three-step alignment
algorithm, the trajectory of the substitute tool can be found
given the learned source tool trajectory with adjustments
based on the taxonomic knowledge if necessary (see Section
2.2.2). With the obtained tool trajectory, the end-effector
trajectory is calculated from the tool trajectory in the same
way as Star 1, except that the functional component is
rescaled based on the size of the substitute manipulandum
relative to the source one for Non-Pose-Based tasks.

To find a candidate tool trajectory, an equivalent trajectory of
the source tool acting upon an equivalent source manipulanda
(i.e., the equivalent start pose and goal pose of the manipulandum
is calculated with Tworld

start−sub−man × (Tsrc−man
sub−man)−1 and

Tworld
end−sub−man × (Tsrc−man

sub−man)−1, respectively) is first found. Then
each pose of such a trajectory Tsrc−man

src−tool is updated with
(Tsrc−man

sub−man)−1 × Tsource−man
src−tool × Tsrc−tool

sub−tool which calculates the
trajectory of the substitute tool in the substitute
manipulandum frame. The trajectory is then converted to the
world frame. For Non-Pose-Based Tasks, the functional
component of the trajectory is rescaled based on the relative
size of the longest dimension of the source and substitute
manipulandum. Multiple candidate tool trajectories are found,
each corresponding to a contact pose chosen in the same way as in
Star 1. The final tool trajectory is chosen from the candidate tool
trajectories in the same way as in Star 1.

2.4 Star 3: Tool-Use Transfer to Other Robot
Platforms
As tool-use skills learned by Star 1 are represented independent of
robot configurations, no additional algorithms were needed in
order to enable skill transfer to different platforms that could
perform the given task. This was assisted via the development of a

perception system that obtains the 3D poses of the tools and
manipulanda from RGB-D cameras, though in principle, any
method that can accurately perceive these poses can be used.
With the learned tool-use skills and the perceived grasping, we
calculate the end-effector trajectories and control the robot by
leveraging existing inverse kinematics and motion planning
libraries. In order to simplify motion control across different
robot platforms, we implemented a robot operating system node
that uses the same interface to control all three robots. This
interface can be easily extended to accommodate more platforms.

The same mechanisms of partially executing a trajectory or
completely aborting it mentioned in the Applying subsection of
Star 1 also apply when the platforms being transferred to cannot
execute the generated actions. Moreover, learning a class of
contact poses also helps with finding viable solutions on
different platforms. For example, in the knocking task, the
robot can choose to approach a manipulandum from any
orientation, even those that did not appear in the training set,
which increases the viable kinematic solutions when a robot
searches for motion planning.

3 RESULTS

TRI-STAR uses raw sensor data for perception and demonstrated
Star 1 with seven tasks trained with minimal training samples via
learning from demonstration (Argall et al., 2009). We tested Star
2 by providing three substitute tools and three manipulanda for
each task. Finally, we conducted experiments for Star 3 that
transferred the learned skills to two other robot platforms with
different kinematic configurations. The raw data can be found in
Supplementary Table S1.

3.1 Star 1: Learning and Applying
Task-General Tool-Use Skills
Figures 4A–G shows an example from each of the seven tasks
with the source tools and manipulanda, and Figure 5 shows the
testing environment. Six of the seven tasks were tested on a UR5e
robot, and the screw-driving task was demonstrated on a
simulated UR5e due to the higher perception accuracy
required to align the tip of a screwdriver to the slot on the
head of a screw. All tasks tested on the physical robot were
evaluated quantitatively except for the writing task, which was
included for demonstration purposes only. Creating quantitative
metrics was sometimes challenging; while the pushing task could
be evaluated with translation errors to the goal as had been done
previously (Fitzgerald et al., 2019; Xie et al., 2019), other tasks
were previously reported with only binary success/failure results
(Pastor et al., 2009; Brandi et al., 2014) or success rates over
multiple trials (Gajewski et al., 2019; Fang et al., 2020). When
evaluating performance quantitatively, we used stricter methods
(e.g., using loudness in decibels for the knocking task) when
possible.

The five tasks analyzed quantitatively were also compared with a
baseline condition. We designed the baseline condition in
accordance with the common practice across task-general tool-
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use learning frameworks of using the gripper pose as a proxy for
the tool pose. Therefore, in the baseline condition, the robot
repeated an end-effector trajectory in the task space of a training
sample chosen randomly. For the five tasks, we tested ten trials
per task per condition. Trials in which the robot was not able to
follow the commanded trajectories were excluded. The start and
goal poses of the manipulanda were altered in each trial. In both
the experimental and baseline conditions, the robot held tools
with various poses as shown in Figure 6, a complexity that was
not present in other studies. These poses were provided to the
robot by the experimenters in order to impose pose variety (see
Section 1.4 for motivation), though in principle, TRI-STAR can
accommodate autonomous grasping. Figure 7 summarizes the
results, and Supplementary Video S1 shows demonstrations of
the robot performing the learned tasks. Details of testing each
task are described below.

3.1.1 Knocking
The robot successfully completed the task in 10 out of 10 trials in
the testing condition, while its performance in the baseline
condition was 4 out of 10 trials. We also measured the sound
of each knock on the manipulandum using the Sound Meter app
with a Samsung tablet placed close to the manipulandum. The
average decibels, including the reading from unsuccessful trials,
of the testing condition [mean (M) � 82.79 decibel (dB), Standard
Deviation (SD) � 2.58 dB] were higher than those of the baseline
condition (M � 32.00 dB, SD � 41.44 dB).

3.1.2 Stirring
0.25 tsp salt per liter was added to the room-temperature water
and given several seconds to settle. The robot was allowed to stir
for 1 min or five circles, whichever lasted longer. Due to
kinematic constraints, the grasps in the testing conditions were

FIGURE 4 | Demonstration of the variety of tasks learned by the robots using source objects. Star 1 tested a robot learning a wide range of tasks, including (A)
knocking, (B) stirring, (C) pushing, (D) scooping, (E) cutting, (F) writing, and (G) screw-driving.

FIGURE 5 |Workspaces. The workspace of (A) UR5e, (B) Baxter, and (C) the Kuka youBot robot are similar. Two Azure Kinect RGB-D sensors are placed on the
sides of the workspace.
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similar to the training pose. This constraint, along with the
enforced grasping pose consistency across training and baseline
conditions, resulted in both training and testing conditions
completing 10 of 10 trials. We also measured the concentration
changes in part per million (ppm) before and after the stirring
using a total dissolved solids meter. More salt dissolved in the
testing condition (M � 75.20 ppm, SD � 48.79 ppm) than in the
baseline condition (M � 28.70 ppm, SD � 20.10 ppm).

3.1.3 Pushing
The manipulandum was pushed closer to the goal position in the
testing condition (translation error: M � 3.36 centimeters (cm),
SD � 1.45 cm) than in the baseline condition (M � 61.06 cm, SD �
14.62 cm). Our translation error in the testing condition is
consistent with a recent study (Xie et al., 2019; M � 6.37 cm,
SD � 5.33 cm) which also utilized perceptual data from raw
sensor readings. The translation errors were mainly due to
perception errors. This is supported by the significantly
reduced translation error (M � 0.013 cm, SD � 0.0074 cm)
observed when performing the same experiments using a
simulated UR5e robot with perfect perception.

3.1.4 Scooping
The performance was rated as 1 if the robot successfully
scooped the manipulandum, 0.5 if the rubber duck slipped
away but the robot scooped surrounding packing material,
and 0 if the robot failed to scoop anything. The robot scooped
the manipulandum more successfully in the testing condition
(M � 0.95, SD � 0.16) than in the baseline condition (M � 0.20,
SD � 0.35).

3.1.5 Cutting
We measured the percentage length of the actual cut over the
length of the intended cut. Even with a relaxed criterion accepting
cuts as shallow as 1 mm in the baseline condition, the robot cut
the putty more thoroughly in the testing condition (M � 98.62%,
SD � 2.91%) than in the baseline condition (M � 20.00%, SD �
42.16%).

3.1.6 Writing
The robot was required to write the trained letter “R” and the
letter “R” with untrained scales and orientations. Figure 7 shows
various letters “R” that the robot wrote.

FIGURE 6 | Different grasping poses of the source tools (Star 1). For each task, that is, knocking, stirring, pushing, scooping, and cutting, at least three different
grasping poses were tested.
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3.1.7 Screw-Driving
The robot in simulation completed the task successfully.

3.2 Star 2: Task-General Object Substitution
Five tasks (knocking, stirring, pushing, scooping, and cutting)
were tested on a UR5e robot. Other than using substitute objects,
the experiments and evaluation in Star 2 were the same as those
performed in Star 1. For each task, three pairs of substitute objects
were tested, and all objects were appropriate for the tasks. In the
baseline condition, a random contact area and a contact pose
were chosen on each of the substitute objects. The trajectories
were generated using the same method as the testing condition.
Figure 8 shows the source and substitute objects. Figure 9 shows
the mapping result of each substitute object with the source object
in each task. Figure 10 summarizes the results of the five tasks.
Supplementary Video S2 shows the robot performing tasks with
substitute tools and manipulanda. Details of each task are
described below.

3.2.1 Knocking
All three substitute tools successfully struck the substitute
manipulanda in all trials in the testing condition, while the
performance dropped significantly in the baseline condition
(i.e., at most 1 out of 10 trials for each tool–manipulandum

combination). In a previous study with a similar task (Fang et al.,
2020), the highest success rate on nail-hammering was 86.7% of
all the substitute tools with tens of thousands of training samples.
In the testing condition, the average loudness in the testing
condition (M � 65.62 dB, SD � 3.35 dB) was higher than that
of the baseline condition (M � 4.34 dB, SD � 16.50 dB), while the
loudness was not measured in the previous study.

3.2.2 Stirring
All three substitute tools successfully stirred the room-
temperature salted water in the substitute containers in all
trials in the testing condition, while all substitute tools
failed to stir in the baseline condition. More salt dissolved
in the testing condition (concentration change: M �
82.10 ppm, SD � 62.29 ppm) than in the baseline condition
(M � 3.97 ppm, SD � 4.43 ppm). We did not encounter
another study that performed a similar task.

3.2.3 Pushing
The manipulanda were pushed closer to the goal in the testing
condition (translation error: M � 4.28 cm, SD � 2.26 cm) than in
the baseline condition (M � 29.44 cm, SD � 16.24 cm). In a
previous study that also used raw sensor data to perceive the
environment (Xie et al., 2019), the translation error using

FIGURE 7 | Results of learning source tools with source manipulanda (Star 1). We compared Star 1 (green) performance against a baseline (gray) for knocking,
stirring, pushing, scooping, and cutting. The pictures at the bottom right show the demonstrations of the writing task. The top left is an “R” using the same scale and
rotation as the training sample. The top right, bottom left, and bottom right “R”s used the following scales and orientations: scale � 1.0, orientation � 270°; scale � 0.8,
orientation � 30°; scale � 1.5, orientation � 300°.
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substitute tools and source manipulanda was similar (M �
5.56 cm, SD � 4.13 cm) to that in the current study but
required more than 104 training samples.

3.2.4 Scooping
The substitute tools scooped the substitute manipulanda more
successfully in the testing condition (rating: M � 0.78, SD �
0.34) than in the baseline condition (M � 0.07, SD � 0.25). In a
previous study (Gajewski et al., 2019), the scooping task was
tested only in simulation with substitute tools and source
manipulanda, and no quantitative results (i.e., success rate)
were provided.

3.2.5 Cutting
The robot cut the manipulanda more thoroughly in the testing
condition (cut length percentage: M � 78.33%, SD � 33.95%) than

in the baseline condition (M � 6.67%, SD � 25.37%) even with
relaxed criteria in the baseline condition as mentioned in the Star
1 evaluation. In a previous study (Gajewski et al., 2019), the
cutting task was tested only in simulation with substitute tools
and source manipulanda, and no quantitative results (e.g., success
rate) were provided.

3.3 Star 3: Tool-Use Transfer to Other Robot
Platforms
Six tasks (pushing, stirring, knocking, cutting, scooping, and
writing) were used to test skill transfer from a UR5e robot to
both a Baxter robot and a Kuka youBot without additional
training. Due to the size and payload limitations of Baxter
and youBot, source tools different from Star 1 were chosen.
The experiments were similar to the ones in Star 1. However,

FIGURE 8 | Substitute objects (Star 2). For each task, that is, knocking, stirring, pushing, scooping, and cutting, three substitute tools and three substitute
manipulanda were included in testing. The objects in the yellow frames were used as source objects in Star 3.
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no baseline conditions were included in Star 3, and no
comparisons were made with other studies since we did
not encounter similar studies. Figures 5B,C show the
testing environment of Baxter and youBot. The objects in
the yellow frames of Figure 8 are the objects tested in Star 3.
Star 3 only considered scenarios that the new platforms
could complete if they were trained in the same way as
the source platform. Therefore, the task configurations of

all experiments were within the feasible workspace of the
new robots. Figure 11 summarizes the results.
Supplementary Video S3 shows both robots performing
different tasks.

3.3.1 Knocking
All three robots successfully completed all trials. The loudness
created by the UR5e (M � 75.43 dB, SD � 2.57 dB), Baxter (M �

FIGURE 9 | Results of mapping substitute objects to source objects (Star 2). The green point clouds are the source objects while the blue point clouds are the
substitute objects. Manipulandum substitution for the pushing and scooping task is not geometry-dependent, but goal-dependent, and therefore, the mapping results
are excluded in the figure.
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74.04 dB, SD � 3.95 dB), and youBot (M � 73.89 dB, SD �
7.78 dB) were similar.

3.3.2 Stirring
All three robots successfully completed all trials. The
concentration changes of the stirs by Baxter (M � 185.10 ppm,
SD � 86.01 ppm) and youBot (M � 176.00 ppm, SD � 35.74 ppm)
were slightly higher than the stirs by the UR5e (M � 160.60 ppm,
SD � 43.71 ppm).

3.3.3 Pushing
YouBot (translation error: M � 2.40 cm, SD � 1.02 cm) pushed
the manipulanda slightly closer to the goal than UR5e (M �
3.78 cm, SD � 1.74 cm) and Baxter (M � 4.04 cm, SD � 2.25 cm),
which was because of the shorter pushing length by youBot due to
limited maximum reach compared with UR5e and Baxter.

3.3.4 Scooping
UR5e (ratings: M � 0.90, SD � 0.21), Baxter (M � 0.90, SD � 0.21),
and youBot (M � 0.85, SD � 0.24) performed equally well.

3.3.5 Cutting
The average cut length percentage cut of UR5e (M � 92.39%, SD �
7.75%) and youBot (M � 96.92%, SD � 3.44%) was slightly longer
than that of Baxter (M � 85.83%, SD � 8.28%), which was due to
the difficulty in securing the spatula tightly in Baxter’s gripper.

3.3.6 Writing
All three robots were able to repeat the letter “R.” Figure 11 shows
the letter “R” with the trained scale and orientation written by the
three robots.

3.3.7 Screw-Driving
All three robots in simulation completed the task successfully.

4 DISCUSSION

The results showed that the TRI-STAR framework learned a wide
range of tasks, generalized the learned skills to substitute tools
and manipulanda, and transferred the learned skills across robot

FIGURE 10 | Results of tool substitution and manipulandum substitution (Star 2). The bar graphs show the results of using the substitute objects to perform
knocking, stirring, pushing, scooping, and cutting. The bars compare Star 2’s (blue) performance against the baseline (gray).
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platforms. This was achieved by using our task-oriented
approach, which includes a goal-based task taxonomy and
identified taxonomic knowledge which specifies knowledge
shared across tasks that belong to particular task categories
and minimizes the need for knowledge to be defined on a per
task basis. We center our discussion around the ways our
framework improves upon the state of the art in task-general
tool use but also identify limitations of our approach, as
summarized in Table 1.

4.1 Contribution 1: Task-Generality
TRI-STAR is a task-general tool-use framework shown to
learn, generalize, and transfer tool-use skills for a variety of
everyday tasks. As shown in Table 1, not all tool-use
algorithms are intended to be task-general as they assume
pre-defined knowledge specific to individual tasks at either the
learning or the generalization stage. Three advances made it
possible for TRI-STAR to be task-general. First, we
summarized taxonomic knowledge of tasks which enables a
multitude of tasks to be learned efficiently, including

potentially any undemonstrated tasks covered by one of the
known taxonomic categories. Second, TRI-STAR can handle
tasks with different contact pose requirements (e.g., pushing,
knocking, and screw-driving) and different types of
trajectories (e.g., circular periodic trajectories including
stirring, linear trajectories including cutting, nonlinear
trajectories including scooping, trajectories that could be
either linear or nonlinear including pushing, and complex
trajectories with both linear and nonlinear segments
including writing), which allows a robot to work with a
wide range of tasks. Third, TRI-STAR can generalize the
tool-use skills to tasks whose substitute tools and
manipulanda may be geometrically similar or geometrically
distinct objects since we made no assumptions about the
shape of the objects, unlike previous approaches (Brandi
et al., 2014; Fang et al., 2020). An added benefit of
generalizing tool-use skills to geometrically distinct objects
is that it can allow a robot to improvise the use of objects such
that an object not designed for a task could be used when
desired objects are unavailable.

FIGURE 11 | Results of tool-use skill generalization across robot platforms (Star 3). The bar graphs include results of the UR5e (green), Baxter (yellow), and youBot
(yellow) using the source tool/manipulandum combinations for knocking, stirring, pushing, scooping, and cutting. The pictures at the bottom right demonstrate different
robots writing “R” with trained scale and orientation.
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4.2 Contribution 2: Data Efficient
As shown in Table 1, the task-general framework typically
required a large sample size. However, training with a large
sample size is time-consuming and thus impractical in time-
sensitive domains like search-and-rescue.6 By leveraging
taxonomic knowledge identified for each task category, TRI-
STAR required only 20 examples to learn each task, and no
additional training samples were needed by Star 2 to generalize
the usage to substitute objects or by Star 3 to transfer the skills to
other platforms. In contrast, previous studies required over 5,000
(Gajewski et al., 2019), 18,000 (Fang et al., 2020), and 20,000
(Xie et al., 2019) training samples. The small set of training
samples needed for each task makes it time-efficient for TRI-
STAR to learn new tasks, and thus, it is easy to be deployed as an
application in the real world. Moreover, TRI-STAR experienced
only a minor loss in performance while significantly reducing the
necessary training samples.

4.3 Contribution 3: Integrative Framework
We demonstrate TRI-STAR’s ability to handle all three stars,
including tool-use learning, tool substitution, and tool-use
transference to other platforms, as shown in Table 2. Previous

studies on task-general tool-use focused on either tool-use
learning or tool substitution and typically limited the types
of objects considered (e.g., they only consider objects that share
similar form-factors or only consider tool but not manipulanda
substitution). Other tool-use studies tend to be customized to
particular tasks, which makes adapting them for the wide variety
of tasks a robot might realistically encounter challenging
without significant modifications. In contrast, TRI-STAR not
only enables all these functionalities within one integrative
framework but also removes these limitations. Moreover, our
framework encompasses an entire tool use–centric pipeline
which includes important aspects often ignored in other
studies such as tool–manipulandum contact pose learning
and a perception system customized to the needs of tool use.
Our framework covered important aspects that were not
mentioned in previous studies, such as tool–manipulandum
contact pose learning. We integrated all of these into TRI-STAR
and showed its effectiveness with a wide range of tasks. Being an
integrative framework makes it plausible for TRI-STAR to be
deployed into real-world contexts.

Star 3 does not require additional algorithmic infrastructure to
implement, but rather, updating a common representational schema
(Cartesian trajectory) that is utilized in many tool-use studies. To
automate research work, robots have been deployed in chemistry
laboratories (Burger et al., 2020), where tasks and tools are
standardized. The ability to transfer skills between robots could

TABLE 1 | Comparing different tool-use frameworks: transfer by correction (Fitzgerald et al., 2019), kPAM and kPAM 2.0 (Manuelli et al., 2019; Gao and Tedrake, 2021),
warping (Brandi et al., 2014), TOG-net (Fang et al., 2020), p-tools (Abelha and Guerin, 2017; Gajewski et al., 2019), GVF (Xie et al., 2019), and TRI-STAR (ours). The
different frameworks are listed by row, ordered by relevancy to our work. Cell shading indicates how desirable a demonstrated feature of the corresponding framework is,
with darker shading indicating higher desirability. Comparison of Task-Generality and Data Efficiency. The tables show that not all frameworks are task-general (e.g., do not
require pre-specified knowledge for each individual task). Moreover, TRI-STAR was demonstrated with a wider range of tasks than other frameworks. Additionally, TRI-
STAR requires fewer training samples per task than other task-general frameworks.

Task-general? Tool-use tasks tested # of training samples

Physical robot Simulation

Transfer by correction N/A5 Hooking - 1 trajectory per source tool and 2 poses per substitute tool for within-task transfer
Sweeping
Hammering

kPAM No Whiteboard-wiping - 10–30 per task
Peg-hold insertion

Warping No Pouring Pouring 10–50 per task
Filling

TOG-net Yes Hammering Hammering 18,000 in total
Sweeping Sweeping

p-tools Yes Scraping Cutting 5,000 in total
Scooping
Scraping
Hammering
Rolling dough
Lifting

GVF Yes Sweeping - 24,006 in total
Scraping
Wiping

TRI-STAR (ours) Yes Pushing Driving-screws 20 per task
Scooping
Cutting
Writing
Stirring
Knocking

6Although within-task transfer to novel tools requires additional data, across-task
transfer does not.
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save researchers in each laboratory hundreds of hours of training
time as skills could be shared across research laboratories. For
robots in the factory or warehouse, it will be cost-efficient for
skills to be transferred to new models without having to shut
down the factory in order to debug compatibility-related
problems. For other applications, platform-agnostic skill
transfer would not merely be a convenience but could open
entirely new applications. For example, for in-home robots, the
prospect of training every single task by each individual is a
nonstarter for most consumers, whereas having access to a
shared library of skills may be more acceptable.

4.4 Limitations
While our results demonstrate the potential of our
framework, it has limitations. Table 3 summarizes the
major limitations. First, the robot used position control
only, rather than force control or feedback control, to
learn and complete tasks, which limits its effectiveness on
tasks that require consideration of the forces being applied to
the manipulanda such as nail-hammering, or tactile feedback
such as inserting a key into a lock. Second, our framework
only considers the geometric features of the tools and
manipulanda and does not consider other properties (e.g.,
material, weight, and texture), which may hinder the
robot’s ability to choose the most appropriate contact
areas for tools like sandpaper that have a single abrasive
surface but are otherwise geometrically uniform. Third,
although our system calculated the grasping location on

the tool, automatic grasping was not demonstrated in the
evaluation.

Other limitations also exist for TRI-STAR. First, our
framework assumes that all objects, including relevant
objects in the environment, are rigid bodies with no joints
(i.e., have 0 DoF). This assumption does not allow a robot to
handle common tools or manipulanda such as scissors or
washcloths or to perform tool-use tasks on top of soft surfaces.
Second, our framework relies on accurate visual perception
and structured environments, which is a common problem for
non–marker-based perception systems and is an impediment
to handling tasks that require highly accurate perception, such
as surgery. Third, object mapping relies on full 3D models
though ideally, this system should perform mappings using
only partial point cloud data of both geometrically similar and
geometrically distinct objects. Fourth, TRI-STAR cannot
learn the cause-and-effect relations (e.g., Brawer et al.,
2020) that comprise taxonomic knowledge, which does not
allow it to, for example, automatically choose between the
actions required to stir a liquid versus a heavier mixture like a
batter.
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TABLE 2 | Comparing functionality. The table showed that TRI-STAR is an integrative framework with the most demonstrated functionality.

Integrative framework

Star 1: learns
tool use from

demonstrations only

Star 2: able to utilize arbitrary tools/manipulanda Star 3: demonstrated
transfer without retraining

to other robots

Transfer by correction Yes Yes, but requires human corrections for novel tools No
kPAM No Yes, but limited to tools that share common form factors No
Warping Yes Yes, but limited to tools/manipulandum with common form-factors No
TOG-net No Yes, but limited to tools No
p-tools No Yes, but limited to tools No
GVF Yes Yes No
TRI-STAR (ours) Yes Yes Yes

TABLE 3 | Comparison of major limitations. The table shows that while all frameworks considered only geometric properties of objects, some frameworks employed more
sophisticated control techniques than TRI-STAR.

Limitations

Velocity/torque control Object features considered Generate viable grasp poses?

Transfer by correction No

Geometric only

No
kPAM Yes Yes
Warping Yes Unknown
TOG-net No Yes
p-tools No Yes, but not demonstrated during evaluation
GVF No Yes
TRI-STAR (ours) No Yes, but not demonstrated during evaluation
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