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A wide range of studies in Human-Robot Interaction (HRI) has shown that robots can influence the social behavior of humans.
This phenomenon is commonly explained by the Media Equation. Fundamental to this theory is the idea that when faced
with technology (like robots), people perceive it as a social agent with thoughts and intentions similar to those of humans.
This perception guides the interaction with the technology and its predicted impact. However, HRI studies have also reported
examples in which the Media Equation has been violated, that is when people treat the influence of robots differently from
the influence of humans. To address this gap, we propose a model of Robot Social Influence (RoSI) with two contributing
factors. The first factor is a robot’s violation of a person’s expectations, whether the robot exceeds expectations or fails to
meet expectations. The second factor is a person’s social belonging with the robot, whether the person belongs to the same
group as the robot or a different group. These factors are primary predictors of robots’ social influence and commonly mediate
the influence of other factors. We review HRI literature and show how RoSI can explain robots’ social influence in concrete
HRI scenarios.
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1 INTRODUCTION

A wide range of experimental work in Human-Robot Interaction (HRI) has shown that robots can influence
the social behavior of humans. For example, prior work suggests that the mere presence of robots can facilitate
honest human behavior [40], that robot nonverbal behavior can induce changes in human nonverbal behavior
as well [49], and that robots can motivate people to engage in activities like exercising [30, 73]. Further, robot
cheating behavior has been found to influence human engagement in human-robot interactions [88] and robot
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emotional expressions may influence human willingness to collaborate with these machines [104]. In group
settings, robots have further been shown to influence not only human-robot interactions, but also human-human
interaction dynamics [20, 27, 35, 75, 79, 91].

For 25 years, our understanding of robot social influence has been dominated by Reeves and Nass’s Media
Equation [74]. The fundamental premise of the Media Equation is that when predicting how people will act when
interacting with a novel technology, one needs only to look at how people normally engage with each other. If
wearing identical blue armbands makes two people act more like a team, then we predict a similar outcome when
a person and a robot share the same armbands. This idea has had a foundational influence on both the fields of
Human-Computer Interaction (HCI) and Human-Robot Interaction (HRI). We explicitly design human-computer
and human-robot interactions by following examples provided by human-human interactions with the strong
assumption that these will continue to hold true (e.g., [5]).

There are times, though, when the Media Equation does not offer a prediction because there is no equivalent
in human-human behavior. We can make no prediction about how a person will behave when asked to turn a
robot off and then on again as this is not something that could be done to a person. Perhaps more importantly,
there is a growing collection of results that show cases where the prediction made by the Media Equation falls
flat [33]. People often feel comfortable making mistakes in front of robot tutors when they would not let these
errors be seen by human tutors [54]. We accept that robots can take on roles that we do not consider appropriate
for people [52]. We also feel pressure to conform to groups of humans, even when they give obviously incorrect
answers to simple questions, but not to robots [13].1

Many researchers have tried to address the limitations of the Media Equation; however, these alternate models
focus on predicting how people will perceive technology and do not predict the type and magnitude of the
social influence exerted by the technology. For instance, several alternative models focus on computers [85] or
voice/virtual agents [67]. They suggest that people use different communication strategies when interacting
with technology, use different cognitive processes, and are less engaged. Several models define interaction with
technology as a separate independent type of interaction that involves novel social scripts, triggering different
types of control and confidence [33, 67]. Specifically, in the context of robots, a few models were suggested
to address the complexity of how people perceive robots. For example, Zlotowski et al. (2018) suggested that
human perceptions of a robot depend on a dual evaluation process that involves both an implicit automatic
perception and an explicit controlled evaluation of the robot [105]. Ruijten et al. (2019) suggested an alternative
that involves the ordering of human-like characteristics on a range of perceived human-likeness [78]. Another
recent explanation for robot perception was suggested by Clark and Fisher (2023). They argue that people do
not perceive robots as social agents themselves but that they construe robots as interactive depictions [18]. The
authors suggest that robots are perceived from three different perspectives: (1) Base Scene - the robot’s physical
aspects (appearance, material, design); (2) Depiction Proper - the features one associates with the base scene,
such as what social agent the robot represents; (3) Scene depicted - based on the previous two perspectives, the
robot is perceived as a character, which allows for imagining probable scenes involving the robot. The authors
suggested that people can effortlessly take any of these perspectives and switch between them. Other theories
have emphasized the human-likeness of the robot’s appearance, behavior, social skills, and level of personalization
as factors that determine how people perceive robots [26, 43]. While these models can account for the limitations
of the Media Equation in explaining how people perceive robots, they do not demonstrate a difference in the
magnitude of the impact on people’s social behavior. If people do not perceive robots similarly to people it is
important to identify the similarities and differences of such robotic social influence.

In this paper, we propose a model for predicting the magnitude of a robot’s social influence through two
independent factors: violation of expectations and belonging. Our model focuses on what we consider to be the

Though this conformity effect may be seen in more subtle ways [82].
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two most important and critical factors, at times valuing simplicity over complete accounting of all possible
factors. We believe that these two factors capture the unique social context that a robot affords as something that
is at times an inanimate object (and not subject to the classical Media Equation) and, at times, a social agent (i.e.,
the interaction with it is characterized by human-like social effects, [41]), creating a specific set of expectations
around a particular interaction. Furthermore, the robot’s status as being in some ways similar to ourselves (as an
in-group member) and at times very different from ourselves (as an out-group member who does not belong)
shapes the influence that these artifacts have over us.

In the following sections, we first explain and ground our three factors: the dependent and predicted factor of
social influence and the independent factors of violation of expectation and belonging. Then, we provide the first
step of validating our model, which we call RoSI (Robot Social Influence), by applying the model to five previously
published user studies and predicting their results. We visualize these predictions in use-case diagrams. Through
those example predictions, we provide insight into how RoSI should be applied to HRI experimental designs. The
goal of this work is to provide a theoretical model that can explain the outcome of an experiment by predicting
differences in the robot’s social influence.

2 A MODEL OF ROBOT SOCIAL INFLUENCE (RoSI)

Figure 1 describes our theoretical model of Robot Social Influence (RoSI), which predicts the magnitude of a
robot’s social influence on a person based on two factors: (1) the degree to which the robot exceeds or fails to
meet the person’s expectations and (2) the degree to which the person considers themselves and the robot as
belonging to the same group. In particular, the model predicts a larger magnitude of social influence when the
robot exceeds expectations and a lower magnitude when it fails to meet them. It also predicts that both high
and low belonging will involve high social influence, while a more neutral sense of belonging will involve a low
influence.

We chose violations of expectations and belonging specifically as independent variables of our model because
they are primary components and powerful predictors of robot social influence across a broad range of human-
robot interactions. In some cases, these two factors are predicted to involve different influence patterns for
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Fig. 1. RoSl, our social influence model, predicts the amount of influence a robot has on a person (z axis) based on: the degree
to which the robot violates the person’s expectations (x axis), and the degree to which the person considers themselves and
the robot to belong to the same group (y axis). The 3D plot (a) shows the relationship between these axes. The 2D plot (b)
shows a 2D projection of the social influence surface from (a). Both diagrams are best viewed in color.
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humans and robots (e.g., our expectations of robots can differ from our expectations of people). Previous studies
have indicated other factors that can also shape the social influence of a robot, including robot anthropomorphism
[69, 103], robot status or power [81], robot competence [38], social pressure [13], and perceived robot agency
[56, 88]. These other factors are commonly encapsulated in our chosen factors of expectations (e.g., power,
competency, agency) and group belonging (e.g., robot status, anthropomorphism).

The model makes several key assumptions: (1) social influence is presented from the perspective of a person
who takes part in an interaction with a robot; (2) the model predicts the magnitude, but not the valance or type
of the social influence (which are highly context-dependent); (3) the model predicts the change in the magnitude
of social influence across the interaction with the robot. While at the beginning of an interaction, people have
initial expectations and sense of belonging, the robot’s behavior throughout the interaction can alter those, which
would result in a different magnitude of social influence.

2.1 Predicted Factor: Robot Social Influence

Prior work in HRI has demonstrated that robots can change how people behave, how people perceive the world
around them, and how people think and feel. In other words, robots can exert social influence on people. We
define social influence as “a change in one’s beliefs, behavior, or attitudes due to external pressure that may be
real or imagined” [37]. Social influence can take many forms: a person may conform their choice to match that of
a robot [82, 83, 98], a person may comply with the request of a robot (even if it does not make sense) [6, 76], or a
person may follow a social norm introduced or reinforced by a robot [68, 93].

2.1.1 Theoretical Background & Justification. Rooted in the human sensitivity to social information in their
environment [61], people perceive robots’ actions as social and, as a result, are often influenced by them. It is
argued that humans are social organisms [94], with brain structures that specifically support awareness of others
and communication skills that are fundamental to social coordination [51, 61, 74]. The inherent propensity to
perceive the world through a social lens [101] is believed to lead to a strong tendency to anthropomorphize objects
and to automatically associate autonomous actions with social intent [2, 25, 29, 51, 90]. This social interpretation
given to interactions with autonomous objects is the basis for the various indications for social influence in
human-robot interactions.

At the same time, robots do not necessarily have the same social influence as humans do (e.g. [13]). Different
aspects of a robot’s design may shape the type and magnitude of its social influence. The robot’s appearance,
capabilities, communication modalities, and role may all contribute to its social influence in a given interaction.
We suggest that it is not enough to state that interactions with robots are interpreted as social experiences.
Therefore, we present this model of robot social influence (RoSI), that can be used to predict the unique social
influence of a robot on the people with whom the robot interacts.

2.2 Model Independent Factor #1: Violation of a Person’s Expectations of the Robot

The first factor in RoSI is how much and in which direction a robot violates a person’s social expectations. Social
expectations are defined as cognitions concerning the behavior anticipated of others when interacting with them
[4, 16]. They guide people’s behavior by reducing uncertainty and directing their comprehension [11, 14, 16, 84].
In the context of human-robot interaction, expectations become even more important due to the inherent
uncertainty associated with an autonomous machine [90]. A robot could meet the person’s expectations, exceed
their expectations, or fail to meet the person’s expectations. A robot can also violate the person’s expectations in
a way that surprises the person but does not exceed or fail to meet their expectations. We treat these cases as
similar to the robot meeting the person’s expectations.

For example, consider a person’s expectations of a food-delivery robot. One way the robot might exceed
expectations is by displaying empathy in addition to delivering food, for example, noticing that a person looks
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sad and saying “you look sad, is everything ok?” A food-delivery robot could fail to meet expectations if it is
unable to speak its “here’s your delivery!” phrase as the user has come to expect due to a software failure. A
robot might surprise a person by using a voice that the person did not expect but neither exceeds expectations or
fails to meet them.

Robots that exceed a person’s expectations typically present complex social behaviors like vulnerability
[92], favoring one human over the other [45], and touching the human [19]. Exceeding expectations does not
necessarily involve positive robotic behavior as some negative behaviors like cheating and excluding others
[28, 56] may be perceived as exceeding the robot’s anticipated behavior. Robots that fail to meet a person’s
expectations often disappoint them since they exhibit lower capabilities than expected [47]. Robots fail to meet
expectations either due to humans’ unrealistic initial expectations or due to mistakes and errors related to the
robot’s function (e.g., navigation errors [80], perceptual and processing judgment errors [47], memory-related
errors [102]).

While some robot behaviors may cause expectation violations that always exceed a person’s expectations or
always fail to meet them, some robot behaviors may cause distinct effects based on individual differences. For
example, consider the possibility that a food-delivery robot receives a software update that has the robot express
happiness after a successful delivery by spinning around in a circle. This additional expression of emotion could
exceed a person’s expectations of the robot. However, another person may perceive the circle-spinning as a robot
malfunction, resulting in a failure for the robot to meet the person’s expectations. It is also possible that the
circle-spinning of the robot may not change a person’s perceptions of the robot, leaving that person’s expectations
of the robot unchanged (leaving their expectations at “meets expectations”). As this example illustrates, the
violation of expectations can be subjective.

2.2.1 Theoretical Background & Justification. Violation of the expectations from the robot was chosen as one of the
model’s factors due to the centrality of expectations in interpersonal interactions [14, 72, 90] and specifically how
they shape human behavior in HRI [48]. One of the primary concerns associated with interpersonal interactions
is the uncertainty about others’ thoughts, attitudes, and behavior. It is suggested that in any given context,
people unconsciously develop expectations that assist in predicting different aspects of the interaction [4]. Such
predictions have a persistent influence on the social sensitivity in the interaction [84, 90].

Expectation may be even more central in human-robot interactions [72] because human norms cannot be
fully applied to interactions with robots [58], and people commonly have various and changing expectations of
robots [77]. At the same time, robots’” autonomous behavior typically positions them as independent social actors,
triggering a set of expectations people apply to social contexts. Accordingly, expectations from robots are formed
by various factors ranging from relevant human norms in the social context to experience with real and fictional
robots. Technical affinity and the introduction of a robot in a specific interaction were also shown to impact the
expectations from the robot [36, 44, 70]. This complexity increases the need to understand and anticipate robots’
behavior during interactions, emphasizing the importance of deriving accurate expectations. When expectations
are violated, one is required to reassess the situation which leads to higher social sensitivity. The direction of
the violation (exceeding or failing to meet expectations) and its magnitude determine the intensity of the social
impact [14, 15]. Various studies have already mapped people’s expectations of different robots (e.g. [77]) and
suggested methods for manipulating, structuring and modifying expectations. These commonly involve a short
explanation about the robot given before the interaction [36, 70].

2.2.2  Prediction of Social Influence. Expectations are constructed in RoSI as a relative factor predicting the
intensity of the robot’s social influence. The model treats each person’s expectations violation as relative to their
own initial expectations. Thus, the starting point for a person’s expectations of the robot is at the center of the
horizontal axis of Fig. 1, where the robot meets the expectations.
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When a robot meets the person’s expectations, the model predicts no change in the robot’s social influence. No
change in the robot’s influence is also predicted when the violation of expectations is surprising since it neither
exceeds the person’s expectation nor fails to meet the person’s expectations. While a surprise at a robot’s actions
may influence the human-robot interaction in some way, we only expect a significant change in the robot’s social
influence when the person’s expectations of the robot are either exceeded, or the robot fails to meet the person’s
expectations..

Robotic experiences that fail to meet expectations are predicted to decrease social influence (due to disappoint-
ment and decrease in trust [99]). On the other hand, robotic experiences that exceed participants’ expectations
are predicted to increase social influence (due to the increase in the robot’s perceived capabilities). While the
magnitude of the social influence is predicted to increase, it is not necessarily predicted to be positive. For instance,
a robotic experience that exceeds expectations may lead to increased conformity and obedience.

The relative nature of this factor also suggests that the robot’s social influence will become more typical over
repeating interactions since the expectations from the robot will be updated. If the robot presents consistent
behaviors across several interactions, the expectations from it will be adjusted accordingly. This, in turn, would
form a relevant social context with a typical social influence.

As an illustrative example, consider a robot that provides product recommendations. Accepting the robot’s
recommendation for a product to purchase is predicted to depend on the robot’s perceived group membership
and the initial expectations from the robot (whether the robot meets them). If the robot fails to meet expectations
(e.g., unable to provide information about the product or if there are long delays in its responses to questions),
the chances that its recommendation will be followed drop. On the other hand, if the robot provides a sense of
caring by asking for the person’s name and preferences, it is likely to be perceived as exceeding expectations,
and its recommendations are more likely to be accepted by the user.

2.3 Model Independent Factor #2: A Person’s Belonging to the Robot’s Group

The second input to RoSI is the person’s perception of their group membership relative to the robot: whether
the person and the robot belong to the same group or different groups. Let us consider a card game where
two human-robot teams play competitively against each other: participant A and robot Emys play against
participant B and robot Glin, as explored by Correia et al. [22]. Participant A would likely perceive a high degree
of belonging to robot Emys’s group (their partner) and a low degree of belonging to robot Glin’s group (their
competitor). We view high and low belonging to the robot’s group as a similar concept to intergroup membership
(in-group/out-group) [95]. High belonging to the robot’s group is analogous to the person viewing the robot as
an in-group member. Low belonging to the group is analogous to the person viewing the robot as an out-group
member. It is also possible for a person’s belonging to the robot’s group to exist somewhere in between low
belonging and high belonging (e.g., at a neutral midpoint).

People’s perceptions of their and the robot’s group membership can be powerfully shaped by both the robot’s
behavior and environmental factors. People show greater signs of shared group membership (e.g., favor, trust,
liking) with robots that express vulnerability [60, 92], use team-related verbal expressions [21, 81], display empathy
[53], and use social touch [50, 87, 100]. Robots do not even need to have a humanlike appearance to engender
themselves to greater group membership and belonging with people. Using expressive gestures, non-humanoid
robots have effectively communicated responsiveness [12] and security [59] in one-on-one interactions with
people. In addition to robot behavior, environmental factors, such as pre-assigned interaction roles [21, 32, 91],
can also influence people’s views of robots’ group membership. For example, when robots are a part of the same
team as a person, those robots are seen as in-group members, however, when robots are a part of a competing
team to a person, those robots are seen as out-group members [32].
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2.3.1 Theoretical Background & Justification. The focus on belonging as one of the two factors determining the
robot’s social influence is grounded in its profound impact on human behavior in interpersonal interactions
[10, 17]. The dramatic effect of belonging is attributed to a fundamental human drive to form meaningful
relationships with others that involve positive and pleasant interactions [1, 9, 10]. In order to satisfy the need to
belong, people must establish meaningful interpersonal connections [63] commonly supported by sharing group
membership [10, 42]. Belonging to a group leads to the rapid formation of strong group bonds, loyalty, and group
identification ties [42, 57, 86, 86]. Sharing group membership encourages behaviors that enhance the chances
of being included, such as showing favoritism to in-group members [7, 42, 57, 86] and defending the integrity
of the intergroup social bonds [10]. Belonging to a group also influences the perceptions of out-groups [10, 62]
leading to negative attitudes and rejection of those with different group membership [62]. This variety of group
membership effects contributes to the centrality of belonging in shaping interactions.

While group membership effects are also observed in HRI, they are not always similar to those observed in
human interactions and present more complex patterns of social influence that underscore their importance
to the model. Robots are not naturally perceived as in-group members and can often be considered a part of
a potentially competing out-group [89]. People are more likely to consider themselves as members of a group
with people who share more in common with them [24]. This is supported by evidence that people demonstrate
greater in-group favoritism to other humans as opposed to robots [32], and to more human-like robots as opposed
to more machine-like robots [31]. In some cases, interactions with robots fail to show any belonging effects that
are typically observed in human groups [13]. However, robots’ behavior and various environmental factors may
form a strong sense of mutual human-robot group membership. In such contexts, people have shown a preference
for in-group robots over out-group humans [32]. Given these findings, understanding how a person views their
group membership relative to a robot is essential in determining the amount of social influence a robot can exert
on the person.

2.3.2 Prediction of Social Influence. The social influence people experience from a robot will depend on how
they view the robot’s group membership. In explaining this relationship between social influence and belonging,
we consider three categories of belonging: low belonging, neutral belonging, and high belonging. The belonging
category may change across repeated interactions due to familiarity effects and the development of the relationship
(which can be either positive or negative).

Our model predicts that a robot will have high social influence in both cases of high belonging and low
belonging when compared with cases of neutral belonging. When a person views themselves and the robot as
members of the same group (high belonging), we expect them to display in-group favoritism towards the robot,
and thus an increased likelihood to be influenced by the robot. For example, if a robot viewed with high belonging
makes a recommendation about which product to purchase, our model predicts that the person will be likely to
follow that recommendation.

When a person views themselves and the robot as members of different groups (low belonging), it also
increases the robot’s influence. This can especially happen if the robot is viewed as an authoritative figure [3, 34].
Additionally, people can display outgroup hostility, with possible negative attitudes and aggressive behavior
towards the robot. Taking the same example, if a robot makes a recommendation about which product to purchase
and the person views the robot with low belonging, the person may intentionally choose to purchase a different
product or nothing at all, acting against the recommendation of the robot.

It is also possible for a person to view a robot in a more neutral way (neutral belonging), where they do not
view the robot as either a close in-group member (high belonging) or an opposing out-group member (low
belonging). In these cases of neutral belonging, our model predicts that the robot will have low social influence
and that it is less likely to change the behavior or attitudes of the person with whom the robot is interacting.
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2.4 A Potential Mathematical Expression for RoSl

A detail-oriented reader may have noticed that we omit units from the axes and from the colormap of Figure 1,
i.e., there are no ticks with specific coordinates in the x and y axes nor in the colormap. We do this to emphasize
how the pattern of social influence changes based on the two independent factors more than whether a person’s
perspective about a robot has a specific (x, y) coordinate or social influence takes on a specific numeric value.
In other words, RoSI provides the pattern of impact on social influence; it is not intended to provide an exact
prediction of the social influence magnitude. The pictorial representation of RoSI in Figure 1 is inspired by other
models with visual representations, like the uncanny valley model [65]. The uncanny valley is often conveyed
and reasoned about through a 2-dimensional plot that depicts the relationship between the human likeness of an
entity and the perceiver’s affinity for it (e.g., see Figure 1 in [71]). Similar to how the early uncanny valley plots
lacked units and concrete measurements, our pictorial representation for RoSI lacks specific units as well. Also,
similar to how follow-up work to the uncanny valley proposal measured concrete examples along the uncanny
valley curve and has proposed refinements to the early model (cf. [8, 46]), we expect future work to also refine
our model of robot social influence for specific contexts of use.

It was important for us to generate RoSI diagrams in this paper using a systematic and reproducible procedure.
Although we did not want these diagrams to focus on specific (x, y) and social influence values as described
before, defining this systematic procedure required choosing some underlying mathematical formulation for
RoSI. With such a formulation, one could then reason about robot social influence across different potential
interactions with a robot, as further described in the next section.

We considered different mathematical formalizations for RoSI that matched the general shape of the RoSI’s
pictorial representation in Figure 1a; ultimately, though, we chose to err on the side of simplicity per Occam’s
razor or the principle of parsimony. We chose to generate all RoSI diagrams shown in this paper with the following
expression: Social_Influence(x, y) = x+ay?, where x represents violations of expectations, y represents belonging,
and « is a scaling factor between the independent terms. For this mathematical expression, we assumed that
a € R, is a positive scalar such that both independent factors contribute to social influence. Also, we assumed
that y € [—c, c] with ¢ € R, and square the contribution of y such that Social_Influence(x, y) follows the 3D
surface depicted in Figure 1a.? It is important to note that while squaring y increases its impact in comparison to
x, the a coefficient can further define the tradeoff between these factors. We could have chosen the absolute value
for the y component of the equation instead of the squared exponential, but this would have resulted in a more
sensitive variation in influence around y=0. Instead of that variation, we wanted to accentuate that we expect
social influence to be more pronounced with high or low belonging, farther away from y=0. Other mathematical
expressions that follow the shape of the surface in Figure 1a are possible for RoSI, e.g., instead of squaring y, one
could use other exponentials that are convex functions as well, such as y*. Additional possibilities include more
complex functions like a Tukey loss curve. We leave the exploration of other mathematical forms for RoSI to
future work.

3 EMPLOYING USE-CASE DIAGRAMS TO DISPLAY RoSI PREDICTIONS

When focusing on a specific human-robot interaction, RoSI predicts the pattern of magnitude change in the
robot’s social influence according to the implementation of the two predicting factors (violation of expectations
and belonging) in that specific interaction. This type of integrated impact can be visualized in model use-case
diagrams, as exemplified in Figure 2.

20ur implementation of the equation and the code for generating the plots in this paper are provided in the supplementary material. In the
code, the equation Social_Influence(x, y) = x+ozy2 uses x € [0,2],y € [-1,1],and & = 1.5. These values made the mathematical expression
look like the 3D surface in Figure 1a and facilitated visual coloring of the plots using the cool colormap of the Matplotlib visualization library.
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Use-case diagrams are a direct application of the social influence surface depicted in Figure 1. The independent
variables represented by the x and y axes and their underlying relationship to social influence are the same
between the RoSI model in Figure 1 and RoSI use-case diagrams. More specifically, the x axis of a use-case
diagram corresponds to the degrees to which a robot exceeds or fails to meet the person’s expectations (factor #1
in Section 2.2). The y axis corresponds to how much the person considers themselves and the robot as belonging
to the same group (factor #2 in Section 2.3). Finally, social influence in a use-case diagram is predicted to vary in
a similar fashion to the surface depicted in Figure 1a and as explained in Section 2.4. Thus, the colormaps used to
convey social influence in Figure 1 and in the use-case example in Figure 2 are the same.

There is one main difference between the RoSI model plots in Figure 1 and use-case diagrams: use-case diagrams
highlight specific points in time during interactions, e.g., according to experimental conditions in a user study.
Thus, one can think of a user diagram as multiple RoSI model plots, like the ones in Figure 1, overlaid on top of
each other. Each of the plots conveys how social influence changes over time according to different interactions.
This is achieved by visualizing a trajectory from an initial set of values for the model’s independent factors (x1, y1)
when an interaction starts to a new set of values (x2, y2) later in time, when an interaction has already taken
place. The usefulness of RoSI is in predicting the pattern of magnitude change in the robot’s social influence
during the interaction. Consequently, the value of a use-case diagram stems from being able to visualize these
predictions all in one place, facilitating comparisons. Importantly, the use-case diagrams assume that in all the
interactions that they consider, the initial expectation of interest (factor #1) is uniform across the interactions
when the human-robot encounters start. That is, x; is the same across all interactions visualized in the use-case
diagram. This assumption is important to be able to compare different interaction trajectories with respect to
violations of expectations in one diagram because this is intrinsically a relative construct. One has to have some
initial set of expectations for them to be violated in some way:.

high
belonging
more
influence
Irrelevant
fails to meet " deas / exceeds
expectations expectations
_ less
influence
low
belonging

Fig. 2. Use-case diagram for RoSl. The model is applied to a hypothetical HRI between-subjects experiment where participants
interact with a robot that either “Supports Ideas” and actively defends them, or suggests “Irrelevant ldeas” during a
brainstorming session. The thickness of the boxes for the experimental conditions and the color of their edges indicate the
expected amount of social influence according to RoSI (with a thicker edge corresponding to more influence). Under the
Irrelevant Ideas condition, the interaction with the robot evolved such that the robot failed to meet the expectations of a
participant. Under the Supports Ideas condition, the robot increased a participant’s perception of their group membership
relative to the robot as well as exceeded expectations. See Section 3.1 for more details.
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Use-case diagrams highlight the person’s perspective when an interaction begins with the ‘s symbol. This
symbol is always at the midpoint of the x axis because violations of expectations is a relative construct, as
explained before. The position of the s symbol on the y axis depends on the degree to which the interaction
started with the person perceiving themselves and the robot as sharing group membership.

The social influence at the end of the interaction with the robot is indicated by a rectangle in the use-case
diagrams. The rectangle’s position represents the violation of expectations experienced in the interaction and the
final perception of sharing group membership with the robot. The estimated magnitude of the social influence is
indicated by the thickness of the rectangle’s frame and its edge color, which correspond with the social influence
magnitude pattern presented in Figure 1. The arrow from /s to the rectangle shows how the person’s perspective
changed during the human-robot interaction, e.g., according to an experimental manipulation during a user
study.

3.1 Applying the Model to a Study

In this section, we will go through an example of how to apply the RoSI model to a given study. We would like to
highlight that the following discussion is based on the experience and judgment of the researchers. Therefore, we
recommend discussing the planned experiment among experts when applying the model to make predictions. We
will use as an example the hypothetical study shown in Figure 2, where the aim is to predict the social influence
of a robot on a participant given the ideas it provides during a brainstorming session. Let us say that there are
two types of robot behaviors that we are interested in comparing: one where the robot supports the ideas the
user is providing while brainstorming and one where the robot will provide several ideas that are irrelevant to
the topic of the brainstorming session.

The first step is to determine the starting location s in the diagram. As previously mentioned, the expectations
factor is relative, so the s would be set in the middle of the x-axis. Since the robot engages in a collaborative
brainstorming session with the user, we might set the start somewhat above neutral on the y-axis (belonging).
Next, the changes in expectations and belonging need to be determined given the robot’s behaviors in the two
conditions. First, let us consider the robot that provides irrelevant ideas. The group membership would likely
not change as the user and the robot are still collaborating on the same task, and the robot is not increasing
nor decreasing its belonging perception. However, it will likely fail to meet the user’s expectations as the ideas
it is providing are unrelated to the task. Therefore, we would likely place the end-point of the irrelevant ideas
condition at the same height of belonging but to the left of the starting point. Next, we evaluate the robot that
supports the user’s ideas. As the robot is positive about the user’s ideas, their feelings of belonging would likely
increase. Additionally, for a robot to support the user’s ideas it would need an understanding of what the user is
saying and be able to verbally express its support. This usually exceeds what many people expect robots to be
able to do. Therefore, the end-point of the robot that supports ideas would likely be placed to the right (exceeds
expectations) and higher up (increased belonging) than the starting point.

Now that we have determined the endpoints of each of the conditions compared to the start point, we can
deduce which of the conditions would likely have higher social influence. As can be seen in Figure 2, the “irrelevant
ideas” condition is displayed as an aqua color (and a thin outline), which represents a lower degree of social
influence. On the other hand, the “support ideas” condition is displayed in dark blue (and a thicker outline),
which displays a moderate amount of social influence. Therefore, the robot that “supports ideas” is likely to have
greater social influence (e.g., it is more likely that the person will comply with its requests in a later interaction)
than a robot that provides “irrelevant ideas”.

A similar step-by-step process can be used for any study one is planning on conducting. First, determining
the starting location, and in sequence, determining how the robot’s behavior (or how different experimental
conditions) would exceed or fail to meet expectations and how the user’s feeling of belonging would change. The
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belonging
more
influence
fails to meet Friendly- exceeds
expectations appr;aach expectations
s
[ Admonishing-
approach _ less
influence
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belonging

Fig. 3. Use-case diagram for the experimental conditions from “Stop doing it! Approaches Strategy for a Robot to Admonish
Pedestrians” [64]. See Section 4.1 for more details.

end positions of each experimental condition can be compared to deduce which one would likely have a higher
degree of social influence on the user. We use a similar process as described in this section to generate the graphs
in Section 4.

4 EXAMINING HRI STUDIES WITH RoSI

This section exemplifies RoSI on prior HRI studies presented as use-case diagrams (Figures 3-7). To facilitate
reproducibility, all the use-case diagrams were created with the RoSI mathematical expression from Section 2.4.
The process used to create the diagrams followed the description in Section 3. As a result, the diagrams should be
interpreted as explained in that prior section.®

The examples discussed next were chosen because they vary in their level of belonging and violation of
expectations, leading to a diverse set of social influence effects. The examples also span a variety of settings and
applications.

4.1 Example 1: Admonishing Robot Behavior

Our first example concerns public human-robot interactions as described in the study by Mizumaru et al. [64]. In
particular, the authors investigated how people in a shopping mall in Japan reacted to a Robovie-R3 robot that
acted as a guard, patrolling the environment and asking pedestrians to not use smartphones while walking -
something that is discouraged in many public places in Japan. The robot guard approached a pedestrian using
a smartphone in one of two ways: In the Friendly-approach condition, the robot approached the person and
followed them while saying “Excuse me. Using a smartphone while walking is dangerous. Please stop using
it”. In the Admonishing-approach condition, the robot communicated the same information verbally but used a
navigation policy that imitated how a human guard would admonish the pedestrian. This policy involved slightly
faster motion, taking a shortcut to suddenly appear in front of the pedestrian, and maintaining a meeting distance
once the person was reached.

3There is no difference in the meaning of the curved and straight arrows in the use-case diagrams. These shapes were generally chosen such
that the arrows don’t occlude other parts of the use-case diagrams, like the boxes that indicate the name of an experimental condition.
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/ influence
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Fig. 4. Use-case diagram for the study conditions in “Prompting Prosocial Human Interventions in Response to Robot
Mistreatment” [20]. See Section 4.2 for more details.

Figure 3 depicts the predictions of our social influence model on the two conditions considered in Mizumaru
et al. [64]. In both cases, the s symbol is lower than the midpoint in the y axis because the robot generally
takes on the role of a guard. It navigates the mall alone and is an authoritative figure, making it an out-group
member for pedestrians. In the Friendly-approach condition, the robot follows a pedestrian, which does not change
expectations of the robot because the robot is acting as a guard in the environment but might slightly decrease
out-group perception due to the coordinated motion with the human. This leads to a close to neutral sense of
belonging which in our model is associated with low social influence. Mizumaru et al. [64] showed that even
though the robot asked the pedestrian to stop using their phone, many people did not comply with its request. In
the Admonishing-approach condition, the robot movesin a confrontational manner and emphasizes the request for
the person to stop using their mobile device. This confrontational movement highlights the robot’s authoritative
figure as a guard and increases the perception of belonging to different groups - guards and pedestrians. This
behavior also led to exceeded expectations of the robot, as one person that experienced this condition indicated
“I noticed the robot approaching me, and I was impressed with it, so I stopped (using the smartphone)” [64].
Therefore, our model predicts that the Admonishing-approach condition would lead to more social influence on a
pedestrian. This prediction aligns with the results in Mizumaru et al. [64], where 8/13 pedestrians stopped using
their smartphone in the Admonishing-approach condition versus 2/11 in the Friendly-approach condition. We
note that our model predicts a stronger social influence in this condition in comparison to the media equation
due to the impact of the expectations factor (i.e., the robot exceeding the participant’s expectations), which is
unique to the interaction with robots.

4.2 Example 2: Social Influence in Groups

Our second example is about robot social influence in multi-party HRI. In particular, Connolly et al. [20] studied
a collaborative task between two people (one participant and one confederate) and three robots. Their study
investigated whether two bystander robots could influence a person to intervene when observing a human
confederate mistreat the third robot. They had two conditions: in the Sad Response condition, the bystander robot
exhibited a sad response whenever the third robot was abused; in the No Response condition, the bystander robots
did not respond to the abuse.

ACM Trans. Hum.-Robot Interact.



RoSI: A Model for Predicting Robot Social Influence « 13

high
belonging
IG Congruent
more
influence

S

OG Incongruent
exceeds

expectations

fails to meet
expectations

IG Incongruent

_ less
influence

OG Congruent

low
belonging

Fig. 5. Use-case diagram for "Would You Like to Play with Me? How Robots’ Group Membership and Task Features Influence
Human-Robot Interaction" [39]. See Section 4.3.

Figure 4 shows the application of our model to the interaction between a participant and the bystander robots.
The (s had an initial above-average belonging value because the participant was given a collaborative task with the
robots. The Sad Response condition increased group belonging with a bystander robot because it expressed concern
for another group member (the abused robot). Furthermore, its reaction generally highlighted the confederate’s
behavior, pushing the confederate to be an out-group member and strengthening the in-group memberships
between the bystander robots and the participant. Additionally, the robot’s response exceeded the participant’s
expectations in the Sad Response condition because such emotional reactions to a robot’s surroundings are
atypical. In contrast, the No Response condition did not violate participants’ expectations of the robot. Over
time, the lack of response by the bystander robot to the confederate’s abusive actions reduced the degree to
which participants perceived themselves as a group with this robot, as the abuse made them uncomfortable and
therefore feel less like a team. Therefore, our model predicts that the Sad Response condition would lead to a
stronger influence than the No Response condition. The paper’s results show that participants were significantly
more likely to react and confront the confederate about the robot abuse in the Sad Response condition than in the
No Response condition. These results are in line with our model’s prediction.

4.3 Example 3: Impacts of Group Membership

Our third example is about multi-party interaction and the influence of different types of group memberships. In
particular, Haring et al. [39] investigated how likely participants were to cooperate with a robot by accepting their
suggestions depending on whether they were part of the same social group as them, and whether they were told
the robot was a teammate or competitor during the game. Participants interacted with two robots, one which was
introduced as being programmed by students from the same country (in-group robot) as them, and the second as
being programmed by visiting students from another country (out-group robot). In the Congruent condition, the
in-group robot was assigned the role of a teammate, and the out-group robot the role of a competitor; in the
Incongruent condition, the out-group robot was assigned the role of a teammate and the in-group robot the role
of a competitor.

Figure 5 shows the application of our social influence model on how the two robots (in-group and out-group)
were perceived in the two conditions (Congruent and Incongruent) presented in Héring et al. [39]. The ‘s starts at
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Fig. 6. Use-case diagram for the study conditions in “Evidence that robots trigger a cheating detector in humans” [56] from
the perspective of a person that perceives the robot as malfunctioning. See Section 4.4 for more details.

a moderately high belonging for the in-group robots and at a moderately low belonging for the out-group robot.
After a robot was assigned the role of a teammate (in the In-group Congruent and the Out-group Incongruent
conditions), their belonging increases; whereas after being assigned the role of a competitor (in the In-group
Incongruent and the Out-group Congruent conditions), their group belonging decreases. The model predicts how
likely the participant is to cooperate and accept suggestions from a robot when it is their teammate (In-group
Congruent and Out-group Incongruent conditions). According to our model, we predict that participants are more
likely to cooperate with the In-group congruent robot than with the Out-group Incongruent robot. The paper’s
results show that although participants cooperated with both robots, only in the In-group Congruent condition did
participants exceed the minimum cooperation value. Therefore our model’s prediction is in line with the paper’s
results. The paper does not present results on how frequently participants cooperated with the competitor robot
(In-group Incongruent and Out-group Congruent conditions), but our model predicts that people are more likely to
cooperate with the In-group Incongruent robot than with the Out-group Congruent Robot.

4.4 Example 4: Cheating Robot Behavior

Our fourth example is about a cheating Nao robot that played a rock-paper-scissors game with individuals. Litoiu
et al. [56] hypothesized that the same cheating detection mechanism used towards other people [96, 97] could
also be triggered by a Nao robot, increasing human attributions of agency and intelligence towards the robot.
In their study, participants played 30 rounds of the game with the Nao robot, where they each threw a “rock”,
“paper” or “scissor” gesture. Paper beat rock, rock beat scissors, scissors beat paper, and two of the same gestures
resulted in a tie. In rounds 11-20, however, the Nao changed its gesture once it had seen the human’s gesture to
alter the game outcome. This happened under one of four conditions: Cheat to Win, Cheat to Tie from Lose, Cheat
to Tie from Win, and Cheat to Lose. In the former two conditions, the robot improved the game outcome in its
favor, while in the latter two conditions, it improved the outcome for the human player.

Figure 6 shows our model’s prediction from the perspective of a human that perceives the robot as malfunc-
tioning when it cheats in a way that improves the outcome of the game for the human. The start symbol is lower
than the midpoint of the y-axis because the rock-paper-scissors game involves competition. The Cheat to Win
condition exceeds participants’ expectations of the robot because the robot is violating the rules of the game in a
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Fig. 7. Use-case diagrams for “Social Engagement in Public Places: A Tale of One Robot” [66]. The condition labels correspond
to: stand-alone robot (S), Voice-only (V), Voice + Lips (L), Voice + Lips + Facial-expressions (F), Voice + Lips + Facial-expressions
+ Gestures (G). In addition, figures b) and c) include the Interactive Game condition (I). See Section 4.5 for more details.

way that gives it an advantage. Additionally, it makes the robot an out-group member because its actions highlight
the competitive nature of the game. This results in the biggest amount of robot social influence, followed by the
Cheat to Tie from Lose condition, where the cheating behavior is also exceeding the participant’s expectations of
the robot, but the actions do not make the human lose, only tie with the robot. The two other conditions exert
less influence because the robot, which is perceived as malfunctioning; fails to meet the person’s expectations of
the robot. These predictions are in alignment with the results in the paper about the percentage of participants
that emitted an utterance after at least one of the cheating events [56]. This example also indicates the advantages
of our model over the Media Equation, as it can account for the perception of the robot as malfunctioning.

A second alternative explanation to this study is that participants perceived the Cheat to Lose and the Cheat
to Tie from Win conditions as altruistic robot behavior, as it sacrificed its position in the game by cheating to
help the human. In this case, these conditions would exceed expectations about the robot and increase in-group
perception. This would move the conditions to the top-right quadrant of Figure 6, increasing their amount of
influence. Unfortunately, Litoiu et al. [56] did not break down their results according to whether participants
perceived the robot as malfunctioning or being altruistic, so this alternative explanation could not be verified
at this time. The important take-away from this example, though, is that it is critical to consider individual
perspectives when applying our proposed model in practice — this consideration is something that the Media
Equation does not emphasize.

4.5 Example 5: Robot Communication

Our final example concerns pedestrian engagement with a robot at a large-scale public venue. More specifically,
Moshkina et al. [66] conducted an observational study through which they examined the Media Equation in HRL
The goal was to test the hypothesis that people will respond to a robot as a social partner, provided social cues
are produced by the robot. Thus, their study had six conditions: 1) the robot was stand-alone, doing nothing (S);
2) the robot communicated through voice only (V); 3) it communicated through voice and moved its lips in sync
with speech (L); 4) it communicated through voice, lip motion and facial expressions (F); 5) it communicated as
before but also with gestures (G); and 6) it communicated through all prior modalities and played a game with a
few volunteers (I). The main measure considered in the study was whether pedestrians in the event attended to
the robot.
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Figure 7(a) shows our model predictions for the first five conditions. As social cues increase, the position of the
conditions moves to the right (expectations violation axes), increasing the predicted amount of social influence
by the robot. Note that the plot assumes that the person observing the robot has high expectations to begin
with due to the robot’s humanoid features (and the associated expectations that it will behave like a human).
Therefore, voice, lip motion, facial expressions, and gestures are not enough to cross the midpoint of the x axis
(i.e., to exceed expectations). For the first five conditions, our model’s predictions align with the study findings
with respect to human attention towards the robot [66]. The more social cues, the more people attended to the
robot for 15+ seconds during the event. As discussed by the authors, this result is also aligned with the Media
Equation.

Based on the Media Equation, Moshkina et al. [66] predicted that the Interactive Game (sixth condition) would
be the most engaging and, thus, would result in the most people attending to the robot during the public event.
However, the authors found the game to be less engaging than when the robot communicated through voice
or all other modalities outside of the game. The authors thought that this result was in direct opposition to the
Media Equation and could not explain why. Analyzing the Interactive Game condition according to our model
suggests a more complex effect. Figure 7(b) shows our model predictions for a person that plays the interactive
game with the robot. We predict that playing the interactive game with the robot leads to exceeded expectations
of the robot and also increases the perception of the person and the robot belonging to the same group. Thus,
according to our model, the game would increase social influence on the few people that played the game and
they would be more attentive to the robot than people who did not participate in the game (as in conditions
1-5). The findings from [66] do not break apart the results for these participants, so further research is needed to
corroborate this prediction.

Figure 7(c) shows our model’s prediction for a person that did not play the game - the majority of the people
at the event. The non-player is predicted to perceive the robot as positively violating expectations because it
is more capable in the game. However, this person also feels less of a sense of belonging to the robot’s group.
According to our model, social influence would still increase for such a non-player during the Interactive Game
condition, but we suspect it does so in a different way: the robot influences non-players to ignore (not attend
towards) it because they are outsiders to its game. This example highlights an important limitation of our model,
which is that it does not specify what type of social influence is being exerted by a robot on a person. Our model
only predicts the magnitude of the robot’s social influence.

5 DISCUSSION

We present a model of Robot Social Influence (RoSI), a theoretical model for understanding and predicting robots’
influence on humans’ behavior and emotions in social contexts. This work extends beyond prior work, which
predicts how people perceive robots [26, 43, 78, 105] or assume like the Media Equation [74] that robots impact
would follow the pattern of human social influence. Instead, the model predicts a person’s response to a robot’s
behavior based on robot-specific interaction factors. The model’s factors, the violation of a person’s expectations
of the robot (violation of expectations) and the social belonging a person feels toward the robot (belonging) capture
the varied impact robots may exert on humans and are also fundamental to interpersonal interactions in general.
When applied to human-robot interactions, these factors predict social influence that, in some cases, matches
human social influence and in others is unique to interactions with robots. Using these two primary factors, the
model provides a basis for predicting a wide range of social effects in human-robot interactions.

As a first step toward validating the theory, we demonstrated how the model’s prediction corresponds with
the results of five previously published user studies that display a variety of manipulations in both violation of
expectations and belonging. We also suggest possible interpretations for unpredicted findings in some of those
studies that cannot be explained by assuming that people’s responses to robots are similar to their responses to

ACM Trans. Hum.-Robot Interact.



RoSI: A Model for Predicting Robot Social Influence « 17

people (i.e., the Media Equation). While these analyses of previous studies do not directly validate the model due
to their post-hoc nature, they provide initial support for the relation between the independent factors and social
influence. We encourage future work to further validate this model by manipulating both violation of expectations
and belonging in empirical studies, and mapping the resulting social influence to the model’s prediction depicted
in Fig. 1.

One limitation of this model that we want to highlight is its lack of a valence prediction for the robot’s social
influence on a person. While the model estimates the magnitude of the social influence, it does not predict the
influence type and whether it is positive or negative. To predict valence, a social influence model should involve
numerous factors that account for a variety of interaction contexts. Instead, we chose to design a simple model
that includes only two fundamental factors that predict the magnitude of a robot’s social influence on a person
in a wide range of interactions. The simplicity of the model also leads to a non-bijective prediction of social
influence. Since the model predicts increasing influence for both high and low belonging, extremely opposite
human-robot interactions may result in a similar prediction by the model. It is possible that future elaborations
of the model and the addition of independent factors may resolve this concern and lead to bijective predictions.
Another limitation concerns the single perspective assumed by our model. As suggested by Clark and Fisher
(2023), people can take different perspectives when interacting with a robot. These range from the robot’s physical
aspects to perceiving the robot as a character with various attributes and features. Taking different perspectives
can highly impact the expectations of the robot and the sense of belonging. To keep our model simple, one of our
assumptions is that people will take a single perspective while interacting with the robot and will not switch
between perspectives which may change their expectations and sense of belonging. Future work should further
elaborate the model to address this possibility.

Our model focuses on what we consider to be the two most important and critical factors, at times valuing
simplicity over complete accounting of all possible factors. There are certainly other independent factors that
result in social influence [23, 55]. For example, the model may predict different social influences for diverse
populations and group identification. Different cultures may mediate participants’ sense of belonging and diverse
experience with robots may mediate the impact of violating expectations. Other examples include group size,
group cohesion, the social environment, the number of robots in the interaction, the task, and the importance of
the interaction to the participant. Mediating factors may also change the pattern of influence within each factor.
For example, under specific circumstances, negativity bias may lead to a greater social influence of low belonging
(e.g., exclusion) compared to high belonging (e.g., inclusion). Specific circumstances can also lead to different
relations between our two main factors, shaping the interaction between them and its impact on the robot’s
social influence. While this may be the case for any theory aiming to predict a meaningful effect, we suggest that
an interesting avenue of future work is extending RoSI to consider these other factors while keeping the model
interpretable.

Despite the limitations mentioned above, we believe that this model of Robot Social Influence (RoSI) provides
a strong alternative to the oversimplified perception assuming that social interactions with robots are similar to
social interactions between humans. The model identifies two fundamental factors that predict a robot’s unique
influence on humans in social interactions: violation of expectations and belonging. By mapping human-robot
interactions with these two factors, our model demonstrates how they can account for the magnitude of social
influence in various social contexts of human-robot interactions.
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