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Abstrad- Robots designed to learn from and interact with 
humans require an intuitive method far humans to 
communleate with them. Normal human speech is very 
difficult to p r ~ e s s ,  requiring many kinds of complex analysis 
for robots to intcrprct it. An intcrmediate mcthod for 
communication is recognition of prosody, the aliective 
content of speech. Using prosody rrcognition, P human 
interacting with B robot em reward or punish its actions by 
scalding or praising it. In this project, prosody mognilion of 
male voices is performed by feahlre-based analysis of sound 
files containing short utterances, which were recorded from 
subjects who were directed to emulate infant-directed speech, 
which generally contains exaggerated prosody 111. The 
features used are extracted from the energy and pitch 
contours in the preprocessing stage. The classifier 
discriminates amongst four affectiw classes of speech and 
neutral utterance$. The four classes are prohihitinn, 
sttentional bids, approval, and soothing, while the neutral 
utterances are speech which carries none of the above 
allective intents. Discrimination is performed using a multi- 
stage k-nearest neighbor classifier. The five-way single-stage 
classifier operates at 62.5 accuracy on the entire male speech 
data set, while the female single-stage classifier classifin 66.1 
percent correctly. Chi-square andyrir resulted in a p  of less 
than or equal to F.OO1 for each. The data seem to indicate 
that while female voice data mag he somewhat easier to 
classify than male, fundamental dilierences that make male 
utlermces unsuitable for classification do not exist. 

Keywords: prosody: speech-recognition: humon-computer 
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1. INTRODUCTION 
Studies have shown [4] that infants respond to the 

prosodic content of speech before they are capable of 
processing its linguistic content. Giving a robot the 
capacity for prosody recognition allows human caregivers 
to communicate inmilively with it. Functional prosody 
recognition for female robot-directed speech has been 
achieved by the Kismet group at MIT [I]. The motivation 
of our project was the desire to extend the work done on 
Kismet and to create a prosody recognizer that would 
function on all robot-directed speech, regardless of the 
speaker, and implement that recognizer on Nico, a robot 
meant to emulate the behavior of a nine month old child, 
currently in development at the Yale Social Robotics 
laboratory. This paper details the development of a male 
prosody recognizer and its comparison with a female 

prosody recognizer on data collected in our experimental 
environment. 

Since humans can generally recognize the affective 
intent of other humans without linguistic information, it 
should be possible to train a computer to recognize 
affective intent as well. Femald has done work identifying 
pitch contours that are characteristic of approval, 
prohibition, attention, and comforting speech 141, and the 
Kismet pmsndy work gives details on methods for 
attempting such classification. Given this, creating a 
working speaker-independent prosody classifier designed 
to operate on the kind of exaggerated prosody that adults 
generally direct towards infants should be feasible, and is 
desirable for the putpse of allowing humans to train a 
robot interactively. This is especially true in the context of 
sncial robotics, where the recognizers do not act in a 
vacuum. In an interactive system, while the recognizer is 
trained on speech data, speakers are alsn trained by the 
robot based on how it reacts to their speech. 

Slaney has also done work on infant-directed prosody 
produced by male and female adult speakers [6]. The chief 
difference in this shldy is that the prosodic unerances were 
explicitly partitioned into male and female data sets. Other 
studies have incotprated prosodic information as well, 
some for its use in general speech analysis, some for direct 
analysis [7]. 

Prosodic information can play an important parr in most 
areas of speech processing and synthesis. Studying 
prosody in infantdirected speech, where it is most 
exaggerated, can provide an opportunity to leam 
fundamental truths about it that can aid in dealing with it in 
its subtler forms in dialogue amongst adults. Analysis of 
these early stages of interaction may also lead to interesting 
revelations about chiid development and the differences or 
similarities behveen male and female interactions with 
children. 

11. METHODS 

A.  Data Galbering and Procrrsing 
Subjects were placed in front of a workstation and 

instructed to provide samples of the five prosodic t y ~ e s  
(see Table I). In early data gathering subjects were 
supplied with situation or action cues to which they were 
asked to respond, along the lines of “Your child is crying” 
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Figure I. The subclassifier hierarchy of Ule multistage clasiifisr 

Approval, Attention A p p ro v a 1 
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or “The dog just peed on the carpet.’’ Subjects displayed 
difficulty coming up with statements or showing prosody 
in these scenarios. In later trials subjects were provided 
with a hanscript of utterances from previous recordings 
from which they could choose if they desired, and the 
situation cues Were removed. Each subject was asked to 
provide approximately twenty utterances from each of the 
four classes and neutral speech. 

All data collection was performed in the same 
environment that the Nico robot is intended to operate in. 
The lab environment is a 20 by 20 foot room with high 
ceilings. Noise is limited to air conditioning and a server 
rack across the m m  from the recording setup. 

Data was collected using the Matlab wavrecord 
function, a lapel microphone with preamplifier, and a 
Soundblaster Live! sound card on a PC running Windows 
2000. The audio signals were recorded at 48800 Hz and 
stored as dual-channel WAVE files. The raw data was 
converted into pitch, energy and first-formant contom 
using Edinburgh Speech Tools [Z] and Speech Filing 
System [3] library functions, and then preprocessing and 
feature extraction were performed in Matlab using those 
contours. 

The preprocessing was chiefly performed to remove 
some noise and repair pitch halving and doubling errors by 
making assumptions about the normal pitch ranges and 
fining curves to adjacent sets of points. The Edinburgh 

TABLEII. S4MPLEUI”CES 

Pmsodie class I unersnee 
I “Crabs taste bad.” I “There’s a shelfon the wall.” I I 

Approval 
“Goodjob!” 

Prohibition 
“Stop it!” 

I 
“Hey, over here? 

“Look at this!” 
Attention 

”Aw, feel better.” 

“It’ll be okay ...” 
Soothing 

Speech Tools library Perf0r”f voicedness determination, 
which along with the energy contour was used to break 
uttemnces up into segments, often corresponding to 
syllables. Several of the features used in the classifier 
operate on the individual segments, especially those based 
on matching certain shapes in the pitch contour such as the 
bellshaped contour feature (F13) from [I]. 

B. F ~ o N ~ c ?  Selection and Classr$corion 
The k-nearest neighbor classification method w’as 

chosen due to comparable or superior performance to other 
learning methods tested and faster mal speed, which 
facilitated testing. Other classification methods tested 
include Gaussian Mixture Models, simple neural networks 
with varying number of hidden nodes, self-organizing 
maps, and principle components analysis. In an attempt to 
gain some scalability, the number of neighbors used in the 
classifier was scaled by the total number of samples. Data 
were normalized by mean and variance before neighbor 
distance calculations were performed. Following Cynthia 
Breazeal’s work [I], both single-stage and multistage 
classifien were attempted. 7he class breakdown used was 
nearly identical to that of the Kismet multistage classifier 
(Fig. I). 

The Weka machine-learning package [5]  was used to 
select the features for the k-nearest neighbor classifiers. 
All sets of feahxes were selected by using Weka’s genetic 
search function on cross-validated mining sets over IO 

TABLE 1. F U n m L S F O R C U S S m E R  
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folds. Features were chosen for inclusion in the final 
classifier based on how often they appeared in the final 
evolved classifier in Weka combined with their 
performance when added sequentially to the classifier. In 
order of Weka selection, each feature was tested for 
whether its addition improved the classifier and then 
included or not based on its performance. 

This project used most of the features present in 
Breazeal's earlier work [I]  along with some new features 
(Table 11). Features FI through F18 are from Breazeal's 
work. Feature 19 is the average across segments of the 
slope of the best-fit line. Features F20 and F21, pitch- 
energy mean and pitch-energy variance, refer to the 
pointwise product of the pitch and energy contours. 
Feature F22, pitch peak ratio, is the ratio of the peak in the 
last pitch segment to the highest peak in any previous pitch 
segmenc and was included in an attempt to differentiate 
approval h m  anention. Feature F23, pitch m o r  ratio, 
relates to how well pitch segments are fit by second or thud 

degree polynomials and is only mentioned for 
completeness. Features F24 and F25, pitch-energy ratio 
mean and pitchenergy ratio variance, refer to the pointwise 
ratio of the pitch and energy contours. Feature F26, pitch 
delta by pitch mean, i s  a normalization of the abwlute 
value of the delta pitch mean (F7) by the pitch mean (Fl). 
Feahlre F27, mm pitch slope, is the largest best-fit slope of 
any pitch segment, normalized by pitch mean. Feature 
F28, max energy range, is the range of energy maximums 
amongst pitch segments. Feature F29, the sigmoid fit 
segment, i s  an attempt to fit a pitch shape contour that 
seems characteristic of prohibition in male voices. 
Features F30 and F31, the first formant mean and first 
formant variance, are simple statistics on the first formant 
contour, while F32, first formant pitch ratio, is the mean of 
the ratio of the first formant to the fundamental frequency. 

Features F20, F21, F24, and F25 in particular were 
added to explore any relevant time correlation that might 
exist between pitch and energy while still treating them in a 

approval. alienlion. 
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general statistical manner rather than explicitly lwking for 
predefined contours or relationships. Unlike m e  of the 
other features added, which were targeted at particular 
observed features of the pitch and energy contours, these 
features were added with only the thought that they 
explored possibilities missing in the current feature set. 
Along with F26, even if the time correlation were 
irrelevant they provided a set of operations on the existing 
features that could not be easily duplicated by a learning 
algorithm (i.e., if the ratio of FI to F8 were significant on 
its own). The formant features were added when it seemed 
as if pitch and energy contours on their own might not 
provide sufficient complexity to fully capture prosodic 
variations. 

111. RESULTS 

The single-stage classifier achieved a mean 
performance of 62.5 percent with a standard deviation of 
3.8 percent when tested on a set of 700 samples from six 
different male speaken, and the multistage classifier 
achieved 64.4 percent accuracy with a standard deviation 
of 3.6 percent. The single-stage classifier for female 
speakers achieved an average performance of 66.7 percent 
with a standard deviation of 5.6 percent over 1000 trials 
when tested on a set of 302 samples from three different 
female speaken, and the multistage classifier 75.1 percent 
accuracy with a 5.1 percent standard deviation. Chi-square 
analysis rehlrned a p  value of less than or equal to 0.001 for 
each of the single-stage classifiers, When run on a set of 
samples corresponding to only three male speakers (300 
samples), the male single-stage classifier functioned at up 
lo approximately 70 percent accuracy, depending on which 
speakers were used, while accuracy rates for the male 
multistage classifier tested on the Same set of speaken fell 
within one standard deviation. 

Fig. I contains details of the features used in each of 
the subclassifiers and the individual classifier performance 
results. All results are over 1000 mals except for the 
multistage classifier results, which are over 100 trials. 
Table 111 shows the performance of the single-stage male 
classifier, single-stage female classifier, and single-stage 

High-energy versus low-energy 

male classifier on a subset of 300 elements. Figures 2, 3 
and 4 show the feature spaces used in the male and female 
multistage classifier to discriminate low from high energy 
utterances. 

IV. ANALYSIS 
The superior performance of the female prosody 

classifier seems to be largely an artifact of this approach 
not scaling well, given the results for three male speakers. 
In fact, classification approached 83 percent accuracy for a 
single male speaker. However, it is interesting that the 
move to a multistage classifier is effective for female 
voices and not strikingly so for male. The drastic 
classification improvement in the female data set between 
the single-stage and multistage classifiers, far more 
exaggerated than in the male data, suggests that female 
voice data may be more susceptible to being broken into 
categories in this fashion. The difference between the two 
seems to lie chiefly in the relative ease of separating low- 
and highaergy samples in the female classifier. 

The classification problems in male and female data do 
not seem to be tremendously dissimilar. Approval versus 
anention, which was the most difficult case in the Kismet 
work [I], has the lowest accwacy in the male multistage 
classifier. Female approval versus attention has the highest 
accuracy of the female multistage classifier, which may be 
an artifact of the small size of the female data set or may be 
more significant. 

It is interesting that F24, the average of pitch to energy 
ratio, is as prevalent as pitch mean and more 50 than energy 
mean. The degree to which F24 was a useful feature is not 
entirely obvious from the data as presented here. It is not 
entirely clear whether this feature was more useful than the 
pitch and energy means on their own more because it 
encoded temporal information or because the divis ion 
operation provided novel information that could not easily 
be extracted From the two parent fcahlres by a learning 
algorithm. This could be tested be comparing Ule 
performance of F24 to a feature which was simply the ratio 
of F1 U) F8, but even lacking that test the prevalence of FI 
and F8 over F20, the average of the product of pitch and 

subclassifier space, female data set 

Figure 3. Female daw set, high vmus IOW energy 
& P S ~ E .  features FI and F24 

Figure 4. Female data ret, high \,ersus low energy 
clairer, featurer F8 and F24 
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Figure 5. Example of an approval contour in a male voice sample 
matching Femald‘r prototypical EOII~OUI. The dotted line is  pitch as 
measured on the venical axis. The rotid line is the energy contour 

ralsd 10 show up on the graph. 

energy, which also encodes temporal information, suggests 
that the division operation may be more imponant. If the 
temporal information were more important, it would be 
interesting to apply some of the techniques used in speech 
recognition and synthesis to break the samples into phones, 
perform perhaps ToBl (Tones and Breaks Indices) [SI 
labeling on those phones, and produce features based on 
the resulting time sequence. The Festival Speech Synthesis 
System [9 ] ,  which is built around the Edinburgh Speech 
Tools library, provides routines that can perform this kind 
of intonation labeling. This research direction is related to 
the BabyEars work [6], which attempted to exploit 
knowledge about position within the speech sample 

The female prosody classifier clearly performs more 
poorly than that in the Kismet study [I]. It is not clear 
whether this is due to warse data acquisition, differences in 
feature extraction, the comparatively smaller data set, or a 
combination of the three. It became evident during data 
collection that subjects, especially male speakers, had 
difficulty exhibiting prosody when interacting only with a 
computer screen, or even a doll. 

One somewhat surprising hindrance in classifying male 
prosody was the difficulty in discriminating between 
soothing and prohibitory affects, which accounts for at 
least some of the difference in accuracy between male and 
female high versus low energy class discrimination. 
Prohibition and soothing both tend to fall into lower pitch 
brackets and to have similarly narrow pitch ranges [4, IO], 
but are expected lo differ in their energy statistics. 

The example of the subject (one of the 
experimenters) whose voice admits a high correct 
classification rate indicates that subjects can train 
themselves to be more understandable to robots. This is 
only desirable to the degree that the communication feels 
reasonably natural for the human. This type of adaptation 
can be likened to the effort made when speaking to a non- 
fluent speaker ofane’s native language, or to someone with 
a hearing deficiency, or, of course, to an infant. To that 
degree, effort in speech is precedented, and an acceptable 
burden to place on the human interactor. 

V. DISCUSSION 
The key result from this experiment is the observation 

that there is no critical difference between male and female 
voice data that makes male prosodic utterances innately 
much less suitable for classification than those from female 
subjects. Thus it should be profitable to continue working 
towards a general classifier that can effectively deal with 
samples from both genders. 

In the next phase of this study, the system has been 
implemented on the QNX real-time operating system. 
Audio data is collected continuously from the microphone, 
and the system begins ‘’paying anentiod’ when it detects 
segments containing potential speech. Once a sample has 
k e n  recorded, pitch and energy contours are again 
extracted using the Edinburgh Speech Tools functions and 
the results are passed to a C++ implementation of the 
preprocessor, feature extractor, and recognizer. The 
prnxess takes ,553 seconds from the end of recording on 
average when the database contains 424 samples. 
According to Breazeal [I], humans can tolerate interaction 
delays of up to half a second, so this needs some 
improvement. This classifier has not yet been rigorously 
tested but works well on a single speaker, though multi- 
speaker tests using the first speaker’s data for training have 
so far been disappointing. 

Most papers on prosodic classification in this area [ I  ,6] 
label speech samples by having adult observers listen to 
and rate them for type and strength. If the goal were to 
emulate an infant’s recognition of prosody directed towards 
it, it would make sense to classify prosody based explicitly 
on an infant’s reaction to it, if practical. This would allow 
for bener sample fidelity and eliminate the possibility of 
contamination by higher levels of processing and 
understanding on the part of the adult observers. A 
potential experimental setup would be lo record video of 
parent-infant interactions and then label samples based on a 
combination of the infant’s reaction and the observer’s 
perception ofthe p r o d y .  

Another potential avenue for future research is that of 
learning a more general model of prosody, rather than just 
classification, based on ToBl [SI labeling of individual 
phones’. Such a model could then be used for both 
recognition and synthesis of prosody. 
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