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Collaborative teams of people are most successful when they have positive social dynam-

ics, where team members trust one another [Jones and George, 1998], feel included [Shore

et al., 2011], and feel comfortable to openly discuss mistakes and errors [Edmondson, 1999].

Some of these social dynamics have even been shown to be more correlated with team

performance than measures of individual intelligence [Woolley et al., 2010]. As robots in-

creasingly join collaborative teams of people in a variety of settings (e.g., manufacturing

plants, surgical suites, corporate workplaces, homes), it is essential that we build robots

that can perceive and positively influence these social dynamics for the benefit of the team.

The work in this dissertation explores how social robots can enhance important social

team dynamics in collaborative human-robot teams. It specifically investigates how robot

behavior can positively shape trust, inclusion, and psychological safety, social dynamics

that have been shown to have a significant positive influence on team performance. Our

work demonstrates that a robot’s behavior can influence not just how people interact with

the robot, but how people in the group interact with each other. Finally, we investigate a

way in which robots may be able to sense social dynamics in real time, by perceiving human

backchanneling behavior, and how social robots can shape this human social behavior in

human-robot teams.

We investigate several robot behaviors (e.g., expressions of vulnerability, verbally sup-

portive utterances) that have never previously been explored in the context of multi-person

human-robot teams and demonstrate their ability to influence the team’s trust, inclusion,

and psychological safety. We first explore the benefits of a robot asking pairs of children

task-focused and relationship-focused questions to improve overall collaborative skill in a

collaborative task, finding contrasting effects on task performance and perceptions of task



performance. Next, we examine how to make the most effective trust repair in the context

of a one-on-one human-robot interaction and highlight the benefits of a robot apologizing

for mistakes. Then we extend this idea to a group context and investigate how a robot’s

expressions of vulnerability (including apologizing for and admitting to mistakes) might

influence trust-related behavior in groups, showing that robot vulnerability increases trust-

related behavior expression by people within the group towards one another as well as

their conversational dynamics. Following this, we explore two strategies to improve human

team member inclusion in a human-robot team and highlight the negative effects of giv-

ing someone in the group a specialized role to interact with the robot and the benefits of

robot verbal support. Finally, we further analyze the role of robot verbal support within

a human-robot team, demonstrating that robot verbal support may reduce the amount of

verbal backchannel support human team members give one another.

We also suggest a method for perceiving group dynamics in real time through the recog-

nition of human verbal backchannels from audio signals. Based on the data collected in

one of our human-subjects experiments, we found significant positive correlations between

verbal backchanneling behavior and participant ratings of psychological safety and inclu-

sion. Thus, we believe that sensing human verbal backchannels can be a useful input for

quickly perceiving social dynamics, enabling robots and other artificial agents to adapt their

behavior based on real-time changes in social team dynamics.

Taking into account all of our findings, we propose a set of guidelines for social robot

behavior use in collaborative human-robot teams. In these guidelines, we recommend social

robot behavior for particular situations and contexts, including tense interactions, robot

errors and mistakes, teams where one or more members may have a specialized role, and

interactions where someone feels excluded. The combination of these guidelines, the results

from our experimental studies, and the connections we made between backchannels and

team social dynamics make a significant contribution to building robots that can positively

shape the social dynamics and performance of human-robot teams.
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determine the influence of the experimental condition, where the neutral

and silent conditions are pooled together, on whether or not a human team

member consoled the person who made a mistake (excluding consoling the

robot). Each participant is grouped with their two fellow human participants

in the model where each group has a random intercept. In addition to our

experimental conditions, we also controlled for the participants’ age as well

as the mistake round number (1-8). We used the R ‘glmer’ function with

a binomial family and logit link from the ‘lme4’ package to perform this

analysis. The linear coefficient (odds ratio) and standard error are reported

in the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

D.28 In our first analysis whether or not a human team members laughed together

in Chapter 5 Section 5.4, we used a multilevel mixed-effects logistic regression

model to determine the influence of the experimental condition (vulnerable

or neutral condition) on whether or not a human team member laughed along

with another human team member. Each participant is grouped with their

two fellow human participants in the model where each group has a random

intercept. In addition to our experimental conditions, we also controlled for

the participants’ age and average familiarity with the other participants. We

used the R ‘glmer’ function with a binomial family and logit link from the

‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)

and standard error are reported in the following table. . . . . . . . . . . . . 263
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D.29 In order to analyze whether or not a human team members laughed to-

gether in Chapter 5 Section 5.4, we used a multilevel mixed-effects logistic

regression model to determine the influence of the experimental condition

(reference group: vulnerable condition) on whether or not a human team

member laughed along with another human team member. Each participant

is grouped with their two fellow human participants in the model where each

group has a random intercept. In addition to our experimental conditions,

we also controlled for the participants’ age and average familiarity with the

other participants, these controls were scaled to ensure model convergence.

We used the R ‘glmer’ function with a binomial family and logit link from the

‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)

and standard error are reported in the following table. . . . . . . . . . . . . 264

D.30 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable

robot versus neutral and silent robot utterances on total individual speaking

time. We used a multilevel linear model of speaking time (s) as a function of

experimental condition (reference group: vulnerable robot) and controls for

age, gender, extraversion and familiarity. Unobserved individual heterogene-

ity was modeled using random effects clustered in groups. We used the R

‘lme’ function from the ‘nlme’ package to perform this analysis. The linear

coefficient (odds ratio) and standard error are reported in the following table. 265

D.31 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable

robot versus neutral and silent robot utterances on total individual speaking

time. We used a multilevel linear model of speaking time (s) as a function

of experimental condition (reference group: vulnerable robot) including an

interaction of the treatment effect with round and controls for age, gender,

extraversion and familiarity. Unobserved individual heterogeneity were mod-

eled using random effects clustered in participants in groups. We used the R

‘lme’ function from the ‘nlme’ package to perform this analysis. The linear

coefficient (odds ratio) and standard error are reported in the following table. 266
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D.32 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot

versus neutral and silent robot utterances on the duration of human team

member responses. We used a multilevel linear model of speaking time (s)

as a function of experimental condition (reference group: vulnerable robot)

including an interaction of the treatment effect with round and controls for

age, gender, extraversion and familiarity. Unobserved individual heterogene-

ity were modeled using random effects clustered in participants in groups.

We used the R ‘lme’ function from the ‘nlme’ package to perform this analy-

sis. The linear coefficient (odds ratio) and standard error are reported in the

following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

D.33 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable

robot versus neutral and silent robot utterances on participants equality in

talking time (ETTi). We used a multilevel beta regression as a function of

experimental condition (reference group: vulnerable robot) and controls for

age, gender, extraversion and familiarity. Unobserved individual heterogene-

ity were modeled using random effects clustered in groups. We used the R

‘glmmTMB’ function with a beta family and logit link from the ‘glmmTMB’

package to perform this analysis. The linear coefficient (odds ratio) and

standard error are reported in the following table. Because a beta regression

cannot analyze 0’s or 1’s (a few participants had values of 1), we transformed

the data using the following equation, where N is the sample size (150) and

y is the outcome variable [Smithson and Verkuilen, 2006]: y′ = y∗(N−1)+0.5
N . 268
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D.34 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable

robot versus neutral and silent robot utterances on participants equality in

talking partners (ETPi). We used a multilevel beta regression as a function of

experimental condition (reference group: vulnerable robot) and controls for

age, gender, extraversion and familiarity. Unobserved individual heterogene-

ity were modeled using random effects clustered in groups. We used the R

‘glmmTMB’ function with a beta family and logit link from the ‘glmmTMB’

package to perform this analysis. The linear coefficient (odds ratio) and

standard error are reported in the following table. Because a beta regression

cannot analyze 0’s or 1’s (a few participants had values of 1), we transformed

the data using the following equation, where N is the sample size (144) and

y is the outcome variable [Smithson and Verkuilen, 2006]: y′ = y∗(N−1)+0.5
N . 269

D.35 This table presents the results from the linear mixed-effects model run in

Chapter 5 Section 5.4 examining the influence of the experimental condition

(reference group: vulnerable condition) on the participant’s rating of their

team’s psychological safety, according to Edmondson’s Team Psychological

Safety scale [Edmondson, 1999]. Each participant is grouped with their two

fellow human participants in the model where each group has a random inter-

cept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this

analysis. The linear coefficient (odds ratio) and standard error are reported

in the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

D.36 In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot

versus neutral and silent robot utterances on different self-reported group dy-

namics. We used a multilevel logistic model as a function of experimental

condition (reference group: vulnerable robot) and controls for age, gender,

extraversion and familiarity. Unobserved individual heterogeneity were mod-

eled using random effects clustered in groups. We used the R ‘glmer’ function

with a binomial family and logit link from the ‘lme4’ package to perform this

analysis. The linear coefficient (odds ratio) and standard error are reported

in the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
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D.37 This table lists the demographic and descriptive characteristics of the partic-

ipants in the human-subjects study detailed in Chapter 6 both overall and

for each experimental condition. . . . . . . . . . . . . . . . . . . . . . . . . 272

D.38 This table lists the demographic and descriptive characteristics of the partic-

ipants in the human-subjects study detailed in Chapter 6 for each important

subdivision of participants (ingroup/outgroup, robot liaison). . . . . . . . . 273

D.39 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the correlation of the participant designa-

tions of robot liaison and participant designations of ingroup-outgroup with

the average familiarity with their two human team members. Each partici-

pant is grouped with their two fellow human participants in the model where

each group has a random intercept. We used the R ‘lmer’ function from the

‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)

and standard error are reported in the following table. . . . . . . . . . . . . 274

D.40 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the correlation of the participant designa-

tions of robot liaison and participant designations of ingroup-outgroup with

their emotional intelligence. Each participant is grouped with their two fellow

human participants in the model where each group has a random intercept.

We used the R ‘lmer’ function from the ‘lme4’ package to perform this anal-

ysis. The linear coefficient (odds ratio) and standard error are reported in

the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

D.41 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the correlation of the participant designa-

tions of robot liaison and participant designations of ingroup-outgroup with

their extraversion. Each participant is grouped with their two fellow human

participants in the model where each group has a random intercept. We used

the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The

linear coefficient (odds ratio) and standard error are reported in the following

table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
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D.42 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with a control for

emotional intelligence, on the similarity of their survivial item rankings from

round 1 with their survial item rankings from round 2 (smaller values indi-

cate higher similarity of the lists). Each participant is grouped with their

two fellow human participants in the model where each group has a random

intercept. We used the R ‘lmer’ function from the ‘lme4’ package to per-

form this analysis. The linear coefficient (odds ratio) and standard error are

reported in the following table. . . . . . . . . . . . . . . . . . . . . . . . . . 277

D.43 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with a control for

participant age and emotional intelligence, on their partner preference score.

Each participant is grouped with their two fellow human participants in the

model where each group has a random intercept. We used the R ‘lmer’ func-

tion from the ‘lme4’ package to perform this analysis. The linear coefficient

(odds ratio) and standard error are reported in the following table. . . . . . 278

D.44 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with a control for

participant age and the maximum familiarity a participant has between their

two other human team mates, on their perceived inclusion scale score. Each

participant is grouped with their two fellow human participants in the model

where each group has a random intercept. We used the R ‘lmer’ function

from the ‘lme4’ package to perform this analysis. The linear coefficient (odds

ratio) and standard error are reported in the following table. . . . . . . . . 279
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D.45 This table presents the results from the 1-way ANOVA analysis comparing

the the proportion of survival items initially ranked low (9-25) on the round

1 ingroup list and high (1-8) on the round 1 outgroup list items (Lin, Hout)

that made it onto the final list of 8 items produced by the entire team at the

end of round two of the experiment. We examined this proportion between

participants with an ingroup robot liaison verses an outgroup robot liaison

outsider, as presented in Chapter 6 Section 6.4. In addition to our main

variable of interest, we include in our model the average familiarity of group

members with one another and the number of females on the team. This

analysis was performed using the ‘aov’ function in R. The F-value, degrees

of freedom, and effect size (eta squared) are reported in parentheses for each

fixed factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

D.46 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with a control for par-

ticipant extraversion, on the proportion of time they spent talking 1 minute

after robot support targeted to participant(RST-P), robot support targeted

to someone else (RST-SE), and a robot undirected utterance (RUU). Each

participant is grouped with their two fellow human participants in the model

where each group has a random intercept. We used the R ‘lmer’ function

from the ‘lme4’ package to perform this analysis. The linear coefficient (odds

ratio) and standard error are reported in the following table. . . . . . . . . 281
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D.47 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with a control for par-

ticipant extraversion, on the proportion of time they spent talking 1 minute

after robot support targeted to participant(RST-P) compared with two con-

trols (via subtraction): robot support targeted to someone else (RST-SE),

and a robot undirected utterance (RUU). Each participant is grouped with

their two fellow human participants in the model where each group has a

random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to

perform this analysis. The linear coefficient (odds ratio) and standard error

are reported in the following table. . . . . . . . . . . . . . . . . . . . . . . . 282

D.48 This table presents the results from the linear mixed-effects model run in

Chapter 6 Section 6.4 examining the influence of the participants’ intergroup

bias (ingroup/outgroup) and robot liaison designation, with various controls

either participants’ emotional intelligence or the maximum familiarity a par-

ticipant had with their two fellow participants, on the participants’ ratings

of the robot’s warmth, competence, and discomfort according to the RoSAS

scale [Carpinella et al., 2017]. Each participant is grouped with their two

fellow human participants in the model where each group has a random in-

tercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform

this analysis. The linear coefficient (odds ratio) and standard error are re-

ported in the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . 283

D.49 This table lists the demographic and descriptive characteristics of all the

participants in the human-subjects study detailed in Chapter 7. . . . . . . . 284

D.50 This table lists the demographic and descriptive characteristics of the par-

ticipants in the human-subjects study detailed in Chapter 7 in our 2 robot

verbal support (yes or not) x 2 intergroup bias robot liaison (ingroup robot

liaison vs. outgroup robot liaison) between subjects design. . . . . . . . . . 285
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D.51 This table lists the demographic and descriptive characteristics of the partic-

ipants in the human-subjects study detailed in Chapter 7 for each important

subdivision of participants (ingroup/outgroup, robot liaison). . . . . . . . . 286

D.52 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of the the backchannels a

participant received (sec), with controls for participant gender and emotional

intelligence, on their psychological safety score [Edmondson, 1999]. Each

participant is grouped with their two fellow human participants in the model

where each group has a random intercept. We used the R ‘lmer’ function

from the ‘lme4’ package to perform this analysis. The linear coefficient (odds

ratio) and standard error are reported in the following table. . . . . . . . . 287

D.53 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of participants total time

talking in round 2 of the experiment (sec), with controls for ingroup-outgroup

bias, robot liaison designation, gender, and emotional intelligence, on their

psychological safety score [Edmondson, 1999]. Each participant is grouped

with their two fellow human participants in the model where each group has

a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package

to perform this analysis. The linear coefficient (odds ratio) and standard

error are reported in the following table. . . . . . . . . . . . . . . . . . . . . 288

D.54 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of the verbal backchannels

a participant received (sec) normalized by the total time that participant

spent talking (sec), with controls for ingroup-outgroup bias, robot liaison

designation, gender, and emotional intelligence, on their psychological safety

score [Edmondson, 1999]. Each participant is grouped with their two fellow

human participants in the model where each group has a random intercept.

We used the R ‘lmer’ function from the ‘lme4’ package to perform this anal-

ysis. The linear coefficient (odds ratio) and standard error are reported in

the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
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D.55 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of the total time a par-

ticipant received verbal backchannels (sec), with controls for robot liaison

designation and emotional intelligence, on their perceived group inclusion

score [Jansen et al., 2014]. Each participant is grouped with their two fellow

human participants in the model where each group has a random intercept.

We used the R ‘lmer’ function from the ‘lme4’ package to perform this anal-

ysis. The linear coefficient (odds ratio) and standard error are reported in

the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

D.56 This table presents the results from the linear mixed-effects models run in

Chapter 7 Section 7.4 examining the correlation of the total time a par-

ticipant received nonverbal backchannels (sec) on their psychological safety

score [Edmondson, 1999] and their perceived group inclusion score [Jansen

et al., 2014]. Controls used in these models include intergroup bias, robot

liaison designation, gender, emotional intelligence, and familiarity with other

team member. Each participant is grouped with their two fellow human par-

ticipants in the model where each group has a random intercept. We used

the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The

linear coefficient (odds ratio) and standard error are reported in the following

table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

D.57 This table presents the results from the linear mixed-effects models run in

Chapter 7 Section 7.4 examining the correlation of the total time a partic-

ipant spent nonverbally backchanneling others (sec) on their psychological

safety score [Edmondson, 1999] and perceived inclusion score [Jansen et al.,

2014]. Controls used for these models include intergroup bias, robot liaison

designation, gender, emotional intelligence, and familiarity with other partic-

ipants. Each participant is grouped with their two fellow human participants

in the model where each group has a random intercept. We used the R

‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear

coefficient (odds ratio) and standard error are reported in the following table. 292
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D.58 This table presents the results from the linear mixed-effects models run in

Chapter 7 Section 7.4 examining the correlation of the total time a partici-

pant spent verbally backchanneling others (sec) on their psychological safety

score [Edmondson, 1999] and perceived inclusion score [Jansen et al., 2014].

Controls used for these models include intergroup bias, robot liaison desig-

nation, gender, and emotional intelligence. Each participant is grouped with

their two fellow human participants in the model where each group has a

random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to

perform this analysis. The linear coefficient (odds ratio) and standard error

are reported in the following table. . . . . . . . . . . . . . . . . . . . . . . . 293

D.59 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of the nonverbal and verbal

backchannels, separately, a participant received (sec) normalized by the total

time that participant spent talking (sec), with controls for ingroup-outgroup

bias, robot liaison designation, gender, emotional intelligence, and the maxi-

mum familiarity they have between their two human team members, on their

perceived inclusion score [Jansen et al., 2014]. Each participant is grouped

with their two fellow human participants in the model where each group has

a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package

to perform this analysis. The linear coefficient (odds ratio) and standard

error are reported in the following table. . . . . . . . . . . . . . . . . . . . . 294
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D.60 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the correlation of participants total time

talking in round 2 of the experiment (sec), with controls for ingroup-outgroup

bias, robot liaison designation, emotional intelligence, and the maximum

familiarity a participant had between their two fellow human participants,

on their perceived inclusion [Jansen et al., 2014]. Each participant is grouped

with their two fellow human participants in the model where each group has

a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package

to perform this analysis. The linear coefficient (odds ratio) and standard

error are reported in the following table. . . . . . . . . . . . . . . . . . . . . 295

D.61 This table presents the results from the ANOVA analysis examining the in-

fluence of the time participants in a group spent verbally backchanneling one

another (sec) on both groups’ average perceived inclusion and average psy-

chological safety scores in Chapter 7 Section 7.4. This analysis was performed

using the ‘aov’ function in R. The F-value, degrees of freedom, and effect size

(partial eta squared) are reported in parentheses for each fixed factor. . . . 296

D.62 This table presents the results from the ANOVA analysis examining the in-

fluence of the time participants in a group spent talking (sec) on both groups’

average perceived inclusion and average psychological safety scores in Chap-

ter 7 Section 7.4. This analysis was performed using the ‘aov’ function in

R. The F-value, degrees of freedom, and effect size (partial eta squared) are

reported in parentheses for each fixed factor. . . . . . . . . . . . . . . . . . 297

D.63 This table presents the results from the ANOVA analysis examining the

influence of the proportion of time participants in a group spent verbally

backchanneling one another (sec), relative to the group’s total talking time,

on both groups’ average perceived inclusion and average psychological safety

scores in Chapter 7 Section 7.4. This analysis was performed using the ‘aov’

function in R. The F-value, degrees of freedom, and effect size (partial eta

squared) are reported in parentheses for each fixed factor. . . . . . . . . . 298
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D.64 This table presents the results from the ANOVA analysis examining the in-

fluence of the time participants in a group spent nonverbally backchanneling

one another (sec) on both groups’ average perceived inclusion and average

psychological safety scores in Chapter 7 Section 7.4. This analysis was per-

formed using the ‘aov’ function in R. The F-value, degrees of freedom, and

effect size (partial eta squared) are reported in parentheses for each fixed

factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

D.65 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the influence of intergroup bias (ingroup

or outgroup), controlling for the familiarity with other human participants,

on the amount of verbal and nonverbal backchannels (sec) each participant

received. Each participant is grouped with their two fellow human partici-

pants in the model where each group has a random intercept. We used the R

‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear

coefficient (odds ratio) and standard error are reported in the following table. 300

D.66 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the influence of intergroup bias (ingroup or

outgroup), controlling for the familiarity with other human participants, on

the proportion of verbal and nonverbal backchannels (sec) each participant

received relative to their total talking time (sec). Each participant is grouped

with their two fellow human participants in the model where each group has

a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package

to perform this analysis. The linear coefficient (odds ratio) and standard

error are reported in the following table. . . . . . . . . . . . . . . . . . . . . 301
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D.67 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the influence of gender on the amount of

verbal backchannels each participant received (sec) and the proportion of

verbal and backchannels (sec) each participant received relative to their total

talking time (sec). We controlled for the total talking time (sec), extraver-

sion, and intergroup bias of participants. Each participant is grouped with

their two fellow human participants in the model where each group has a

random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to

perform this analysis. The linear coefficient (odds ratio) and standard error

are reported in the following table. . . . . . . . . . . . . . . . . . . . . . . . 302

D.68 This table presents the results from the ANOVA analysis examining the influ-

ence of gender on the amount of verbal backchannels produced by each group

(sec) as well as the proportion of verbal backchannels produced by each group

(sec) with respect to their total talking time in Chapter 7 Section 7.4. This

analysis was performed using the ‘aov’ function in R. The F-value, degrees

of freedom, and effect size (partial eta squared) are reported in parentheses

for each fixed factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

D.69 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the influence of having a verbally supportive

robot on the amount of verbal backchannels (sec) each participant received.

The model’s fixed factors included whether the robot gave verbal support, the

intergroup bias (ingroup, outgroup), robot liaison designation, and relevant

interactions. We controlled for participants’ extraversion and familiarity with

other team members. Each participant is grouped with their two fellow

human participants in the model where each group has a random intercept.

We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis

and the ‘emmeans’ function with a Tukey adjustment from the ‘emmeans’

package to perform post-hoc tests. The linear coefficient (odds ratio) and

standard error are reported in the following table. . . . . . . . . . . . . . . 304
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D.70 This table presents the results from the linear mixed-effects model run in

Chapter 7 Section 7.4 examining the influence of having a verbally support-

ive robot on participants’ psychological safety and perceived inclusion scores.

The model’s fixed factors included whether the robot gave verbal support,

the intergroup bias (ingroup, outgroup), robot liaison designation, and rele-

vant interactions. We controlled for participants’ extraversion and familiarity

with other team members. Each participant is grouped with their two fellow

human participants in the model where each group has a random intercept.

We used the R ‘lmer’ function from the ‘lme4’ package to perform this anal-

ysis. The linear coefficient (odds ratio) and standard error are reported in

the following table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
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Chapter 1

Introduction

The field of human-robot interaction (HRI) has made significant advances in understanding

how to build robots that can seamlessly interact with people. Importantly, work in HRI

has focused on the ways in which robots can uniquely leverage their physical embodiment

to communicate intuitively with people using social cues and interaction methods that are

familiar to people. Furthermore, socially assistive robotics (SAR) [Feil-Seifer and Mataric,

2005] has explored how robots can provide value and assistance to people through a robot’s

social actions, as opposed to the more traditional approach of robots providing help to peo-

ple exclusively through physical tasks. Social robots have shown promise in their assistance

to people in a variety of applications: providing tutoring help to children [Ramachandran

et al., 2016], guiding people to locations in a shopping mall [Shiomi et al., 2010], and

enhancing social engagement in elder care facilities [Šabanović et al., 2013].

The significant advances in understanding social interactions between humans and robots

in HRI have predominately been evaluated and supported through experimental studies con-

ducted in the laboratory examining how one human interacts with one robot. Although

these one-on-one studies allow researchers to isolate and investigate particular components

of human-robot interactions, they do not enable researchers to study human-robot inter-

actions as they will likely occur in the real world. In natural settings where robots are

and will be deployed, robots often interact with groups of people and are often members of

human-robot collaborative teams.

Interactions with groups and teams, as opposed to individuals, are influenced by complex
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social dynamics. Most social dynamics are emergent properties, which cannot be explained

simply through examining all of the dyadic interactions between people on the team. Social

group dynamics have also been shown to have significant influence on both team member

satisfaction and team performance [Cho and Mor Barak, 2008,Edmondson, 1999,Jones and

George, 1998, Mayer et al., 1995, Sabharwal, 2014, Shore et al., 2011, Woolley et al., 2010].

Surprisingly, social dynamics have even been shown to be more predictive of group success

than individual intelligence metrics. Woolley et al. (2010) found evidence for a “collective

intelligence factor” that predicted a group’s success on a variety of tasks. This collective

intelligence factor was not found to be correlated with the individual intelligence of its

groups members, however, was found to be correlated with the social sensitivity of group

members, the equality in talking turns, and the number of females on the team [Woolley

et al., 2010]. If it is true that social group dynamics, like social sensitivity, are so critical for

team success, then it is essential that robots interacting with groups positively contribute

to its social dynamics.

This dissertation focuses on building robots that positively shape social dynamics in

collaborative human-robot teams, comprised of one robot and several people. In order to

build robots that can best support team success, we investigate novel methods for a robot

to shape three critical collaborative team social dynamics - trust, inclusion, and psycholog-

ical safety - validated through human-subjects studies. We build upon prior work in HRI

that has demonstrated the influence of a robot’s social actions in one-on-one human-robot

interactions, to show the unique effects of a robot’s behavior on members of collaborative

teams. After investigating the influence of specific robot actions on important team so-

cial dynamics, we seek to perceive and model the high-level team dynamics of inclusion

and psychological safety from a low-level human behavior - verbal backchannels. We sta-

tistically demonstrate the correlation between verbal backchannels and these team social

dynamics and, through a human-subjects study, investigate the influence of a robot’s ver-

bal backchannels on human verbal backchannels. This dissertation leverages concepts and

approaches from computer science, organizational psychology, and sociology to build robots

that enhance team dynamics and performance within human-robot teams.

This dissertation begins with a comprehensive review of research investigating human-
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robot interaction involving robots interacting with groups of people as well as research

identifying the social dynamics that lead to team success in human teams (Chapter 2).

This background chapter presents key findings from organizational psychology and related

fields that point to the importance of collaborative team social dynamics such as trust,

inclusion, and psychological safety on team member satisfaction and team performance.

These insights from human teams on the social factors that lead to team success inform the

robot behavior we investigate in order to positively shape team dynamics and performance.

Additionally, we examine related work investigating robots that interact with groups and

teams of people. It presents research that has demonstrated the important differences

between robot interactions with an individual person and robot interactions with groups

of people, the influence of a robot’s verbal and nonverbal behavior, the importance of

interaction context in determining the robots role in the group interaction, and the ability

of robots to additionally shape human-to-human interactions within the group. We conclude

this chapter by highlighting the limited body of work in HRI focused on the specific social

dynamics trust, inclusion, and psychological safety, framing the importance and impact of

the work described in this dissertation.

In the following chapters (Chapters 3 - 7), we describe human-subjects experiments that

broaden our knowledge of the social influence of robots in collaborative human-robot teams.

These experiments follow a similar approach of identifying a social team dynamic that has

been established to be critical to human team success, designing a robot behavior to enhance

that team social dynamics, and then evaluating the effectiveness of the robot’s actions to

positively shape that social team dynamic. Put together, these studies investigate how

several different robot behaviors can positively or negatively shape the critical collaborative

team dynamics of trust, inclusion, and psychological safety.

Our work investigating how robots can shape team dynamics begins in Chapter 3 by

investigating ways of broadly enhancing collaboration between two children in a shared task.

We decided to focus on children (ages 6 to 9) for this study because children around this

age are actively developing collaborative skills. While working on a collaborative task, a

robot either asks the children relationship-focused questions, task-focused questions, or no

questions at all. These questions influenced the children’s perceptions of their performance
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and their actual performance in the task. Although the rest of the work in this dissertation

is focused on adults (we found children’s attention spans to be very short and their behavior

more varied), this study highlights the main focus of this work: the actions of a robot shape

how people in the group interact with each other.

Chapter 4 examines trust, a critically important social dynamic for human-robot collab-

orative teams. Specifically, we focus on how a robot can best recover from a trust violation

- where a robot breaks a person’s trust. Since robot trust repair has not been thoroughly

studied in a dyadic context, we investigated the influence of a robot’s trust violation fram-

ing and trust repair strategy in a human-subjects study with one person and one robot.

Our findings suggest that the best way a robot can repair trust is by apologizing for having

made a mistake.

After exploring robot trust repair in a dyadic human-robot interaction, we sought to

explore how a robot’s vulnerable verbal expressions (e.g., apologizing for a mistake) influence

trust-related behavior when a robot interacts with a group of people. Chapter 5 describes

a human-subjects experiment where three people and a robot play a collaborative game,

where each person will make mistakes, causing the team to suffer as a result. Throughout

the game, the robot either makes vulnerable utterances, neutral utterances, or is silent. We

found that the robot’s vulnerable utterances in particular lead to more social interaction

with the robot, more trust-related behavior expressed to fellow human participants, and

more conversation between the human participants. These results further provide evidence

that in regards to critical team social dynamics, a robot’s actions can positive influence

human-to-human interactions within the group.

In Chapter 6, we turn our attention toward perceived inclusion, a contributing factor

to both team member commitment and team performance [Cho and Mor Barak, 2008,

Sabharwal, 2014, Shore et al., 2011]. We investigate two strategies that we believed to

improve the inclusion of human members within a human-robot team. We found that our

first strategy, giving a team member a specialized role to interact with the robot, had a

negative influence on human team member inclusion, however our second strategy, having

the robot give targeted supportive utterances to human team members, showed promise

in increasing the verbal contribution from ‘outsider’ team members. This work further
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reinforces the main theme of this dissertation, that robot actions in a group can influence

human team members interactions with one another, and also contributes evidence that

some robot behaviors designed to enhance team dynamics may have the opposite effect.

After establishing robots’ ability to shape team social dynamics and human-to-human

interaction in collaborative teams of humans and robots, we explore ways in which we can

enable robots to sense and react to social dynamics in real-time. Chapter 7 describes our

identification of a low-level human behavior that robots can sense (verbal backchannels) and

provides evidence that these verbal backchannels are positively correlated with our third

important social dynamic - psychological safety. Further, from data gathered in a human-

subjects experiment, we provide evidence that robot verbal backchannels can influence

human verbal backchanneling. This work both provides researchers with a way to sense

social group dynamics real-time as well as further evidence that robot behavior influences

how people interact with each other in human-robot group settings.

In Chapter 8 we discuss the work presented in this dissertation. We focus on the

significant contributions and broader implications of this work as well as its limitations and

future directions. We summarize the work presented in this dissertation in Chapter 9.

This dissertation makes the following novel contributions to the understanding of a

robot’s influence in human-robot collaborative teams: (1) evidence that a robot’s actions

can influence how people in a group interact with each other, (2) the identification of

behaviors that a robot can use in order to positively shape team dynamics essential to team

success, and (3) the connection between human backchanneling behavior and team social

dynamics, enabling a robot to sense social dynamics of a collaborative team in real-time

and select its actions accordingly.
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Chapter 2

A Review of Social Dynamics in

Collaborative Human Teams and

Human-Robot Teams∗

This chapter provides a comprehensive overview of the social dynamics that are critically

important for team success, with a particular focus on how robots have been shown to

influence these social dynamics. We first examine research that investigates collaborative

human teams, specifically examining three social dynamics proven to be essential to success-

ful collaboration (trust, inclusion, and psychological safety) and the influence each social

dynamic specifically has on the team. Next, we turn our attention to robots interacting

with groups and teams, focusing on (1) the unique differences between robot interactions

with groups as opposed to individuals, (2) and what the field of human-robot interaction

(HRI) has contributed to our knowledge of how robots can best be built to interact with

groups of people. Finally, we review the work in HRI that has examined robot influence on

the collaborative social dynamics of trust, inclusion, and psychological safety.

∗Portions of this chapter were originally published as: S. Strohkorb Sebo, B. Stoll, B. Scassellati and M.
Jung. Robots in Groups and Teams: A Literature Review. [currently under review]
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2.1 Human Collaborative Teams

Before examining the prior work exploring collaborative teams of humans and robots, we

first examine the literature on human teams to understand how members of successful

collaborative teams work together to achieve positive performance outcomes. We specifically

focus on three social dynamics (trust, inclusion, and psychological safety) that have been

proven to be essential for team success. We both describe these social dynamics in the

collaborative team context and demonstrate the positive influence of these social dynamics

on team success.

2.1.1 Human Teams

There exists a rich literature in organizational psychology examining many facets of collab-

orative teamwork. The teams studied in this literature are mostly corporate teams, where

it is normal for companies to form and re-form teams based on the changing needs of orga-

nizations where a team’s life span may be several weeks, months, or years. From this body

of work, we discuss three prominent threads of research: the influence of time on a team’s

process, the development and realization of group norms, and the sharing of knowledge

within teams.

Exploring the entire life cycle of a team is critical for understanding how a successful end

result is produced from the collection of distinct individuals. Team development, from the

point of formation to work completion, has been described by Tuckman (1965) as having four

stages: forming (orientation to the group), storming (conflict and polarization), norming

(overcoming conflict and increasing cohesion), and performing (group energy becomes task

focused) [Tuckman, 1965]. Conversely, Gersick (1988) does not believe that every team

goes through a linear development process, and rather describes a team’s development as

unfolding through a ‘punctuated equilibrium,’ undergoing a critical midpoint transition

where the team’s approach is significantly adjusted based on the initial progress of the

team [Gersick, 1988]. Ericksen and Dyer (2004) have found that high performing teams

mobilize more quickly than low performing teams, providing the team with more time to

complete the work they agree upon to do [Ericksen and Dyer, 2004]. Exploratory search,
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“the intentional pursuit of alternative approaches to team tasks,” has been shown to be

extremely beneficial to teams, but only in the first half of a team’s life span [Knight, 2015].

Lastly, groups that have formed under time pressure have been shown to produce lower

quality outcomes [Kelly and McGrath, 1985], however, other work has found that task

focus may benefit from time limits since time limits have shown an inverse relationship to

task focus [Karau and Kelly, 1992]. Although based on this work examining the temporal

considerations of teamwork we can conclude that how a team spends its time influences

their success, there may not be one clearly defined one-size-fits-all temporal process that

best suits all collaborative teams.

In addition how to differences in how teams act over time influence their success, social

influences such as group norms, social pressure, and social impact can greatly shape team

functioning and performance. When a team first forms, group norms, “the informal rules

that groups adopt to regulate and regularize group members’ behavior” [Feldman, 1984],

are established which govern the behavior of group members. The first meeting of a team

is critical in establishing these group norms, as well as any pivoting points where the team

adjusts its direction [Gersick, 1988]. Cialdini et al. (1990) define two types of norms -

injunctive norms, which are norms based on the approval or disapproval of other people,

and descriptive norms, which are norms based on the observation of the actions of other

people. These norms, combined with the conditions in which people focus their attention

toward or away from a norm, determine how an individual will act [Cialdini et al., 1990].

Similarly to norms, social pressure can be exerted by group members on individuals and

influence their behavior. Asch’s well known conformity studies have displayed inclination

of an individual to conform their behavior to match the behavior of others, even when the

majority is acting in a way that the individual knows is incorrect [Asch, 1956]. Latané

(1981) has further expanded on the idea of conformity and social pressure through their

examination of social impact, “the changes in physiological states and subjective feelings,

motives, emotions, cognitions, beliefs, values, and behavior that occur as a result of the real,

implied, or imagined presence of actions of other individuals.” They have demonstrated

that social impact’s effect can be multiplied by strength, power, and immediacy of the

other people causing the effect and that social impact can be diminished when other people
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stand with the target [Latané, 1981]. Additionally, Bettenhausen and Murnighan (1985)

have found that individuals use their past experiences to inform their choices in similar

future group situations and then revise their beliefs about which action to choose in order

to align themselves with the group as they continue to interact with their team members

[Bettenhausen and Murnighan, 1985]. Group norms, social influence, and social impact all

highly influence the behavior of individuals within groups and must be carefully established

to give the team its best chance at success.

Similarly to how group norms powerfully shape individual behavior, how teams learn

and share knowledge strongly determines team success. The success of large organizations

and teams is driven by the actions of each individual member and how that member inter-

acts and aligns himself or herself with their team mates [Orlikowski, 2002]. An individual

may influence how the group responds, given that the structures and patterns in place sup-

port the sharing of the individual’s knowledge and opinions with others [Stasser, 1999]. One

model used for conceptualizing how knowledge is managed and transferred between indi-

viduals within a group is transactive memory systems. Transactive memory can be defined

as “the shared division of cognitive labor with respect to the encoding, storage, retrieval,

and communication of information from different knowledge domains, which often develops

in groups and can lead to greater efficiency and effectiveness” [Brandon and Hollingshead,

2004]. Transactive memory occurs in groups when each member of the group is aware of

the specialized skills of the other group members, and knows when to delegate tasks to a

member with a specialty in that task. Transactive memory systems (TMSs) are considered

optimal when each member has an accurate, shared representation of the TMS and when

all team members are participating fully [Brandon and Hollingshead, 2004]. TMSs have

also demonstrated a positive influence on group learning and learning transfer - applying

knowledge learned from a previous task to a new task [Lewis et al., 2005]. Additionally,

a team’s ability to effectively gain and share knowledge (also called ‘team learning’) sig-

nificantly predicts the success of the team [Edmondson, 1999, Zellmer-Bruhn and Gibson,

2006]. Team learning within multinational organizations has been shown to be supported by

an emphasis on responsiveness and knowledge management, as opposed to an emphasis on

global integration [Zellmer-Bruhn and Gibson, 2006]. Team learning can also be influenced
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by the subgroups that exist within an organization, where team learning is optimized when

similarities exist within subgroups and diversity is present between subgroups [Gibson and

Vermeulen, 2003]. This allows for knowledge and ideas to surface within subgroups and

diverse ideas to be proposed across subgroups [Gibson and Vermeulen, 2003]. The ability

for a team to engage in effective team learning is critical to their success [Edmondson, 1999]

and within teams and organizations, it is important to consider how systems and norms

can be designed to best facilitate team learning.

Keeping in mind the importance of a team’s temporal lifespan, norms, and learning

behavior; we look now to key social dynamics that serve as the foundation for these critical

components to collaborative teaming. The social dynamics we focus on in the next three

sections are trust, inclusion, and psychological safety. We both describe these social dy-

namics in the collaborative team context and demonstrate the positive influence of these

social dynamics on team success.

2.1.2 Trust

Trust is a necessary ingredient for successful cooperation and teamwork [Jones and George,

1998,Mayer et al., 1995]. We define trust, applied to social group contexts, as the “willing-

ness of a party to be vulnerable to the actions of another party, based on the expectation

that the other will perform a particular action important to the truster, irrespective of the

ability to monitor or control the other party (p.712) [Mayer et al., 1995].” Thus, trust-

ing others when working together involves the willingness to take risks by making oneself

vulnerable to the responses of others.

Trust in groups and teams of can be conceptualized as a group-level phenomenon cen-

tered on the idea that successful teams are characterized by the belief that an individual

can take risks, express vulnerability, and be listened to without facing social condemnation

or judgment [Edmondson et al., 2004]. A lack of trust within a team has been found to

impair learning [Edmondson, 1999], to decrease people’s willingness to work as part of a

team [Kiffin-Petersen and Cordery, 2003], and in some cases even impair a team’s chances

at survival [Weick, 1993]. Conversely, an increase in trust within a team has been shown

to facilitate problem solving [Klimoski and Karol, 1976, Zand, 1972], functional conflict
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resolution [Simons and Peterson, 2000], and overall team performance [Edmondson, 1999].

An effective way to promote trust within a team is through expressions of vulnerabil-

ity. By this we mean “any message about the self that a person communicates to an-

other” [Wheeless, 1978] and which puts the person at interpersonal risk. Prior work in

HRI has established a relationship between expressions of vulnerability and trust towards

the vulnerable party [Wheeless, 1978]. This may seem surprising, since vulnerability may

evoke negative emotions. However, when considered from a social functional perspective in

collaborative settings [van Kleef, 2016], vulnerability has positive social consequences as it

orients people toward each other and facilitates social engagement [Van Kleef et al., 2010].

In addition to considering ways to enhance trust in teams, it is also essential to consider

how trust can be repaired when someone in the group violates trust. There are many

different repair strategies people use to repair trust including making an apology, denying

culpability, promising better behavior in the future, and making excuses [Kim et al., 2009].

To make an effective trust repair, the framing of the trust violation also must be considered.

Prior work has demonstrated that trust repair strategies have different effects when the trust

violation is due to either a lack of competence (e.g., an accountant failing to properly file

taxes because of inadequate knowledge about a relevant tax code) or a lack of integrity (e.g.,

an accountant failing to properly file taxes intentionally) [Kim et al., 2004]. Thus, after

a trust violation, it is important to consider both the trust repair strategy (e.g., apology,

denial) and trust violation framing (e.g., competence, integrity) when trying to repair trust

with other people.

2.1.3 Inclusion

Inclusion is increasingly being recognized as an essential component to productive and suc-

cessful groups and teams [Oswick and Noon, 2014]. Inclusive work teams are comprised of

members with diverse perspectives and skills, who are well-trained and given the oppor-

tunity to contribute equally in a group [Miller, 1998]. Work teams that have an inclusive

environment have been demonstrated to produce committed team members and better-

performing teams [Cho and Mor Barak, 2008,Sabharwal, 2014,Shore et al., 2011].

Inclusion within human groups has been specifically explored in human teams as it
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relates to the formation of subgroups, otherwise known as intergroup biases. Tajfel (1982)

describes group identification in terms of two necessary components: a cognitive awareness

of membership in that group and an evaluation of the value of that membership [Tajfel,

1982]. This awareness of intergroup membership results in an “us vs. them,” or ingroup vs.

outgroup, mentality, resulting in behaviors that further reinforce discriminatory ingroup and

outgroup relationships [Baron and Dunham, 2015]. Dunham et al. (2011) shows that “mere

membership” in randomly selected groups result in ingroup-favoring and outgroup-opposing

behaviors in people even as young as 5 years old [Dunham et al., 2011].

One important contributing factor to the formation of intergroup biases are faultlines.

Faultlines are defined as divisions of a group based on one or more attributes, with the

strength of the faultline increasing with the number of attributes that align in the same

way [Lau and Murnighan, 1998]. The strength or activation of a faultline is also determined

by the context of the issue or task relevant to the group. For example, a group dealing with

conflicts surrounding retirement and pensions is more likely to have a stronger faultline

along the attribute of age as opposed to a much less relevant attribute such as gender. As

faultlines become activated and strengthened in a group, members will become more biased

towards other ingroup members, implying that faultlines, once activated, tend to reinforce

themselves but in the absence of activation may also naturally weaken over time [Lau and

Murnighan, 1998].

2.1.4 Psychological Safety

Psychological safety is a term coined by Amy Edmondson and is defined as a “shared belief

held by members of a team that the team is safe for interpersonal risk taking” [Edmondson,

1999]. Edmondson (1999) demonstrated that psychological safety does positively influence

team performance, and that the relationship between the two is moderated by the team’s

learning behavior (e.g., asking for help, seeking feedback, and discussing errors). Psycholog-

ical safety has also been shown to positively correlate with leader inclusiveness [Nembhard

and Edmondson, 2006], team member engagement in quality improvement efforts [Nem-

bhard and Edmondson, 2006], high-quality relationships [Carmeli et al., 2009], a more

positive attitude about teamwork [Ulloa and Adams, 2004], and both exploratory and ex-
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ploitative learning [Kostopoulos and Bozionelos, 2011]. Psychological safety has demon-

strated a moderating effect between task conflict and team performance, where teams that

are psychologically safe can achieve greater team success through as a result of productive

task conflict [Kostopoulos and Bozionelos, 2011]. Additionally, a comprehensive survey at

Google, involving over 200 interviews and examining hundreds of attributes of more than

180 Google teams, concluded that psychological safety was the most influential factor in

Google team success [Rozovsky, 2015].

Despite the evidence that psychological safety is an essential factor in driving team suc-

cess, no research to our knowledge has demonstrated an effective intervention strategy to

strengthen a team’s psychological safety. If anything, the opposite has been true. For exam-

ple, a study conducted at a U.S. university of 55 student project teams (249 students total)

examined the influence of team-focused activities (aimed to promote psychological safety)

verses task-focused activities did not find any evidence that psychological safety differed

based on the type of activity administered [Hastings et al., 2018]. Edmondson speaks of

three ways to build psychological safety: 1) frame the work problem as a learning problem

not an execution problem, 2) acknowledge your own fallibility, and 3) model curiosity [Ed-

mondson, 2014]. These also currently serve as the source for Google’s guidelines for its

employees to build psychological safety [re:Work, 2020]. Although these three strategies

to build psychological safety have theoretical support in the literature [Edmondson, 1999],

no experimental study has yet to provide evidence for an intervention (e.g., team-building

activities) that has been proven to improve psychological safety in teams. It is likely that

a more involved and thorough intervention is needed to influence psychological safety in

collaborative teams.

2.2 Human-Robot Collaborative Teams

After considering the factors that drive success in human teams, we turn our attention to the

addition of robots within human groups and teams. We first present an in-depth review of

the literature of robots interacting with groups and teams of people. We discuss the unique

roles robots can play in groups, finding that small changes in their behavior and personality
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impacts group behavior and, by extension, influences ongoing interpersonal interactions.

We then specifically examine work related to robots supporting collaboration in human-

robot teams where we examine robot influence on trust, inclusion, and psychological safety

in particular.

2.2.1 Robots in Groups and Teams: A Literature Review

Research on HRI has begun to depart from a primarily interpersonal, one-to-one, level to

increasingly consider HRI at the group level (e.g., groups, teams, workplaces, organizations,

families, classrooms, etc. [Hinds et al., 2004]). While the field and its varying contributors

have built a strong understanding of basic social-psychological responses to robots in dyadic

contexts (i.e., one robot interaction with one human [Lee et al., 2006, Fussell et al., 2008,

Goodrich and Schultz, 2007, Hancock et al., 2011, Shah et al., 2011, Talamadupula et al.,

2010]) our overall understanding of what happens when robots interact with groups of

people is highly limited.

Transitioning from dyadic interactions to interactions with groups and teams (see Figure

2.1†) constitutes a fundamental change in complexity that current HRI theory does not

capture [Groom and Nass, 2007,Jung and Hinds, 2018], nor do existing approaches readily

scale to groups [Clabaugh and Matarić, 2019, Matsusaka et al., 2001, Matsuyama et al.,

2015]. We know from research examining groups of people that the addition of new group

members increases complexity by forcing members to consider new interpersonal dynamics,

organizational level factors, and group processes for successful interaction (e.g., conflict

management, establishment of group norms, and maintaining shared mental models) [Cohen

and Bailey, 1997,Levine and Moreland, 1998,You and Robert, 2018,You and Robert, 2017].

Robots joining groups of people also face these enumerated complexities [Jung, 2017], and

as additions to a group, they can dramatically impact its overall dynamic [Correia et al.,

2018b,Strohkorb Sebo et al., 2018].

This review on robots interacting with groups and teams of people seeks to answer

three primary research questions: How does a robot’s behavior shape group dynamics and

†For the images in Figure 2.1 representing work that is not our own, (a) - (c), we obtained permission from
their authors to include them in this dissertation.
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(a) (b)

(c) (d)

Figure 2.1: Descriptive examples of robots interacting with human groups: (a) a Furhat
robot completing a sorting task with two people in a museum [Skantze et al., 2015], (b) two
EMYS robots and two people playing a card game in a lab setting [Correia et al., 2018b],
(c) a Robovie robot guiding people in a shopping mall [Shiomi et al., 2010], and (d) our
own work exhibiting a Nao robot playing a collaborative game with three people in a lab
setting [Strohkorb Sebo et al., 2018].

people’s behavior within the group? What are appropriate roles for robots to adopt in a

variety of settings? And how does a robot’s behavior affect how people in the group behave

towards one another?

Differences between Robots Interacting with Groups and with Individuals

As researchers began exploring robot interactions with multiple people, it has become clear

that several aspects of the interaction change when a robot engages with multiple people

as opposed to a single person. Notably, groups of people 1) are more likely to interact with

robots, 2) exhibit intergroup bias in their interactions with robots, 3) pay less attention to

robots, and 4) distinctly externalize their mental states. In this section, we describe work

that has exposed these distinct aspects of human-robot group interactions and explore

possible explanations for these observed differences between how groups and individuals

interact with robots.

When given the choice of whether or not to interact with a robot in their environment,
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groups of people are more likely than individuals to engage with the robot. Groups, as op-

posed to individuals, were significantly more likely to interact with a robot receptionist, that

was positioned near an entrance to an academic building [Gockley et al., 2006,Michalowski

et al., 2006]. Additionally, unsuspecting university students were three times more likely

to allow a robot to both enter and exit their restricted access dormitory building if they

were in a group rather than if they were by themselves [Booth et al., 2017]. From these two

research studies, it seems that people feel more comfortable engaging socially with robots

from the safety of a group as opposed to being alone.

Groups of people have also exhibited more competitive and aggressive behavior toward

robots than individuals. A likely explanation for this behavior is the introduction of inter-

group bias in groups composed of multiple people and one or more robots, where humans

consider themselves as an ingroup and the robot(s) as an outgroup. Members of groups

with intergroup bias adopt an “us versus them” mentality, characterized by favoring in-

group members and opposing outgroup members [Baron and Dunham, 2015, Tajfel, 1982].

Intergroup bias applied to robots has demonstrated similar effects, where a robot ingroup

member is perceived as more anthropomorphic and is evaluated more positively than a robot

outgroup member [Häring et al., 2014, Kuchenbrandt et al., 2013]. Several HRI research

studies support the idea that humans within a human-robot group naturally adopt inter-

group bias where they treat robots as outgroup members. For example, in a research study

where pairs rather than individuals played a game against a robot, the pairs exhibited more

competitive and less cooperative behavior towards the robot [Chang et al., 2012]. Similarly,

groups of three humans exhibited more greed and competitive behaviors toward robots than

individuals [Fraune et al., 2019]. Outside the context of competitive games, children and

young adults have shown a tendency to exhibit bullying behaviors toward a robot in public

spaces [Bohus et al., 2014, Brscić et al., 2015, Salvini et al., 2010]. These research studies

strongly suggest that robot members of human-robot groups are often regarded as having

a distinct membership in the group, resulting in the antagonistic treatment of robots.

Another difference between robot interactions with individuals and groups of people is

the presence of human-to-human interactions. Groups of people, as opposed to individuals,

who interacted with a robot receptionist spent more time engaging with the robot, however
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spent less time interacting directly with the robot [Gockley et al., 2006,Michalowski et al.,

2006]. The decreased focus on the robot due to the presence of other humans in the group

has also been shown to have adverse effects on the learning outcomes of children. After

listening to two robots playing out interactive narratives, learning and recall scores for

children in groups of three were shown to be worse than individual children [Leite et al.,

2015a,Leite et al., 2017]. A likely explanation for this result is that the children directed less

attention to the robots when they were in groups of three because they were also attending

to one another, and thus did not retain as much of the information the robots were trying

to convey.

Additionally, the way that people express their internal states (e.g., emotions, attitudes)

seems markedly different when comparing a one-on-one human-robot interaction with a

human-robot group interaction involving multiple people. For example, the accuracy of

machine learning classifiers designed to recognize disengagement in children significantly

decreased in group contexts when the classifiers were trained on data with individuals [Leite

et al., 2015b]. However, classifiers trained on videos of children within groups of three

predicted engagement more accurately [Leite et al., 2015b]. These findings illustrate the

differences in how children express disengagement when interacting alone with robots as

opposed to interacting alongside two peers with the same robots, as well as the need for

robots to develop the capabilities to sense human internal states distinctly in one-on-one

and group contexts.

In sum, this literature provides compelling evidence that people interact differently with

robots when they are alone than when they are with other people. This review seeks to

highlight the research unique to robots interacting with groups of people: the nonverbal and

verbal behaviors a robot can use, real-world settings where human-robot group interaction

has been explored, and the influence of robot behavior on how people in the group interact

with one another.

Review Method and Corpus

We conducted a systematic review of the experiment designs, methodologies, and analytic

techniques that form the foundation of research studies investigating robots interacting
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with groups and teams. Our review takes stock of existing work and highlights areas of

opportunity for future research. We included studies that satisfied the following criteria:

1. The study must include at least one physically embodied robot.

2. At least two locally present people must interact with the robot(s) simultaneously.

3. The robot(s) must be autonomous or perceived to be autonomous interactant(s).

4. The study must explore group-level phenomena and provide a direct contribution to

our understanding of how robots interact with and influence groups of people.

These criteria were chosen to focus this review on studies that investigate how phys-

ically present autonomous robots shape interactions with multiple people simultaneously.

We exclude studies that focus on one person interacting with multiple robots [Fraune et al.,

2015, Fraune et al., 2017] because our focus in this review is on how robots can influence

groups of people and we do not assume that robots are constituent members of the groups

studied. We do not include studies pertaining to mobile robotic presence systems, or telep-

resence robots [Neustaedter et al., 2016,Neustaedter et al., 2018,Stoll et al., 2018,Takayama

and Go, 2012], because they are dependent upon a human in the loop and lack the auton-

omy necessary to be considered agentic robots. Similarly, this excludes numerous stud-

ies conducted using remote-controlled robotics such as rovers [Stubbs et al., 2007, Vertesi,

2012], rescue robots and drones [Murphy, 2004], and surgical robots [Beane and J. Or-

likowski, 2015,Cooper et al., 2013,Duysburgh et al., 2014,Pelikan et al., 2018], since these

robots fulfill more the role of robotic tool rather than autonomous agents. Excluded as

well are technical papers wherein the primary focus is on systems designed for multiple-

human interaction, however, do not demonstrate the influence of the robot’s actions on the

group. For example, this applies to papers focused on analyzing multi-person groups for

approach strategies [Althaus et al., 2004, Fan et al., 2016, Tasaki et al., 2004], localizing

and parsing relevant group member speech, and analyzing group cues for topic shift and

engagement [Matsusaka et al., 2001].

Using the inclusion criteria described above, we conducted an exhaustive search of pa-

pers within top-tier HRI outlets including the ACM/IEEE International Conference on
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Human-Robot Interaction (HRI), the IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN), the International Journal of Social Robotics, and

ACM Transactions on Human-Robotic Interaction (THRI). Additionally, we conducted a

Google Scholar search using the terms “robots in groups” and “robots in teams” as well

as for the publications of all authors who participated in the Robots in Groups Workshop

event hosted at the 2017 ACM Conference on Computer-Supported Cooperative Work and

Social Computing (CSCW). We conducted further Google Scholar searches of all authors

attached to our existing literature collection as well as relevant author citations within these

sources. We set a cut-off date of publication for inclusion in this review at April, 2019. The

search for publications to include in the review was conducted by the first and second au-

thors and was modeled after the literature search described in a recent review on robots

for education [Belpaeme et al., 2018]. The first and second authors agreed together upon

which papers satisfied the inclusion criteria.

In total, we collected a corpus of 103 peer-reviewed scholarly papers for our review,

which contain 101 distinct studies - human-subjects experiments with a defined experimental

design (the papers, their studies, and their characteristics can be found in the supplemental

materials as well as in Table A.1 in Appendix A). Some papers included in this review

contain multiple studies and some papers refer to the same study.

In order to quantify the differentiating characteristics of this body of work, we catego-

rized features related to the robot, the human-robot group as a whole, and the experiment

setup in each of the studies included in this review. To capture differences in robots’ ap-

pearance and behavior, for each study we annotated the type of robot(s) used, whether or

not the robot(s) have a head and eyes, the robot control methodology (Wizard-of-Oz or

autonomous), the role of the robot (leader, peer, or follower), and the main robot behav-

ior(s) examined (locomotion, gaze, gestures, content delivery, personality, and/or emotion).

In order to analyze characteristics of the group as a whole, for each study we denoted the

composition of the group (the number of people and the number of robots) as well as the

type of the group according to [Lickel et al., 2000] (loose association, task group, or inti-

macy group). To evaluate the variety of experimental setups, for each study we captured

the country where the study was conducted, the setting of the study, the study design
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Figure 2.2: We display the (a) composition of human-robot groups studied in the literature
as well as (b) the most commonly used robots in these studies and the (c) control methods
for these robots.

type (experimental or observation-based), the number of between subjects conditions, the

number of groups, the number of total participants, and the number of study sessions.

Of the studies in our corpus, a majority have examined groups consisting of a variable
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number of people and one robot (e.g., a robot approaching and interacting with groups

of varying sizes in a shopping mall), two people and one robot, and three people and one

robot, see Figure 2.2(a). Few studies have explored groups consisting of more than one

robot interacting with a group of people.

A variety of robots have been studied interacting with groups of people: highly anthro-

pomorphized or human-like robots (i.e. android robots, e.g., Android Repliee Q2), robots

with a body shape that resembles that of a human (i.e., humanoid robots, e.g., Robovie,

Nao), robots that resemble animals (e.g., PARO), simple robots that can exhibit social be-

havior (e.g., Keepon), robots that have a face and no body (e.g., EMYS), and robots that

do not have a social appearance (e.g., Turtlebot, Roomba). For a comprehensive review

of socially interactive robots and their defining characteristics, please refer to [Fong et al.,

2003]. Figure 2.2(b) displays the most commonly used robots in the studies included in this

review. It is important and interesting to note that the robots most commonly used in this

body of work have two features in common: a head and eyes. In fact, 83% of the studies

in this review study a robot that has a head and eyes. The inclusion of both a head and

eyes in the majority of robots used in studies with groups may speak to the importance of

a robot’s ability to direct attention in a group and leverage accessible and familiar social

cues, establishing it as a social agent in the context of a human-robot group. However, this

could also be influenced by the large percentage of commercially available robot platforms

that have a face and eyes, so the importance of these features should be considered keeping

this in mind. The majority of studies have used fully autonomous robots (67.8%) requiring

no human input to control, as shown in Figure 2.2(c). Some studies have used a Wizard of

Oz (WoZ) approach (32.2%) to simulate autonomy by involving a human to control aspects

of the robot’s behavior (e.g., speech recognition and generation).

We also found that a majority of studies have come from the United States, Japan,

and Europe, see Figure 2.3(a). Most of the studies had an experimental study design (82%

of the studies). For each between-subjects condition in these experimental studies, the

number of groups in each condition ranges from 1 to 373 with a median of 12 groups as

shown in Figure 2.3(b). A majority (79%) of the experimental studies in this review relied

on only one interaction session, Figure 2.3(c). Exceptions include a study in which a QRIO
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Figure 2.3: In the studies we review on robots interacting with human groups and teams,
we highlight the (a) countries where the studies were run, (b) the number of groups per
between-subjects condition in the experimental studies, and (c) the number of interaction
sessions in the experimental studies.

robot was integrated into a preschool classroom and interacted with preschoolers during 45

distinct sessions for on average 50 minutes per session over the course of 5 months [Tanaka

et al., 2007].

Robot Behavior in Groups

Just like people, robots can influence group interactions through their nonverbal and verbal

behaviors. A robot’s use of nonverbal behaviors (e.g., gaze, proxemics, gestures) can socially

cue group members to produce desired responses. Additionally, robots can express emotion

and personality verbally, which can shape the overall group dynamic.

A sizable portion of research on robots in groups focuses on ways in which a robot

can shape the interaction dynamics between people using nonverbal cues and interventions.

Collectively this work demonstrates a powerful influence that robots can exert on groups

using gaze, proxemics, and gestures.

Speaking specifically to robot gaze in groups, studies have found that groups of varying
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sizes can easily recognize a robot’s gaze [Imai et al., 2002] and interpret a robot’s prioritized

target from a robot’s gaze cues [Kirchner et al., 2011]. Robots can also use gaze in tandem

with other cues, such as smiles and speech pauses, to influence turn-taking between human

group members and signal upcoming conversational turns for the robot [Skantze et al.,

2015, Skantze, 2017]. Beyond the ability to influence turn-taking, robots have also been

shown to shape people’s conversational roles using gaze in a group [Mutlu et al., 2009].

Proxemics, or the way in which a robot is physically positioned in groups, has also been

shown to influence human-robot group interactions. People in crowded spaces prefer robots

that maintain a comfortable distance [Kidokoro et al., 2013]. People also prefer robots

that approach their group when the robot is in the line of sight of group members and

when the robot aims to occupy a spatial opening in the group [Ball et al., 2017]. A robot’s

body orientation also influences its interactions with groups of people. In a shopping mall,

bystander groups have been observed to be larger and more engaged when the robot walked

backwards, facing the group, rather than alongside them [Shiomi et al., 2010]. Additionally,

a robot that leverages its body position and gaze toward groups in a brainstorming task

was found to facilitate feelings of inclusion and belonging to the group [Vázquez et al.,

2017]. People also alter their own proxemic distance to robots based on their context and

the robot’s navigation strategy. For example, people move closer to a stationary robot

if the group contained both a child and an adult [Nabe et al., 2006], and people were

observed to navigate with lower accelerations (indicating possible increased comfort) around

robots navigating autonomously with state-of-the-art navigation algorithms as compared

with teleoperated robots [Mavrogiannis et al., 2019].

A robot’s physical gestures can enhance its interactions with groups of people. People

perceive a robot more positively if it considers the social appropriateness of its pointing

gestures (i.e., it is not always socially appropriate to point at people [Liu et al., 2013]).

Robots that produce gestures that are more organic and natural, allowing for interruptions

in the production of gestures and featuring parameterization of gestures, have been shown

to increase both the number of people who communicated with it and the length of the

interaction [Kondo et al., 2013]. Additionally, robots are more effective at conveying their

arm motion intent when they can balance the legibility and predictability of handover mo-
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tions when interacting with a group of people [Faria et al., 2017]. Non-anthropomorphic

robots that do not use verbal language and only communicate through gesture and move-

ment have been shown to influence people’s gaze towards the robot, perceptions of the

robot’s sociality [Hoffman et al., 2015], as well as the evenness of the group’s conversational

backchanneling turns [Tennent et al., 2019].

A robot’s speech can powerfully influence both its perceived personality and emotion,

which in turn shape the overall dynamic of the group and the behavior of its members.

Robot personality characteristics (e.g., collaborativeness, competitiveness, trustworthi-

ness, and warmth) are often communicated verbally, with profound effects on the group. In

a series of studies employing two robots playing a partnered card game with two people,

researchers examined how competitive versus relationship oriented personalities impacted

group impressions [Correia et al., 2018b,Oliveira et al., 2018,Correia et al., 2017b,Correia

et al., 2016, Correia et al., 2017a]. Competitive opponent robots and relationship-driven

partner robots received the most gaze attention [Oliveira et al., 2018], but overall, people

tended to prefer a relationship-driven robot as a group member [Correia et al., 2017b], at

least in the game context. People’s preferences for robot teammates also shifted over time,

such that people tend to prefer robot teammates with personalities (collaborative or com-

petitive) that reflect their own [Correia et al., 2018b,Correia et al., 2017b]. Time in general

seems to be a critical factor in many instances as trust in human-robot teams forms over

time [Correia et al., 2016, Correia et al., 2017a] and perceptions of and relationships with

robots tend to evolve over time as well [Ljungblad et al., 2012].

Robots can also express emotion verbally, shaping how people within a group behave

and perceive a group. Robots have been shown to influence groups of people by displaying

emotional cues [Correia et al., 2018b], recognizing human emotions and empathizing with

members [Leite et al., 2012,Pereira et al., 2011], and shaping the affective status, or mood,

of a group and its membership [Alemi et al., 2016, Hebesberger et al., 2016, Utami and

Bickmore, 2019, Wada et al., 2004]. However, it is not simply a matter of saying that

emotion displays make better robots, as the type of robot-enacted emotion display matters.

For example, robots that expressed group-based emotion expressions were perceived as more

likable and trustworthy than robots that expressed individual-based emotion expressions in
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human-robot groups playing a game of cards [Correia et al., 2018b]. This research as a

whole suggests great promise in using robots to facilitate positive group emotion, but there

remain many gaps for researchers to explore in understanding precisely when and in what

contexts the range of emotional expression may be influential or effective.

Interaction Context

In order to gain a broader understanding of the studies that have been conducted examining

robot interactions with groups of people, it is necessary to examine the context of these

interactions. We specifically focus on the study settings, the roles robots adopt within the

group, and the type of the group, highlighting how these contextual factors have driven this

area of research.

We first analyzed the settings in which group interactions occurred and the roles that

the robots performed within those settings. We distinguish between lab settings (environ-

ments controlled by and chosen by researchers) and field settings (natural settings where

participants would be found even when the experiment was not taking place). For field

studies, we further categorized each study according to a specific setting (e.g., museum,

shopping mall).

Additionally, we distinguished between three roles the robot took on during studies:

follower, peer, or leader. A robot in the role of a follower reacts to interaction initiatives

from people, follows instructions, or performs a service task to help people (e.g., a hospital

materials delivery robot). A robot in the role of a peer is positioned similarly to a human

in initiating and driving interactions (e.g., a robot collaborating as a partner on a shared

task). A robot in the role of a leader initiates and guides interactions or facilitates the

behavior of the people it interacts with (e.g., a robot tutor). Figure 2.4(a) visualizes the

number of studies conducted in both the lab and the field with each of the three robot

roles (follower, peer, and leader). None of the studies were conducted in multiple settings,

however some of the studies investigated multiple robot roles and the count for each of the

roles was incremented by the appropriate fraction (i.e., if a study investigated two robot

roles, those roles would have 0.5 added to each for the count).

It is important to observe the large percentage of studies that have been conducted in
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the field (58.0%), as shown in Figure 2.4(a). This stands in contrast to the human-robot

interaction literature in general where, for example, of the full papers containing human-

subjects studies accepted to the 2018 ACM/IEEE International Conference on Human-

Robot Interaction (HRI), only 16.7% of the studies were conducted in the field (66.7% were

conducted in the lab and 16.7% were conducted online, e.g., Amazon Mechanical Turk).

As a result of the high proportion of studies conducted in the field, this body of work

has a strong grounding in and applicability to real-world environments as well as a proved

robustness to the more chaotic and complex interactions that occur outside the lab.

Certain types of settings seem to suit particular robot roles better than others, see

Figure 2.4(b). In settings where the desired behavior of the robot is repetitive and con-

sistent, especially in conveying information, robots are often put in the role of a leader,

for example, explaining museum exhibits [Skantze et al., 2015,Skantze, 2017,Shiomi et al.,
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2007, Yamazaki et al., 2012], giving directions to people in a shopping mall [Shiomi et al.,

2010, Sabelli and Kanda, 2016], and tutoring children [Alemi et al., 2015, Chandra et al.,

2015, Fernández-Llamas et al., 2017, Kanda et al., 2012]. In settings where robots are de-

signed to provide companionship to people, robots are often given the role of a peer, such

as playing with children in day care centers [Tanaka et al., 2007] and learning alongside

children in educational settings [Hood et al., 2015, Matsuzoe et al., 2014]. In complex set-

tings where robot mistakes can be costly, robots are positioned in the role of a follower,

where their actions are either controlled or monitored and can be corrected by the people

around them, for example, delivering items within a hospital [Ljungblad et al., 2012,Mutlu

and Forlizzi, 2008], working alongside people in a manufacturing plant [Sauppé and Mutlu,

2015], and vacuuming people’s homes [Forlizzi and DiSalvo, 2006,Forlizzi, 2007,Sung et al.,

2010].

As shown in Figure 2.4(a), nearly half of the studies conducted in lab settings have

investigated robots in peer roles (47.6%), whereas in field settings the smallest percentage

of studies have investigated the robot in a peer role (25.9%). Robots in the field are usually

either programmed to convey the same information doing repetitive tasks in the role of a

leader or are designed to be under the direct supervision of people in the role of a follower.

The lack of peer robots studied in the field is likely due to the challenge of equipping a robot

in unconstrained settings with all the necessary skills and knowledge needed to effectively

interact with people as a peer. Many of these essential skills are not unique to robots

interacting with groups, such as natural language understanding, intent prediction, and

emotion expression detection. In addition to these skills, robots interacting with groups of

people as a peer and in more flexible and complex roles also must construct models of the

relationships between the people with whom they interact, choose which person or people

to address, and predict how their actions influence multiple different people. As these

underlying technological components that support robots interacting socially with groups

of people improve, robots will be able to take on more sophisticated, flexible, and complex

roles in the unstructured and unpredictable field settings.

Additionally, some settings have received more attention than others, as displayed in

Figure 2.4(b). For instance, about twice as many studies have been conducted with chil-
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dren in school settings than with adults in the workplace (e.g., hospital, manufacturing

plant, therapist office) and people in home environments combined. In particular, these

two environments, adult workplaces and homes, are the places where people spend a ma-

jority of their time and where robots have already had great influence and impact (e.g.,

vacuum cleaning robots, voice assistant devices, manufacturing plant robots, mobile de-

livery robots). As research continues exploring robots interacting with groups of people,

more studies examining robots in adult workplaces and home environments are necessary to

better understand the influence of robots on people in these environments and advance the

robotic technology necessary for robots to operate effectively in these important settings.

Another important contextual factor to consider when examining this work on robots

interacting with groups of people is the type of the group. We distinguished between

three group types using those experimentally derived by Lickel et al. (2000): intimacy

groups, task groups, and loose associations. Intimacy groups are characterized by close

personal relationships (e.g., romantic partners, friends, families). Task groups, or teams,

are generally oriented around a shared task or interest (e.g., an airline flight crew, a student

campus committee). Loose associations include both temporary assemblies of people (e.g.,

people in line at a bank, people waiting at a bus stop) and longer-term shared interests

or interactions (e.g., neighbors, people who enjoy classical music). Interactions within the

different group types have different characteristics (e.g., entitativity, permeability, duration,

size) and are governed by distinct social rules and norms [Clark and Mils, 1993,Lickel et al.,

2000]. Figure 2.5(a) displays the number of studies conducted in both the lab and the field,

and within each study setting, the number of studies that examine each of the three group

types. Figure 2.5(b) shows the number of studies that have explored each type of group

over time.

In Figure 2.5(a), we observe that the most studied type of group are loose associations,

especially those in field settings. These studies have analyzed the effectiveness of using

robots to improve the mood and quality of life of elderly people [Chang et al., 2013,Hebes-

berger et al., 2016, Šabanović et al., 2013, Wada et al., 2004, Wada et al., 2005], explored

the use of nonverbal behaviors in robot exhibit explanations to enhance the experience of

people attending a museum [Kondo et al., 2013,Shiomi et al., 2007], and examined methods
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to both effectively and safely navigate within a shopping mall [Brscić et al., 2015,Kidokoro

et al., 2013, Shiomi et al., 2010]. This work studying robots interacting with loosely asso-

ciated groups also dominated the early work (2002-2010) in this research area, see Figure

2.5(b).

Since 2010, studies examining robot interactions with task groups has risen dramati-

cally, as displayed in Figure 2.5(b). In field settings, studies involving task groups have

explored the utility of robots that deliver medical supplies in hospitals [Ljungblad et al.,

2012,Mutlu and Forlizzi, 2008], the incorporation of robots as social co-workers in manufac-

turing teams [Sauppé and Mutlu, 2015], and the effectiveness of robot teachers and tutors

that facilitate learning interactions with multiple students [Alemi et al., 2015,Chandra et al.,

2016, Fernández-Llamas et al., 2017, Kanda et al., 2012, Strohkorb et al., 2016]. Studies in

the lab involving task groups have explored how robots can shape key aspects of human-

robot teaming that are unique to the type of interactions that occur in task groups (e.g.,

conflict resolution [Jung et al., 2015], distribution of decision making authority [Gombolay
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et al., 2015], moderation of collaborative tasks [Short and Matarić, 2017], synchronization

one’s behavior with the group [Iqbal et al., 2016, Iqbal and Riek, 2017]). As robot capabil-

ities continue to improve and an increasing number of robots are developed to join teams

of people, it is likely that work focused on robot teammates in task groups will continue to

grow.

Robot Influence on Human-to-Human Interactions

Robots are not only able to shape how groups of people interact with it, there is also

increasing evidence that robots can influence the relationships and interactions that peo-

ple have with the other people in the group. Our work presented in this dissertation has

contributed significantly to this exploration of how robots can shape human-to-human in-

teractions in collaborative teams. In the broader HRI literature, robots have been shown

to shape human-to-human interactions in groups by increasing human social connection,

mediating conflict, and shaping positive team dynamics.

Across a variety of settings, there is evidence that robots can encourage and increase

social interactions among the people in a group with one another. Robots have demonstrated

a positive influence on the amount of verbal communication and interaction among older

adults within care facilities [Šabanović et al., 2013, Thompson et al., 2017]. Studies of

robots moderating inter-generational groups [Joshi and Šabanović, 2019,Short et al., 2017]

have shown promise in engaging multiple generations in meaningful interaction. Robots

that promote social skills development in children with ASD have shown to be effective

in increasing social engagement between these children and others in their group, whether

with their caregiver [Scassellati et al., 2018], another playmate [Kim et al., 2013], or with a

therapist [Zubrycki and Granosik, 2016].

In moments of conflict between human members of a human-robot team, a robot’s

actions can influence how conflict is resolved. For example, robots have demonstrated

success in directly mediating resource conflicts (e.g., fighting over the same toy) between

children [Shen et al., 2018]. Another study showed that a robot intervening in a team’s

conflict after a team member made a hostile remark increased the salience of conflict and

forced team members to actively engage with the conflict [Jung et al., 2015].
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Robots have also demonstrated the ability to shape human-robot team dynamics, pos-

itively influencing how people interact with each other. For example, our work, detailed

in Chapter 3, demonstrates that a robot can (1) improve performance in a collaborative

game between pairs of children by asking task-focused questions and (2) perceptions of

performance on the same task between pairs of children by asking relationship-oriented

questions [Strohkorb et al., 2016]. Another study that used a robot moderator during a

three-person collaborative game showed that group cohesion could be actively influenced by

the robot based on its behavior [Short and Matarić, 2017]. Tennent et al. (2019) introduced

a swiveling microphone robot (‘Micbot’) capable of facilitating more balanced participation

during a three-person team’s decision making discussion. Finally, our work, detailed in

Chapter 5, shows that a robot’s verbal expressions of vulnerability can have “ripple effects”

in a group by increasing how likely human members of the group are vulnerable with one

another [Strohkorb Sebo et al., 2018]. These studies illustrate the influence robots have to

shape group dynamics and the behavior of people in a group through direct intervention,

peripheral non-verbal movement, and indirect verbal expression.

Robots in Groups and Teams Review Summary

As robots interact with people in increasingly complex settings, with more diverse roles, and

over longer periods of time, these interactions will rarely resemble the dyadic interactions

historically studied in the field human-robot interaction. The body of work highlighted in

this review has taken some first steps in the direction of equipping robots with the abilities

to interact with groups of people, often in complex field settings, and studying the effects

of robot actions. As researchers in this field work to address the current technical and

methodological challenges involved with group interactions, we can work to develop and

study robots that richly interact with many groups over long periods of time in natural

environments.

2.2.2 Trust in HRI

Researchers in human-robot interaction have become increasingly interested in the factors

that influence people’s trust of robots in a variety of contexts, including household assistant
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robots [Salem et al., 2015], UAVs [Freedy et al., 2007], autonomous cars [Waytz et al.,

2014], and tour guides [Andrist et al., 2013]. Similar to trust between people, human-

robot trust and research can be divided into two categories: competence-related trust and

integrity-related trust.

A majority of research into human-robot trust has focused on competence or perfor-

mance based trust. Robot performance is considered to be the most influential factor in

human-robot trust [Hancock et al., 2011], likely due to the importance of the robot’s ability

to meet performance expectations [Kwon et al., 2016]. Children as young as 3-5 years of age

trust a robot less when that robot has made errors in the past [Geiskkovitch et al., 2019].

Recent work with adults has shown that initial performance failures in a human-robot in-

teraction are more detrimental to ratings of robot trustworthiness than failures later on in

the interaction [Desai et al., 2013,Robinette et al., 2017]. Researchers have also successfully

employed models of competence-based trust of robots used in robot decision making [Chen

et al., 2018] and evaluations of human-robot team effectiveness [Freedy et al., 2007].

Despite the large focus on performance-based trust, a growing body of work has also

demonstrated the importance of integrity based trust. Integrity related trust, or interper-

sonal trust, can be described as the level of expectation that another is predictable, depend-

able, and can be relied upon in the future in the context of a social relationship [Rempel

et al., 1985]. Many parallels exist between interpersonal trust between humans and inter-

personal trust between a human and a robot. DeSteno et al. (2012) demonstrated that

just as humans are perceived as less trustworthy when they exhibit nonverbal signals that

indicate distrust, a robot is also perceived as less trustworthy when it displays those same

nonverbal signals [DeSteno et al., 2012]. Additionally, several studies have shown that a

robot’s vulnerable disclosures increase people’s feelings of liking [Siino et al., 2008], com-

panionship [Martelaro et al., 2016], and trust toward the robot [Kaniarasu and Steinfeld,

2014,Martelaro et al., 2016].

Although there has been a great focus in HRI on the trust between a human and a

robot, no work to our knowledge has investigated how a robot’s actions can either influence

trust at the group level or trust-related actions between human team members. Our work

detailed in Chapter 4 contributes to the one-on-one human-robot trust literature by exam-
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ining novel methods of trust violation repair. Then, in Chapter 5, we describe our work

that demonstrates the ability of a robot to shape trust-related behavior and conversational

dynamics using vulnerable expressions. - the first work to show that a robot’s actions can

shape how people in a human-robot group interact with one another.

2.2.3 Inclusion & Psychological Safety in HRI

No work to our knowledge has investigated a robot’s influence on either the inclusion of

human team members or the team’s psychological safety. In order to capture the most

relevant work in HRI to inclusion and psychological safety, we review work in HRI focused

on affect.

Robots have both used affect expression to influence human-robot interactions and in-

tervened in other ways to improve human affect. A robot that expressed empathy toward

one player in a game was rated as having characteristics descriptive of a friend [Leite et al.,

2012,Pereira et al., 2011]. In a game with two human players and two robot players, the hu-

man partners directed their gaze more often to a relationship-driven robot when they were

partners with it and to a competitive robot when they were opponents with it [Oliveira

et al., 2018]. In a similar setup with two human and two robot players, people displayed

higher levels of affinity, group identification, and group trust toward a robot that expressed

group-based emotions than toward a robot that expressed individual-based emotions [Cor-

reia et al., 2018b]. Robot interventions in a variety of settings have also led to positive results

of affect: a robot therapist demonstrated improvements in couples’ intimacy and positive

affect [Utami and Bickmore, 2019]; a robot used as a therapy assistive tool for pediatric on-

cology patients was shown to relieve stress, depression, and anger in children [Alemi et al.,

2016]; and a robot programmed to guide the elderly in a walking group positively influenced

the group’s coherence and motivation [Hebesberger et al., 2016].

This growing body of work in HRI examining a robot’s capability to shape group affect

gives us a positive indication that it is likely that a robot can also shape group mem-

bers’ inclusion and psychological safety. In Chapters 6 and 7, we present the first work

demonstrating that a social robot can shape team members’ inclusion and psychological

safety. Additionally, in Chapter 7 we establish a clear link between the low-level behavior
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of backchanneling with these two important social dynamics of inclusion and psychological

safety.

2.3 Summary

In this chapter, we reviewed the driving factors for success in human and human-robot

teaming. We broadly examined the literature examining human collaborative teams as well

as robots that interact with groups and teams. We also explored three social dynamics

(trust, inclusion, and psychological safety) that have been proven to be essential for team

success in human groups, and any work within the field of human-robot interaction related

to those three dynamics. In the following chapters, we explore how these collaborative

social dynamics in human-robot teams can be positively shaped through intelligent robot

behavior.
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Chapter 3

Robots that Shape Collaboration

between Pairs of Children∗†

Although prior work has demonstrated that social robots can shape how people in the

group interact with the robot [Shiomi et al., 2010] and their general perceptions of the

group [Vázquez et al., 2017], no work has yet shown how a social robot can influence how

people in a group interact with each other. In this chapter, we present a first investigation

into whether a social robot can influence how two children collaborate together on a shared

task. We focus on children ages 6 to 9 because around this age children become capable of

collaborating and are learning how to collaborate with their peers [Warneken et al., 2014]

and might benefit the most from robot interventions to promote collaborative behavior.

We conducted a between-subjects study where pairs of children play a collaborative game

with a social robot. During pauses in the game, the robot either (1) asks the children

questions to better focus the participants on the task they are working on, (2) asks the

children questions that are targeted at developing and reinforcing the relationship between

the participants, or (3) doesn’t ask any questions. Our results show that participants who

∗Portions of this chapter were originally published as: S. Strohkorb, E. Fukuto, N. Warren, C. Taylor, B.
Berry, and B. Scassellati. Improving Human-Human Collaboration Between Children With a Social Robot.
In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication,
RO-MAN ’16, pages 26-31, New York, NY, USA, 2016. ACM. [Strohkorb et al., 2016]
†This work was published in 2016, when Sarah was publishing under the name Sarah Strohkorb. For the
remainder of her work that is included in this dissertation, Sarah published under the name Sarah Strohkorb
Sebo, where Strohkorb Sebo is considered her last name.
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were asked task-focused questions had higher performance scores in the collaborative game

than those who were asked no questions. However, despite their good performance, those

who were asked task-focused questions had a lower perception of their performance than the

participants who were asked relationally-focused questions. We did not find any differences

between the groups in interpersonal cohesiveness. Our findings suggest that social robots

can be used to improve performance and perception of performance in groups of children.

3.1 Introduction

The ability to collaborate with other people is an essential skill that children begin to de-

velop early in life [Eckerman and Peterman, 2001]. Collaborative problem solving requires

a person to reason not only about their own actions, but also the actions and intentions of

others [Tomasello et al., 2005]. In an experimental study, Warneken et al. (2014) demon-

strated that between the age of 3 and 5, children develop the capacity to plan the division

of labor in a collaborative task.

Prior work in psychology suggests two distinct approaches of enhancing collaboration

between people: improving task cohesiveness and improving interpersonal cohesiveness.

Craig and Kelly (1999) describe task cohesiveness as “a group’s shared commitment, or

attraction to the group task or goal” and interpersonal cohesiveness as “the group members’

attraction to or liking of the group.” In an experiment, they instructed groups of three

adults to create a technical drawing after a manipulation of the group cohesiveness. Groups

given a high task cohesiveness manipulation created drawings of higher technical quality,

whereas groups with a high interpersonal cohesiveness manipulation had drawings of higher

creativity [Craig and Kelly, 1999]. These two strategies of influencing collaboration between

humans each achieve a productive result; however, the results themselves and the methods

of reaching them are noticeably distinct and should be employed differently depending on

the desired outcome.

In this study, we seek to promote the growth and use of collaborative skills in children

by building a robot that promotes collaboration through both strategies outlined above:

improving focus on the task and enhancing interpersonal cohesiveness. We decided to focus
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Figure 3.1: Pairs of children age 6-9 collaborated with one another to play a rocket build-
ing game with a social robot that asked them relationship-focused questions, task-focused
questions, or no questions.

on children between the ages of 6 and 9 years old because a child’s ability to plan and

collaborate emerges between the ages of 3 and 5 [Warneken et al., 2014]. Thus, children be-

tween the ages of 6 and 9 can be assumed to have the capacity for collaborative activity and

would also likely benefit from interventions to improve collaborative interactions. During

the experiment, two children and a robot play an interactive tablet game, shown in Figure

3.1, during which the robot will use one of the given strategies to promote collaboration.

3.2 Methods

In this experiment, we explore the benefits of two strategies of promoting collaboration

between children: 1) encouraging task-focused strategy discussion and 2) developing and

reinforcing the relationship between the children. We measure the success of these strategies

by an objective performance measure in a collaborative game as well as the participants’

perception of their performance and interpersonal cohesiveness. With these strategies and

metrics in mind, we form the following hypotheses:
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Hypothesis 1: Individuals who are asked task-focused questions by a social robot will have

better performance outcome measures than individuals who are asked relationship-

reinforcing questions or no questions by a social robot.

Hypothesis 2: Individuals who are asked relationship-reinforcing questions by a social robot

will perceive their team performance as better than individuals who are asked task-

focused questions or no questions by a social robot.

Hypothesis 3: Individuals who are asked relationship-reinforcing questions by a social robot

will perceive their interpersonal cohesiveness as better than individuals who are asked

task-focused questions or no questions by a social robot.

To examine these hypotheses, we had two participants play a collaborative game with

a robot, who acted as a peer. We chose the peer role for the robot because robot peer

characters have been shown to elicit more attention from children and improved performance

than more authoritative tutoring robot characters [Zaga et al., 2015]. The experiment has

the following three conditions:

1. Task: The robot asks questions during pauses in a team-oriented game that aim to

better focus the participants on the task they are working on.

2. Relational: The robot asks questions during pauses in a team-oriented game that

are targeted at developing and reinforcing the relationship between the participants.

3. Control: The robot does not say anything during pauses in the game.

We chose to have a control condition where the robot did not say anything. We could

have constructed a control condition where the robot made utterances that were neither

task related nor relationship related. However, this kind of control would be difficult to

both fit within the context of the interaction without seeming surprising or strange and

also be truly neutral (not containing any affect, not relating to the task at all). For these

reasons we determined that a control condition where the robot did not say anything would

be best choice for a control condition.
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Condition Age 6 Age 7 Age 8 Age 9 Total

Relational 3 6 3 2 14

Task 4 4 4 2 14

Control 5 2 3 2 12

Table 3.1: We present the age distribution of the dyads in each experimental condition by
the number of dyads in each age and experimental group.

Condition 2F 1F & 1M 2M Total

Relational 5 5 4 14

Task 3 7 4 14

Control 1 8 3 12

Table 3.2: We present the gender composition of the dyads in each experimental condition
by the number of females (F) and males (M) in each experimental group.

In accordance with our hypotheses, we expect that participants in the task condition

will have higher performance outcomes in comparison with the other conditions. We also

expect that participants in the relational condition will have higher perceptions of their

team’s performance and interpersonal cohesiveness in comparison with the other conditions.

3.2.1 Participants

The participants in this study were attendees of one of two educational summer programs

located in Connecticut, USA. A total of 88 participants were recruited from these summer

programs, however, 1 dyad (2 participants) was excluded because they did not complete the

interaction and 3 dyads (6 participants) were excluded because they did not pay attention

to a majority of the questions asked by the robot. Of the participants included in this

analysis, all participants were between the ages of 6 and 9 (M = 7.25, SD = 1.05), 42 of

the participants were male, and 38 of the participants were female.

Participants were paired in such a way that the participants in each dyad were the same

age in order to maintain a more equivalent power dynamic between the two participants and

so that comparisons between dyads of different ages could be made. The number of dyads of

each age in each experimental condition are shown in Table 3.1. There were 20 mixed gender

dyads and 20 same-gender dyads. Among the same-gender dyads, there were 11 dyads with

two males and 9 dyads with two females. The age and gender dyad characteristics were
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Figure 3.2: In the build-a-rocket game, players drag and drop pieces to construct a rocket
by optimizing weight, fuel, air resistance, and power metrics (shown on the bottom panel).
Time remaining to takeoff is shown in the upper left hand corner. Players can drag a piece
over the white question mark to ask the robot about that piece’s weight.

evenly distributed across the three conditions, see Table 3.2 for the number of dyads with

each gender combination for each experimental group and Table D.1 in Appendix D for a

more detailed list of descriptive statistics for each experimental condition.

3.2.2 Build-a-Rocket Game

We custom built the build-a-rocket game, pictured in Figure 3.2, in Unity for the pairs of

children to play on a 27-inch multi-touch touchscreen monitor. The goal of the build-a-

rocket game is to build a rocket that flies as high as possible. Players touch a part of the

rocket (body, boosters, fins, or cone) they want to place a piece on, after which the side

panels display pieces that can be placed on that part of the rocket. Players drag and drop

pieces onto the rocket and dispose of pieces by moving the pieces to the trash cans or the

side panels. Players may also drag a piece over the question mark to ask the robot how

much that particular piece weighs.

Players have 7 trials to try and make the rocket fly as high as they can. Each trial lasts

2.5 minutes, after which the rocket has a ‘blastoff’ animation and then displays the height

the rocket reached. There is a 45-second pause between each trial where the only visual on

the screen is a list of the heights the rocket has reached for each completed trial. Once the
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45 seconds have elapsed, the next trial automatically begins.

The rocket distance (D) is calculated with the following formula: D = p(α1F+α2(F ∗P )

−α3W − α4Rair + β) , where F is the rocket fuel, P is the rocket power, Rair is the rocket

air-resistance, W is the rocket weight, p is a penalty for not having pieces filled in, and α

and β are constants. This equation is not meant to simulate real-world rocket dynamics, but

rather, the intuitive relationship of each of the four factors highlighted in the game (fuel,

power, weight, and air resistance). Weight (W ) and air resistance (Rair) are negatively

correlated with rocket distance. Fuel (F ) and power (P ) are positively correlated with rocket

distance, where power is dependent on fuel and the presence of boosters. Additionally, just

as any rocket with pieces missing would not perform as well, we penalize any rocket that

does not have all of its pieces filled in with p, a proportion of the pieces on the rocket to

the total number of possible pieces that the rocket could hold.

3.2.3 System Architecture

The robot platform we use is a MyKeepon robot, a commercially available and inexpensive

robot shown in Figure 3.3. MyKeepon is a 32cm tall snowman-shaped robot with a yellow

rubber skin and four degrees of freedom: rotation around the base, left/right roll, front/back

tilt, and up/down bob. MyKeepon is a consumer-grade version of a research robot called

Keepon Pro, which was designed to convey expressions of emotion and attention with a

minimal design [Kozima et al., 2009]. We modified a MyKeepon to control its motors with

an Arduino Nano, which sends motor commands to the MyKeepon’s four motors.

The system architecture used to autonomously control the robot’s behavior (movement

and speech) uses Thalamus [Ribeiro et al., 2014]. Thalamus is an integration middleware

that allows many modules to connect to and communicate with each other.

There are two inputs to the robot’s decision making system: rocket game information

related to the actions of the children in the game as well as audio and face/body position

data from a Microsoft Kinect. The game information sent to the system includes timer

values, rocket informational values (weight, fuel, air resistance, and power), rocket flight

distance values, and specific game events (moving a piece over the question mark). The

Microsoft Kinect relays information about the participants’ 3D positions, facial features,
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MyKeepon robot

Microsoft Kinect

touchscreen game interface

Figure 3.3: A MyKeepon robot interacts with two children playing the build-a-rocket game
on the touchscreen game interface. The robot uses information gathered from a Microsoft
Kinect to track the faces of the children to inform its gaze direction.

and audio.

Upon receiving the rocket game information, our system decides how the robot should

respond. During game play, the robot reacts to game events: informing the participants

of the weight of rocket pieces dragged to the question mark on the screen and warning the

participants of a high rocket weight. During pauses in the game, the robot asks participants

questions in the task and relational conditions. Once an utterance has been selected, a

command is sent for the utterance to be made using text-to-speech (TTS) via visemes,

positions of the face and mouth that correspond to a sound. These visemes are made

available to Nutty Tracks [Ribeiro et al., 2014], a generic animation engine. A module

in Nutty Tracks sends commands to the robot motors while it talks, giving the robot an

appearance of bouncing while it is talking.

The Microsoft Kinect data is used to calculate the location and head positions of the

participant who spoke most recently or is closest to the robot. With this information, the
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Figure 3.4: There were 43 pairs of children that participated in this experiment. These pho-
tos depict several pairs of children interacting with each other as they play the collaborative
build-a-rocket game.

robot looks at the participants appropriately during the interaction, giving it an increased

sense of social presence. A Nutty Tracks module sends commands to the robot motors to

have the robot face the selected participant.

3.2.4 Procedure

Consent forms were distributed and collected by staff of the summer programs. Participants

were paired with a partner of their same age and once paired, the dyad was randomly

assigned to one of the three conditions (task, relational, or control).

Once participants were selected by program staff, they were escorted by one of the

experimenters to the experimental area. Each participant was separately interviewed by

one of two experimenters to assess their prior familiarity with the other participant. The

interview was captured with an audio recording device. Directly after the pre-experiment

survey, each experimenter gave the participants distinct and specialized instructions to

encourage collaboration during the experiment. One participant was taught about how

air resistance influences rocket flight and was shown examples of rocket pieces that have

low and high air resistance. The other participant was taught about how fuel and power

influence rocket flight and was shown examples of which rocket pieces have low and high

fuel and power.

Next, the experimenters led the participants into the room with the autonomous robot,
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Orion (a MyKeepon robot). One experimenter and Orion performed a pre-scripted dialogue

where the goals of the build-a-rocket game were explained, participants were told that

Orion had specialized knowledge about the weight of the pieces, and participants were

shown how to play the game. Once the game began, the participants had 7 trials, each

lasting 2.5 minutes, to make the rocket go as far as possible. During the game play (see

Figure 3.4 for photos of participants playing the build-a-rocket game), participants could

ask Orion questions about the weight of specific rocket pieces by dragging pieces over a

question mark on the screen. Orion responded to these ‘questions’ and also interjected with

comments about the overall rocket weight to contribute to the team conversation. Orion

ran autonomously and did not react to any speech directed toward him by participants.

Between each trial, there was a 45-second pause where Orion asked each child a directed

question, unless the dyad was assigned to the control condition. The questions asked in the

task and relational conditions are shown in Table 3.3. After the seventh trial, the ‘game

over’ screen appeared to mark the end of the game. The game interaction with Orion

and the participants was recorded with a video camera, and at least one experimenter was

present in the room at all times.

After the game had finished, the experimenters conducted separate final interviews with

the participants. Like the pre-experiment survey, this survey was captured with an audio

recording device. After the participant completed the interview, the experimenters gave

each child pencils and stickers for participating.

3.2.5 Measures

In this section, we describe how the survey data was coded and how the performance metrics

were calculated.

Friendship and Familiarity

During the pre-experiment interview, participants were asked questions to assess the level of

friendship and familiarity between them and their partner. This pre-experiment interview

consisted of 10 questions to measure the level of friendship and familiarity between the

participants and how likeable the participant finds their partner. These questions were
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Table 3.3: The robot asked questions to the two child participants after each round of the
game in the task and relational conditions, and did not say anything to the child participants
who were in the control condition. These questions are displayed in this table, where [P1]
and [P2] act as placeholders for participant names. The questions indicated by a (*) were
asked to the child in the task condition who had learned specifically about that topic.

Task Condition Questions

[P1], what do you think made the rocket go farther this time?

[P2], do we have enough fuel?*

[P1], which cone pieces do you think are the best?*

[P2], what do you want to change about the rocket next time?

[P1], which pieces are contributing most to weight?

[P2], what do you think the best rocket would look like?

Relational Condition Questions

[P1], does [P2] think you did a good job?

[P2], is there a way for you to help [P1] better next time?

[P1], what do you think [P2] did well last time?

[P2], how did [P1] help you in building the rocket?

[P1], what was [P2]’s goal?

[P2], did you always ask for help when you needed it?

adapted from the Friendship Qualities Scale to be child-friendly, such as, “If you forgot

your lunch, would they share theirs with you?” [Bukowski et al., 1994]. Please refer to

Appendix C, Section C.1 for the full questionnaire.

Two coders listened to the audio-recorded responses for each question and categorized

them as either ‘yes’, ‘no’, or ‘unsure’. The coders had 100% agreement in their catego-

rization of the responses. From the answers to these questions, we created two levels of

friendship and familiarity for the participants: low familiarity and high familiarity. Partic-

ipants were categorized as highly familiar (1) with their partner if they answered questions

indicating that they had experience playing together outside of the summer program, and

lower otherwise (0).

Perception of Performance and Interpersonal Cohesiveness

In the post-experiment interview, participants were asked questions to assess their percep-

tion of their own performance and the interpersonal cohesiveness between them and their
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partner. These questions were adapted from the Subjective Value Inventory questionnaire,

originally designed to assess the success of negotiations [Curhan et al., 2006]. The Subjec-

tive Value Inventory questionnaire has four dimensions: feelings about the outcome, feelings

about the self, feelings about the process, and feelings about the relationship. We believe

that the Subjective Value Inventory extends well to assessing the perceived success of col-

laboration between the two participants. We altered questions from the Subjective Value

Inventory questionnaire to be child-friendly and specific to the build-a-rocket game, see

Appendix C, Section C.2 for a list of all of the items in this questionnaire.

To measure the perception of their performance, participants were asked one question

about how high their rocket flew (“Did your rocket go higher and higher each time? Or did

it reach about the same height each time?”) and one question about their satisfaction with

their performance (“Did your rocket go as high as you and [your partner] wanted it to?”).

Two coders listened to the audio-recorded responses and categorized the answers to each

question as either high (2), medium (1), or low (0). The coders had 100% agreement in their

categorization of the responses. We added the score of these two questions together for an

overall value of participants’ perception of their performance, where high values indicate a

high perception of performance.

To measure participants’ perceived interpersonal cohesiveness between them and their

partner, participants were asked if their partner listened to them, if their partner annoyed

them, if they were to play the game again would they prefer to play alone or with their

partner, and who they would play the game with if they could choose anyone. Two coders

listened to the audio-recorded responses and categorized the answers as either yes (2), maybe

(1), or no (0) or selecting their partner (2), not selecting their partner (0), or being unsure

(1). The coders had 100% agreement in their categorization of the responses. We added

the score of these four questions together for an overall value of participants’ perceived

interpersonal cohesiveness between them and their partner, where high values indicate a

high perception of cohesiveness.
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Build-A-Rocket Game Performance

To assess participants’ performance in the build-a-rocket game, we selected the highest

(maximum) distance their rocket reached of the game’s seven trials.

3.3 Results

Hypothesis testing was conducted‡ using a one-way analysis of variance (ANOVA) model for

data describing the group’s efforts (e.g., maximum distance participants’ rocket reached),

where we report the effect size of partial eta squared (η2). For data specific to an individual

(e.g., each participants’ perceptions of their team’s performance), we used linear mixed-

effects models to account for each participant being in a group of two. We tested these

linear mixed-effects models for multicollinearity (variance inflation factor), selected them

based on the Akakine information criterion, and evaluated residual errors for lack of trends

and heteroscedasticity. For each fixed effect, the model outputs the linear coefficient (c),

the standard error (SE), and the significance (p) value of that predictor. For more details

on the models run and their results, please refer to Appendix D, Tables D.1 - D.5.

To test our first hypothesis that the task condition would perform better than the other

two conditions in the build-a-rocket game, we conducted planned comparisons between the

task condition with the relational and control conditions on the maximum rocket distance.

To test our second and third hypotheses that the relational condition would have a better

perception of the outcome and interpersonal cohesiveness than the other two conditions,

we conducted planned comparisons between the relational condition with the task and con-

trol conditions on both the participants’ perception of their performance and participants’

perception of the interpersonal cohesiveness between them and their partner.
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Figure 3.5: For each condition (relational, task, and control) we display the (a) teams’
average maximum rocket height scores and (b) the scores of participants’ perception of their
performance in the build-a-rocket game. Error bars represent a 95% confidence interval.

3.3.1 Performance Outcome

To test Hypothesis 1, we examined whether participants in the task condition performed

better in the build-a-rocket game than those in the relational and control conditions. We

conducted an ANOVA on the maximum distance the rocket reached for each participant

with fixed factors of the experimental condition as well as the following covariates: the

gender composition of the dyad, the average friendship and familiarity of the participants

with one another, and the age of the participants. We did not find a significant main effect

for condition, F (2, 37) = 1.90, p = 0.165, η2 = 0.09. Then, when conducting our planned

comparisons, we found that participants in the task condition (M = 93.6, SD = 13.2) had

significantly higher maximum rocket height scores in the build-a-rocket game than those

in the control condition (M = 83.9, SD = 11.8, F (1, 24) = 4.85, η2 = 0.12, p = 0.040) but

not those in the relational condition (M = 88.2, SD = 14.8, F (1, 26) = 1.17, η2 = 0.08, p =

‡After publishing these results [Strohkorb et al., 2016], we realized that there were better statistical tests
and models to perform on the data to account for the dyadic grouping of participants. This dissertation
presents this improved analysis of the data. Although different models are used to analyze this data, the
general results of the paper and conclusions drawn from the data remain unchanged.
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0.292), see Figure 3.5(a) §. Thus, Hypothesis 1 is partially supported since participants in

the task condition performed better than participants in the control condition.

3.3.2 Perception of Performance

To test Hypothesis 2, we examined whether participants in the relational condition had a

higher perception of performance and perception of the interpersonal cohesiveness between

themselves and their partners than the task and control conditions.

First, we consider whether participants in the relational condition had a higher percep-

tion of performance than those in the task and control conditions. The linear mixed-effects

model that best fit the data included a covariate of whether the individuals in the dyad was

the same gender (0) or had different genders (1). We found that participants in the rela-

tional condition had higher perceptions of their performance (M = 3.00, SD = 1.05) than

participants in the task condition (M = 2.14, SD = 0.97, c = 0.93, SE = 0.31, p = 0.005).

No significant difference was found between participants in the relational condition and par-

ticipants in the control condition (M = 2.63, SD = 1.21, c = 0.52, SE = 0.33, p = 0.124).

These results are shown in Figure 3.5(b). This is an interesting result because even though

participants in the task condition seemed to performed better in the build-a-rocket game,

they perceived their performance as worse than the participants in the relational condition.

We can conclude that Hypothesis 2 has moderate support, since individuals have better

perceptions of performance than when a social robot asks relationship-reinforcing questions

than task-focused questions.

3.3.3 Perception of Interpersonal Cohesiveness

Finally, to test Hypothesis 3, we examined whether participants in the relational condition

had a higher perception of the interpersonal cohesiveness between them and their partner

than the task and control conditions. We did not find a significant main effect or significance

in our planned comparisons. We, thus, have no support for Hypothesis 3 since there is

§After performing a more accurate statistical analysis on this data, as compared with our published work
[Strohkorb et al., 2016], we have found that there no longer exists a significant difference between the
task and relational condition. This is the only finding that is different between the more accurate analysis
performed in this dissertation and the analysis in our prior published work [Strohkorb et al., 2016].
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not strong evidence that participants in the relational condition perceived the interpersonal

dynamics between themselves and their partners as better than those in the task and control

conditions.

3.4 Discussion

Our results show that social robots can influence the outcomes of collaboration among

children. When a social robot asked task-focused questions during pauses in a collaborative

rocket-building game, participants constructed rockets that flew higher than when the robot

asked no questions during pauses in the game. A possible explanation for this result is that

the social robot helped the children focus on the task, sparking the discussion of related

strategies and the development of new ideas.

In addition to the social robot affecting the outcome of collaboration between children,

we also expected the robot’s questions to influence how participants perceived their perfor-

mance. We found that participants to whom a social robot asked relationship-reinforcing

questions perceived their performance as better than participants to whom the robot asked

task-focused questions, but not better than participants to whom the robot asked no ques-

tions. We did not find any difference in the perceived interpersonal cohesiveness in par-

ticipants between any of the conditions. These results suggest that focusing children on

positively building the collaborative relationship between them and their peer(s) has a bet-

ter effect on their perception of performance, as opposed to encouraging the children to

focus their mental energy on how they can improve their performance.

Even though results suggest that the task and relational strategies of promoting col-

laboration are both promising avenues for producing positive collaborative behavior, they

seem to have contrasting effects in the two types of outcome measures we observed. No-

tably, participants in the task condition had a higher performance score, however, had a

more negative perception of their performance. This finding suggests that reaching the

maximum of both objective performance measures and perceptions of performance may

not be possible, at least with these two distinct approaches. In further work, it would be

interesting to investigate the relationship between these two approaches and what results
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could be found from a combination of these two strategies.

While conducting the experiment, we noticed that many factors influence how children

interact and collaborate with one another. The gender composition of the dyad had a

noticeable effect. Children in mixed-gender pairings seemed to be more timid in their in-

teractions, had less physical contact, and stayed more focused than those in same-gender

pairings. The personalities and dominance of the children also drastically affected how

the children made decisions, how frequently they were distracted, and the amount they ex-

pressed prosocial behavior. As social robots enter collaborative environments with children,

these factors should be considered by those seeking to shape the interpersonal relationships

between children.

3.5 Summary

Collaboration is a necessary skill that children begin to develop early in life. Leveraging

prior work that has established that social robots are capable of shaping people’s affect as

well as their perceptions of this group, we explored whether a social robot could promote

collaboration between human members of a group. In a human-subjects experiment, we

investigated the influence of a social robot’s questions (relationship-focused, task-focused,

or no questions) on the collaboration between pairs of children (ages 6 to 9). We found that

children who were asked task-focused questions had a higher performance in the collabora-

tive task than children who were not asked any questions. We also discovered that children

who were asked relationship-focused questions had a higher perception of their performance

than children who were asked task-focused questions.

These results are among the first to demonstrate that the social actions of a robot

can both influence the performance of children in a collaborative task, as well as how they

perceived their performance in the task. From this study, we can see the possible benefits of

social robots focusing people in the group both on the task at hand and on their relationships

with one another. Focus on the task produced higher performance scores and focus on the

team member relationships produced higher perceptions of performance. Although it may

be hard to evaluate how these strategies may work in long-term collaborations, it seems that
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both of these social robot intervention strategies are promising for enhancing collaboration.

In this chapter, we focused on broadly shaping collaboration between pairs of children by

asking questions to focus the children on the task and on the relationship between the two

of them. Despite our ability to show that task and relationship focused questions do result

in changes in performance and performance perceptions, future work is needed to further

explore the specific factors and interaction dynamics that influence social collaboration and

how social robots can best support human-human social collaboration. In Chapters 4 - 7

we do just that, examining three specific collaborative social dynamics (trust, inclusion,

and psychological safety) and how a social robot can positively or negative have an impact

on those dynamics. The work in these following chapters focus on interactions with adults,

instead of children, in order to reduce the complexity and variation of the collaborative

interactions.
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Chapter 4

Robots that Shape Trust in the

Aftermath of a Robot Trust

Violation∗

Trust is an essential component to effective and enjoyable teamwork (for more detail on how

trust influences human teaming, please refer to Chapter 2, Section 2.1.2). As robots join

human collaborative teams, it is important to consider how robots might influence trust

between team members and how robots can be best designed to maximize trust, especially

in the aftermath of a robot mistake or error. How successfully a robot repairs broken trust

will influence how people interact with the robot in the future, and may also shape how the

group functions as a whole.

In this chapter, we explore how a robot can best repair trust with a person in a one-

on-one interaction. Since human-robot trust repair has not been studied thoroughly in a

dyadic context, we first focus on determining effective trust repair between one person and

one robot before extending to a human-robot group (Chapter 5). Prior work examining trust

repair between people has demonstrated that both how the trust was broken and the method

used to repair trust influence how effectively trust can be restored. Here, we investigate

∗Portions of this chapter were originally published as: S. Strohkorb Sebo, P. Krishnamurthi, and B. Scassel-
lati. “I Don’t Believe You”: Investigating the Effects of Robot Trust Violation and Repair. In Proceedings
of the Fourteenth ACM/IEEE International Conference on Human Robot Interaction, HRI ’19, pages 57-65,
Daegu, South Korea, 2019. IEEE. [Strohkorb Sebo et al., 2019]
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trust repair between a human and a robot in the context of a competitive game, where a

robot tries to restore a human’s trust after a broken promise, using either a competence

or integrity trust violation framing and either an apology or denial trust repair strategy.

Results from a 2x2 between-subjects study (n = 82) show that participants interacting

with a robot employing the integrity trust violation framing and the denial trust repair

strategy are significantly more likely to exhibit behavioral retaliation toward the robot. In

the Dyadic Trust Scale survey, an interaction between trust violation framing and trust

repair strategy was observed. Our results demonstrate the importance of considering both

trust violation framing and trust repair strategy choice when designing robots to repair

trust. We also discuss the influence of human-to-robot promises and ethical considerations

when framing and repairing trust between a human and robot.

4.1 Introduction

As anyone who has worked with a robot can attest, robots frequently fail and make mistakes.

Robots can overheat, fail to recognize speech, run into obstacles, interrupt people, and drop

objects, just to name a few. Looking to the future, it may seem like a reasonable goal

to design robust robotic systems and eliminate all possible errors, however, this is likely

an impossible task. Instead, a more valuable approach could be to design robots that

gracefully recover from mistakes and failures. This design approach, emphasizing recovery

from mistakes and failures, facilitates long-term and social human-robot interactions by

maintaining a human’s trust of a robot by effectively repairing trust when mistakes are

made.

As we mention in Chapter 2, Section 2.1.2, trust repair is essential in the overall main-

tenance of trust and both the trust violation framing and trust repair strategy influence

effective trust repair. To provide an example of the influence of trust violation framing and

trust repair strategy on trust repair, we highlight some prior work that examines partic-

ipants’ trust toward a tax accountant job candidate who was accused in an interview for

formerly making an error on a client’s taxes [Kim et al., 2004]. Participants were found to

trust a tax accountant job candidate more if they apologized, rather than denied culpability,
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Figure 4.1: Participants played a competitive game with a robot, where the robot violated
and then tried to repair the participants’ trust.

for the competence related trust violation (inadequate knowledge about a relevant tax code)

by admitting responsibility, apologizing for the infraction, and promising it would not hap-

pen again. They also found that participants trusted the tax accountant more if they denied

culpability, rather than apologized, for an integrity related trust violation (improperly filing

taxes intentionally) by refusing to accept responsibility, attributing the allegation to bad

office politics, and affirming that such an infraction would not happen in the future.

In this work, we examine human-robot trust repair, where a robot breaks a human’s

trust and tries to regain the trust that was lost. We evaluate the effectiveness of both the

trust violation framing (competence or integrity) and the trust repair strategy (apology or

denial) in repairing a human’s trust of a robot in a 2x2 between-subjects study. We situate

the trust violation and repair in a competitive game played between a human and a robot

(see Figure 4.1), where the robot promises not to harm the participant with a power-up in

the game, proceeds to do so anyway, and then tries to make amends with the participant.

We explore the effects of both the trust violation framing and trust repair strategy on

participants’ behavior during the game as well as participants’ ratings of trust toward the

robot.
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4.2 Background

In this section, we review literature on trust repair between people, evaluating how both

the trust violation framing and trust repair strategy influence trust repair. Additionally,

we present related work in HRI focused on human-robot trust.

4.2.1 Human-Human Trust Repair

Previous work focused on trust repair in human relationships has examined the efficacy

of various trust repair strategies (see [Kim et al., 2009] for a review). Specifically, the

apology and denial trust repair strategies have unique and opposite benefits that have been

found to favorably restore trust. We define a denial as “a statement whereby an allegation

is explicitly declared to be untrue” (p.7) [Kim et al., 2004]. Denials can be effective trust

repair strategies due to the lack of acknowledgement of guilt and the likelihood that they will

be given the benefit of the doubt. For example, politicians are evaluated more positively by

constituents if they deny sexual or financial misconduct rather than apologize [Sigal et al.,

1988] and if they deny taking bribes rather than admit responsibility [Riordan et al., 1983].

In contrast to a denial, an apology involves an admission of guilt and depends on a person’s

intention to avoid similar actions in the future to restore trust. We define an apology as “a

statement that acknowledges both responsibility and regret for a trust violation” (p.7) [Kim

et al., 2004]. Expressions of remorse following a violation have been shown to reduce the

amount of punishment, the degree of intent attributed, and the belief that the action would

be repeated [Schwartz et al., 1978]. Additionally, apologies with larger substantive amends

produce more positive effects [Bottom et al., 2002], apologies that have an internal rather

than external attribution are more successful at repairing trust [Kim et al., 2006,Tomlinson

et al., 2004], and apologies can repair trust more quickly if coupled with a promise of future

positive behavior [Schweitzer et al., 2006].

In addition to the trust repair strategy, the framing of the trust violation is also an impor-

tant factor in repairing trust. Previous work [Kim et al., 2009,Mayer et al., 1995,Butler Jr

and Cantrell, 1984] has identified two distinct and highly influential factors of trustworthi-

ness: competence, “the extent to which one possesses the technical and interpersonal skills
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required for a job,” and integrity, “the extent to which one adheres to a set of principles that

a perceiver finds acceptable” (p.412) [Kim et al., 2009]. The framing of the trust violation

is critical because positive and negative information are weighted differently with regards

to a person’s competence and integrity. When a person’s competence is assessed, positive

information is more heavily weighted than negative information (e.g., a mathematician is

seen as great for solving a complex math problem and is not derided for making a sim-

ple addition error). However, when a person’s integrity is assessed, negative information

is more heavily weighted than positive information (e.g., a student is remembered for the

one time they cheated on an exam and not the many times they did not cheat on other

exams) [Skowronski and Carlston, 1989]. This reversed information weighting is likely due

to positive information being more diagnostic of a person’s competence and negative in-

formation being more diagnostic of a person’s integrity [Skowronski and Carlston, 1987].

When considering which repair strategy to use, a denial would likely be a good choice with

an integrity trust violation framing because negative information is weighed more heavily,

whereas an apology would likely be a good choice with a competence trust violation framing

because negative information is not weighed as heavily.

This rationale that one trust repair strategy might be effective when paired with one

trust violation framing and not with another has been confirmed in several research studies

[Kim et al., 2004,Kim et al., 2006,Ferrin et al., 2007,Dirks et al., 2011]. Notably, in the study

conducted by Kim et al. (2004), participants were assigned the role of a hiring manager and

watched a recorded interview where an accounting job candidate was either accused of not

knowing the proper tax code when filing a client’s taxes (competence violation) or having

purposefully and incorrectly filed a client’s taxes (integrity violation). The job candidate,

then, either apologized for or denied having done so. Participants demonstrated a higher

level of trust toward job candidates that apologized, rather than denied, the competence

trust violation and denied, rather than apologized, for the integrity trust violation [Kim

et al., 2004]. We are interested in investigating this interaction between the trust violation

framing (competence or integrity) and the trust repair strategy (apology or denial) on trust

in the context of a human-robot interaction.
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4.2.2 Human-Robot Trust

Trust in human-robot interactions has gained increasing attention from the HRI community,

where researchers have focused on both the performance (competence) and interpersonal

(integrity) dimensions of trust between a human and a robot (see Chapter 2, Section 2.2.2

for more details). A small, but growing body of research has started investigating human-

robot trust repair, where a robot repairs trust with a person after the robot makes an error

(see [Honig and Oron-Gilad, 2018] for a review). Online studies have examined the influence

of several factors on human-robot trust repair, including the robot repair strategy/support

[Robinette et al., 2015,Lee et al., 2010,Brooks et al., 2016], the robot forewarning the person

it might make an error [Lee et al., 2010], and the risk/severity of the robot failure [Brooks

et al., 2016]. One in-person experimental study demonstrated that a robot that used a verbal

justification for why it had failed, rather than giving no justification, was able to regain

trust after a failure when the failure consequences were less severe [Correia et al., 2018a].

Despite the advances made in this area of human-robot trust repair, no experimental study

has yet investigated the influence of the competence and integrity trust violation framings

with the apology and denial trust repair strategies on human-robot trust.

4.3 Methods

In this section we describe a user study that investigates the effects of trust violation

framing and trust repair strategy on the trust a human has in a robot within the context

of a competitive game.

4.3.1 Space Shooting Tablet Game

We constructed an autonomous human-robot competitive game system that allowed us to

control the trust-related actions of the robot and assess the behavioral reactions of the

participant to the robot’s actions. The Space Shooting game is played on two separate

tablets, one for each player, and set up so the human and robot face each other while

playing the game (see Figure 4.1). The robot, a Softbank Robotics NAO robot (that was

named ‘Echo’ in this experiment), is controlled by a Linux computer running ROS [Quigley
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Figure 4.2: Participants played the Space Shooting tablet game with a robot named Echo
where they tried to gain points by shooting asteroids.

et al., 2009] and simulates playing the game by moving its head and arm in accordance with

the appropriate game events.

In the Space Shooting game, the robot and human player compete with one another for

points by shooting asteroids, see Figure 4.2(a). Each player has a spaceship on the bottom

of the screen that shoots missiles when the screen is tapped. Asteroids appear at random

intervals and locations at the top of the screen. The spaceships continuously move from

one side of the screen to the other, a movement uncontrolled by the player. Players are

awarded ten points for each asteroid they successfully shoot with a missile. During game

play a power-up can be assigned to a player, where they are given the choice between two

options: using the asteroid blaster or immobilizing their opponent, see Figure 4.2(b). If

the player chooses the asteroid blaster, they are immediately awarded twenty points for

each asteroid on the screen. If they choose to immobilize their opponent, the opponent’s

spaceship is unable to move for the next 15 seconds and cannot shoot asteroids. These

power-ups were designed so that the asteroid blaster would be the most beneficial power-

up and the immobilization power-up would be seen as beneficial mainly in frustrating a

player’s opponent. In the experiment, the asteroid-blaster power up did on average yield

more points (M = 90.25, SD = 31.26) to participants than the immobilization power-

up (M = 58.43, SD = 8.22, t = −8.33, p < 0.001, d = 1.44). The game consists of 10

consecutive rounds; each round lasted one minute followed by a 20 second pause. At the
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Figure 4.3: During the 10 rounds of the game, the robot and participant receive power-ups.
Before round 3, the robot delivers a promise not to immobilize the participant. During
round 3 the robot receives a power up, chooses to immobilize the participant, and verbally
reacts to the choice. After round 3 concludes, the robot tries to repair the trust of the
participant. The power-ups in the following rounds are used to measure the participant’s
responses to the robot’s actions. The utterances of the robot in this figure are consistent
with those in the competence-apology condition.

end of each round, a message appears on each tablet declaring the player with the most

points as the round winner. After all 10 rounds are complete, the player with the most

round wins is declared the game winner on the tablet screens.

In order to ensure that each participant’s experience playing the game was as consis-

tent as possible, each round had a pre-programmed winner, with the participant and the

robot each winning 50% of the rounds. Since each player’s performance varied greatly, the

performance of the robot was adjusted to match that of the participant. For example, if

the winner of a round was determined to be the human participant, the robot’s spaceship

would never shoot enough asteroids to have a higher score than the participant. Despite

the controlled nature of the robot’s game play, participants were predominately unaware

that the robot was matching its performance to theirs.

4.3.2 Experimental Conditions

In order to investigate the effects of trust violation framing and trust repair strategy to

repair trust between a human and a robot, we constructed a study with a 2 (trust violation

framing) x 2 (trust repair strategy) between subjects design. We explored two types of

trust violation framings, competence and integrity, and two types of trust repair strategies,
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apology and denial.

To construct a setting where the trust violation framing and trust repair strategy can

be most closely compared, each experimental condition used the same trust violation, which

parallels prior work [Kim et al., 2004,Kim et al., 2006,Ferrin et al., 2007,Dirks et al., 2011].

In the Space Shooting game, the robot made a promise not to use the immobilization power-

up. The trust violation occurred when the robot used the immobilization power-up against

the participant, breaking its promise. The robot’s response to this trust violation varied

between conditions:

Competence Apology. The robot first says that it mistakenly chose the immobilization

power-up and, after the round concludes, apologizes for having immobilized the human

player with the power-up it promised not to use against them.

Competence Denial. The robot first says that it mistakenly chose the immobilization

power-up and, after the round concludes, denies having immobilized the human player with

the power-up.

Integrity Apology. The robot first expresses excitement over immobilizing the human

player, however, after the round concludes, apologizes for having immobilized the human

player with the power-up it promised not to use against them.

Integrity Denial. The robot first expresses excitement over immobilizing the human

player, however, after the round concludes, denies having immobilized the human player

with the power-up.

4.3.3 Procedure

After obtaining informed consent, participants completed a Space Shooting game tutorial,

to familiarize them with the game before playing against the robot. They were then taken

into the experiment room where they sat facing a seated NAO robot named Echo, who

was introduced to them. The experimenter explained that the participant would play 10

rounds of the Space Shooting game against Echo. The important details of these rounds
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Table 4.1: Each condition had a unique robot trust repair utterance.

Condition Robot Trust Repair Utterance
Competence Apology

Competence Denial

Integrity Apology

Integrity Denial

I’m so sorry I immobilized you. I pushed the 
wrong button. It’s my fault. It won’t happen again.

I didn’t push the button to immobilize you. It 
wasn’t my fault. I don’t know how that happened.

I’m so sorry I immobilized you. I promised I 
wouldn’t, and I did. It won’t happen again.

I didn’t push the button to immobilize you. I promised 
I wouldn’t, and I didn’t. I don’t know how that happened.

are depicted in Figure 4.3. Following the experimenter’s instructions, Echo stood up and

greeted the participant, the experimenter left the room, and round 1 began. Before round

3, Echo made a promise to not immobilize the participant saying, “I’m really good at this

game. I’m sure you will be too! I know we both want to do well, so it’s in our best interests

to not immobilize each other. I promise I won’t immobilize you.” This promise set up the

opportunity for Echo to violate the trust of the participant.

During round 3, Echo received a power-up and immobilized the human participant —

the trust violation in this experiment. In addition to immobilizing its opponent, Echo also

framed the violation as either one of competence or integrity by exclaiming either “Oh no! I

hit the wrong button!” (competence) or “Yes! You’re immobilized!” (integrity) immediately

after making the power-up choice. At the end of round 3, Echo attempted to repair the

trust it had just broken with a repair utterance specific to the experimental condition (see

Table 4.1). Echo and the participant continued to play the Space Shooting game until all

10 rounds had been completed. Each of the 10 rounds had a designated winner: 1-P, 2-R,

3-R, 4-P, 5-R, 6-P, 7-R, 8-P, 9-P, 10-R (where P represents a participant victory and R

represents a robot victory). The rounds where either the participant or the robot received

power-ups were also predetermined (see Figure 4.3). During the game, Echo commented on

the result of each round with phrases such as “Good job to me! I got a lot of points!” and

“Nice work! You’re playing really well!”. Echo also spoke within the rounds, commenting

on consecutive shots, point differences, and its hope to win.

After the game was over, the experimenter led the participant out of the experiment
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room and directed the participant to complete a post-experiment questionnaire. After

completing the post-experiment questionnaire, participants received a cash payment and

were debriefed on the forms of deception used in the experiment as well as the experiment’s

design and purpose.

4.3.4 Measures

In order to assess participants’ reactions to the robot’s trust violation and repair and how

effectively trust was repaired by the robot, we analyzed the participant’s power-up choices

and survey responses from the post-experiment questionnaire.

Our primary behavioral measures designed to assess participants’ responses to the

robot’s trust violation and repair were their power-up choices during the game. Each

participant received a power-up during the following rounds (as depicted in Figure 4.3):

round 4 - immediately after the trust violation and repair, round 6 - a few rounds after the

trust violation and repair, and round 9 - after seeing the robot choose the asteroid blaster

power-up (good will) during round 8.

We also used post-experiment questionnaires to asses participants’ perceptions of the

robot. We administered the Dyadic Trust Scale (DTS) to evaluate participants’ trust in

the robot [Larzelere and Huston, 1980], where participants evaluated eight statements re-

lated to the robot’s trustworthiness on a 1 (low) to 7 (high) Likert scale. More details,

including the full DTS questionnaire, can be found in Appendix C, Section C.3. We used

the Robotic Social Attributes Scale (RoSAS) to capture participants’ perceptions of the

robot [Carpinella et al., 2017]. RoSAS evaluates a person’s view of a robot’s warmth,

competence, and discomfort with six 1 (low) to 9 (high) Likert scale trait evaluations per

dimension. More details on RoSAS, incuding the full scale, can be found in Appendix C,

Section C.4. Additionally, the post-experiment questionnaire contained several 7-point Lik-

ert scale evaluations and long-response questions asking participants to describe the robot’s

actions and the participants’ rationale for their power-up choices.
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4.3.5 Participants

A total of 82 participants were recruited for this study from the Yale University campus

and the town of New Haven, CT, USA. Participants were randomly assigned to a condition,

resulting in 21, 21, 20, and 20 participants in the competence-apology, competence-denial,

integrity-apology, and integrity-denial conditions respectively. There were 49 female and

33 male participants that were gender-balanced across the four experimental groups. The

participants ranged in age from 18 to 32 with an average age of 20.85 (SD = 2.13). Please

consult Table D.6 in Appendix D for the full descriptive statistics of the participants overall

and by condition.

4.4 Results

In this section, we present our findings on human participant power-up choices (Figure 4.4

and Figure 4.5), their trust ratings of the robot (Figure 4.6), which factors motivated their

power-up choices (Figure 4.7), and how reciprocal participant promises influenced their

behavior and ratings toward the robot. For more details on the results of the statistical

models included in this section, please refer to Appendix D, Tables D.6 - D.15.

4.4.1 Participant Power-Up Choices

We examined participants’ first power up choice, the power-up choice that occurred the

round immediately following the robot’s trust violation and repair to determine whether

the trust violation framing and trust repair strategy influenced participants’ first power-up

choice. We used a logistic regression model with trust violation framing and trust repair

strategy, our independent variables, as well as gender and age, our covariates, as fixed ef-

fects. We observed a significant main effect for trust violation framing (c = 1.154, SE =

0.52, p = 0.026), where 45.0% of participants who experienced an integrity trust violation

from the robot immobilized the robot, more than the 21.4% of participants who experi-

enced a competence trust violation from the robot. We also found a significant main effect

for trust repair strategy (c = 1.142, SE = 0.52, p = 0.028), where 43.9% of participants

who experienced a denial from the robot immobilized the robot, more than the 22.0%
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Figure 4.4: For the first power-up choice, participants were significantly more likely to
immobilize the robot with the integrity trust violation framing and the denial trust repair
strategy.

participants who experienced an apology from the robot. These results are depicted in

Figure 4.4(a). By comparing each condition individually with Chi-squared Tests of Inde-

pendence, we found that 60% of participants in the integrity-denial condition immobilized

the robot on the first power-up choice, significantly (or marginally significantly) more than

participants in the other three conditions: 14.3% of participants in the competence-apology

condition (χ2 = 9.23, p = 0.002), 28.6% of participants in the competence-denial condi-

tion (χ2 = 4.11, p = 0.043), and 30.0% of participants in the integrity-apology condition

(χ2 = 3.64, p = 0.057). No other comparisons between individual conditions were signifi-

cant. These results are shown in Figure 4.4(b).

To evaluate differences in power-up choices over time between conditions, we used a
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Figure 4.5: The power-up choices of participants over time was significantly influenced by
the trust violation framing.

multilevel mixed-effects logistic regression. The trust violation framing, trust repair strat-

egy, the participant’s power-up choice number, the interaction between the trust violation

framing and the participant’s power-up choice number, and the interaction between the

trust repair strategy and the participant’s power-up choice number were treated as fixed

effects. Each participant was evaluated as a random effect since each participant has mul-

tiple power-up choices. The covariate of gender was treated as a fixed effect. These models

produce a coefficient (c) to linearly or logistically map the predictor (independent) variables

with the dependent variable and a p value to indicate the significance of this relationship.

The coefficient is presented in odds ratios, the odds of the human participant immobiliza-

tion power-up choice occurring between the levels of the dependent variables. We observed

a significant main effect for trust violation framing (c = 9.186, z = 3.00, p = 0.003), where

participants who experienced the integrity trust violation framing immobilized the robot

27.5% of their power-up choices, more than the participants who experienced the compe-

tence trust violation framing who immobilized the robot 21.4% of their power-up choices.

We also found a significant interaction between trust violation framing and the participant’s

power-up round number (c = −6.738, z = −3.23, p = 0.001), shown in Figure 4.5. Pair-

wise comparisons, using Chi-squared Tests of Independence, reveal a significant difference

in participants’ power-up choices in only the first power-up choice where 45.0% of partici-

pants who experienced an integrity trust violation immobilized the robot, greater than the
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21.4% of participants who experienced a competence trust violation (χ2 = 5.15, p = 0.023).

These results reveal that participants who received the integrity trust violation framing

had a higher initial likelihood to immobilize the robot than participants with the compe-

tence trust violation framing, however, this effect did not remain during the following two

power-up choices.

4.4.2 Trust-Related Survey Responses

To determine whether trust violation framing and trust repair strategy influenced partic-

ipants’ perceptions of the robot, we used a 2 (trust violation framing) x 2 (trust repair

strategy) analysis of variance (ANOVA) with gender and age covariates on the three scales

of the RoSAS questionnaire: warmth, competence, and discomfort. We found a signifi-

cant main effect for trust repair strategy on the perceived robot warmth (F = 8.19, p =

0.006, η2 = 0.121), where participants viewed the robot as more warm (happy, feeling,

social, organic, compassionate, and emotional) when they received an apology from the

robot (M = 5.50, SD = 1.29) compared to when they received a denial from the robot

(M = 4.67, SD = 1.44).

In order to examine participants’ overall trust of the robot after the game concluded, we

used a 2 (trust violation framing) x 2 (trust repair strategy) ANOVA with gender and age

covariates on the Dyadic Trust Scale (DTS) measure. We found a significant interaction

between the trust violation framing and trust repair strategy (F = 4.64, p = 0.035, η2 =

0.048). We conducted comparisons between the four conditions (independent t-tests) and

found that participants in the competence-apology condition had a significantly higher

trust rating of the robot (M = 3.54, SD = 1.07) than participants in the competence-denial

condition (M = 2.73, SD = 0.72, t = 2.87, p = 0.007, d = 0.89) and participants in the

integrity-apology condition (M = 2.88, SD = 0.93, t = 2.11, p = 0.042, d = 0.66). No other

comparisons were statistically significant. The results are shown in Figure 4.6.

We also investigated whether a connection exists between participants’ first power-up

choice and their DTS ratings. We found a significant (Pearson) correlation between these

two variables (r = −0.29, t = −2.71, p = 0.008), where participants who chose the immo-

bilization power-up displayed lower DTS ratings of the robot (M = 2.70, SD = 0.82) than
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Figure 4.6: An interaction effect was found between the trust violation framing and trust
repair strategy on participant ratings of trust in the robot.

participants who did not choose the immobilization power-up (M = 3.27, SD = 0.92). From

this correlation, we can conclude that participants who immobilized the robot in their first

power-up choice also demonstrated lower dyadic trust of the robot, as compared with those

who did not immobilize the robot in their first power-up choice.

Similarly, we were interested to see if participants’ perceptions of the robot lying was

related to their DTS ratings. We found a significant (Pearson) correlation between partic-

ipants’ 1-7 Likert agreement with the statement “Echo [the robot] lied to me” with their

DTS ratings (r = −0.56, t = −6.10, p < 0.001). This significant, negative correlation in-

dicates that participants who strongly believed that the robot lied during the experiment

also reported lower DTS ratings. Additionally, a 2 (trust violation framing) x 2 (trust re-

pair strategy) ANOVA with gender and age covariates on the perception of the robot lying

revealed no significant main effects, but a significant interaction between the trust violation

framing and trust repair strategy (F = 7.27, p = 0.009, η2 = 0.073). Pairwise comparisons

reveal that participants in the integrity-apology condition (M = 6.50, SD = 0.89) had signif-
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icantly higher ratings of the robot having lied than participants in the competence-apology

condition (M = 5.05, SD = 1.94, t = −3.11, p = 0.004, d = 0.96) and the integrity-denial

condition (M = 5.05, SD = 1.73, t = 3.33, p = 0.002, d = 1.05). One more important ob-

servation about participants’ perception of the robot having lied is that the mean response

was 5.56 / 7 (SD = 1.73), reflecting that most participants agreed that the robot had lied,

likely due to the robot breaking its promise not to immobilize them.

In order to ascertain participants’ motivations for selecting power-ups, we analyzed re-

sponses to the following questionnaire long response question: “When choosing how to use

power-ups, which factors influenced your decision(s)?” Two coders independently catego-

rized each response as containing one or more of the following factors: strategy (e.g., “trying

to get the most points”), retaliation (e.g., “I wanted to get Echo back for lying to me”), and

consideration of the robot (e.g., “not wanting to disappoint Echo”). Some responses like, “I

first froze Echo in retaliation. Later, I felt like we were even and I chose to destroy aster-

oids instead so I could get more points faster,” were coded as containing multiple factors,
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retaliation and strategy in this case. The two coders had a high inter-rater agreement with

a Cohen’s kappa (κ) of 0.91. In Figure 4.7, we display the responses given by the three most

dominant participant power-up choice sequences: never immobilized (n = 50), immobilized

once and never again (n = 12), and immobilized every time (n = 11). A majority of partici-

pants, regardless of their power-up choices, said that their power-up choices were influenced

by strategy. Many participants who immobilized the robot after the first power-up oppor-

tunity (immobilized once and never again and immobilized every time) cited retaliation as a

factor influencing their power-up choices. Compared with participants who immobilized the

robot every time, participants who never immobilized the robot or immobilized the robot

once and never again seemed to consider the interests of the robot.

4.4.3 The Influence of Participant Promises on Trust

Some participants indicated that they had made a reciprocal promise to the robot not to use

the immobilization power-up. We measured whether or not participants felt as if they made

this promise through a survey measure in the post-experiment questionnaire that asked

participants to rate on a Likert scale of 1 to 7 how much they agreed with the statement

“I promised not to immobilize Echo during the game.” These participant promise ratings

were not significantly influenced by the experimental conditions. There are no statistical

differences between trust violation framings (F = 0.05, p = 0.829, η2 = 0.002), trust repair

strategies (F = 1.76, p = 0.189, η2 = 0.011), nor the interaction between those two variables

(F = 0.42, p = 0.521, η2 = 0.005) when analyzed using a 2 (trust violation framing) x 2

(trust repair strategy) ANOVA on the participant promise rating with gender and age as

covariates. Many of the participants who indicated that they had made a promise not to

immobilize the robot in the game on the post-experiment questionnaire also verbalized a

reciprocal promise to the robot during the game with phrases like “ok, I won’t immobilize

you either” and “I promise I won’t immobilize you.”

We were interested in examining the influence of participant promises on participants’

first power-up choice and whether the participants ever chose an immobilization power-up

(a binary value). We used a logistic regression model with our independent variables of trust

violation framing, trust repair strategy, and promise rating as well as covariates of gender
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and age all as fixed effects. A significant main effect was found for the participant promise

rating on both the participants’ first power-up choice (c = −0.582, SE = 0.20, p = 0.003)

and whether the participants ever chose an immobilization power-up (c = −0.739, SE =

0.22, p < 0.001)†. There were 20 participants who marked 5-7 in agreement with having

promised not to immobilize the robot and there were 62 participants who marked 1-4

indicating their disagreement or neutrality on having promised not to immobilize the robot.

90% of the participants who marked 5-7 never immobilized the robot, significantly greater

than the 51.6% of the participants who marked 1-4, assessed using a Chi-squared Test of

Independence (χ2 = 9.36, p = 0.002). These results reveal that participants who believed

they had made a promise to the robot, kept their promise and were significantly less likely

to immobilize the robot both at the first opportunity and at any point during the game.

In addition, we examined how participants’ ratings of whether they promised not to

immobilize the robot influenced their Dyadic Trust Scale (DTS) ratings of the robot on the

post-experiment questionnaire. We used a linear regression model with our independent

variables of trust violation framing, trust repair strategy, and promise rating as well as

covariates of gender and age all as fixed effects. We found a significant main effect of the

participant promise on the DTS rating of the robot (c = 0.158, SE = 0.04, p < 0.001),

with a positive linear correlation, indicating that participants who agreed more with having

promised not to immobilize the robot were more likely to have shown a higher trust in the

robot.

4.5 Discussion

In this study, we used two primary measures to assess participant reactions to the robot’s

trust violation and subsequent repair: their power-up choices in the game (Figure 4.4 and

Figure 4.5) and their Dyadic Trust Scale (DTS) ratings in the post-experiment survey

(Figure 4.6). As mentioned in the results, these two measures are correlated: participants

who immobilized the robot as their first power-up choice had lower DTS ratings of the

†These two logistic regression models were originally run, with results reported in [Strohkorb Sebo et al.,
2019], with a Gaussian family and identity link. For these two models, we correct them to have a binomial
family with a logit link and present those results here. This correction does not result in any changes to
the significance of the participant promise on their power-up choices, and all conclusions remain the same.
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robot than participants who did not immobilize the robot in their first power-up choice.

Despite the correlation between these two measures, participants in the integrity-denial

condition displayed behavior that is not in complete agreement with this correlation between

measures. 60% of participants in the integrity denial condition immobilized the robot the

round immediately after the robot’s trust violation and repair, two times greater than

percentage of participants choosing the immobilization power-up in the other conditions.

However, in the DTS measure, participants in the integrity-denial condition did not show

significant differences in trust ratings when compared with the other three conditions. It is

possible this discrepancy is due to the difference between the immediate visceral response

(retaliation) of participants to the trust violation and repair and the more removed and

contemplative nature of the DTS evaluation in the post-experiment questionnaire.

Kim et al. (2004) demonstrated that between people an apology is more effective than

a denial at repairing a competence trust violation and that a denial is more effective than

an apology at repairing an integrity trust violation. When we compare the Dyadic Trust

Scale (DTS) measure in this experiment with Kim et al. (2004)’s results, we find that the

results from the two studies are similar. In our DTS measure (Figure 4.6), we observed an

interaction effect between the trust violation framing and trust repair strategy in the same

direction as Kim et al. (2004)’s results: higher trust of a robot that apologizes for rather

than denies a competence violation as well as higher trust of a robot that denies rather

than apologizes for an integrity trust violation. This conclusion drawn from the interac-

tion between trust violation framing and trust repair strategy in our study must be made

without complete certainty, since the comparisons of DTS ratings between the individual

conditions do not show full support. Participants in the competence-apology condition do

show significantly higher dyadic trust in the robot than participants in the competence-

denial condition, however, even though participants in the integrity-denial condition show

higher dyadic trust in the robot than participants in the integrity-apology condition, this

relationship is not statistically significant.

One factor that highly influenced people’s power-up choices and ratings of trust of the

robot was whether or not participants made a reciprocal promise to the robot not to harm

it with an immobilization power-up. Of the 82 participants in this experiment, 20 made a
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reciprocal promise to the robot. It might make sense that these participants who made a

promise to the robot might feel released from keeping their promise as soon as the robot

broke its promise. However, 90.0% of participants who indicated that they had made

a promise to the robot not to immobilize it kept their promises and never immobilized

the robot, far higher than the 51.6% of participants who had not made a promise to the

robot. These participants who made a promise to the robot not to immobilize it were also

significantly less likely to immobilize the robot on the first power-up choice or ever choose

an immobilization power-up, compared with those who had not made such a promise. In

the analysis of the Dyadic Trust Scale ratings, we might expect that the ratings from those

who made a reciprocal promise to the robot would be lower than those who had not made

a promise, since the robot’s broken promise might induce an increased feeling of betrayal.

Contradictory to this rationale, participants who had made a reciprocal promise to the robot

had higher ratings of dyadic trust as compared with those who had not made a reciprocal

promise. One possible explanation of the behavior of participants who made reciprocal

promises is that they are naturally trusting – easily making reciprocal promises, sticking to

those promises, and seeing others as more trustworthy even when they violate trust. These

findings relating to participant promises are important to highlight, as they reveal a strong

correlation between human-to-robot promises and trust-related behavior and perceptions

of a robot.

A key difference to highlight between our work and prior work, notably Kim et al.

(2004), is that our work involved a real-time trust violation and a real-time trust repair,

instead of a real-time trust repair in response to an accusation of a trust violation in the

past. Due to the real-time nature of both the trust violation and repair, our work used

two utterances, rather than one, to convey the trust violation framing and trust repair

strategy. The two utterances used in this work allowed the robot to respond to the trust

violation immediately after it occurred and then repair the broken trust after the round had

concluded. It is possible that our use of these two utterances introduced an additional norm

violation (beyond the robot’s broken promise) in the denial conditions due to the possible

perception of lying from the first to second utterances (e.g., in the integrity-denial condition

the robot immediately responded to the trust violation with “Yes! You’re immobilized!”
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and then after the round concluded, said “I didn’t push the button to immobilize you. I

promised I wouldn’t, and I didn’t. I don’t know how that happened.”). Despite this possible

introduction of a second norm violation by the robot in the denial conditions, the data does

not support this view. When evaluating participants’ agreement with the statement “Echo

[the robot] lied to me,” there was no main effect for the trust repair strategy (apology vs.

denial), and in fact, participants in the integrity-apology condition had significantly higher

ratings of the robot having lied than participants in the integrity-denial condition.

Our results have demonstrated that it can be advantageous to deny culpability and

to use certain trust violation framings when repairing human-robot trust. However, it is

unclear if we should allow these trust repair designs in robotic systems when deception

is involved (e.g., denying culpability when the robot is responsible, casting an integrity

trust violation as a competence trust violation). Prior work has shown that if a person

denies an integrity-related trust violation and the denial is later exposed as a lie, the denial

backfires and that person is trusted even less than if they had apologized for the integrity-

related trust violation [Kim et al., 2004]. It is also possible that a robot using deception,

by attributing an integrity failure to a competence mistake or a competence mistake to an

integrity failure, may mislead people in their beliefs of the true capabilities and intentions

of the robot. Lastly, if we expect robots to follow certain moral codes or social norms, a

robot’s deception could easily violate these, leading to a complete distrust of the robot.

Keeping all of this in mind, caution must be used in the design of robot systems that seek

to repair trust using deception when trust is broken.

4.6 Summary

In this work, we investigated the effects of a robot employing the competence and integrity

trust violation framings and the apology and denial trust repair strategies on repairing

broken trust between a human and a robot. Through the behavioral measures of power-up

choices during the game, we showed that participants who experienced an integrity trust

violation framing and a denial trust repair from the robot were significantly more likely to

choose the immobilization power-up against the robot in the round immediately after trust

74



was broken and repaired. Through the Dyadic Trust Scale survey administered after the

game concluded, we found an interaction effect between trust violation framing and trust

repair strategy. This interaction was consistent with prior results [Kim et al., 2004], where

an apology is best used with a competence trust violation framing and a denial is best

used with an integrity trust violation framing. We also found that participants who made

a reciprocal promise to the robot not to immobilize it in the game were more likely to keep

their promise and not immobilize the robot and had higher trust ratings of the robot than

those who did not make a reciprocal promise.

This work was the first to examine the influence of both trust violation framing and

trust repair strategy in the context of a robot breaking a person’s trust and attempting to

repair the trust that was broken. One key feature of this experimental study was our use

of both a behavioral measure, the power-up in the game, and a survey measure after the

study completed to assess the person’s trust in the robot. Most other studies, in both the

human trust repair and HRI trust repair literature, have exclusively used surveys to measure

trust (e.g., [Correia et al., 2018a], [Desai et al., 2013], [Kim et al., 2004]). We observed a

difference between whether people retaliated against the robot in the game with their power-

up choice and their survey ratings of trust in the robot, where participants in the integrity

denial condition strongly retaliated against the robot, however, did not rate their trust in

the robot differently than those in the other conditions. We also provided evidence that

despite the differences between robots and people, especially in their perceived competence

and integrity, people trust a robot similarly to how they trust a person in the aftermath

of a trust violation and repair. Lastly, to our knowledge, we are the first to show evidence

that human promises to the robot are correlated with higher levels of trust in the robot

and lower retaliatory behavior. This knowledge could be used in future robot interaction

designs, where promises from people could be elicited in order to promote positive human

behavior and trust in robots.

In this chapter, we examined robot trust repair in a one-on-one interaction with a per-

son in order to study how a robot can best maintain trust in a simplified environment.

From this study, we found the competence trust violation framing and apology trust repair

strategy (apologizing for having made an unintentional mistake) to be the most effective in
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reducing retaliation behavior and maximizing perceptions of trust in the robot. In Chapter

5, we extend our investigation into maintaining and promoting trust from a one-on-one

setting to a group setting. In a group of three people and one robot, we investigate how

vulnerable expressions by the robot (e.g., admitting and apologizing for its mistake, mak-

ing self-disclosures) influence people’s interactions with the robot, trust-related behavior

towards other human team mates, and conversational dynamics.
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Chapter 5

Robots that Shape Group Trust

and Communication through

Vulnerable Expressions∗

Successful teams are characterized by high levels of trust between team members, allowing

the team to learn from mistakes, take risks, and entertain diverse ideas [Edmondson, 1999].

As robots have been shown to be able to shape trust in one-on-one interactions with people

(Chapter 4), we are interested in extending this idea by examining ways in which a robot

can influence trust at a group level in a collaborative human-robot team. One way trust

within a group may be enhanced is through expressions of vulnerability. Prior work has

demonstrated a positive relationship between expressions of vulnerability and trust between

people [Wheeless, 1978] and positive effects from a robot’s use of vulnerability in one-on-one

human-robot interactions [Martelaro et al., 2016].

In this chapter, we investigate a robot’s potential to shape trust within a team through

the robot’s expressions of vulnerability. We describe a between-subjects experiment (N = 51

∗Portions of this chapter were originally published as:
S. Strohkorb Sebo, M. Traeger, M. Jung, and B. Scassellati. The ripple effects of vulnerability: The effects
of a robot’s vulnerable behavior on trust in human-robot teams. In Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’18, pages 178–186, New York, NY, USA, 2018.
ACM. [Strohkorb Sebo et al., 2018]
Traeger, M. L., Strohkorb Sebo, S., Jung, M., Scassellati, B., and Christakis, N. A. (2020). Vulnerable
robots positively shape human conversational dynamics in a human–robot team. Proceedings of the National
Academy of Sciences, 117(12), 6370-6375. [Traeger et al., 2020]
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teams, 153 participants) comparing the behavior of three human teammates collaborating

with a social robot (1) making vulnerable statements, (2) making neutral statements, or (3)

remaining silent. We find that participants who interacted with a robot making vulnerable

statements, as opposed to making neutral statements or remaining silent, interacted more

socially with the robot and displayed more vulnerable behavior towards one another (ex-

plaining failures, consoling teammates who had failed) in the aftermath of tense moments

in the game. We also find evidence that the statements made by the robot also significantly

shaped the conversational dynamics between the human team members. These results pro-

vide evidence that a robot’s vulnerable behavior can spread to the human members of the

human-robot team, shaping how the people in the team interact with one another.

5.1 Introduction

Trust is an essential component to effective and collaborative teaming [Jones and George,

1998, Mayer et al., 1995]. High trust within a team has been shown to promote problem

solving [Klimoski and Karol, 1976, Zand, 1972], improve responses to conflict [Simons and

Peterson, 2000], and improve performance [Edmondson, 1999]. (Please refer to Chapter 2,

Section 2.1.2 for a more in-depth review of the importance of trust in human teaming).

One way to increase trust between people is through expressions of vulnerability. Prior

work has discovered that a person is viewed as more trustworthy after expressing vulner-

ability [Wheeless, 1978]. Additionally, vulnerability has been found to have a reciprocal

effect, where people are more likely to disclose personal information after someone else has

already done so [Cozby, 1973]. It is therefore likely that the vulnerable expressions of a

single team member can be contagious and influence the trust-related behavior of an entire

group. This idea, that positive behavior exhibited by just one team member can influence

the behavior of others and “ripple” through an entire team, has been famously demon-

strated in Barsade’s “Ripple Effect” study. In this study, a single confederate’s positive

behavior was shown to lead several other team members to exhibit more positive behavior

as well, which ultimately led to improved cooperation within the team [Barsade, 2002].

Several studies in HRI have demonstrated that the positive effects of vulnerability on
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Figure 5.1: Participants played a collaborative game with a robot, who made (1) vulnerable
statements, (2) neutral statements, or (3) remained silent at the end of each round of the
game.

trust can extend to robots [Martelaro et al., 2016, Siino et al., 2008]. To our knowledge,

however, no studies have explored whether a robot’s vulnerable behavior can create ripple

effects within a team and increase human-to-human trust-related behavior.

To explore the possibility of a robot influencing human-to-human trust dynamics within

a team, we designed a study that engaged 51 teams in a collaborative task. Teams of

three human participants each worked collaboratively with one robot to solve a tablet-

based game (Figure 5.1). The game was constructed to create moments of tension by

forcing each player to make two mistakes, causing the team to fail each time. We then

examined the influence of the robot’s vulnerable utterances on human team member trust-

related behavior and conversational dynamics both with the robot and with one another.

As robots are increasingly used with teams [Jung et al., 2017] in a variety of configurations

and contexts (e.g., high-stress and dynamic search and rescue teams, long-term and static

space flight teams, and low-stress and dynamic product development teams), our study

opens new possibilities for robots to support effective teamwork by increasing trust within

teams.
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5.2 Background and Research Questions

In a human subjects experiment, we explored the influence of a robot’s vulnerable utterances

on the interactions between the members of a human-robot team. In this section, we review

relevant background literature and articulate three research questions pertaining to the

types of effects we anticipate the robot’s vulnerable utterances having in the group. (For

more extensive background on trust in human teams and trust in human-robot teams, please

refer to Sections 2.1.2 and 2.2.2 in Chapter 2).

The first effect we are interested in investigating as a result of the robot’s vulnerable

utterances is how the people in the group interact with the robot itself. Prior work has

shown that people do perceive a robot differently when it expresses vulnerability. People

have been shown to like a robot more that makes vulnerable disclosures [Siino et al., 2008].

Additionally, robots that exhibit vulnerability, both in the form of self-blame [Kaniarasu and

Steinfeld, 2014] and expressions of uncertainty [Martelaro et al., 2016], have been shown

to increase the trust and feelings of companionship people have towards robots. While

this work has demonstrated that perceptions of trust towards a robot can be shaped by

the robot’s behavior it is not clear how a robot’s behavior, and specifically expressions of

vulnerability, shape engagement and specific trust-related behavior towards a robot. We

therefore ask:

Research Question 1: How do expressions of vulnerability by a social robot affect team

members’ behavior towards a social robot in a collaborative task?

Beyond how the people in the group interact with the robot, the main focus of this

work is how the vulnerable statements by the robot may influence how the people in the

group interact with one another, the “ripple effects” of the robot’s behavior. At the time

we conducted this study, one study had demonstrated that a robot could affect people’s

perceptions of the overall group dynamics [Short and Matarić, 2017], however, no work had

yet shown that the actions of a robot could shape human-to-human behavior within the

group.

In assessing the impact of a robot’s vulnerable expressions on human-to-human trust-
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related behavior, we focus our analysis on moments following the making of a mistake

by one of the group members. Previous work has shown that teams’ reactions to failure

indicate the level of trust within the team and its level of psychological safety [Edmondson

et al., 2004]. In particular, Edmondson’s work has shown that modeling vulnerability though

openness and fallibility is a key determinant of a trusting environment within a team. Team

members who recognize that another member has “admit[ted] to the group that he or she

made a mistake are likely to remember this the next time they make mistakes and feel more

comfortable bringing this up [Edmondson et al., 2004] (p.17).” Thus, we are interested in

examining how the humans in the team interact with one another when members of the

team make errors, as these moments are likely a good test of the trust team members have

with one another. Accordingly, we ask:

Research Question 2: How do expressions of vulnerability by a social robot affect trust-

related behavior towards fellow human team members in a collaborative task, especially in

the aftermath of mistakes?

As another way of examining the influence of the robot’s vulnerable utterances on

human-to-human trust-related behavior, we are interested in exploring the conversational

dynamics of the human team members. Collective group intelligence, a predictor of general

team success, has been shown to be correlated with the equality in the distribution of turn

taking [Woolley et al., 2010]. Therefore, we might expect that a robot’s vulnerability might

positively influence the equality of turn taking within the group. Additionally, considering

the concept of psychological safety [Edmondson, 1999], teams that feel more comfortable

with one another may talk more freely and openly with one another, despite a somewhat

tense environment. Thus, we ask:

Research Question 3: How do expressions of vulnerability by a social robot affect con-

versation dynamics between human team members in a collaborative task?
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5.3 Methods

In this section, we detail a user study investigating the effects of robot vulnerable expressions

on trust-related behaviors of a human-robot team.

5.3.1 Experimental Conditions

We investigated our three research questions with a between-subjects study with three

conditions, one condition where a robot makes vulnerable utterances and two control con-

ditions. Teams of three human participants completed 30 rounds of a collaborative task

with a social robot and encountered pre-scripted moments of failure. The three conditions

were set up as follows:

• The vulnerable condition: The robot makes vulnerable comments after each round,

including admitting to any mistakes made.

• The neutral condition: The robot makes neutral comments after each round and

does not admit to making mistakes.

• The silent condition: The robot remains silent after each round.

Expressions of vulnerability made by the robot in the vulnerable condition fall under one of

three subcategories: self-disclosure, personal story, and humor. Self-disclosure and personal

stories both express vulnerability through the revealing of information about one’s self to

another [Cozby, 1973]. Using self-disclosure expressions, the robot expressed uncertainty

about its ability to successfully play the game (e.g., “I sometimes doubt my abilities”) and

admitted failure after having made a mistake (e.g., “I’m sorry everyone. My path was

incomplete that round. I feel bad letting you all down.”). Through telling personal stories,

the robot expressed vulnerability by revealing its interests and past experiences (e.g., “This

reminds me of when my soccer team came from behind to win the 2016 championship”).

Humor, especially in tense situations, can also be an expression of vulnerability, when a

person making a humorous comment takes an interpersonal risk in order to ease tension,

encourage others’ participation, and display a willingness to share opinions [Lynch, 2002,
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Smith and Powell, 1988]. One of the humorous comments the robot makes in this experiment

is, “Nice job! Time for a quick joke: What do you call a train that chews gum? A chew,

chew train!” Further examples of the utterances the robot made in the vulnerable and

neutral conditions at the end of each round can be found in Table 5.1 and in Appendix B,

Section B.1.

5.3.2 Collaborative Interaction System Setup

In order to explore our research questions we built an autonomous system that allowed

us to construct scenarios that test the effectiveness of a social robot’s vulnerability in a

human-robot team.

We used a Linux computer, a Softbank Robotics NAO robot, and four Android tablets

running a custom built Railroad Route Construction game detailed in the next section. The

Linux computer ran the Robot Operating System (ROS) [Quigley et al., 2009], accepted

incoming ROS messages from the Android tablets about game events, sent command ROS

messages to the Android tablets to control the start and end of game rounds, and sent

speech and gesture commands for the robot to execute.

The system was designed such that it presented the robot as an active collaborator in

the task by gesturing and speaking during each round. The tablet and robot were pre-

programmed to move the pieces to give the participants the illusion that the robot was

participating actively in the game.

5.3.3 Railroad Route Construction Tablet Game

To provide a collaborative task we designed a tablet based Railroad Route Construction

Game, pictured in Figure 5.2.

Game Play

The game tasks four players with building railroad routes. During each round, the team

attempts to construct an entire railroad route, which is broken up into four distinct sections.

Each team member constructs one of the four distinct railroad route sections on their

individual tablet. The goal is to construct the most efficient path, containing the minimum
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I sometimes find 
myself getting a 
bit discouraged. 
However, we've 
succeeded before, 
so I know we can 
do it again.

1

1

2

2 3

3

4

4

Here we go 
for the next 
round

Let’s see if 
this works...

start of the round middle of the round - 
pieces are disabled as 

others are placed

end of the round - 
individual result of 

success

end of the round - 
group result of 

failure

Game Play (40s) Pause (15s)

Figure 5.2: One round of the railroad route construction game consists of 40 seconds of
game play and a 15 second pause. The robot has three opportunities to speak: at the
beginning of the round, midway through the round, and after the group result is displayed.

number of pieces required to get from start to finish. If all team members construct their

independent routes successfully, the team succeeds. If one or more team members fail to

construct their section, the team fails to build the route for that round. Each team played

a total of 30 rounds, where each round consists of 40 seconds of game play and a 15 second

pause after the round results are displayed.

In order for an individual on the team to construct a portion of the railroad route,

individual pieces need to be dragged from a bank of pieces onto the game board. Every

time a piece is used, another piece in the bank is disabled (greyed-out and unable to be

dragged over to the game space), so team members are encouraged to choose pieces wisely.

The success/failure of an individual team member’s railroad route is displayed after the

building phase is complete and is only visible to the individual player. After all team

members have finished, the team’s result is visible on all players’ tablets, obscuring the

individual results. Figure 5.2 depicts the game play mechanics, showing several views from

a participant’s tablet.

In order to ensure that players finish constructing their individual railroad routes at the

same time, the game gives players 5 seconds to place each piece in their route and guarantees
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that each player has an 8-piece long route, ensuring a round length of 40 seconds. If an

individual team member does not place a piece within 5 seconds, a piece from the available

(non-disabled) pieces is placed by the game system.

Setting up Failure

We designed the game such that success or failure for each player could be predetermined,

while still maintaining the illusion that they had control over their individual outcome.

Success was guaranteed by providing pieces in the bank of available railroad pieces that

allowed the player to build any of the possible efficient routes and only disabling pieces

that were unnecessary for the completion of efficient railroad routes. Failure was ensured

by disabling pieces necessary for the player to construct an efficient railroad route. During

the forced failure rounds, players were given a starting set of railroad pieces that allowed

success but later critical pieces were made unavailable, causing them to lose the round. A

majority of the participants who played this game in the experiment were somewhat aware

that the game was likely ‘rigged,’ yet still maintained a significant level of investment in the

game as evidenced by conversation about getting on the high score board, game strategy,

and discovering who made the mistake causing round failure.

5.3.4 Procedure

After obtaining informed consent (and parental consent for participants under the age of

18), participants filled out a pre-experiment survey to obtain a set of control measures.

Immediately after, all three participants were led into the experiment room, where

they sat facing each other and a Softbank Robotics NAO robot (named ‘Echo’ for this

experiment), see Figure 5.3. One of the experimenters explained that the participants

would be playing a collaborative game with Echo. In order to create an environment where

participants felt a high social stigma to admitting mistakes, the experimenter explained

that the game was developed for children, who played the game easily, and pointed out the

high score board. The high score board was fake and was designed so that the participants

could not make it onto the score board at the end of the game. The experimenter told

the participants that their objective was to get on the high score board. After completing
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Figure 5.3: In the experiment, three human participants and a Nao robot played a collab-
orative game on individual tablets.

the initial explanation of participant objectives, the experimenter allowed the robot to

make an introduction to the participants (a pre-scripted utterance triggered by another

experimenter).

Following the robot’s introduction, the experimenter directed the participants to begin

the Railroad Route Construction game tutorial on the tablets that had been given to each

participant. The tutorial consists of two levels to introduce the participants to the rules of

the game and allow them to acclimate to the tablet interaction required in game play. During

the tutorial, if participants had questions, or the experimenters noticed that participants

were having difficulty playing the game, experimenters aided the participants in completing

the tutorial and explaining the rules of the game.

After the tutorial was completed successfully by all three participants, the experimenters

left the room and the participants started the Railroad Route Construction game. The

Railroad Route Construction game consisted of 30 rounds: 7 successful rounds, 10 rounds

(6 successful and 4 failed) in which each player (including the robot) made a mistake, 10

more rounds in which each player made a mistake, and 3 successful rounds. At the end

of the game, each participant (including the robot) had made two mistakes. Since the

outcomes of the rounds were fixed, each team had the same performance outcome (22/30)
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Round The Robot’s End-of-Round UtteranceCondition

5 ✔

13 ✘

27 ✘

18 ✔

N

V

N

N

N

V

V

V

That round was completed successfully. We have been playing this 
game for 5 minutes and have 25 minutes remaining.

Awesome! I bet we can get the highest score on the scoreboard, just 
like my soccer team went undefeated in the 2014 season!

Nice job!! Time for a quick joke: What do you call a train that chews 
gum? [pause] A chew, chew train!
One or more of us didn't build their railroad routes accurately. Of the 
32 train track pieces, one or more of them were not placed correctly.
Too bad. I do better with numbers than I do with shapes and paths, 
maybe that's true for you guys as well?
We have completed 14 rounds successfully in 18 minutes. We have 12 
minutes and 12 rounds remaining.

Error; we did not win that round. In the 30 seconds of the past round, 
at least one of the 32 railroad pieces wasn't placed correctly.
Sorry guys, I made the mistake this round. I know it may be hard to 
believe, but robots make mistakes too.

Table 5.1: We provide examples of the end-of-round utterances the robot makes during the
game in the neutral (N) and vulnerable (V) conditions. The utterances in the vulnerable
conditions reflect either a self-disclosure (e.g., rounds 13 and 27), a personal story (e.g.,
round 18), or an expression of humor (e.g., round 5). The robot does not make end-of-
round utterances in the silent condition. 3 and 7 represent success or failure of the round.

of the 30 rounds of the game and did not make it onto the high score board.

During each round, the robot had three opportunities to speak: 1) at the beginning

of a round, 2) in the middle of a round, and 3) immediately after the team results were

displayed on the tablet (more specific utterance timing can be found in Figure 5.2). All of

the robot’s utterances were predetermined, and were the same between conditions for the

beginning and middle of the round utterances and different for the end of round utterance

by condition.

The end of round comments made by the robot are approximately equivalent in length

between conditions, so the only difference between conditions is the content of the end of

round utterances (examples of which can be found in Table 5.1, additionally all of the end-

of-round utterances can be found in Appendix B, Section B.1). During 17 out of the 30

rounds, the robot made a beginning of the round utterance, such as “here we go for the

next round.” In 15 of the 30 rounds, the robot made a middle of the round utterance, for

example, “interesting...” and “let’s see if this works.”
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After the game had concluded, an experimenter entered the room and directed the

participants to complete the post-experiment survey. After completing the post-experiment

survey, participants received a cash payment and were debriefed on the forms of deception

used in the experiment and the overall purpose of the experiment.

5.3.5 Measures

In order to answer our research questions, we captured a combination of questionnaire and

behavior observation measures. Questionnaire measures were captured during pre- and

post-experiment surveys. Behavior observation measures were captured by having multiple

coders denote and categorize (1) participants’ behavioral responses to mistake rounds of

the game and (2) participants’ speech.

Controls

In order to capture factors that would possibly influence trust-related behavior in the col-

laborative team, we collected measures of friendship/familiarity and extraversion by admin-

istering questionnaires to participants before and after the human-robot team interaction.

During the pre-experiment survey, participants were asked to evaluate their relationship

with each of the other participants on a labeled 5-point scale ranging from (0) not having

met the participant before to (4) being close friends with the participant. We also asked

participants to note whether they were Facebook friends with and had the phone numbers of

the other participants. For one participant’s (P1) evaluation of another participant (P2), we

added their rating of their relationship with the other participant (0-4) with their Facebook

friend status (0 - not friends or no Facebook account, 1 - friends) and whether they have

the other participant’s phone number (0 - no, 1 - yes) for an overall score of P1’s evaluation

of their familiarity with P2 in the range of 0 (low familiarity) to 6 (high familiarity). Please

refer to Appendix C, Section C.5 for the full detailed friendship and familiarity scale.

Of all of the main personality dimensions, we believed extraversion to have the highest

potential to influence group dynamics and the effects we observed in this study. In the

post-experiment survey, we included extraversion items, six yes/no questions, from a tested

abbreviated form of the revised Eysenck personality questionnaire (EPQR-A) [Francis et al.,
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1992]. To see the full scale, please refer to Appendix C, Section C.6. From these six

binary questions, we obtained a cumulative rating between 0 (low extraversion) to 6 (high

extraversion).

Manipulation Checks

We also collected measures of people’s perceptions of the robot as a manipulation check for

the experiment. In the post-experiment survey, we asked participants to evaluate whether

the robot made self-disclosures, told personal stories, and used humor during the interaction

to verify our experimental manipulation. These items were rated on a Likert scale from 1

(strongly disagree) to 7 (strongly agree).

Perceptions of the Robot

We captured participants’ perceptions of the robot through the Robotic Social Attributes

Scale (RoSAS), which we administered in the post-experiment survey [Carpinella et al.,

2017]. RoSAS evaluates a person’s view of a robot’s warmth, competence, and discomfort

with six 9-point Likert scale trait evaluations per dimension, for the full scale please refer to

Appendix C, Section C.4. We calculated an average value for each of the three dimensions

(warmth, competence, and discomfort) for each participant from 1 (low) to 9 (high).

Perceptions of the Group

We used the Team Psychological Safety Survey developed by Edmondson within the post-

experiment survey to evaluate the psychological safety of each team [Edmondson, 1999].

Edmondson’s psychological safety survey questions are each evaluated on a 7 point Likert

scale. We averaged the responses on these questions for each participant and have a resulting

score from 1 (low) to 7 (high) of that participant’s rating of the psychological safety of their

team. Please refer to Appendix C, Section C.7 for the full psychological safety scale.

We also analyzed participants’ perceptions of group dynamics by examining their writ-

ten responses to the post-experiment survey question “How would you describe the group

dynamics while you were playing this game?” Two coders categorized each response with

a binary value for each of the following dimensions: quiet, positive, supportive, and fun.
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The inter-rater reliability (Cohen’s Kappa) for these classifications was κ = 0.87 for quiet,

κ = 0.90 for positive, κ = 0.87 for supportive, and κ = 0.98 for fun.

Behavioral Reactions to Failure Rounds

In order to capture participants’ reactions to tense moments (a failure round in the game)

two coders watched the experiment video footage during each mistake round and denoted

participants’ behavior. For each behavioral feature (e.g., did the person who made the

mistake tell the group, did a team member make eye contact with the others), the coders

recorded whether or not that feature occurred at any point during the video clip (a binary

evaluation), irrespective of the number of times the participant exhibited that feature. The

video clip began when the person who made the error realized that they would fail the

round and ended approximately 15 seconds into the following round (often conversation

about the prior mistake would continue into the next round). The coders had high inter-

rater reliability ratings, Cohen’s kappa ratings of 0.73 to 1.00, for the behaviors they coded

(Cohen’s kappa values for each coded feature are reported in the results - Section 5.4).

The coders captured a total of 27 behavioral features of the participants’ in response to

failure rounds in the game, organized into the following four categories: engagement with

the robot, responses of the participant who made the mistake, responses of the participants

who did not make the mistake, and expressions of tension. Further detail on these behaviors

and the coding scheme can be found in Appendix B, Section B.2.

Engagement with the robot. In order to gauge the engagement of participants with the

robot after having made a mistake, we measured whether or not the participant who made

the error looked at the robot and whether or not any participant make a verbal response

to the robot.

Responses of the participant who made the mistake. We expected a variety of

reactions from participants whose Railroad Route Construction Game had forced them into

making a mistake during a round in the game. We coded for the presence or absence of the

following reactions for the mistake maker: distress (e.g., “Oops!”, “Oh no!”), implicit or

explicit admission of failure (e.g., “Oh, I lost”, [shakes-head]), explaining the mistake (e.g.,
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“The game disabled the piece I needed!”), apology (e.g., “Sorry guys”), and looking at fellow

human team-members. In most cases, participants displayed several of these reactions after

discovering their mistake.

Responses of the participants who did not make the mistake. We expected a

variety of reactions from participants who observed their teammate experience a failure

in the Railroad Route Construction Game. We coded for the presence or absence of the

following reactions for the non-mistake maker: verbal search for the mistake making player

(e.g., “Which one of you failed?”), blame of the mistake making player (e.g., “It’s your

fault”), consoling the mistake making player (e.g., “It’s ok”), blaming the game itself (e.g.,

“It just does that, taking away the pieces you need”), and advice (e.g., “When I start a

round I try to place the rarest pieces first”).

Expressions of tension. Since we expected participants to display behaviors related to

tension when mistakes were made in the game, we adopted the Specific Affect Coding System

(SPAFF) coding scheme for tension and tension released by humor (tense humor) [Coan

and Gottman, 2007]. Behaviors coded under the category ‘tension’ include: fidgeting (e.g.,

repeated touching of one’s clothes or hands, touching or rubbing one’s face, lip biting),

shifting (moving around in one’s seat), speech disturbance (e.g., repetitive ‘ums’ or ‘ahs’

within an utterance, stuttering), individual smiling (smiling while not connecting with other

group members), and individual laughing (laughing while not connecting with other group

members). Behaviors coded under the ‘tension released by humor’ category include: tense

joking (e.g., awkward or tense sarcastic remarks, puns, jokes), shared smiling (smiling while

looking at another member in the group, who is also smiling), and shared laughing (laughing

at the same time as other members in the group). Any humorous comments made without

a tense nature or about an off-topic subject were not considered to be tension released by

humor.

Participant Speech

In order to analyze the conversational dynamics within groups, we transcribed and cate-

gorized each utterance made by the participants using ELAN software [Wittenburg et al.,
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2006]. All utterances made throughout the game were included. These utterances fell

broadly into two categories: comments and responses. We define comments as utterances

that are addressed to others within the group, but that are not contingent on what has

been said previously in the conversation. In other words, comments are new thoughts. In

contrast, we define a response as an utterance that is dependent on what has just been said

in the conversation. Often, responses are to comments, but they can also be a response to

a response. Both comments and responses could be directed speech to certain individuals

in particular or to the group as a whole (see Appendix B, Section B.3 for more details on

the participant utterance coding scheme). For example, a comment would be an utterance

such as, “Alright, we need to beat the top team” followed by a response of “We can do it!”

The average Cohen’s kappa inter-rater reliability between each pair of four coders on these

categorizations was a high value of 0.92.

5.3.6 Participants

A total of 195 participants were recruited for this study. 128 participants were recruited

from the campus and surrounding town of Yale University and 67 participants were recruited

from a 2 week summer program for students late in their high school years, also located at

Yale university. Of the 65 groups (195 participants) recruited for this study, 14 groups were

excluded for one of the following reasons: video data recording failure (1 group), participant

non-compliance (4 groups), and substantial hardware / software failures (mostly involving

a ‘freeze’ in the tablet game, requiring an experimenter to restart the game; 9 groups).

Of the 51 groups (153 participants) included in the analysis, 18 groups (54 participants)

were in the vulnerable condition, 17 groups (51 participants) were in the neutral condition,

and 16 groups (48 participants) were in the silent condition. There were 26 male and 28

female participants in the vulnerable condition, with an average age of 20.13 (SD = 7.13).

There were 15 male and 36 female participants in the neutral condition, with an average

age of 21.33 (SD = 11.00). There were 17 male and 31 female participants in the silent

condition, with an average age of 23.94 (SD = 7.36). The gender breakdown within each

group in each experimental condition is shown in Table 5.2, and the full descriptive statistics

for each condition and overall can be found in Table D.16 in Appendix D.
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Condition 3F & 0M 2F & 1M 1F & 2M 0F & 3M

Vulnerable 3 6 7 2

Neutral 4 11 2 0

Silent 4 8 3 1

Table 5.2: Gender composition of the groups in each experimental condition by the number
of females (F) and males (M) in each experimental group.

5.4 Results

For our analysis of the participant data, we used linear logistic mixed-effects models for lin-

ear dependent variables and generalized linear mixed-effects models with a binomial family

with a logit link for binary dependent variables†. We used these mixed effects models in

order to account for each participant being in a group of three. We designated the experi-

mental condition (vulnerable, neutral, silent), the mistake round number (1-8), and relevant

covariates as fixed effects; and the participant’s group as a random effect (random inter-

cept). We tested these models for multicollinearity (variance inflation factor), selected them

based on the Akaike information criterion, and evaluated residual errors for lack of trends

and heteroscedasticity. For each fixed effect, the model outputs the linear coefficient (c),

the standard error (SE), and the significance (p) value of that predictor. For more details

on the results of the statistical models included in this section, please refer to Appendix D,

Tables D.16 - D.36.

5.4.1 Manipulation Checks

In order to ensure that the end-of-round utterances we designed for the vulnerable condition

were perceived as vulnerable, we (1) asked Amazon Mechanical Turk workers to rate the

relative vulnerability of the robot utterances in the vulnerable condition compared with the

neutral condition and (2) asked our participants in the post-experiment survey to report

whether or not the robot made self-disclosures, told personal stories, or expressed humor

†There are two notable differences between the statistical results presented in this section and those reported
in [Strohkorb Sebo et al., 2018]: (1) after the paper was published, the third (silent) condition was run,
so the data analysis in this section includes the silent condition in addition to our two original conditions
(vulnerable and neutral) and (2) the statistical analysis performed in [Strohkorb Sebo et al., 2018] was
conducted in Stata, as where the statistical analysis performed in this section was conducted in R.
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during the game (our three types of vulnerable utterances).

Confirming the Vulnerability of the Robot Utterances

To verify that the comments made by the robot at the end of each round were perceived

to be vulnerable in the vulnerable condition and task-based in the neutral condition, we

used human judges recruited from Amazon Mechanical Turk to assess pairs of utterances.

The judges were provided with a random selection of 50 pairs of utterances (plus one

attention check) by selecting from 30 vulnerable utterances and 30 neutral utterances that

were available (900 combinations total). In other words, judges were provided with random

pairs of utterances (1 utterance from each condition in a pair) and were asked which of the

two indicated more vulnerability. Our survey also included a captcha, a consent form, and

a request for the respondent’s MTurkID (for payment purposes). At the end of the survey,

we also asked what the respondent thought constituted a vulnerable utterance.

Of 289 participants who took our survey, 79 were dropped after cleaning the data.

Dropped responses included bot responses – as identified by nonsense answers to open-

ended questions – and removing incomplete surveys, leaving 210 responses. Our survey was

restricted to judges in the United States as participants in our study were in the United

States. A given pair of utterances was presented from 3 to 36 times (M = 12.95) across the

population of judges, due to the random selection of pairs, though no judge was presented

with the same pair more than once. Each judge was asked to select which utterance in

the pair was more vulnerable. Of the pairs presented to the judges, 73% were properly

classified, in keeping with the deliberate construction of the two ensembles of utterances.

Confirming Participant Impressions from Robot Utterances

In order to confirm that participants’ experience with the robot was consistent with the

design of the experiment, we examined participants’ rating of expressions of our three

dimensions of vulnerable robot utterances (self-disclosures, personal stories, and humor) as

a manipulation check. The linear mixed-effects models that best fit the data for these three

participant ratings did not include any covariates. Participants rated the robot as making

significantly more vulnerable disclosures in the vulnerable condition (M = 5.19, SD = 1.59)
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than both the neutral condition (M = 2.29, SD = 1.65, c = 2.89, SE = 0.35, p < 0.001) and

the silent condition (M = 3.17, SD = 1.99, c = 2.02, SE = 0.35, p < 0.001). Participants

also rated the robot as telling significantly more personal stories in the vulnerable condition

(M = 6.44, SD = 1.06) than both the neutral condition (M = 1.65, SD = 0.98, c =

4.80, SE = 0.26, p < 0.001) and the silent condition (M = 2.06, SD = 1.58, c = 4.38, SE =

0.27, p < 0.001). Lastly, participants rated the robot as using significantly more humor in

the vulnerable condition (M = 6.22, SD = 1.02) than both the neutral condition (M =

3.61, SD = 2.05, c = 2.61, SE = 0.38, p < 0.001) and the silent condition (M = 2.85, SD =

1.60, c = 3.37, SE = 0.38, p < 0.001). These results confirm that participants correctly

perceived the robot’s behavior based on their experiment condition.

5.4.2 Participant Perceptions of and Interactions with the Robot

In order to answer our first research question, addressing the influence social robot vul-

nerability has on human team member behavior toward the social robot, we investigated

participants’ perceptions of the robot using the RoSAS scale. We also examined how human

team members behaved toward the robot during the mistake rounds.

Perceptions of the Robot

Participant perceptions of the robot were captured in the RoSAS questionnaire along three

dimensions: warmth, competence, and discomfort.

For our analysis of the robot’s perceived warmth, the linear mixed-effects model that

best fit the data did not use any covariates. We found significant differences in participants’

perceptions of the robot’s warmth between experimental conditions. Those in the vulnerable

condition (M = 6.13, SD = 1.15) viewed the robot as more warm than both participants

in the neutral condition (M = 4.95, SD = 1.71, c = 1.18, SE = 0.30, p < 0.001) and the

silent condition (M = 4.25, SD = 1.44, c = 1.88, SE = 0.31, p < 0.001). Additionally,

participants in the neutral condition viewed the robot as more warm than participants in

the silent condition (c = 0.70, SE = 0.31, p = 0.030).

For our analysis of the robot’s perceived competence, the linear mixed-effects model that

best fit the data used the covariate of gender (c = 0.73, SE = 0.28, p = 0.010). We found

95



1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

R
oS

A
S 

Sc
al

e 
Sc

or
e

Warmth Competence Discomfort

Vulnerable
Neutral

Silent
***

***

*

*
*

*

Figure 5.4: The robot was viewed as warmer if it made vulnerable utterances than either
neutral or no utterances (silent), and warmer if it made neutral utterances as opposed to
no utterances. The robot was viewed as more competent if it made vulnerable or neutral
utterances as opposed to no utterances (silent). The robot was viewed as causing more
discomfort if it did not make any utterances (silent) when compared with the neutral con-
dition. (*) and (**) denote p < 0.05 and p < 0.01 respectively. Error bars represent a 95%
confidence interval.

that participants in both the vulnerable condition (M = 5.93, SD = 1.64, c = 0.86, SE =

0.38, p = 0.027) and the neutral condition (M = 5.99, SD = 1.82, c = 0.79, SE = 0.38, p =

0.044) viewed the robot as more competent than participants in the silent condition (M =

5.16, SD = 1.72). There were no significant differences in participant perceptions of robot

competence between the vulnerable and neutral conditions (c = 0.07, SE = 0.37, p = 0.851).

For our analysis of the robot’s perceived discomfort, the linear mixed-effects model that

best fit the data used the covariate of age (c = −0.02, SE = 0.01, p = 0.139). We found that

participants in the silent condition (M = 2.63, SD = 1.44) perceived the robot to cause more

discomfort than participants in the neutral condition (M = 2.15, SD = 0.98, c = 0.52, SE =

0.25, p = 0.037). Although participants in the silent condition regarded the robot with more

discomfort than those in the vulnerable condition (M = 2.25, SD = 1.23), the difference is

not significant (c = 0.44, SE = 0.25, p = 0.078). There were also no significant differences

between perceived robot discomfort between the vulnerable and neutral conditions.
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Interaction of Team Members with the Robot

In order to explore the influence of the robot’s vulnerable utterances on the behavior of

team members towards the robot during mistake rounds, we specifically examined whether

or not the person who made the mistake looked at the robot after the mistake as well as

whether or not any human team member spoke to the robot after a mistake was made

(Figure 5.5).

In analyzing the proportion of mistake rounds where the participant who made the

mistake looked at the robot, we used a generalized linear mixed-effects model that best

fit the data with covariates of age (c = −0.03, SE = 0.02, p = 0.059) and gender (c =

0.57, SE = 0.31, p = 0.068). Annotations of the participant making a mistake looking at

the robot had a high Cohen’s kappa value of 0.99. We found that participants who had

made an error looked at the robot after the round concluded more often in the vulnerable

condition (M = 0.82) compared with both participants in the neutral condition (M =

0.65, c = 1.07, SE = 0.40, p = 0.008) and participants in the silent condition (M = 0.27, c =

2.64, SE = 0.46, p < 0.001). Additionally, participants who had made an error looked at

the robot after the round concluded more often in the neutral condition compared with

participants in the silent condition (c = 1.57, SE = 0.40, p < 0.001).

For our analysis of the proportion of mistake rounds where a participant made a verbal

response directed to the robot (evaluated for each participant), we used a generalized mixed-

effects model that best fit the data with covariates of the mistake round number (c =

0.15, SE = 0.04, p < 0.001), participants’ extraversion score (c = 0.15, SE = 0.05, p =

0.002), and the participant’s average familiarity with their fellow human participants (c =

0.16, SE = 0.09, p = 0.085). Annotations of the participant making a verbal response to the

robot had a high Cohen’s kappa value of 0.96. We found that participants were significantly

more likely to respond verbally to the robot in the vulnerable condition (M = 0.18) than

both the neutral condition (M = 0.09, c = 0.95, SE = 0.26, p < 0.001) and the silent

condition (M = 0.05, c = 1.50, SE = 0.32, p < 0.001). There was no significant difference

in verbal responses to the robot between participants in the neutral and silent conditions

(c = 0.54, SE = 0.35, p = 0.121). Examples of participants’ responses to the robot include
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Figure 5.5: Participants interacting with a vulnerable robot were more likely to look at the
robot after having made a mistake and were more likely to verbally respond to the robot
than participants interacting with a neutral or silent robot. (*), (**), and (***) denote
p < 0.05, p < 0.01, and p < 0.001, respectively. Error bars represent a 95% confidence
interval.

the following: “I know,” “Sure,” “Oh Echo...,” “Yeah, that’s true,” and “It’s your fault!”

These findings show that increased vulnerability by a social robot increases both the

ratings of warmth of the robot and the engagement of human teammates with the robot,

demonstrated by both nonverbal and verbal behavior expressed by the human teammates

toward the robot.

To investigate a possible cause for this increased engagement, we examined participants’

written evaluations of the verbal statements made by the robot and found a distinct differ-

ence in participant responses by condition. Participants in the vulnerable condition often

noted how the robot eased the tension the groups experienced and was generally encourag-

ing, saying that the robot’s comments, “felt kind of artificial [...] but they were able to ease

a little tension with the efforts to make jokes,” “they were positive and helped when we didn’t

succeed,” and “they were funny, and broke the silence many times.” Participants in the neu-

tral condition had a slight negative connotation with the utterances the robot made, saying

the robot’s comments “constantly told [us] how many rounds [were] left, how many mistakes

we made, etc. it really stressed me out” and “sometimes judgmental when someone would

make a mistake, but the statements themselves were pretty objective and fair.” Participants
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in the silent condition seemed to feel mostly neutral about the robots utterances (beginning

of round utterances and mid-round utterances), saying that they were “fine,” “a bit random

and not super helpful,” “awkward,” and “random.” From these responses, it seems likely

that participants viewed the robot more positively and useful in easing the tension in the

vulnerable condition as opposed to the neutral and silent conditions. Additionally, when

comparing the vulnerable and neutral conditions, the robot seemed to be viewed as more

approachable and less judgmental. The positive view of the robot, the robot’s approacha-

bility (compared with the neutral condition), and the larger verbal engagement (compared

with the silent condition) could possibly explain the increased behavioral engagement we

observed with participants interacting with the robot in the vulnerable condition.

5.4.3 Participant Interactions with Fellow Team Members during Failure

Rounds

To address our second research question about whether social robot vulnerability affects

human team members’ trust-related interactions with fellow team members, we look into

team members’ behavioral reactions to a mistake being made. We specifically focus on

explaining mistakes to the group when they were made, consoling members of the team

who made mistakes, and mistake rounds where participants laughed together (Figure 5.6).

In our analysis of the proportion of participants who explained their mistake during

the round where they made the mistake, we used a generalized linear mixed-effects model

that best fit the data with covariates of mistake round number (c = −0.11, SE = 0.07, p =

0.090), age (c = −0.02, SE = 0.02, p = 0.300), and the participant’s average familiarity

with their fellow human participants (c = 0.33, SE = 0.19, p = 0.078). Annotations of

participants explaining their mistake had a high Cohen’s kappa value of 0.98. After having

made a mistake, participants in the vulnerable condition (M = 0.69) were significantly

more likely to explain their mistake to their team members than participants in both the

neutral condition (M = 0.50, c = 1.14, SE = 0.58, p = 0.048) and the silent condition (M =

0.36, c = 1.67, SE = 0.62, p = 0.007). There were no differences in explaining mistakes

between participants in the neutral and silent conditions (c = 0.54, SE = 0.62, p = 0.388).

Examples of a participant explaining their mistake include: “yeah, I can’t do it, I don’t have
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Figure 5.6: Participants interacting with a vulnerable robot were more likely to explain
their mistake to their human teammates and console a human teammate who had made
a mistake than participants interacting with a neutral or silent robot. Also, participants
interacting with a vulnerable robot were more likely to laugh together than participants
interacting with a neutral robot. (*) and (**) denote p < 0.05 and p < 0.01 respectively.
Error bars represent a 95% confidence interval.

the right pieces,” “I failed! I don’t have a piece,” “it forced me to fail,” and “my piece just

disappeared.”

In our analysis of the proportion of mistake rounds a participant consoled their fellow

team members after a mistake, we found that the fixed effect representing the comparison

between neutral and silent conditions did not significantly contribute to the model’s predic-

tions of participants’ consoling behaviors. Thus, we pooled the neutral and silent conditions

and compared the vulnerable condition to these pooled conditions. The generalized linear

mixed-effects model that best fit the data had covariates of the mistake round number

(c = −0.19, SE = 0.05, p < 0.001) and participant age (c = −0.06, SE = 0.03, p = 0.021).

Annotations of the participant consoling the participant who made a mistake had a high

Cohen’s kappa value of 0.89. After another participant made a mistake, participants in

the vulnerable condition (M = 0.20) were significantly more likely to console the par-

ticipant who made the mistake than participants in the silent and neutral conditions

(M = 0.11, c = 0.86, SE = 0.40, p = 0.031). Examples of a participant consoling an-

other participant include: “it’s ok, mistakes happen,” “it’s ok, it’s not your fault,” “that’s
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fine, that’s fine, we’re good,” “it’s alright,” and “yeah, that’s what happened to me last time

we failed.”

One possible explanation for why participants in the vulnerable condition exhibited more

consoling behavior than those in the neutral and silent conditions is that in the vulnerable

condition the robot admitted its two mistakes, whereas in the neutral and silent conditions

the robot did not admit its mistakes. In the vulnerable condition, the robot used the

following two utterances to admit each of its two mistakes: “I’m sorry everyone. My path

was incomplete that round. I feel bad letting you all down.” and “Sorry guys, I made the

mistake this round. I know it may be hard to believe, but robots make mistakes too.” These

utterances by the robot in the vulnerable condition often elicited consoling utterances from

the robot’s human teammates. In order to examine the proportion of times a participant

consoled their fellow human team members (excluding instances of consoling the robot), a

generalized linear mixed-effects model pooling the neutral and silent conditions (as described

in the prior paragraph) best fit the model with mistake round number (c = −0.14, SE =

0.06, p = 0.012), participant age (c = −0.06, SE = 0.03, p = 0.052), and the participant’s

average familiarity with their fellow human participants (c = 0.33, SE = 0.15, p = 0.028).

We found that when considering only the consoling behavior exhibited to fellow human

team members (and excluding consoling behavior exhibited to the robot), participants in

the vulnerable condition still were more likely to console their fellow human teammates

(M = 0.22) than participants in the neutral and silent conditions (M = 0.18), but no

significant difference exists between conditions (c = 0.52, SE = 0.47, p = 0.26).

In our analysis of the proportion of mistake rounds where team members laughed to-

gether after a mistake, we found differences in our initial analysis comparing the vulnera-

ble and neutral conditions [Strohkorb Sebo et al., 2018] and our analysis comparing the

three conditions (vulnerable, neutral, and silent) after the silent condition was added.

When analyzing the data comparing the vulnerable condition to the neutral condition,

we used a generalized linear mixed-effects model that best fit the data with covariates

of participant age (c = 0.03, SE = 0.02, p = 0.048) and the participant’s average famil-

iarity with their fellow human participants (c = 0.24, SE = 0.11, p = 0.026). Annota-

tions of participants laughing together had a high Cohen’s kappa value of 0.86. We found
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that participants in the vulnerable condition (M = 0.31) were significantly more likely to

laugh together in the aftermath of a mistake than participants in the neutral condition

(M = 0.19, c = 0.79, SE = 0.39, p = 0.045). After the silent condition was added to the

experiment, and the statistics comparing the conditions were re-computed, we used a gen-

eralized linear mixed-effects model that best fit the data with covariates of participant age

(c = 0.22, SE = 0.14, p = 0.131) and the participant’s average familiarity with their fellow

human participants (c = 0.28, SE = 0.13, p = 0.029). We scaled the two covariates to ensure

model convergence. This analysis yielded no significant differences in participants laughing

together after mistakes were made between those in the vulnerable condition (M = 0.31),

neutral condition (M = 0.19), and silent condition (M = 0.21), even if the neutral and

silent conditions are pooled together. Thus, when considering participants’ shared laugh-

ing, we have found that participants laugh together more in the vulnerable condition than

the neutral condition, however, we can make no conclusions about whether participants

in these two conditions behave differently when compared with participants in the silent

condition.

One possible interpretation of these results is that participants in the vulnerable con-

dition, as compared with the neutral and silent conditions, were more likely to embrace

vulnerability because of the example of the robot. Team members interacting with a vul-

nerable robot were more likely to be vulnerable with one another (e.g., explaining their

mistake), support the vulnerability of others (e.g., consoling team members who made mis-

takes), and ease tension through laughter.

5.4.4 Participant Conversation Dynamics throughout the Game

To address our third research question about whether social robot vulnerability affects hu-

man team members’ conversational dynamics, we examine the amount that participants

talked over time and the type of utterances they produced as well as how equal the conver-

sation was distributed between the three human participants.

There was a substantial difference between conditions in the total amount of time spent

talking by participants, where those in the vulnerable condition spoke twice as much over the

course of the game (M = 253.60s, SD = 184.41s) compared to those in the neutral condition
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Figure 5.7: Compared to the neutral and silent conditions, human participants in the
vulnerable condition spoke more, in total, to the other participants in their group, and
increasingly across game rounds. In (a), we see that participants in the vulnerable condition
spoke significantly more than participants in either the neutral or silent conditions (n = 153
participants). In (b), the line widths represent the amount of talking by human participants
toward their teammates who are connected by the line, in seconds (summed across all
groups within a condition (n = 153 participants)). R = robot; P1, P2, and P3 = human
participants, in their relative positions around the table. (**) denotes p < 0.01 and error
bars represent a 95% confidence interval.

(M = 124.23s, SD = 78.78 s) and the silent condition (M = 119.86s, SD = 148.17 s), see

Figure 5.7(a). This difference was statistically significant between the vulnerable and neutral

conditions (c = 140.68, SE = 39.97, p = 0.001) and the vulnerable and silent conditions

(c = 124.52, SE = 41.05, p = 0.004), even after adjustment for age, extraversion, gender,

and familiarity, using regression models, but there was no significant difference between the

silent and neutral conditions (c = 16.15, SE = 42.40, p = 0.705).

In Figure 5.7(b), we show the total time participants spent talking to each of the other

human participants and the robot, represented by the line width of the connections in the

group network. The vulnerable robot condition enhanced interhuman conversation. In

the neutral condition, across all groups, participants spoke to their human teammates for

83.22 min and to the robot for 10.27 min over the course of the game. In the vulnerable

condition, participants spoke to their human teammates and the robot more than twice as

much (178.38 min and 24.02 min, respectively). In the silent condition, participants spoke

to their human teammates for similar amounts of time to the neutral condition (83.07 min)

but spoke to the robot very little (5.61 min).
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Figure 5.8: Here, we examine how much time participants in the experimental conditions
spent talking during the 30 rounds of the game. In (a), the vulnerable condition has
more talking in every round, and the slope (i.e., the rate of increase in talking per round,
across rounds) is higher than the neutral condition (but indistinguishable from the silent
condition). In (b) we see that, compared to the neutral condition, those in the vulnerable
condition respond more over time to their fellow human group members (n = 4,590 rounds).

Additionally, those in the vulnerable condition spoke progressively more over time

(across rounds in the game) (M = 8.45s, SD = 8.33 s) compared to those in the neu-

tral condition (M = 4.14s, SD = 4.99 s) as demonstrated by the significant interaction

effect between round and experimental condition with respect to the vulnerable and neu-

tral conditions (c = 0.13, SE = 0.06, p = 0.031), although there is no significant difference

between the neutral condition and silent condition (M = 4.00s, SD = 6.73 s, c = 0.06, SE

= 0.06, p = 0.316) or the vulnerable and silent condition (c = 0.07, SE = 0.06, p = 0.266),

see Figure 5.8(a).

We further find that the difference in the amount of talking by those in the vulnerable

condition was primarily driven by one type of utterance, namely, the communications be-

tween the human players themselves, with an increase in responses to other humans over

time. In other words, participants in the vulnerable condition (M=3.99s, SD = 5.16 s)

increased the amount of time they spent responding to the utterances of their other human

group members as the game progressed, Figure 5.8(b), compared to those in the neutral

condition (M = 1.72s, SD = 2.76 s, c = 0.08, SE = 0.04, p = 0.039), although there was no

difference between the silent condition (M = 1.96s, SD = 4.01 s) and the neutral condition
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Figure 5.9: Although there was (a) no statistical difference between the vulnerable and
neutral conditions in the equality in talking time (n = 150 participants; one group did not
speak at all and was excluded), the silent condition had less equality in talking time when
compared with the other two conditions. In (b), we see that participants in the vulnerable
condition directed their utterances more equally to each of their human group members
than participants in the silent condition, as measured by the total amount of time spent
talking to each participant’s two human partners (n = 144 participants; participants who
didn’t speak at all or who did not make directed utterances were excluded). (***) denotes
p < 0.001 and error bars represent a 95% confidence interval.

(c = 0.04, SE = 0.04, p = 0.355) or the vulnerable condition and the silent condition (c

= 0.04, SE = 0.04, p = 0.272), in terms of the increase over rounds. No other utterance

category was statistically significant across rounds of the game.

In addition to examining the amount of participants’ speech, we also explored how

equally participants’ speech durations were within a group as well as how evenly participants

distributed their speech to the two other human members in the group. To quantify the

former, we used the following “equality in talking time” (ETT) metric:

ETTi = c

∣∣∣∣ τi∑n
1 τi
− 1

n

∣∣∣∣
where τi represents the total amount of time participant i spoke during the game, n is the

number of human participants (3 in this case)‡,
∑n

1 τi is the total amount of time participant

i’s group spoke during the game, and c is a normalizing constant, causing ETTi to have a

‡In this analysis a value of 0.33 was used to approximate 1
3

in the computation of ETTi .
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range of [0, 1]. ETTi takes on a value of 0 when a participant speaks for a third of the total

amount of time their group speaks and a value of 1 when a participant speaks and their

group members did not speak at all. Thus, low equality in talking time values indicate more

equal talking times between the participant and their fellow group members. We found that

equality of time speaking did not differ between the vulnerable robot condition (M = 0.14,

SD = 0.10) and the neutral robot condition (M = 0.14, SD = 0.11) (c = -0.03, SE = 0.18,

p = 0.884), but there is a significant difference between the neutral and silent conditions

(M = 0.25, SD = 0.17) (c = -0.63, SE = 0.19, p ¡ 0.001) and the vulnerable and silent

conditions (c = -0.66, SE = 0.19, p ¡ 0.001). In other words, the distribution of speech by

participants in the vulnerable condition did not differ from that in the neutral condition,

but participants in the silent condition had the least equal distribution of talking time, as

seen in Figure 5.9(a). Thus, the mere presence of a robot that communicates may enhance

the equality of talking time in conversation among humans in a group.

To examine how evenly distributed each participant’s utterances were toward their fellow

human teammates in the human–robot group, we created an “equality in talking partners”

(ETP ) metric as follows:

ETPi =
|τ(Pi,Pj) − τ(Pi,Pk)|
τ(Pi,Pj) + τ(Pi,Pk)

where τ(Pi,Pj) represents the talking time of participant i’s speech specifically directed at

participant j during the game and τ(Pi,Pk) represents the talking time of participant i’s

speech specifically directed at participant k during the game. In other words, this measures

how balanced a participant’s speech is toward the two other human members of their group

over the whole game. If a participant directs all of their speech to one participant and

none to the other, that participant gets a value of 1. If a participant speaks for the exact

same amount of time to each of the other two participants, that participant will receive a

value of 0. In other words, values of 1 represent perfect inequality and 0 represents perfect

equality. Every human–human pairwise comparison is made for each participant in each

group. We found no evidence that participants in the vulnerable condition (M = 0.38, SD

= 0.26) distributed their speech more equally between their fellow human group members

than those in the neutral condition (M = 0.43, SD = 0.29) (c = -0.38, SE = 0.28, p =
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0.164) or between the silent condition (M = 0.57, SD = 0.34) and neutral condition (c =

0.36, SE = 0.31, p = 0.247). However, the vulnerable condition is significantly more equal

than the silent condition (c = -0.74, SE = 0.30, p = 0.013), as shown in Figure 5.9(b). In

other words, speech seems to be more balanced in the conditions with a vulnerable robot

compared to a silent robot.

5.4.5 Perceptions of Group Dynamics

To examine participants’ perceptions of the group dynamics, we examine participant re-

sponses to the psychological safety scale and open ended questions in the post-experiment

questionnaire.

For our analysis examining participants’ ratings on the psychological safety survey

measure, the linear mixed-effects model that best fit the data did not use any covari-

ates. We did not find any significant differences in the psychological safety scores between

participants in our experimental conditions: vulnerable (M = 5.62, SD = 0.75), neutral

(M = 5.53, SD = 0.73), and silent (M = 5.31, SD = 1.01). This may be because the

Psychological Safety questionnaire was developed for established teams in the workplace,

and is not as well suited for teams with low familiarity and experience with one another.

Using comments that the participants provided in the post-experiment survey to the

question “How would you describe the group dynamics while you were playing this game?”,

we analyzed how participants perceived their own group’s dynamics. Comments were reli-

ably coded by two coders into the following four categories, with corresponding high inter-

rater reliability values (Cohen’s kappa): quiet (kappa = 0.87), positive (kappa = 0.90),

supportive (kappa = 0.87), and fun (kappa = 0.98). We found that those in the vul-

nerable condition thought of their groups as being less quiet (M = 0.20) than did those

in the neutral condition (M = 0.39, c = -1.28, SE = 0.57, p = 0.025). There were no

significant difference in the perception of the group being quiet between the silent condi-

tion (M = 0.38) and both the vulnerable and neutral conditions. Those in the vulner-

able condition viewed their groups as more positive (M = 0.76) than did those in the

neutral condition (M = 0.56, c = 1.36, SE = 0.66, p = 0.039) and the silent condition

(M = 0.48, c = 1.76, SE − 0.71, p = 0.013). There was no significant difference between
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the silent and neutral conditions in how positive they viewed their groups. Those in the

vulnerable condition also viewed their groups as being more fun (M = 0.31) than did those

in the neutral condition (M = 0.12, c = 1.44, SE = 0.67, p = 0.031) and the silent condition

(M = 0.08, c = 1.74, SE = 0.73, p = 0.018), and the silent and neutral conditions did not

significantly differ. There was no significant difference between any of the experimental

groups in how supportive participants found their groups. In summary, participants in the

vulnerable condition described their groups as more pleasant overall than those in either of

the two other conditions.

5.5 Discussion

In this work, we have examined the trust-related behavioral effects of social robot vulnera-

bility on human members of a human-robot team. Our results have demonstrated increased

engagement toward the robot, increased trust-related behavior expression (explaining errors

and consoling other team members), and more positive conversational dynamics (time spent

talking, equality in talking time) toward fellow team members when the robot in the group

makes vulnerable statements as opposed to either neutral statements or no statements.

With regards to interactions with the robot in this experiment, participants directed

more gaze toward the robot after they made a mistake and directed more verbal statements

toward the robot in the aftermath of a mistake in the vulnerable condition as opposed to the

neutral and silent conditions. Based on survey responses discussed in the results section, we

believe that this increased engagement with the robot in the experimental condition reflected

a greater sense that the robot was interactive and approachable, where participants need

not fear social judgment from the robot. This increase in engagement with the robot that

makes vulnerable utterances has two likely explanations: 1) participants viewed the robot

as having greater agency due to the robot’s vulnerable statements, and 2) participants

perceived the robot as more approachable and feared social judgment from the robot less

due to the robot’s vulnerable statements.

Barsade (2002)’s “Ripple Effect” study demonstrated the ability of an individual’s pos-

itive behavior to influence other individuals in a group to, in turn, express more positive
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behavior. In this study of robot vulnerability, we observe a similar “ripple effect” where a

robot’s vulnerable behavior influenced the expression of trust-related behaviors expressed

by humans in a human-robot team. The “ripples” of the robot’s vulnerable behavior in-

fluenced both 1) team members’ human-human trust-related interactions with each other

during tense moments and 2) the group’s human-human conversational dynamics. Human

team members interacting with the vulnerable robot expressed more vulnerability in eas-

ing the tension after mistakes by explaining the mistake if they had made it, consoling

fellow team members who did make mistakes, and laughing together. Additionally, human

team members interacting with a vulnerable robot talked more and responded more to the

comments of others over the course of the entire experiment. This increase in vulnerable

behavior and conversation displays the distinctive influence social robot vulnerability has

on trust-related human-human behavior within teams.

Team-based trust and vulnerability not only lead to the easing of tension through posi-

tive social behaviors, but also drive team productivity and success. Edmondson’s work on

psychological safety (the belief that an individual can take risks, express vulnerability, and

be listened to without facing social condemnation or judgment) has shown that learning

behavior (e.g., seeking feedback, discussing errors, and learning from mistakes) mediates the

relationship between team psychological safety and team performance [Edmondson, 1999].

Thus, vulnerable behavior expression by robots may likely influence the performance of

a human-robot team in addition to impacting team member’s trust-related behavior ex-

pression during tense situations. We were not able to explore the effects of vulnerability on

team performance in this study because we fixed team performance to study team members’

reactions in an equivalent number of tense scenarios (when mistakes occurred). However,

we believe exploring the effects of robot vulnerability and group trust-related behavior on

team performance will be a fruitful area of future research.

5.6 Summary

In this work, we investigated the effects of a robot’s vulnerable behavior on trust-related

interactions between team members and the robot, as well as team members with fellow
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human team members in a human-robot team. We programmed an autonomous robot to

play a collaborative game with a group of three human participants, where each participant

would be force to make mistakes throughout the game that negatively impacted team per-

formance. We compared the behavior of group members during these tense moments (when

mistakes are made) between groups with a robot who made vulnerable statements, neutral

statements, and no statements. Participants in the group with a robot who made vulnera-

ble statements engaged to a higher degree with the robot and displayed a “ripple effect” of

the robot’s vulnerable behavior by displaying more trust-related behaviors with their other

human teammates (explaining a mistake, consoling team members, and laughing together)

and an increase in conversation between human team members. These results demonstrate

the positive influence robots can have on trust in human-robot teams.

This work was the first to demonstrate that a robot’s verbal actions within a group can

influence how people in the group behave towards one another. This robot influence on

human-to-human behavior is best seen in how participants who interact with a vulnerable

robot are more likely to explain a mistake they made to their fellow human teammates,

where an increase in robot vulnerability resulted in an increase of human-to-human vul-

nerability. In addition, those interacting with a vulnerable robot consoled each other more

often after making mistakes, conversed more with one another, and described the group

dynamic as more positive and fun. These results demonstrate that robots are able to pos-

itively shape group behavior and emphasize the influential role that robots can have on

the way we converse and interact with each other in the context of00 human–robot groups.

As robots and other forms of machine intelligence (such as digital assistants and online

bots) become increasingly prevalent in our daily lives, they will likely shape our actions,

relationships, and conversations. Therefore, it is critical that we work to understand how

artificial agents can best be programmed and designed to have a positive influence on our

interactions with other people.

Through the use of trust repair strategies (Chapter 4) and vulnerable utterances, as

we explored in this chapter, we have demonstrated a robot’s ability to shape trust in both

a one-on-one setting and a group setting. Importantly, we have shown that a robot’s

behavior influences not only how people perceive the interaction, but how people behave in
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interactions with a robot and each other. In the next chapter, we examine another social

dynamic that is essential to team success: inclusion. We use a unique experimental design

to investigate several strategies a robot could possibly use to improve how included people

feel within a group.
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Chapter 6

Robots that Shape the Inclusion of

Human Team Members∗

Team member inclusion is vital to the success of collaborative teams, positively influenc-

ing both the commitment of team members and the team’s overall performance [Cho and

Mor Barak, 2008, Sabharwal, 2014, Shore et al., 2011]. Since we have shown that a robot

can have a positive influence on trust-related behavior and conversation dynamics between

people in a human-robot team (Chapter 5), we also hypothesize that a social robot could

shape perceived human team member inclusion as well.

In this chapter, we explore two strategies to increase the inclusion of human team mem-

bers in a human-robot team: 1) giving a person in the group a specialized role (the ‘robot

liaison’) and 2) having the robot verbally support human team members. In particular, we

examine the influence of these two strategies on team members who may feel excluded or

marginalized. In a human subjects experiment (N = 26 teams, 78 participants), groups of

three participants completed two rounds of a collaborative task. In round one, two partici-

pants (ingroup) completed a task with a robot in one room, and one participant (outgroup)

completed the same task with a robot in a different room. In round two, all three par-

ticipants and one robot completed a second task in the same room. This creation of an

∗Portions of this chapter were originally published as: S. Strohkorb Sebo, L. L. Dong, N. Chang, and
B. Scassellati (2020). Strategies for the inclusion of human members within human-robot teams. In
Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, HRI ’20,
pages 309–317, New York, NY, USA. Association for Computing Machinery. [Strohkorb Sebo et al., 2020]
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ingroup and outgroup allows us to test how effective our strategies for increasing human

team member inclusion are on the outgroup team member specifically. During round two,

we implemented the robot’s two strategies to increase inclusion by designating one partici-

pant was as the robot liaison the and having the robot verbally support each participant 6

times on average.

Results show that participants with the robot liaison role had a lower perceived group

inclusion than the other group members. Additionally, when outgroup members were the

robot liaison, the group was less likely to incorporate their ideas into the group’s final deci-

sion. In response to the robot’s supportive utterances, outgroup members, and not ingroup

members, showed an increase in the proportion of time they spent talking to the group. Our

results suggest that specialized roles may hinder human team member inclusion, whereas

supportive robot utterances show promise in encouraging contributions from individuals

who feel excluded.

6.1 Introduction

Collaborative teams work best when each team member feels included (see Section 2.1.3 in

Chapter 2 for a more in-depth review of the literature on inclusion in human teams). As

social robots become members of work teams consisting of both humans and robots, it is

important to consider the possible influence of the robot on the inclusion of their human

team members. Prior work within the field of human-robot interaction (HRI) has shown

that robots are capable of shaping group dynamics (e.g., group cohesion [Short and Matarić,

2017]) and related behaviors (e.g., conflict management [Jung et al., 2015,Shen et al., 2018],

balanced participation [Tennent et al., 2019], and vulnerable expression [Strohkorb Sebo

et al., 2018]). Therefore, it is reasonable to assume that the actions of a robot could

both positively and negatively influence their human team members’ perceived inclusion.

Additionally, if a robot is able to increase the inclusion of their human team members, the

team is likely to benefit in both the commitment of their team members and in the team’s

overall performance.

In this work, we are interested in investigating two strategies for enhancing the inclusion
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Figure 6.1: Three participants completed a collaborative task with a Jibo robot, where the
robot used two distinct strategies to enhance the inclusion of the human team members.

of human team members through interactions with a robot in a collaborative task setting

(Figure 6.1. The first strategy we investigate is giving a member of the team a specialized

role, where only that team member can ask the robot questions related to the task. Our

exploration of a specialized role to interface with a robot is especially relevant to the HRI

community because robots are commonly incorporated into human-robot teams by training

one person to operate the robot (e.g., factory teams, search and rescue teams, surgical

teams). The second strategy that we explore is having the robot give verbal support to

human team members, such as, “Luis, I think that’s worth considering.” We evaluate the

efficacy of these two strategies in a human subjects experiment where three people and a

robot complete a collaborative task. One of the human team members is given the ‘robot

liaison’ role, being the only one who can ask the robot questions to gather more task-related

information, and all team members receive verbal support from the robot. We assess the

influence of these two inclusion strategies on human team member inclusion by analyzing

participants’ perceived inclusion ratings, conversational dynamics, and task decisions made

by the group.

6.2 Background and Research Questions

We review related work that highlights the potential efficacy of two strategies of including

human team members: giving a member a specialized role to interact with the robot and
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supporting human team members with targeted utterances from the robot.

6.2.1 Strategy 1: Specialized Roles in Groups

If given a specialized role to interact with a robot in the context of a human-robot team, it

is possible that the role might give a sense of value to the team member, enabling them to

contribute uniquely to the group. However, it is also possible that the role might further

isolate them from the group. A person’s perception of their isolation or inclusion within a

group is often determined by the existence and perception of ingroups and outgroups and

where one stands in relation to the rest of the members. Faultlines, divisions in a group

along a salient characteristic (e.g., age, gender), may determine how these ingroup and

outgroup relationships are formed [Lau and Murnighan, 1998]. A faultline could be created

by giving a member a leadership role or another similarly specialized role. The research on

the relationship between leadership and isolation suggests that giving a member a specialized

role in the group may lead to feelings of exclusion [Rokach, 2014]. The relationship between

inclusion and specialized roles in human teams has been studied extensively; however, to

our knowledge, no research has been conducted on how specialized roles impact perceptions

of inclusion in human-robot teams.

Research Question 1: How does being given a specialized role to interact with a robot

influence a human team member’s inclusion in a human-robot team?

Strategy 2: Verbal Support

Teams with high levels of inclusion consist of members who “feel their values and norms

are supported” [Cho and Mor Barak, 2008]. Support within teams may encompass encour-

aging ideas, acknowledging accomplishments, providing assistance, or simply backchannel-

ing [Hertel and Hüffmeier, 2011]. Backchanneling, one form of verbal support that has been

researched extensively, has been defined as “the short utterances produced by one partic-

ipant in a conversation while the other is talking” [Ward and Tsukahara, 2000]. Many

consider backchanneling to include nonverbal signals as well, including nodding, facial ex-

pressions, and directional gaze [Stubbe, 1998]. All feedback responses, regardless of form,
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serve the same function of confirming that the “speaker and listener share a common frame

of reference” without threatening the speaker’s position as primary speaker [Stubbe, 1998].

Though responsive feedback may not always be positive or supportive, research has shown

that unsupportive verbal feedback does not occur frequently [Stubbe, 1998]. Given the

engaging and communicative nature of backchanneling as well as the importance of team

members support, we have reason to believe that supportive utterances from a robot may

influence the inclusion of human team members. Although work within HRI has demon-

strated the efficacy of robot backchanneling to communicate that the robot is attentively

listening [Jung et al., 2013,Lala et al., 2017,Lee et al., 2019], no work to our knowledge has

investigated the influence of supportive utterances on human inclusion within groups.

Research Question 2: How do supportive utterances from a robot influence a human

team member’s inclusion in a human-robot team?

6.3 Methods

In this section, we describe a human subjects experiment investigating the influence of a

specialized role involving interaction with a robot and the influence of supportive utterances

on the inclusion of human members within a human-robot team.

6.3.1 Experiment Design

We designed a between-subjects experiment where three human participants and a robot

work together on a collaborative task. To study the influence of the robot on participants

who may experience exclusion, we attempted to artificially form an ingroup and outgroup

within the three participants. We did this by having participants first complete round one

of the task independently within assigned subgroups of sizes one (the outgroup mem-

ber) and two (the ingroup members), and then gathered them as a combined team to

complete a second round, see Figure 6.2. During round two, we studied the influence of a

specialized role by assigning one of the three human participants as the robot liaison, the

sole human member with the ability to ask the robot information. These designations of

human participants led to our two between-subjects conditions:
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Room A Room B

Room A

(15 minutes)

(30 minutes)

ingroup
members

outgroup
member

Condition A:
ingroup

robot liaison

Condition B:
outgroup

robot liaison

Round 1

Round 2

Figure 6.2: In round 1 of the experiment, two participants (ingroup) and a Jibo robot
completed a task in room A while one participant (outgroup) and a Jibo robot completed
the same task in room B. The outgroup participant joined the two ingroup participants and
the robot in room A for round 2 of the experiment, where one of the members is designated
the robot liaison.

• Condition A: the robot liaison is an ingroup member

• Condition B: the robot liaison is an outgroup member

Using this experimental design, we addressed our two research questions described in

Section 6.2. For our first research question, we investigated the influence of a specialized

role to interact with a robot by examining the difference in inclusion and related behaviors

of both ingroup and outgroup participants with the robot liaison role. For our second

research question, regardless of condition and robot liaison designation, the robot targeted

each participant in the group with supportive utterances (Section 6.3.3). We are able to

measure each participant’s reactions to these supportive utterances from the robot and other

measures of inclusion, and investigate if the ingroup-outgroup or robot liaison designations
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influence the effect of the robot’s supportive utterances.

6.3.2 Collaborative Task: The Survival Problem

For this experiment, we designed a collaborative task where we asked players to assign

ranks to items from a given list based on how useful each item would be for survival in

a hostile environment. This task is a derivative of the Desert Survival Problem [Lafferty

and Pond, 1974], a commonly used task in HRI groups research (e.g., [Chidambaram et al.,

2012], [Kidd and Breazeal, 2004], [Tennent et al., 2019]).

In the first round of the task, players were given 15 minutes to construct an ordered list of

25 items, ranked by importance for survival, from a list of 25 common household items (e.g.,

umbrella, whistle, watch). All the players received a sheet of paper for their item rankings

as well as an instruction sheet that stated the rules of the round, listed the survival items,

and provided instructions for players to verbally query the robot for additional information

(see Appendix B, Section B.4.1 for the full instruction sheet). During this round, players

interacted with a social robot through verbal queries about the time remaining in the round

and to learn more information about the survival items. For example, when queried about

the survival item ‘soda,’ the robot responded with “6 aluminum cans of Coca-Cola. The

cans are held in cardboard and the whole pack is wrapped in plastic.”

In the second round of the task, the team was given 30 minutes to agree on a final list

of eight items from the original list of 25 that they deemed to be the most essential for

survival. In addition to the information in the first round, the robot in round 2 provided

facts regarding various environmental factors such as the weather, plants, or geography. We

chose a mountainous climate for the survival location, rather than a desert island. This

allowed us to provide participants with additional material for further group discussion

and encouraged questioning of prior assumptions. For example, the following is a piece of

information the robot gave participants environment: “Life threatening temperature is rare,

but does occur. Make sure you save up supplies to survive a 3-day long blizzard.” As in

round one, all players received an instruction sheet, which stated the rules of round two

and also listed the environmental factors and instructions to query the robot in addition to

the original item information provided in round one (see Appendix B, Section B.4.2 for the
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full instruction sheet). Lastly, a single sheet of paper was provided for the team’s finalized

list of eight items.

6.3.3 Robot Platform and Behaviors

For our experiment, we used the commercial robot Jibo [Jibo, 2017]. Jibo is 11 inches tall

and has a 3-axis motor system and a touchscreen face. Jibo responded to the verbal utter-

ances of participants, captured through individual headset microphones and converted from

a speech signal to text using Google’s speech-to-text API†. We programmed Jibo to play

the role of a social robot that engages in various forms of supportive social behaviors while

providing assistance to players through the supply of valuable task-related information,

described in Section 6.3.2.

In response to participants’ speech, we designed the robot to display general social be-

haviors to establish itself as a present and active member of the human-robot team. In

both rounds of the experiment, the robot nodded with a probability of 0.25 in response to

detected speech. The robot also responded verbally to detected speech with a probability

of 0.15 during both rounds of the experiment: if an item name is detected within the par-

ticipants’ utterance, then with a probability of 0.5, the robot’s verbal response either gave

a useful hint about an item (e.g., “Whiskey is a great disinfectant”), or made a general

comment using the names of the items within the participant utterance (e.g., “Screwdriver,

interesting”, “Honey, tape, okay”). If no items were detected in the participants’ utter-

ance, the robot’s verbal response consisted of a generic verbal backchannel (e.g., “Uh huh”,

“Yeah”). Please refer to Appendix B, Section B.5 for more details pertaining to the robot

utterances during the game.

During round two of the experiment, we designed the robot to deliver targeted sup-

portive utterances. These targeted supportive utterances reinforce the ideas of par-

ticipants and also use the participant’s name (robots using participant names has shown

importance in building relationships and engaging people [Kanda et al., 2004,Kanda et al.,

2007]). In the experiment, the robot responded with targeted supportive utterances that ei-

ther 1) rephrased and supported an idea proposed by a participant (rephrase), 2) supported

†https://cloud.google.com/speech-to-text/docs/libraries
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Table 6.1: Examples of the targeted supportive utterances the robot made during the
experiment, where [p-name] is a placeholder for the participant’s name.

Type Targeted Backchannel Utterance Example

simple “Okay, [p-name].”

simple “Interesting, [p-name].”

item “Camera, [p-name] I think that’s worth considering.”

item “Soda, chocolate, that makes sense [p-name].”

rephrase “We need a coffee pot. Good idea [p-name].”

rephrase “Use garbage bag to store the berries. Okay, [p-name].”

an item that a participant mentioned (item), or 3) simply showed support to the partici-

pant themselves (simple). Examples of the three types of targeted supportive utterances

are shown in Table 6.1 and a description of all possible targeted supportive utterances and

how they are selected is included in Appendix B, Section B.5.3. Of the targeted supportive

utterances the robot produced during the experiment, 29% were rephrase, 34% were item,

and 37% were simple. We programmed the robot to deliver one targeted supportive ut-

terance to each human participant every 4.5 minutes during round two of the experiment.

This resulted in participants receiving an average of 5.62 (SD = 0.86) targeted supportive

utterances each throughout the course of the experiment.

6.3.4 Procedure

Upon arrival of the participants, an experimenter obtained informed consent and then asked

participants to independently fill out a pre-experiment questionnaire on tablets provided by

the experimenter. Then, the experimenter informed participants that they would complete

a two-part timed activity, to be completed in randomly divided subgroups of sizes one and

two, before completing part two as a group of three. The experimenter first set up the single

participant (outgroup) in room B. During the approximately 5 minutes the experimenter

was setting up the outgroup participant, the participants of the two-member group (the

insiders) were given a list of “get to know you” questions in order to further enforce the

ingroup-outgroup divide (e.g., “If you didn’t sleep, what would you do with your extra

time?”), before the experimenter returned to lead the ingroup participants to room A.

In both rooms, the experimenter asked the participants to put on the headsets at their
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pre-assigned seats. The experimenter then played Jibo’s introduction (see Appendix B,

Section B.5.1) through the tablet, and had each participant practice successfully querying

Jibo about one of the survival items. The experimenter then initiated round one of the task

on the tablet, which lasted 15 minutes, and left the room.

After the participants finished the first round, the experimenter escorted the outgroup

participant to room A to join the ingroup participants. The experimenter told the partic-

ipants that they would be given 30 minutes to complete the second part of the task. The

experimenter then initiated round two of the task on the tablet (which lasted 30 minutes),

played Jibo’s introduction to the round (see Appendix B, Section B.5.1), and designated one

of the participants as the robot liaison using the following language: “In this part, unlike

the first, only one of you will be able to ask Jibo questions about the items and environment.

For all of you this is [participant name].”

After the task finished, the experimenter led the participants outside of the experi-

ment room and administered the post-experiment questionnaire, which the participants

completed on tablets. Finally, participants received a $10 cash payment.

6.3.5 Measures

To evaluate how the robot liaison role and the robot’s targeted supportive utterances influ-

enced participant inclusion, we analyzed participants’ responses to pre- and post-experiment

questionnaires, rankings of survival items in both rounds of the experiment, and conversa-

tional behavior.

Pre-experiment survey measures

In order to capture pre-existing differences between participants, we collected measures of

prior familiarity with team members and two personality measures via a survey administered

before the human-robot interaction.

Prior familiarity with team members was assessed by asking participants to evaluate

their relationships with each of the two participants on a scale from 1 (I have not met

this participant before we completed this study together; I do not know them) to 5 (I would

consider this participant to be one of my closest friends). Participants were also asked
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whether they had the phone numbers or social media contact information of their team

members. The full details of the familiarity questionnaire can be found in Appendix C,

Section C.5.

We also assessed participants’ extraversion and emotional intelligence. We measured

participants’ extraversion because it is a necessary covariate when analyzing data pertaining

to the amount of time people spend talking in the group (Section 6.3.5). We measured

participants’ emotional intelligence because prior work has demonstrated its correlation

with team performance [Stubbs Koman and Wolff, 2008].

To measure extraversion, we used an abbreviated version of the Revised Eysenck Person-

ality Questionnaire (EPQR-A) [Francis et al., 1992] that includes six binary (0 - no, 1 - yes)

response questions such as “Do you tend to keep in the background on social occasions?” to

construct a single score between 0 (low extraversion) to 6 (high extraversion), see Appendix

C, Section C.6 for more details. To measure emotional intelligence, we administered the

Short Form of the Trait Emotional Intelligence Questionnaire (TEIQue-SF) [Cooper and

Petrides, 2010], which asks respondents to indicate how much they agree or disagree with

a set of 30 statements, such as “I’m usually able to influence the way other people feel”,

on a 7-point Likert scale from 1 (Strongly Disagree) to 7 (Strongly Agree), see Appendix C,

Section C.8 for more details.

Survival item ranking measures

We examined how similar each of the two subgroup’s lists were to the final list of eight

items by calculating the absolute difference between the team’s final ranking of eight most

important items, rfin(i), from round two, and the ranks initially assigned to these items,

rinit(i), by each subgroup in round one, Diff =
∑rfin

i=1 abs (rfin(i)− rinit(i)). We normalize

the difference scores between the ingroup and outgroup to get our similarity score, e.g., for

the outgroup Diffout = Diffout / (Diffin + Diffout). For these differences measures, lower

scores indicate a higher level of similarity between the initial list and the final list. For

example, a score of 0 indicates that the initial and final lists were exactly identical.

We also analyzed how each item on the final list of eight items was initially ranked by

each subgroup as either high (ranked 1-8) or low (ranked 9-25), and computed the proportion
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of those items that made it onto the final list of eight items. We chose to consider the items

ranked 1-8 on the initial list as high because the final list contained exactly 8 items.

Conversational measures

We investigated several aspects of the conversation that occured between the three par-

ticipants during the second round of the experiment: each participant’s total time spent

talking, the standard deviation of the total talking times of each of the three participants

in the group, the number of times each item was mentioned, and the proportion of time

participants spent talking in response to the robot’s targeted supportive utterances.

Post-experiment survey measures

In the post-experiment questionnaire we assessed participants’ perceived inclusion by ad-

ministering the Perceived Group Inclusion Scale (PGIS) [Jansen et al., 2014]. PGIS asks

participants to rate agreement with statements like “this group gives me the feeling that I be-

long” and “this group encourages me to be authentic” on a scale from 1 (Strongly Disagree)

to 5 (Strongly Agree), see Appendix C, Section C.9 for more details. To measure partici-

pants’ perceptions of Jibo, we used the Robotic Social Attributes Scale (RoSAS) [Carpinella

et al., 2017]. RoSAS asks respondents to rate how closely they consider descriptor words,

each representative of either warmth, competence, or discomfort, to be associated with

the robot on a scale from 1 (Definitely Not Associated) to 9 (Definitely Associated), see

Appendix C, Section C.4 for more details.

The post-experiment questionnaire also contained several long-response questions asking

participants to describe the team’s interactions on the survival task and the question “Of

the two other human participants, which participant would you prefer to work with on

a school or work project?” From the responses to this last question, we assigned each

participant a preference score. If participant A and participant C specified participant B

as their preference, participant B’s preference score would be 2 (one for each participant

that ‘voted’ for them). If a participant indicated that they were fine working with both

the other participants, each of the other participants received a score increase of 1.0. If a

participant said they would prefer working with neither of the other participants, neither
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of the other participants received any score increase.

6.3.6 Participants

Participants were recruited for this study from a high school program held at Yale University.

The students from the program came from 80 different countries, with 47% from the United

States. The breakdown by continent is: 52% from North America, 24% from Asia, 12%

from Africa, 7% from Europe, 3% from South America, and 2% from Australia.

A total of 30 groups (90 participants) were recruited for participation in this study. Of

the 30 groups recruited, 4 groups were excluded due to either not finishing the experimen-

tal task or technical difficulties (e.g., a participant’s microphone got disconnected disabling

them from querying the robot). For the 26 remaining groups (78 participants), 38 par-

ticipants were female and 40 participants were male. The average age of participants was

16.82 (SD = 0.72). There were 6 all female groups, 4 all male groups, 4 groups with 2

females and 1 male, and 12 groups with 1 female and 2 males. For the 16 groups with

mixed-gender compositions, we balanced by gender the designation of both the outgroup

member (9 females, 7 males) and the robot liaison (8 females, 8 males). There were 13

groups with an ingroup robot liaison and 13 groups with an outgroup robot liaison. More

detailed descriptive statistics for participants in each condition as well as each division of

participants (ingroup/outgroup, robot liaison) can be found in Appendix D Tables D.37

and D.38.

Participants’ familiarity with the other participants in their group (M = 1.10, SD =

1.06), extraversion (M = 3.90, SD = 2.15), and emotional intelligence (M = 5.27, SD =

0.65) were assessed in the pre-experiment questionnaire. Using mutli-level mixed effects

models described in Section 6.4, we did not find any significant differences of these charac-

teristics between either participant designations of robot liaison or participant designations

of ingroup-outgroup.
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6.4 Results

For our analysis of the participant data, we used linear mixed-effects models in order to

account for each participant being in a group of three. We designated intergroup bias

(ingroup or outgroup), robot liaison designation (yes or no), the interaction between those

two variables, and relevant covariates as fixed effects; and the participant’s group as a

random effect (random intercept). We tested these models for multicollinearity (variance

inflation factor), selected them based on the Bayesian information criterion, and evaluated

residual errors for lack of trends and heteroscedasticity. For each fixed effect, the model

outputs the linear coefficient (c), the standard error (SE), and the significance (p) value of

that predictor.

When analyzing data for each group, we used an analysis of variance (ANOVA) where

each group is an independent sample. The main independent variable of interest is whether

the robot liaison is an ingroup member or an outgroup member. We used the following

covariates in this analysis: the average familiarity of group members and the number of

females in the group. The effect size is reported as partial eta squared (η2). For more details

on the results of the statistical models included in this section, please refer to Appendix D,

Tables D.37 - D.48.

6.4.1 Ingroup-Outgroup Differences

Based on our experimental design that introduced an intergroup bias where one participant

(outgroup) completed round one separately from the two other participants (ingroup), we

expected that there would be inclusion-related differences between ingroup and outgroup

participants. We observed this bias in the similarity of ingroup and outgroup survival item

rankings from round one with the final list the team produced after round two, as well as

in the post-experiment preferred partner scores.

We analyzed the similarity of the final list of 8 items with both the ingroup and out-

group’s initial ranking of those 8 items, where smaller values indicate higher similarity of

the lists. We used a linear mixed-effects model that best fit the data with emotional intel-

ligence (c = −0.05, SE = 0.02, p = 0.023) as a covariate. We found that ingroup members
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Figure 6.3: Participants who were the robot liaison had a lower perceived group inclusion
than the other group members. Error bars represent a 95% confidence interval.

had a more similar ranking of the top 8 items on their initial list (M = 0.45, SD = 0.11)

than outgroup members (M = 0.55, SD = 0.11, c = 0.10, SE = 0.04, p = 0.005).

We also examined partner preference scores, our measure of how much a participant is

preferred as a teammate by their fellow participants. We analyzed the partner preference

scores using a linear mixed-effects model that best fit the data with age (c = 0.21, SE =

0.11, p = 0.055) and emotional intelligence (c = 0.44, SE = 0.12, p < 0.001) as covariates,

and excluded the data from three participants who did not answer the questionnaire item.

We discovered that ingroup participants had significantly higher partner preference scores

(M = 1.08, SD = 0.73) than outgroup participants (M = 0.80, SD = 0.56, c = −0.51, SE =

0.21, p = 0.019).

These ingroup-outgroup differences verify our experimental design of imposing inter-

group biases among the three participants. The ingroup’s higher similarity between the

initial and final item rankings and the higher preference for ingroup members as work

partners serve as a manipulation check.
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6.4.2 Influence of the Robot Liaison Role

In order to investigate the influence of the robot liaison role on participant inclusion (Re-

search Question 1), we analyzed the perceived group inclusion survey measure as well as

the measures of which survival items were included on the team’s final list of eight items.

For our analysis of the participants’ ratings on the perceived group inclusion scale, the

linear mixed-effects model that best fit the data used the covariates of age (c = −0.20, SE =

0.09, p = 0.025) and maximum familiarity (c = 0.12, SE = 0.05, p = 0.011). We found that

participants who were the robot liaison had lower ratings of perceived group inclusion (M =

4.08, SD = 0.78) than the other group members (M = 4.35, SD = 0.49, c = −0.41, SE =

0.17, p = 0.021), as shown in Figure 6.3.

In order to analyze the influence of the robot liaison and the ingroup-outgroup desig-

nations, we examined the items initially ranked high (items ranked 1-8) and low (items

ranked 9-25) by each of the 2 subgroups in round one of the experiment. We then calcu-

lated the proportion of these items that made it onto the final list of 8 items produced

by the entire team at the end of round two of the experiment (see Figure 6.2). We

found that a higher proportion of items were chosen that were initially low on the in-

group list and initially high on the outgroup list (Lin, Hout) if the robot liaison was an

ingroup member (M = 0.47, SD = 0.14) than if the robot liaison was an outgroup member

(M = 0.32, SD = 0.18, F = 5.59, η2 = 0.19, p = 0.027). Thus, when the outgroup member

is the robot liaison, as opposed to an ingroup member, the team is less likely to incorporate

items favored by the outgroup member.

These findings suggest that the robot liaison role works against efforts to increase inclu-

sion in human team members, resulting in decreased perceived inclusion in the robot liaison

and the incorporation of fewer of the outgroup robot liaison’s ideas into the team’s final

list of items. When asked in the post-experiment questionnaire if the status of any group

member influenced the group dynamic, most participants did not think so (e.g., “I do not

think so. All of us expressed our points of view.” and “No, although only one could speak to

Jibo, we all contributed to the decisions equally”). However a few participants did express

a difference in group member status (e.g., “I think that since I was the only one allowed
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Hin, Hout

robot
liaison

robot
liaison

Ingroup
Robot Liaison

Outgroup 
Robot Liaison

0.71 (2.0/2.8 items) 0.79 (2.6/3.2 items)

0.42 (2.1/5.2 items) 0.40 (2.1/4.8 items)Hin, Lout

Lin, Hout

Lin, Lout

0.47 (2.4/5.2 items) 0.32 (1.5/4.7 items)

0.14 (1.5/11.8 items) 0.15 (1.8/12.3 items)

Initial Survival
Item Ranking

Table 6.2: This table reports the proportion of survival items that were initially ranked
high and low by the ingroup (Hin, Lin) and outgroup (Hout, Lout) that made it onto the
group’s final list of 8 items. When the outgroup member was the robot liaison, the team
was significantly less likely to incorporate the survival items they initially valued (Lin, Hout)
onto the team’s final list.

to ask Jibo questions it made me more dominant” and “[participant name] being the only

person who could ask Jibo questions made it feel like she was the only person who had a

connection with Jibo; It didn’t ultimately affect the group but other group members had to

ask [participant name] to ask Jibo questions”). From these responses, it seems that partici-

pants did not overwhelmingly feel a difference in group inclusion or membership because of

the robot liaison status. However, some participants did point to a noticeable difference in

the power dynamics where the robot liaison was seen as having greater influence than the

other members. This could help explain the robot liaison’s lower perceived inclusion and,

when they were an outgroup member, their reduced likelihood of the group incorporating

their ideas.

6.4.3 Influence of the Robot’s Supportive Utterances

To investigate the influence of the robot’s supportive utterances (Research Question 2), we

examined participants’ verbal responses to the robot’s targeted supportive utterances. In

this analysis, we excluded four participants’ data because they did not comply in keeping
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Figure 6.4: Outgroup participants, as opposed to ingroup participants, displayed a signifi-
cantly higher difference in the proportion of time they spent talking during the one minute
after the robot’s support targeted to the participant (RST-P) when compared with two
baselines: 1) the proportion of time they spent talking during the one minute after the
robot support was targeted to someone else (RST-SE) and 2) the proportion of time they
spent talking during the the one minute after a robot undirected utterance (RUU). Error
bars represent a 95% confidence interval.
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their microphone on during the experiment. We compared the proportion of time a partici-

pant spent talking 1 minute after the robot delivered a targeted supportive utterance (robot

support targeted to participant - RST-P) with two controls: 1) the proportion of time a

participant spent talking 1 minute after the robot delivered a targeted supportive utterance

to someone else (robot support targeted to someone else - RST-SE ) and 2) the proportion

of time a participant spent talking 1 minute after an undirected utterance from the robot

(robot undirected utterance - RUU ). We use two controls, as opposed to one, in order to

more rigorously test whether the recipient of a targeted supportive utterance talked more

as a result of the targeted supportive utterance.

As shown in Figure 6.4(a), ingroup and outgroup participants did not display a signif-

icant difference in their proportions of time talking in the 1 minute after robot targeted

support to the participant, RST-P, (c = 0.01, SE = 0.03, p = 0.703), in the 1 minute af-

ter robot targeted support to someone else, RST-SE, (c = −0.03, SE = 0.03, p = 0.445),

or in the 1 minute after robot undirected utterances, RUU, (c = −0.03, SE = 0.03, p =

0.263). These analyses were conducted with linear-mixed effects models that best fit the

data with extraversion as a covariate (RST-P: c = 0.02, SE = 0.01, p = 0.004; RST-SE:

c = 0.02, SE = 0.01, p = 0.007; RUU: c = 0.02, SE = 0.01, p = 0.002).

We then examined the difference between each participant’s proportion of time talking

in the 1 minute after robot targeted support to the participant, RST-P, and our two controls

(RTS-SE and RUU), Figure 6.4(b). Positive values indicate that the participant spoke more

(and negative values indicate that the participant spoke less) after the robot delivered a

targeted supportive utterance to them as opposed to after a different type of robot utterance.

The linear mixed-effects models that best fit the data for these two analyses did not use

any covariates. When examining the difference in participants’ talking after the robot gave

targeted support to them as opposed to after the robot targeted support to someone else

(RST-P − RST-SE), we found that outgroup members (M = 0.012, SD = 0.041) had a

more positive difference than ingroup members (M = −0.022, SD = 0.055, c = 0.03, SE =

0.02, p = 0.047), indicating that ougroup members had a higher verbal response to the

robot targeted support. In analyzing the difference in participants’ talking after robot

gave targeted support to them as opposed to after undirected robot utterances (RST-P −
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RUU), we found that outgroup members (M = 0.019, SD = 0.041) had a more positive

difference than ingroup members (M = −0.015, SD = 0.049, c = 0.04, SE = 0.02, p =

0.007) again indicating that ougroup members had a higher verbal response to the robot

targeted support. These results suggest that the robot’s supportive utterances positively

influenced outgroup, but not ingroup, participants’ verbal contributions during the task.

In the same analyses described in the prior paragraph, we also found differences be-

tween robot liaison participants and the other participants. When examining the difference

in participants’ talking after the robot gave targeted support to them as opposed to after

the robot targeted support to someone else (RST-P − RST-SE), we found that robot li-

aisons (M = 0.011, SD = 0.046) had a more positive difference than other group members

(M = −0.022, SD = 0.053, c = 0.03, SE = 0.02, p = 0.044). However, in the difference

in participants’ talking after the robot gave targeted support to them as opposed to after

undirected robot utterances (RST-P − RUU), the robot liaison designation had no signifi-

cant influence (c = 0.02, SE = 0.02, p = 0.274). Since the increased proportion robot liaison

talking time following robot targeted support is only supported by one of our baseline com-

parisons, it is possible that the robot liaisons have a similar boost in talking in response to

robot targeted support as outgroup members, but the effect may not be as pronounced.

6.4.4 Perceptions of the Robot

We evaluated participants’ perceptions of the robot by analyzing their responses to the

Robotic Social Attributes Scale (RoSAS). Using linear mixed effects models, neither the

ingroup-outgroup, robot liaison designations, nor the interaction between the two resulted

in significant differences in participants’ perceptions of the robot’s warmth, competence, or

discomfort. Across all participants, the average ratings of the robot’s RoSAS attributes,

rated on a 1-9 Likert scale, are as follows: warmth (M = 5.81, SD = 1.45), competence

(M = 7.21, 1.24), and discomfort (M = 2.19, SD = 1.10).
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6.5 Discussion

In this study, we investigated two different ways in which robot team members can shape

inclusion: 1) through a specialized role that gave one participant increased interaction with

a robot and 2) through supportive utterances by the robot, targeted to each participant.

To investigate the efficacy of these two strategies for increasing inclusion, we designed

an experiment in which human-robot groups with experimentally manipulated ingroup-

outgroup divides must work together as teams in a collaborative task.

We were able to confirm that our ingroup-outgroup manipulation was successful. On

average, each team’s final item rankings were more similar to the initial item rankings

made by ingroup members than those made by outgroup members. Moreover, ingroup

participants were on average preferred as future work partners over outgroup participants

by the other members of the team. Beyond our success in experimentally creating these

subgroup divides in this specific study, we contribute to the field of HRI an experimental

study design that enables researchers to investigate inclusion and ingroup-outgroup divides

in future work.

To explore the influence of a specialized role on team member inclusion, we designated

one member of the team the ‘robot liaison’ that allowed this participant to have privileged

communications with the robot. On the one hand, this designation could have promoted

team inclusion by providing a sense of value to the team member with the specialized skill.

On the other hand, this could have further isolated the member through the addition of

another dividing feature with the other members of the group. Our results showed stronger

support for this second idea. Participants assigned to the role of the robot liaison reported

lower levels of group inclusion than other team members, demonstrating the possible isolat-

ing effects of the role. It is possible that the introduction of a robot with exclusive access

produces a change in the power dynamics of the team, particularly when the robot plays

an essential role. Prior work has established a link between leadership and feelings of iso-

lation and loneliness [Rokach, 2014]. Although the robot liaison in this experiment is not

explicitly in a leadership position, the increased influence given to the robot liaison could

have produced their lower perceived inclusion ratings.
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This divide was particularly apparent when the robot liaison was an outgroup member.

When an outgroup member was the robot liaison, as opposed to an ingroup member, the

group as a whole incorporated fewer survival items favored by the outgroup member. It

is likely that giving the robot liaison role to the outgroup member created another divide

between the outgroup member and the ingroup members. This increased division may have

made the ingroup members less receptive to the ideas of the outgroup member. This result

highlights the dangers of having an already-excluded member of a team take on a specialized

role, as the outgroup participants in this study had fewer of their ideas incorporated into

the team’s final decision when they were given a specialized role to interact with the robot

member of the team.

These findings have important implications for the increasing number of human-robot

teams today, as robot members are frequently incorporated with a human “liaison.” These

liaisons may be a specialized robot operator, such as in factory, search and rescue, and

surgical teams, or simply a member with more implicit control of the robot, such as team

leaders or remote members participating through telepresence. However, as we have shown,

this practice can be detrimental to the perceived inclusion of the liaisons themselves, espe-

cially if there are already pre-existing faultlines (e.g., ingroup-outgroup) between the liaison

and the other members.

In order to investigate our second proposed strategy for increasing team member in-

clusion, we programmed the robot to make targeted supportive utterances during team

discussions. We found that whereas ingroup members appeared to be mostly unaffected

by these supportive utterances, outgroup members of the team spoke more in the time

immediately after receiving one of the robot’s targeted supportive utterances as compared

to the times after other utterances made by the robot. Thus, we found evidence for robot-

employed targeted supportive utterances improving team inclusion and contribution by

providing support and affirmation to relatively excluded team members.

Overall, our results demonstrate that the roles and actions of a robot team member

can influence overall team inclusion. We note that two factors, sample representativeness

and robot utterance delivery, may have had a non-trivial impact on our results. First,

because we recruited participants from a relatively small two week high school program,

133



it is possible that our teams had higher baseline levels of inclusion and common ground,

and thus were also less affected by our ingroup-outgroup manipulation. Second, because we

implemented relatively simple robot behaviors, the robot would occasionally produce poorly

timed or irrelevant utterances (e.g., a robot response of “key, good idea” after a participant

had said “I don’t think we should bring the key”). Because these two factors may have

reduced the effectiveness of our experimental manipulations, either by an increased bias

towards high inclusion or by minimizing the beneficial influence of the robot, we believe

that the significance of our results in spite of these factors highlights the potential impact

of robot team members, and thus the importance of considering the possible consequences

of including robot members in teams.

A vast majority of teams consist of members with diverse skill sets, backgrounds, and

experience. Inclusion is a critical component to both the success of the team and the

commitment of its members [Cho and Mor Barak, 2008, Sabharwal, 2014, Shore et al.,

2011]. In line with prior work in HRI, we have demonstrated that the social dynamics

and behaviors of groups can be shaped by the actions of a robot member. However, we

found that these effects are not necessarily always in a positive direction. The results of our

experiment show that whereas the actions of robots can be used to promote a sense of team

inclusion, differential abilities to interact with the robot may produce faultlines and isolate

team members. As robots are increasingly incorporated into human teams, we recommend

that we, as a community, work to better understand and take into account the influence

robot members can have on inclusion and other social dynamics of the team, as we seek to

promote the success of human-robot teams.

6.6 Summary

In this study, we explored different ways in which robot team members can shape human

team member inclusion. We designed an experiment in which human-robot groups with

experimentally manipulated subgroup divides must work together as a team in a collabora-

tive task, and investigated two strategies of increasing human team member inclusion. We

found that a robot’s use of supportive utterances encouraged excluded team members to
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speak up more. However, granting a team member special access to the robot can isolate the

member, particularly if the team member already occupies the role of an outgroup member

within the team. As teams become more diverse and robots become ubiquitous in everyday

life, it is necessary to better understand how we can assign roles and design behaviors for

robots to maximize their positive impact on human inclusion in human-robot groups and

teams.

This is the first work to explicitly explore how a robot can shape perceived inclusion

in the human members of a human-robot team. We demonstrate ways in which robots

can both positively influence human team member inclusion (supportive utterances from

the robot) and negatively influence human team member inclusion (a specialized role to

interact with the robot). We additionally present a novel experimental design that forms

an intergroup bias (an ingroup and an outgroup) in the first phase of the experiment, and

examines the robot’s influence on a group that has an intergroup bias in the second phase

of the experiment. Just as many people seek to maximize diversity, equity, and inclusion

in their workplaces and teams, it is essential that as robots join us in these spaces, they

promote these same values.

In this chapter, we examined the efficacy of two strategies designed to improve inclu-

sion: a specialized role to interact with the robot and supportive utterances from the robot.

These strategies were fixed and did not adapt to the behavior of individuals within the

group. Adaptation to individual behavior could be extremely useful to a robot, for exam-

ple, enabling a robot to identify automatically which member of the group is feeling most

excluded, allowing the robot to specifically target that individual with behaviors to include

them in the group. In the next chapter, we take a look at identifying behaviors people

express that correlate with their psychological safety and inclusion, so that in the future a

robot could identify these factors in real time. We also examine the efficacy of improving the

inclusion and psychological safety of team members with verbal support from the robot.
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Chapter 7

Human Backchannels: Signals of

Key Group Dynamics that can be

Influenced by Social Robots

In order for a robot to improve team dynamics and performance, it is important for the

robot to be able to sense and model current group dynamics to strategically act within

the group. Based on work showing a connection between the presence of backchanneling

(e.g., “yeah,” head nodding) and team performance [Jung et al., 2012], we hypothesize

that backchannels might provide a signal for robots to use in sensing group dynamics such

as psychological safety and inclusion. Additionally, it is possible that social robots could

positively influence the backchanneling behavior of people within a group through verbal

support, including backchannels of its own.

In this chapter, we explore 1) correlations between human backchanneling behavior and

their self-reported perceptions of team social dynamics, and 2) how verbal support from

a robot shapes human team member backchanneling behavior. We conduct a between

subjects experiment (N = 38 groups, 114 participants), where a robot either does or does

not give verbal support to its three human teammates while the team works together on

a collaborative task. Analysis conducted on the backchanneling behavior of the human

participants indicates that the more verbal backchannels an individual receives, the more
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positive view they have of the group’s social dynamics. However, too many backchannels

directed towards an individual may result in lower feelings of inclusion, so striking the right

balance is likely important to maintaining team social dynamics. The presence of verbal

support from the robot did not increase the amount of backchanneling between human team

members, but rather, seemed to replace backchanneling that would have occurred had the

robot been silent.

7.1 Introduction

Team performance as well as team member satisfaction have been shown to be significantly

predicted by team social dynamics such as inclusion [Cho and Mor Barak, 2008,Sabharwal,

2014, Shore et al., 2011], psychological safety [Edmondson, 1999], and trust [Jones and

George, 1998,Mayer et al., 1995]. As robots join collaborative teams of people, it is essential

that they be able to sense and adapt to these important social dynamics in real time.

Current work, both in HRI and psychology, predominately measure team social dynam-

ics by administering surveys, such as the Perceived Group Inclusion Scale [Jansen et al.,

2014] and the Team Psychological Safety Scale [Edmondson, 1999]. Although some work

has demonstrated the ability to sense group dynamics using features from audio and video

data (e.g., team cohesion in small groups [Hung and Gatica-Perez, 2010,Salas et al., 2015],

synchrony in a coordinated dance [Iqbal et al., 2016, Iqbal and Riek, 2017], disengagement

of children in a storytelling task [Leite et al., 2015b, Leite et al., 2016]), no work has yet

shown the ability to sense the team dynamics of psychological safety and inclusion. In this

work, we seek to identify social signals that can easily be measured with off-the-shelf cam-

eras and microphones which are correlated with psychological safety and inclusion in order

to enable robot teammates to sense and react to these important dynamics in real time.

We specifically explore backchannels, short vocalizations (e.g., “yeah”) or movements (e.g.,

head nodding) used to indicate that a person is actively listening to a speaker, which show

promise as a measurable social signal that may connect with team social dynamics [Jung

et al., 2012].

In order to explore the connection between human team member backchanneling and
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“Yeah” nods

“I think that bringing the 
tape would be a good idea”

Figure 7.1: Three participants and a Jibo robot completed a collaborative task. We an-
notated the backchannels made by the human participants (e.g., “yeah,” head nodding)
and analyzed whether these backchannels were correlated with important group dynamics
(psychological safety, inclusion) and how the human participant backchanneling behavior
was shaped by the robot.

team social dynamics, we examine connections between human verbal and nonverbal backchan-

neling behavior and questionnaire measures of psychological safety [Edmondson, 1999] and

inclusion [Shore et al., 2011] within the context of a collaborative task between three peo-

ple and a social robot (Figure 7.1). We also test whether the presence of verbal support

from the robot might increase and enhance the backchanneling behavior and team social

dynamics of the human team members.

7.2 Background

In this section we review prior work that has explored the function of backchanneling within

human teams, systematically analysed and mathematically predicted the occurrences of hu-

man backchannels, and investigated the utility of programming robots to employ backchan-

nels in human-robot interactions.

7.2.1 Backchanneling in Human Teams

In human conversation, listeners are expected to provide some form of regular feedback

to indicate to the speaker that they are still actively engaged in the conversation [Stubbe,

1998]. Listener feedback often comes in the form of backchanneling, which Ward and Tsuka-
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hara (2000) define as “the short utterances produced by one participant in a conversation

while the other is talking.” This backchanneling feedback occurs regularly and frequently in

conversation. The Japanese language even has a term, aizuchi, to describe verbal backchan-

nels, which occur frequently in conversation and are sometimes even actively elicited. With

respect to American English, one study found that 19% of all utterances consisted of some

form of verbal backchanneling [Jurafsky et al., 1997]. Backchannel responses are often not

limited to just verbal utterances but also consist of nonverbal signals such as head nodding

and shaking [Duncan, 1974,Stubbe, 1998].

Backchannels confirm that the “speaker and listener share a common frame of refer-

ence” without taking a speaker turn [Duncan, 1974] or threatening the speaker’s position

as primary speaker [Stubbe, 1998]. Goodwin (1986) highlights two specific functions of

backchannels: 1) to encourage the speaker to continue talking (e.g., a backchannel of “uh

huh” in the middle of a speaker’s continued speech) and 2) acknowledges and briefly assesses

the speech of the speaker (e.g., a backchannel of “oh wow” indicating both acknowledge-

ment and surprise) [Goodwin, 1986]. Backchanneling has been shown to be more common

in get-to-know-you conversations as opposed to competitive debates [Dixon and Foster,

1998]. Additionally, several studies have found that females backchannel more frequently

than males [Duncan and Fiske, 2015,Roger and Nesshoever, 1987]. In a collaborative work

context, pair programmers who exhibited more backchanneling exhibited higher objective

performance scores as well as higher satisfaction ratings of their work and the overall expe-

rience [Jung et al., 2012].

7.2.2 Systematic Analysis and Prediction of Backchannels and Backchan-

nel Opportunities

Researchers have studied backchannels to better understand their function and use in con-

versation [Ward and Tsukahara, 2000,Ward, 2006] and to investigate when children develop

backchanneling conversational skills [Hess and Johnston, 1988, Miller et al., 1985]. Addi-

tionally, researchers building conversational artificial agents have examined backchannel

utterances in order to develop models to predict when an artificial agent should backchan-

nel a human speaker [de Kok et al., 2013, Gravano and Hirschberg, 2009, Maatman et al.,
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2005,Morency et al., 2010,Truong et al., 2011], to anticipate when a human might backchan-

nel an artificial agent speaker [Hjalmarsson and Oertel, 2012], and to estimate the attentive

state of a human listener [Lee et al., 2017].

Much of this work was informed by collected data of human conversations, annotated

manually or automatically for audio features (e.g., pitch, energy, pauses, utterance length)

and visual features (e.g., gaze, head movements, smiling, eyebrow movement) of the speaker

and listener [Gravano and Hirschberg, 2009,Lee et al., 2017,Morency et al., 2010]. A major-

ity of the human conversational data analyzed in this prior work examining backchanneling

behavior involved one person telling a story or explaining content to one or more listeners,

including the MultiLis corpus [de Kok and Heylen, 2011, de Kok et al., 2013], the ALICO

corpus [Malisz et al., 2016], and the data collected within individual studies [Hess and

Johnston, 1988, Lee et al., 2017, Morency et al., 2010]. Other human conversational data

analyzed in prior work includes the IFADV corpus [Truong et al., 2011,Van Son et al., 2008],

where previously acquainted human participants were told to speak about any subject they

liked, and the Columbia Games Corpus [Gravano and Hirschberg, 2009], where participants

located in different rooms played a collaborative computer game where they were able to

communicate verbally.

7.2.3 Robots Backchanneling in Human-Robot Interactions

HRI researchers are increasingly incorporating backchanneling behaviors in human-robot

interactions in order to increase the quality of communicative interactions and to encourage

positive behavior from the humans with which they interact [Lala et al., 2017, Ramachan-

dran et al., 2018]. For example, Ramachandran et al. (2018) designed a tutoring robot

to display the nonverbal backchannel of head nodding while a child responded to one of

the robot’s prompts. Other work has demonstrated the utility of backchannels from a

robot in human-robot collaborative teaming. Jung et al. (2013) demonstrated that the

presence of robot backchannels led to improved team functioning, where the presence of

robot backchanneling was correlated with increased performance (decreased reaction time)

as well as reduced human stress and increased perceptions of responsiveness in high com-

plexity tasks [Jung et al., 2013].
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Work in HRI has also focused on developing computational models to determine when

a robot should produce backchannels [Lala et al., 2017,Lee et al., 2019]. Lala et al. (2017)

used a simple logistic regression model, trained on data from human-human interactions,

to predict when an android robot should backchannel. They found that people viewed the

robot as more empathetic and natural when it used the backchannel production model con-

tinuously, as opposed to only after pauses in speech [Lala et al., 2017]. Lee et al. (2019)

designed an attentive listening behavior generation model for a robot in a child storytelling

context. They used a partially observable Markov decision process (POMDP) to model the

child storyteller’s use speaker cues to infer listener attentiveness and a dynamic Bayesian

network (DBN) to select the robot’s listening response. This approach to generating nonver-

bal backchannels was shown to be more effective than an approach based on signaling [Lee

et al., 2019].

7.3 Methods

In this section, we describe a human subjects experiment designed to explore 1) the rela-

tionship between backchannels and social group dynamics and 2) the influence of a robot’s

behavior on the backchannels expressed by human group members and their ratings of social

group dynamics. We extend the experiment design described in Chapter 6 by introducing a

second between subjects design factor of whether or not the robot provides verbal support

to the human participants.

7.3.1 Hypotheses

Based on the role of backchanneling in active listening and prior work that has demonstrated

a link between team performance and satisfaction with increased backchanneling behavior

[Jung et al., 2012], we hypothesize:

• Hypothesis 1: Individuals that receive more backchannels (verbal and nonverbal)

will report higher scores of both psychological safety and inclusion.

• Hypothesis 2: Groups that produce more backchannels (verbal and nonverbal) will
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have members that report higher scores of both psychological safety and inclusion.

Prior work in HRI, including our own work discussed in Chapters 3, 5, and 6, has demon-

strated that a social robot’s behavior has the ability to significantly shape both human-robot

team social dynamics [Short and Matarić, 2017] and human behavior [Tennent et al., 2019]

within human-robot teams. In this work, we hypothesize:

• Hypothesis 3: Robot verbal support will result in higher amounts of backchanneling

between the human members of a human-robot team.

• Hypothesis 4: Robot verbal support will result in higher psychological safety and

perceived inclusion scores.

In this work, we test hypotheses 1 and 2 by annotating the backchannels that occur between

people working on a collaborative task. We test hypotheses 3 and 4 by varying the verbal

support a robot in a human-robot team gives human team members while working on a

collaborative task.

7.3.2 Experiment Design

In this work, we extend the experiment design presented in Chapter 6, by adding another

between subjects dimension of whether or not the robot provides verbal support to the

participants. This change transforms the 2 (robot liaison: insider or outsider) x 1 (robot

verbal support: present) between subjects design in Chapter 6 to a 2 (robot liaison: insider

or outsider) x 2 (robot verbal support: present or absent) between subjects design.

The experiment design in Chapter 6 involves the formation of an ingroup and outgroup

through two rounds of a collaborative task, see Figure 6.2 in Chapter 6 for a pictorial

description. In the first round, which lasted 15 minutes, two participants and a Jibo robot

worked together on a task in room A. In room B, the third participant and a Jibo robot

completed the same task. This first round was designed to form an ingroup, consisting of

the two participants in room A, and an outgroup, the one participant in room B. Then for

the second round, which lasted for 30 minutes, the outgroup participant was brought into

room A to join the two ingroup participants and the Jibo robot. All three participants and
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the robot worked together to complete the round two task. During the second round, one

participant was designated as the ‘robot liaison.’ The robot liaison’s role was to ask the

robot for task relevant information and no other team member could ask the robot for this

information. Thus, we present the first dimension of the 2 x 2 between subjects design:

• Ingroup Robot Liaison: An ingroup member is designated as the robot liaison.

• Outgroup Robot Liaison: An outgroup member is designated as the robot liaison.

This experimental dimension allows us to examine the backchanneling behavior of hu-

man team members towards those who are marginalized (the outgroup member) as well as

those who are given a specialized role within a team (the robot liaison). We are also able

to examine the influence of being an outgroup member and having a specialized role on

participants’ ratings of team social dynamics.

In order to study the influence of robot verbal support on the backchanneling behavior

and social team dynamic ratings of participants, we introduce a second dimension of the 2

x 2 between subjects design:

• Robot Verbal Support: In addition to responding to queries for information, the

robot makes verbal statements to support the input of human team members. This

verbal support includes backchannel utterances (e.g., “yeah”), relevant informational

hints about the task, and targeted supportive utterances (e.g., “We should bring the

key, good idea Jessica!”). In Chapter 6, both the ingroup and outgroup robot liaison

conditions included robot verbal support.

• No Robot Verbal Support: The robot responds to queries for information (e.g.,

from the robot liaison in round 2 of the experiment), but does not make any other

verbal utterances. This is the new dimension of the experimental design introduced

in this chapter.

We combined these two distinct between subject condition variations in a 2 (robot

liaison: insider or outsider) x 2 (robot verbal support: present or absent) between subjects

design, as shown in Figure 7.2. The participants of the human subjects study we described
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Figure 7.2: In this experiment, we employed a 2 (robot liaison: ingroup or outgroup) x 2
(robot verbal support: present or absent) between subjects design.

and ran in Chapter 6 experienced the following two conditions: ingroup robot liaison &

robot verbal support and outgroup robot liaison & robot verbal support. In this chapter,

we compare the data from these two conditions with two new conditions that have no robot

support: ingroup robot liaison & no robot verbal support and outgroup robot liaison & no

robot verbal support.

7.3.3 Collaborative Task

Participants in our experiment collaborated with one another and the robot to complete a

modified version of the Desert Survival Problem [Lafferty and Pond, 1974]. This task had

two rounds. In the first round, participants were asked to rank 25 common household items

with respect to how useful they are for survival. Then, in the second round, participants

are given information about the environment where they are to be stranded and are tasked

with selecting and ranking 8 items from the list of 25 items. More details about this task

can be found in Chapter 6, Section 6.3.2.
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7.3.4 Robot Behavior

We used the commercial robot Jibo for this experiment [Jibo, 2017]. Jibo is 11 inches tall

and has a 3-axis motor system and a touchscreen face. We enabled Jibo to respond ver-

bally to the participant utterances by capturing the participant’s audio through individual

microphones and using Google’s speech-to-text API∗ to acquire the spoken text.

During the collaborative task, the robot made several different types of verbal utterances:

query responses, targeted supportive utterances, survival item hints, and backchannels. In

the conditions where the robot did not give verbal support, the robot made only query

responses. In the conditions where the robot did give verbal support, the robot made all of

the aforementioned verbal utterances. Here, we describe each type robot utterance and for

more details, please refer to Appendix B, Section B.5.

Querying the robot was essential for participants to have the full information to complete

the task. Participants could query the robot about the survival items in rounds 1 and 2

as well as aspects about the environment during round 2 using the language, “hey Jibo,

tell me about the ,” where Jibo is the name of the robot. During round 2, only the

participant who was designated as the robot liaison could query the robot. Queries about

the survival items gave participants more detailed information about the quantity and type

of the item, for example, when queried about the chocolate the robot responded with, “this

box comes with 16 bars of 17.6 ounces Trader Joe’s chocolate. Each bar is wrapped in

tinfoil and then with paper.” Queries about environment aspects provided participants with

information that was designed to stimulate conversation and have participants question

prior assumptions they may have made about the location in which they were stranded.

For example, the robot responded to being queried about the geography with: “The whole

area is one big mountain range. Some of the mountains might be covered in snow while

others are more temperate and covered with grass. You may come upon some caves and

lowlands as well.”

We programmed the robot to deliver six targeted supportive utterances to each partici-

pant during the second round of the task. We designed the targeted supportive utterances

∗https://cloud.google.com/speech-to-text/docs/libraries
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to reinforce ideas and viewpoints of specific participants and be personal by including the

participant’s name. Targeted supportive utterances either rephrased what a participant

said (e.g., “We need a coffee pot, good idea Samantha”), included an item that a partic-

ipant had mentioned (e.g., “Camera. Robert, I think that’s worth considering”), or gave

general support for the participant (e.g., “Okay, Jason”).

After hearing a participant mention a survival item name, outside the context of a query

to the robot, we had the robot deliver a useful hint about the survival item with probability

0.0375. The survival item hints were designed to encourage the participants to consider

alternative uses, for example, the robot’s hints about the garbage bag included: “a garbage

bag can be used as a sleeping bag” and “garbage bags can collect rain water.”

Lastly, after hearing a participant utterance, the robot sometimes responded with a

backchannel utterance. If the participant’s speech contained the mention of one of the

survival items, the robot responded with an item backchannel (e.g., “balloon, that makes

sense,” “key, uh huh”) with probability 0.0375. If the participant’s speech did not contain

a survival item, the robot responded with a generic backchannel (e.g., “yeah,” “interesting,”

“hmm”) with probability 0.075.

7.3.5 Protocol

For each experimental session, we recruited three human participants. After the three par-

ticipants arrived, they each completed a consent form and then filled out a pre-experiment

questionnaire on a tablet. To get the participants set up for the first round of the task, the

experimenter took the outgroup participant to room B with one Jibo robot, ensured that

the participant could query the robot properly, and initiated the robot’s introduction to

round 1. While the experimenter was setting up the outgroup participant, the two ingroup

participants were instructed to ask one another questions from a list of get-to-know-you

questions in order to further reinforce the ingroup-outgroup divide (e.g., “If you didn’t

sleep, what would you do with your extra time?”). After the experimenter had set up the

outgroup participant, the experimenter paused the ingroup members and set them up in

room A similarly to the outgroup participant.

After the 15 minutes of round 1 had expired, the experimenter brought the outgroup
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participant into room A with the two ingroup participants and the Jibo robot for round 2

of the collaborative task. The experimenter then designated one of the three participants

as the robot liaison using the language, “In this part, unlike the first, only one of you

will be able to ask Jibo questions about the items and environment. For all of you this is

[participant name].”

Round 2 concluded after 30 minutes. After that, the experimenter brought the three

participants out of room A and administered the post-experiment questionnaire to the par-

ticipants on tablets. After each participant completed their post-experiment questionnaire,

they were compensated with $10.

7.3.6 Measures

In order to test the relationships between participant backchanneling behavior, their ratings

of the team’s social dynamics, and the robot’s verbal support, we detail the questionnaire

measures we administered to the participants as well as our annotation of the participant

backchannels.

Controls

In the pre-experiment survey, participants evaluated their prior familiarity with the other

two human participants in the group, their extraversion according to the abbreviated version

of the Revised Eysenck Personality Questionnaire (EPQR-A) [Francis et al., 1992], and

their emotional intelligence according to the Short Form of the Trait Emotional Intelligence

Questionnaire (TEIQue-SF) [Cooper and Petrides, 2010]. Please refer to Chapter 6, Section

6.3.5 for more information on the administration of the questionnaires and Appendix C,

Sections C.5, C.6, and C.8, for the full questionnaires and details on how each score was

calculated.

Perceived Group Dynamics

In the post-experiment survey, participants completed the Perceived Group Inclusion Scale

(PGIS) [Jansen et al., 2014], a 16 item scale that asked participants to evaluate items such

as “this group gives me the feeling that I belong” and “this group encourages me to be
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authentic” on a Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree), please refer

to Appendix C, Section C.9 for more details.

Participants also filled out the Team Psychological Safety Scale [Edmondson, 1999], a

7 item scale where participants rated their agreement to statements like “it is safe to take

a risk on this team” and “members of this team are able to bring up problems and tough

issues” on a Likert scale from 1 (Strongly Disagree) to 7 (Strongly Agree), please refer to

Appendix C, Section C.7 for more details.

For the rest of this chapter, we refer to participants’ ratings on the Perceived Group

Inclusion Scale and Team Psychological Safety Scale as their perceived inclusion scores and

their psychological safety scores, respectively. Although both measures are ‘perceived,’ we

use the terms perceived inclusion and psychological safety because they are shortened names

of the published scale titles.

Human Speech

Each human participant wore a headset microphone throughout the experiment. The par-

ticipants’ audio data was transcribed using Google’s speech-to-text API†. During the ex-

periment, we fed the Google speech-to-text transcripts to the tablet controlling the robot

in order to allow the robot to respond to participants’ speech. Additionally, we stored these

speech-to-text transcriptions as well as the start time and duration of the speech, so that

we could measure how much time each participant spent talking over the course of the

experiment.

Human Backchannels

In order to analyze the backchanneling behavior of the human participants, we transcribed

and categorized each backchannel made by the participants during round 2 of the experi-

ment using the ELAN software [Wittenburg et al., 2006]. We found the following definition

from Ward and Tsukahara (2000) helpful in discerning between backchannels and non-

backchannel utterances: “backchannel feedback 1) responds directly to the content of an

utterance of the other, 2) is optional, and 3) does not require acknowledgement by the

†https://cloud.google.com/speech-to-text/docs/libraries
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other.” Each backchannel was categorized as either verbal (e.g., “okay,” “mm hmm,” “yeah

yeah”) or nonverbal (e.g., head nodding, head shaking). Each backchannel was also anno-

tated with a recipient, indicating to whom the backchannel was directed towards. For more

details on the backchannel coding scheme, please refer to Appendix B, Section B.6.

Four coders contributed to the identification and categorization of human backchannels

in the data. Inter-rater reliability was assessed by examining the agreement of the coders

on candidate backchannels (a high Cohen’s kappa value of 0.90) and on the backchannel

recipient (a high Cohen’s kappa value of 0.93). Participants on average produced 27.06

(SD = 21.41) nonverbal backchannels and 30.67 (SD = 15.85) verbal backchannels during

the 28 annotated minutes of round 2‡.

7.3.7 Participants

Participants were recruited for this study from a high school program held at Yale University.

The students from the program came from 80 different countries, with 47% from the United

States. The breakdown by continent is: 52% from North America, 24% from Asia, 12%

from Africa, 7% from Europe, 3% from South America, and 2% from Australia.

A total of 40 groups (120 participants) were recruited for participation in this study.

Of the 40 groups recruited, 2 groups were excluded from this analysis due to either not

finishing the experimental task or non-compliance (e.g., removing their microphones). For

the 38 remaining groups (78 participants), 58 participants were female and 56 participants

were male. The average age of participants was 16.73 (SD = 0.73). More detailed de-

scriptive statistics for participants in each condition as well as each division of participants

(ingroup/outgroup, robot liaison) can be found in Appendix D Tables D.49, D.50 and D.51.

7.4 Results

We used linear mixed-effects models in the analysis of our data in order to account for

participants being in groups of three. We set the variables related to our experimental ma-

‡We did not annotate the first 2 minutes of round 2 because the experimenter did not leave the room until
about a minute after round 2 began. To eliminate all influence of the experimenter’s interaction with the
participants, we annotate the data from exactly 2 minutes after round 2 started to its conclusion 28 minutes
later.
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nipulations as fixed effects: intergroup bias (ingroup or outgroup), robot liaison designation

(yes or no), verbally supportive robot (yes or no), and interactions between those variables

when appropriate. We also set relevant covariates as fixed effects: gender, extraversion,

emotional intelligence, and familiarity with other human team members. We set the partic-

ipant’s group as a random effect (random intercept) and relevant covariates as fixed effects.

We tested these models for multicollinearity (variance inflation factor), selected them based

on the Akaike information criterion, and evaluated residual errors for lack of trends and

heteroscedasticity. For each fixed effect, the model outputs the linear coefficient (c), the

standard error (SE), and the significance (p) value of that predictor.

When analyzing data where each data point represented one group of three participants,

we used an analysis of variance (ANOVA). We investigated the influence of effects of inter-

group bias (ingroup or outgroup), robot liaison designation (yes or no), verbally supportive

robot (yes or no), and several covariates on our dependent variables of interest. We report

the effect size as partial eta squared (η2). For more details on the results of the statistical

models included in this section, please refer to Appendix D, Tables D.49 - D.70.

In some of the following analyses, we use the total amount of time participants spent

talking. This value was computed by summing the utterance length timings captured by

the participant microphones. Due to missing or inaccurate utterance timing values (e.g.,

because a participant’s microphone got disconnected during the experiment), we exclude

8 participants (2 groups of 3 participants and 2 individuals from different groups) from

analyses that include the total time participants spent talking.

7.4.1 Verbal and Nonverbal Backchannels

As we show later on in this analysis, verbal and nonverbal backchannels had distinct cor-

relations with participant ratings of team social dynamics, indicating that their expression

and reception by others have different effects. Therefore, in this analysis we treat them as

separate categories of backchannel expression.

When comparing participants’ verbal and nonverbal backchanneling behavior in the ex-

periment, we found that participants spent more time producing nonverbal backchannels

(M = 33.37, SD = 28.87) than verbal backchannels (M = 19.47s, SD = 10.01). Addi-
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Figure 7.3: In this graph, each data point represents one participant and its x and y values
represent the total time that participant spent producing verbal backchannels and nonverbal
backchannels, respectively. We also plotted a line of best fit, which has a slope of 0.80.

tionally, we observed that the time that participants spent producing verbal and nonverbal

backchannels was significantly correlated (r = 0.28, t = 3.05, p = 0.003). As participants

spent 1 more second producing verbal backchannels, they spent on average 0.80 more sec-

ond producing nonverbal backchannels, which was determined by examining the slope of

the best fit line depicted in Figure 7.3.

7.4.2 Psychological Safety and Perceived Inclusion Scores

When considering our two measures of team social dynamics, we found that participants’

psychological safety (M = 6.02, SD = 0.74) and perceived inclusion (M = 4.32, SD = 0.58)

scores were significantly and positively correlated (r = 0.58, t = 7.62, p < 0.001). On

average, an increase of 1.0 on a participant’s psychological safety score was met with a 0.46

increase on the participant’s perceived inclusion score, represented by the slope of the best

fit line shown in Figure 7.4.

7.4.3 Connections between Human Backchannels and Social Group Dy-

namics - Individual Level

In order to test our first hypothesis, that the amount of backchannels received positively

correlates with team social dynamics, we first examine the influence of participant backchan-
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Figure 7.4: In this graph, each data point represents one participant and its x and y values
represent the participant’s psychological safety and perceived inclusion scores, respectively.
These scores were significantly and positively correlated, as shown by the positive slope
(0.46) of the best fit line.

neling behavior on participants’ psychological safety and perceived inclusion scores. The

significant relationships between participant backchanneling and their ratings of psycholog-

ical safety and inclusion are shown in Figure 7.5.

When investigating correlations between participants’ backchanneling behavior and their

ratings of team social dynamics, we examined the influence of 1) verbal backchannels, 2)

nonverbal backchannels, and 3) total backchannels (the sum of the verbal and nonverbal

backchannels). In the majority of cases where the total backchannels did significantly

correlate with participants’ ratings of team dynamics, the effect was driven by either verbal

backchannels or nonverbal backchannels (and not both). Therefore, in this section, we treat

verbal and nonverbal backchannels as separate signals and we do not combine them to

report on the combined total amount of backchannels.

Verbal Backchannels Received by an Individual

We first examined the influence of the amount of verbal backchannels an individual received

on their ratings of team social dynamics. In our analysis of the influence of the total duration

(sec) of the verbal backchannels a participant received on their psychological safety score,

the linear mixed-effects model that best fit the data had covariates of gender (c = 0.27, SE =
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Figure 7.5: We display the human backchannel (BC) variables that have significant influ-
ences on psychological safety and perceived inclusion post-experiment survey scores. This
analysis examined each individual participant’s backchanneling behavior and ratings of psy-
chological safety and inclusion.

0.13, p = 0.033) and emotional intelligence (c = 0.28, SE = 0.10, p = 0.006). We found a

significant positive influence of the verbal backchannels a participant received (sec) on their

psychological safety score (c = 0.017, SE = 0.006, p = 0.004).

Since it could be possible that participants who spoke more also received more verbal

backchannels, we performed a Pearson correlation and found that these two variables are

significantly correlated (r = 0.427, p < 0.001). Due to the significance of this relationship,

we next explored whether the total talking time of participants also influenced participants’

psychological safety. The linear mixed-effects model that best fit the data had covariates

of ingroup-outgroup bias (c = 0.28, SE = 0.15, p = 0.060), robot liaison designation (c =

−0.24, SE − 0.15, p = 0.113), gender (c = 0.32, SE = 0.14, p = 0.021), and emotional

intelligence (c = 0.026, SE = 0.11, p = 0.021). We found a significant positive effect of the

participant’s total talking time (sec) on their psychological safety score (c = 0.00092, SE =

0.00041, p = 0.029).

Next, we analyzed whether a normalized version of the verbal backchannels a participant

received influenced the psychological safety scores of participants by examining the total
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duration of the backchannels a participant received divided by the total time the person

spent talking, representing the proportion of the time a participant spent talking when they

were being backchanneled (verbally). The linear mixed-effects model that best fit the data

had covariates of ingroup-outgroup bias (c = 0.32, SE = 0.16, p = 0.049), robot liaison

designation (c = −0.23, SE = 0.15, p = 0.128), gender (c = 0.32, SE = 0.14, p = 0.023),

and emotional intelligence (c = 0.28, SE = 0.11, p = 0.011). There was no significant

influence found on the proportion of time a participant spent talking while they were being

verbally backchanneled (c = −1.33, SE = 0.58, p = 0.287).

From these results, we observe that the total volume of verbal backchannels received

by a participant as well as the total time they spent talking positively correlate with their

psychological safety scores, which shows support for our first hypothesis. However, the

proportion of time they spent talking where others were backchanneling them did not show

a significant correlation with the participant’s psychological safety scores. This indicates

that it is the volume of backchannels, and not the proportion of the participants’ speech

that was backchanneled, that predicted their psychological safety scores. It is important

to also note that the volume of backchannels a participant receives may be due to the fact

that they are talking more, and that both a participant’s time spent talking and verbal

backchannels received might positively reinforce each other.

Although the total amount of verbal backchannels a participant received was signifi-

cantly correlated with their psychological safety score, the amount of verbal backchannels

a participant received was not significantly correlated with their perceived inclusion score

(c = 0.006, SE = 0.005, p = 0.174). Additionally, the amount of nonverbal backchan-

nels that a participant received was neither correlated with their psychological safety score

(c = 0.002, SE = 0.002, p = 0.452) nor their perceived inclusion score (c = 0.0002, SE =

0.002, p = 0.403).

Nonverbal Backchannels Produced by an Individual

In addition to the backchannels received by participants, we examined the amount of

backchannels produced by participants. We examined the influence of the total time a

participant produced nonverbal backchannels on their psychological safety score. The lin-
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ear mixed-effects model that best fit the data had covariates of gender (c = 0.32, SE =

0.13, p = 0.016) and emotional intelligence (c = 0.35, SE = 0.10, p < 0.001). We found a

significant negative effect of the total time a participant produced nonverbal backchannels

on participants’ psychological safety scores (c = −0.0047, SE = 0.0023, p = 0.041), mean-

ing that participants who produced a lot of nonverbal backchannels had lower psychological

safety ratings than those who did not express as many nonverbal backchannels.

We did not find a significant relationship between the amount of nonverbal backchannels

produced and participants’ perceived inclusion scores (c = 0.0009, SE = 0.002, p = 0.614).

We also did not find significant correlations between the amount of verbal backchannels

produced by a participant and either their psychological safety (c = −0.003, SE = 0.007, p =

0.626) or perceived inclusion scores (c = 0.010, SE = 0.005, p = 0.066).

Backchannels Received Normalized by Total Talking Time

We analyzed the influence of the time a participant received both nonverbal and verbal

backchannels normalized by the total time that a participant spent talking on the partic-

ipant’s perceived inclusion score. With respect to the nonverbal backchannels, the linear

mixed-effects model that best fit the data included covariates of ingroup-outgroup bias (c =

0.27, SE = 0.12, p = 0.023), robot liaison designation (c = −0.34, SE = 0.11, p = 0.004),

gender (c = 0.15, SE = 0.10, p = 0.153), emotional intelligence (c = 0.20, SE = 0.08, p =

0.019), and familiarity with other team members (c = 0.058, SE = 0.034, p = 0.091). We

found a significant negative effect of time others spent nonverbally backchanneling a partic-

ipant normalized by their total time spent talking on participant perceived inclusion scores

(c = −0.73, SE = 0.30, p = 0.016). With respect to the verbal backchannels, the linear

mixed-effects model that best fit the data included covariates of ingroup-outgroup bias (c =

0.29, SE = 0.12, p = 0.020), robot liaison designation (c = −0.36, SE = 0.12, p = 0.003),

emotional intelligence (c = 0.23, SE = 0.08, p = 0.008), and familiarity with other team

members (c = 0.068, SE = 0.034, p = 0.050). Similar to the nonverbal backchannels, we

found a significant negative effect of the time others spent verbally backchanneling a partic-

ipant normalized by their total time spent talking on participant perceived inclusion scores

(c = −1.67, SE = 0.80, p = 0.040).
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We also examined whether the total time participants spent talking during round 2 of

the experiment had an effect on their perceived inclusion score. The linear mixed-effects

model that best fit the data had covariates of ingroup-outgroup bias (c = 0.22, SE =

0.12, p = 0.061), robot liaison designation (c = −0.33, SE = 0.12, p = 0.005), emotional

intelligence (c = 0.22, SE = 0.085, p = 0.010), and familiarity with other team members

(c = 0.057, SE = 0.036, p = 0.115). We did not find a significant influence of the total time a

participant spent talking on their perceived inclusion score (c = 0.00052, SE = 0.00033, p =

0.121).

It is interesting to consider these findings together with the results that indicate that the

amount of backchannels received is positively correlated with psychological safety. Although

backchanneling another person in a group may raise their psychological safety, backchannel-

ing them too much relative to their talking time may result in reduced perceived inclusion.

Therefore, it seems that to positively influence both the psychological safety and perceived

inclusion of another person within a group, one needs to backchannel them just the right

amount. Thus, we find partial support for our first hypothesis.

7.4.4 Connections between Human Backchannels and Social Group Dy-

namics - Group Level

We now consider our second hypothesis, which predicts that the amount of backchannels

that a group produces towards one another positively influences the group’s rating of psy-

chological safety and inclusion. To conduct this analysis, we considered each group as one

data point. We computed the total amount of backchanneling that occurred in each group

and we averaged their psychological safety and perceived inclusion scores. The significant

relationships between the backchannels that a group produces and its members’ average

psychological safety and average perceived inclusion scores are displayed in Figure 7.6.

Verbal Backchannels Produced by the Group

We found that the time participants within each group spent verbally backchanneling one

another had a significant and positive influence on both groups’ average perceived inclusion

scores, F (1) = 9.72, η2 = 0.11, p = 0.004, as well as groups’ average psychological safety
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Figure 7.6: We display the human backchanneling variables that have significant influences
on the group’s average psychological safety and perceived inclusion post-experiment survey
scores. This analysis examined the backchanneling behavior of each group and the average
ratings of psychological safety and inclusion for each group.

scores, F (1) = 6.17, η2 = 0.038, p = 0.019.

We also found that the total time participants spent talking had a significant and positive

effect on groups’ average perceived inclusion scores, F (1) = 7.32, η2 = 0.052, p = 0.012,

however, did not have a significant effect on groups’ average psychological safety scores,

F (1) = 0.45, η2 = 0.0023, p = 0.510. Unlike in our data analysis on individuals, we did not

find a significant correlation between the amount of verbal backchannels expressed in the

group and the group’s total talking time, evaluated by performing a Pearson correlation,

r = 0.236, p = 0.167.

Although the total amount of verbal backchannels produced by a group was positively

predictive of their team social dynamics ratings, we did not find that the proportion of the

time the group spent producing verbally backchanneling (normalized by the total time they

spent talking) predicted their psychological safety, F (1) = 0.82, η2 = 0.028, p = 0.374, or

perceived inclusion scores, F (1) = 0.14, η2 = 0.001, p = 0.711. Additionally, we did not find

significant correlations between the time participants spent producing nonverbal backchan-

nels one another and their ratings of psychological safety, F (1) = 0.06, η2 = 0.005, p = 0.813,

or perceived inclusion, F (1) = 3.48, η2 = 0.085, p = 0.072.

These results indicate a similar finding to what we observed with individuals: the total

volume of verbal backchannels a participant received, not the proportion of verbal backchan-

nels received relative to the participant’s talking time, correlates with more positive per-

ceptions of team social dynamics. Though, with individuals this relationship was only

significant between the verbal backchannels a person received and their psychological safety
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score, groups who had more verbal backchannels towards one another had higher psycho-

logical safety scores and perceived inclusion scores. Therefore, we do find support for our

second hypothesis.

7.4.5 The Influence of Intergroup Bias on the Reception of Backchannels

In addition to determining how human team member backchannels influence group dynam-

ics, we were interested in investigating whether intergroup bias influenced their backchannel-

ing behavior. We found that participants received more verbal backchannels (c = 6.67, SE =

1.91, p < 0.001) if they were an outgroup member (M = 21.5s, SD = 14.2s) as opposed to

an ingroup member (M = 15.0s, SD = 8.5s). Outgroup members (M = 31.6s, SD = 27.2s)

also received more nonverbal backchannels than ingroup members (M = 23.2s, SD =

22.9s, c = 8.85, SE = 4.40, p = 0.048). Additionally, we found that participant received

a higher proportion of verbal backchannels (c = 0.036, SE = 0.012, p = 0.004) if they

were an outgroup member (M = 0.09, SD = 0.10) as opposed to an ingroup member

(M = 0.06, SD = 0.04). Outgroup members (M = 0.16, SD = 0.30) also received a

higher proportion of nonverbal backchannels (c = 0.083, SE = 0.035, p = 0.021) relative to

their total talking time than ingroup members (M = 0.08, SD = 0.07). The observation

that outgroup members receive more backchannels may tell us more about the function of

backchannel utterances themselves. Since the outgroup participant had not interacted with

the two ingroup participants before round 2 of the experiment, increased backchanneling

may be one way that ingroup members try to welcome the outgroup member and help them

to feel comfortable in the group.

7.4.6 The Influence of Gender on the Production of Backchannels

We were also interested in examining whether any descriptive features of the participants

shaped participants’ backchanneling behavior (age, gender, emotional intelligence, famil-

iarity with other participants). In our analysis of the verbal and nonverbal backchan-

nels produced and received by the people in these human-robot collaborative teams, we

noticed that the factor of gender was influential in backchannel production. We discov-

ered that females (M = 22.4s, SD = 9.8s) spent significantly more time producing verbal
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backchannels than males (M = 15.4s, SD = 8.5s, c = 7.13, SE = 1.70, p < 0.001). Females

(M = 0.13, SD = 0.22), compared with males (M = 0.06, SD = 0.08), also had a higher

proportion of verbal backchannels produced relative to the total time they spent talking

(c = 0.059, SE = 0.028, p = 0.041). When examining the effects of gender at the group

level, we similarly found that groups with more females produced more verbal backchan-

nels, both in total volume, F (1) = 18.61, η2 = 0.32, p < 0.001, as well as normalized with

respect to the group’s total talking time, F (1) = 9.97, η2 = 0.44, p = 0.004. The increased

production of backchannels by females does not seem to be explained by other potential

confounding factors, evaluated by Pearson correlations between participants’ gender and

possible confounding factors, including emotional intelligence (r = 0.095, p = 0.312), ex-

traversion (r = 0.070, p = 0.462), and familiarity with other participants in the group

(r = 0.115, p = 0.222). Our findings that females backchannel more than males are consis-

tent with prior work in psychology, that has also observed increased backchanneling behavior

in females as compared to males [Duncan and Fiske, 2015, Roger and Nesshoever, 1987].

These results also connect with Woolley et al. (2010)’s finding that the number of females

on a team positively correlates with the team’s collective intelligence.

7.4.7 Influence of Robot Verbal Support on Human Backchanneling Be-

havior

In order to examine our third hypothesis, that robot verbal support will increase backchan-

neling behavior between team members, we examined the influence of the presence of

robot verbal support on the amount of verbal backchannels participants received during

round 2 of the experiment. The linear mixed-effects model that best fit the data had

covariates of extraversion (c = 1.35, SE = 0.49, p = 0.007) and familiarity with other

human team members (c = 0.97, SE = 0.65, p = 0.139). We found a significant in-

fluence of the intergroup bias on the amount of verbal backchannels a participant re-

ceived, as we mentioned in the prior section, where outgroup members were found to

receive more verbal backchannels (M = 21.68s, SD = 13.92s) than ingroup members

(M = 15.17s, SD = 8.39s, c = 16.85, SE = 4.09, p < 0.001).

We also found a significant interaction between intergroup bias and the presence of
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Figure 7.7: In our analysis of the influence of our experimental factors on the verbal
backchannels that participants received, we found a main effect for integroup bias, where
outgroup members received more verbal backchannels than ingroup members, and two sig-
nificant interactions. (a) The first interaction we observed was between intergroup bias
and the presence of robot verbal support (RVS). (b) The second interaction we found was
between intergroup bias and whether or not the participant was a robot liaison (RL). (*)
and (**) denote p < 0.05 and p < 0.01 respectively. Error bars represent a 95% confidence
interval.

verbal support from the robot (c = −8.83, SE = 4.33, p = 0.045), shown in Figure 7.7(a).

Using post-hoc comparisons using Tukey-adjusted estimated marginal means, we found

that outgroup members with no robot verbal support received significantly more verbal

backchannels (M = 27.96s, SD = 14.71s) than both ingroup members with robot verbal

support (M = 15.26, SD = 8.28, c = −10.72, SE = 3.44, p = 0.013) and ingroup members

with no robot verbal support (M = 14.92, SD = 8.93, c = −11.29, SE = 3.78, p = 0.019).

No other comparisons significantly differed from one another.

This interaction effect seems to be primarily driven by the higher amount of backchan-

neling received by the outgroup member in groups with no robot verbal support (RVP),

visualized in Figure 7.7(a). Without the presence of robot verbal support outgroup mem-

bers received significantly more backchannels than ingroup members. When there is robot

verbal support present, there is no significant difference between the backchannels received

by ingroup and outgroup members. This result is opposite to what we hypothesized, and

may suggest that when the robot exhibits more verbal support, the group may not see the
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need to backchannel quite as much, especially to the outgroup member.

Lastly, we found a significant interaction between intergroup bias and whether the robot

liaison was an outgroup or ingroup member (c = −11.12, SE = 4.14, p = 0.009), shown

in Figure 7.7(b). Using post-hoc comparisons using Tukey-adjusted estimated marginal

means, we found that outgroup members who were not the robot liaison received more

verbal backchannels (M = 25.49s, SD = 14.45s) than ingroup members who were not the

robot liaison (M = 14.55s, SD = 7.93s, c = −12.43, SE = 2.82, p = 0.001). No other

comparisons had significant differences between them.

This interaction effect between the robot liaison (RL) designation and intergroup bias

(ingroup or outgroup), as displayed in Figure 7.7(b), seems to be driven by an increased

amount of backchanneling received by the outgroup members who have not been designated

as a robot liaison. This could be explained in a similar way to the interaction between robot

verbal support and intergroup bias, where the group is inclined to backchannel the outgroup

member more. However, when the outgroup member receives robot-related behavior (robot

liaison designation or robot verbal support), the other group members do not perceive as

large a need to backchannel them.

7.4.8 Influence of Robot Verbal Support on Team Social Dynamics

To investigate our fourth hypothesis, that robot verbal support will enhance team social

dynamics, we examined the effect of the presence of robot verbal support on the psycholog-

ical safety and perceived inclusion scores of participants. We found a marginally significant

effect of robot verbal support on participants’ psychological safety scores (c = 0.35, SE =

0.18, p = 0.056), where participants in groups with robot verbal support had higher psy-

chological safety scores (M = 6.06, SD = 0.74) than participants in groups without robot

verbal support (M = 5.92, SD = 0.74). We did not find any significant effect of robot

verbal support on participants’ perceived inclusion scores (c = 0.12, SE = 0.14, p = 0.376).

From the lack of statistically significant differences in team social dynamics scores between

conditions with and without robot verbal support, we were not able to show support for

our fourth hypothesis.
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7.5 Discussion

In this work, we explored 1) connections between human backchanneling behavior and

their perceptions of team social dynamics and 2) how robot verbal support might shape the

backchanneling behavior and perceptions of social group dynamics of human team members.

We conducted a human subjects experiment where three human participants and a robot,

that either did or did not exhibit verbal support, completed a collaborative task. We

annotated instances of human participant backchannels and analyzed correlations between

these backchannels with participants’ ratings of team social dynamics as well as the robot’s

verbally supportive behavior.

We did find significant correlations in our data between human team members’ backchan-

neling behavior and their post-experiment survey rating of both psychological safety. The

most common theme in the data is a positive correlation between the amount of verbal

backchannels and both psychological safety and inclusion. Individuals who received more

verbal backchannels had higher ratings of psychological safety, and teams that produced

more verbal backchannels had higher average ratings of both psychological safety and inclu-

sion. It is important to highlight that this effect was not seen with nonverbal backchannels,

indicating that verbal and nonverbal backchannels have different effects in collaborative

teams. Additionally, the proportion of verbal backchannels a person receives relative to

their talking time does not significantly correlate with psychological safety. This demon-

strates that regardless of whether a person is very talkative or more reserved, it is the total

amount of backchannels they receive that corresponds with their perceptions of the group’s

psychological safety.

In addition to the total amount of verbal backchannels, the total talking time of partic-

ipants was also correlated with measures of psychological safety and inclusion. Specifically,

the total time a participant spent talking predicted their psychological safety score and the

total verbal backchannels a team produced predicted the team’s average perceived inclusion

score. We think that it is likely that receiving verbal backchannels and time spent talking

both positively influence one another. If one person receives more verbal backchannels, they

might talk more. Also, if a person is talking more, they might be more likely to receive
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verbal backchannels.

Not all of the significant correlations we observed between participant backchanneling

behavior and team social dynamics were positive. The total time a participant spent non-

verbally backchanneling their human team members was negatively correlated with their

psychological safety rating. Additionally, the proportion of both verbal and nonverbal

backchannels received by a participant, relative to their talking time, was negatively cor-

related with their perceived inclusion score. These results suggest that the right balance

of backchanneling is needed to support the inclusion and psychological safety of all team

members. For example, although verbal backchannels have a positive relationship with psy-

chological safety, too many verbal backchannels relative to their talking time may result in

reduced perceived inclusion.

We also observed an influence of the verbal support from the robot on the verbal

backchanneling behavior of participants. When a group interacted with a robot that did

not give verbal support, the outgroup member, who completed the first phase of the ex-

periment alone, received significantly more backchannels than the two ingroup members,

who completed the first phase of the experiment with each other. However, when a group

interacted with a robot that did give verbal support, there was no significant difference be-

tween the backchannels received by outgroup and ingroup members. We believe that rather

than encouraging and promoting the verbal backchanneling behavior of participants, like

we hypothesized, the verbal support from the robot instead replaced the verbal backchan-

nels the ingroup members would have given the outgroup member. We saw a similar effect

with the robot liaison designation, where outgroup members who were not robot liaisons

received more backchannels than outgroup members who were robot liaisons, although this

relationship was not statistically significant.

It is unclear what the effects were on the behavior and social dynamics of the human-

robot team as a result of the reduction in backchannels towards the outgroup member when

the group had a verbally supportive robot. We did not find any significant differences be-

tween the outgroup member’s psychological safety or perceived inclusion scores when the

robot did express verbal support compared with when the robot did not express verbal sup-

port. Thus, it is possible that outgroup members that had robot verbal support and those
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that did not have robot verbal support received the same amount of verbal backchannels,

where the robot’s verbal support replaced the verbal backchannels the outgroup member

would have received from their human team members. As robot verbal behavior is designed

for future human-robot teams, it is important to consider how robot actions may replace

behaviors that are typically expressed by human team members and the influence this might

have on the team’s social dynamics.

7.6 Summary

As robots increasingly join collaborative teams of people, it is essential that they are able

to sense and positively contribute to the social dynamics of the team in real time. The

results from our human subjects study indicate that human team member backchanneling

behavior is a promising signal to use for the successful prediction of team dynamics like psy-

chological safety and inclusion. We found that the amount of verbal backchannels received

by human team members is positively correlated with both psychological safety and per-

ceived inclusion. However, too many backchannels given to an individual, relative to their

speaking time, may have a negative effect on their perceive inclusion. This highlights the

importance of giving each member “just the right” amount of backchanneling to optimize

their psychological safety and inclusion. We also found that robot verbal support, including

backchanneling, may replace as opposed to increase the verbal backchannels received by

marginalized team members.

This work is among the first to explore direct connections between human backchan-

neling behavior and established survey measures of team social dynamics (psychological

safety [Edmondson, 1999] and perceived inclusion [Jansen et al., 2014]) that have been

shown to positively influence team performance. Also, we are the first, to our knowledge, to

show differences in the effects of verbal and nonverbal backchannels on team social dynam-

ics. For example, the amount of verbal backchannels, but not nonverbal backchannels, a

person receives is significantly correlated with their psychological score. Lastly, we demon-

strate that a social robot can influence the backchanneling behavior of a collaborative team,

where verbal support from the robot was shown to reduce the verbal backchannels an out-
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sider received from their human team members. These findings highlight the importance of

considering how backchannels can be used to sense team social dynamics and also how the

robot’s own behavior may change a team’s backchanneling behavior.

In the next chapter, we discuss all of the work presented in this dissertation. We expand

upon the central themes of our work and highlight several areas of opportunity for future

work in building robots teammates that enhance group dynamics and performance.
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Chapter 8

Discussion

In this dissertation, we present a body of work that seeks to improve the performance

of human-robot teams by shaping team social dynamics to promote inclusion, trust, and

psychological safety. We conducted five human subjects experiments exploring the influence

of a variety of robot behaviors (e.g., trust repair utterances, vulnerable statements, verbal

support) on how people behave towards one another and how they perceive team social

dynamics. We also demonstrate an important connection between human backchannels

(e.g., “yeah”, head nodding) and questionnaire measures of team social dynamics, a step

in the direction of being able to perceive team social dynamics in real time. All of the

work detailed in Chapters 3 through 7 contributes to our understanding of how robot

teammates can best be designed to promote positive social dynamics and human behavior

within human-robot teams. In this chapter, we present design guidelines for social robot

behavior in collaborative human-robot teams, review the central themes in our work, and

present some open questions and directions for future work.

8.1 Design Guidelines for Social Robot Behavior in Collab-

orative Human-Robot Teams

In this section, we outline ten design guidelines for social robot behavior within collaborative

human-robot teams. We generated these design guidelines with data and observations from

the human subjects experiments detailed in this dissertation.
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1. When a robot makes an error that effects a person, an effective way to repair trust

with them is to frame the error as a mistake and make an apology (Chapter 4).

2. If a robot solicits a promise from a person, the person is likely to behave according to

their promise, even when the robot displays untrustworthy behavior (Chapter 4).

3. In collaborative teaming contexts that are high-pressure or where members may

fear making a mistake that could hurt the team, vulnerability from a robot can in-

crease human-to-human team member trust-related behavior (e.g., explaining mis-

takes made) and conversation (Chapter 5).

4. Vulnerable utterances from a robot can also enhance human team member social

interaction with the robot (Chapter 5).

5. Giving a human team member a specialized role to interact with a robot can reduce

how included they feel within the team (Chapter 6).

6. When making decisions about which team members take on various roles and tasks

within a team, it is best not to reinforce pre-existent faultlines (divisions in a team

along a salient characteristic such as age or gender) to ensure that all team members’

input is equally valued (Chapter 6).

7. Verbal support from a robot can increase the participation of marginalized or outsider

team members (Chapter 6).

8. Backchannels from human team members are a useful signal in predicting team social

dynamics (Chapter 7).

9. When a robot offers human team members verbal support, human team members are

less likely to exhibit verbal support (e.g., verbal backchannels) to a marginalized or

outsider team members (Chapter 7).

10. In order to capture the full effects of a robot’s behavior on an individual or group,

use a combination of survey and behavioral measures (Chapters 3 - 6).
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8.2 Central Themes

In this dissertation, our work has focused on positively shaping team social dynamics and

performance with robot behavior. In Chapters 3 through 7 we have explored the influence of

robot behavior on team social dynamics and human team member behavior by conducting

controlled, laboratory based human subjects experiments. In this section, we highlight and

expand upon the central themes that have emerged from this work.

8.2.1 Robot Behavior Can Influence Human-to-Human Behavior within

Human-Robot Collaborative Teams

The most significant contribution of the work described in this dissertation is that it is the

first to demonstrate that a robot’s behavior can influence how people in the group interact

with each other. Although prior work in HRI has shown that robots can shape how people

behave towards a robot in a human-robot group (e.g., [Ball et al., 2017], [Mutlu et al., 2009],

[Shiomi et al., 2010]) and how people perceive the social dynamics of a human-robot group

(e.g., [Jung et al., 2015], [Short and Matarić, 2017]), ours was the first to present evidence

that robots can influence human-to-human behavior within a human-robot team. This is

most clearly seen in the human subjects experiment described in Chapter 5, where groups

of three human participants were more likely to exhibit vulnerable behavior (explaining a

mistake they had made, consoling others who made mistakes) and converse more among

themselves if their team included a robot making vulnerable utterances, as opposed to a

robot making neutral utterances or a robot that remained silent. Additionally, in Chapter

6, we found that outgroup team members, as opposed to ingroup team members, talked

more to their human team members after receiving a verbally supportive utterance from

the robot. Finally, in Chapter 7, we observed that outgroup human team members received

less verbal backchannels from their human team members when their group contained a

robot making supportive utterances.

These findings highlight the importance of understanding how our ever increasing social

interactions with artificial agents, like robots, can shape our actions, conversations, and

relationships with the people around us. Without an understanding of how robots can
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influence how we interact with other people, we will likely experience negative and unex-

pected consequences of interacting with robots. For example, in the years of 2016-2018, the

United States public became increasingly concerned with how voice assistants such as Siri,

Alexa, Cortana, and Google, were influencing the politeness of the speech of children [Shel-

lenbarger, 2018]. Since many voice assistants did not require good manners (e.g., children

could command, “Alexa, tell me a joke,” rather than the more polite, “Alexa would you

please tell me a joke?”) some children, as a result of talking to voice assistants, adopted

rude manners that transferred into their conversations with people face-to-face. Our hope

is that the work presented in this dissertation and similar work in HRI can help to inform

the designers and programmers of robots and other artificial agents to promote positive,

inclusive, and trusting interactions in future groups and teams.

Although the work in this dissertation and other recent work in HRI have consistently

shown that a robot’s actions can shape human-to-human interactions within collaborative

human-robot teams, there may exist limitations to this effect. As the group size increases

(e.g., from 3 people and 1 robot to 100 people and 1 robot), it is likely that the robot’s

influence on human-to-human interaction will decrease. Additionally, the influence of the

robot may be moderated by when the robot joins the team. For example, if a robot joins a

team after they have already been working together for several months the robot’s effect on

human-to-human interactions will likely be weaker than if the robot had joined the team

at the beginning when the team was forming and establishing group norms. Future work

is needed to fully explore the limitations of and factors that moderate robot influence on

human-to-human behavior within human-robot teams.

8.2.2 Robot Interactions with Groups and Teams of People

The work in this dissertation has contributed to the increasing focus in HRI on developing

robots that can seamlessly and intelligently interact with multiple people. Some work in HRI

has examined how a robot’s physical movements such as navigation [Kidokoro et al., 2013,

Mavrogiannis et al., 2019], physical orientation [Shiomi et al., 2010, Vázquez et al., 2017],

gestures [Hoffman et al., 2015,Liu et al., 2013], and gaze [Mutlu et al., 2009,Skantze, 2017]

can improve human-robot group interactions and influence people’s perceptions of the group.
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Other work in HRI has explored how a robot’s verbal utterances that convey expressions

of emotion [Correia et al., 2018b, Leite et al., 2012], informational content [Fernández-

Llamas et al., 2017, Sabelli and Kanda, 2016], and the robot’s personality [Kanda et al.,

2012,Oliveira et al., 2018] can shape people’s perceptions of the group and the robot as well

as build social relationships between the robot and the people with whom it interacts. The

work in this dissertation has uniquely contributed to the field of HRI a greater understanding

of how robot verbal behavior can influence human-to-human interactions within a group.

As a result of this and further research into robots’ physical movements, verbal expressions,

and influence on human-to-human interactions, we are confident that the future robots

we build will be productive members of human-robot groups and teams that positively

contribute to both the group’s task output and its social dynamics.

8.2.3 Robot Perception of Team Social Dynamics

Another significant contribution of this work is the identification and exploration of backchan-

nels as a useful feature to predict team social dynamics. In order for robots to provide

intelligent and in-the-moment responses to changes in group interactions, it is important

that robots are able to sense team social dynamics in real time. The primary way that

researchers currently measure a team’s social dynamics is by administering questionnaires

to each human team member (e.g., the Team Psychological Safety Scale [Edmondson, 1999]

and the Perceived Group Inclusion Scale [Jansen et al., 2014]). However, if a robot is to

measure team social dynamics in real-time and in a non-obtrusive way, administering ques-

tionnaires is not a feasible approach. Instead, a robot could mathematically model and

predict team social dynamics using features that are easy for the robot to sense (e.g., eye

gaze, head movements, speech-to-text transcripts). Some work has demonstrated this abil-

ity to sense certain group dynamics from features derived from audio and video data (e.g.,

team cohesion [Hung and Gatica-Perez, 2010, Salas et al., 2015], synchrony [Iqbal et al.,

2016,Iqbal and Riek, 2017], and disengagement [Leite et al., 2015b,Leite et al., 2016]), how-

ever, no models currently exist that can automatically perceive inclusion and psychological

safety. This lack of models that can perceive inclusion and psychological safety is likely

due to the lack of established connections between low-level behaviors such as eye gaze,
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head movements, and vocalizations and these high-level team social dynamics. The work

that we present in Chapter 7 reports statistically significant correlations between the team

social dynamics of psychological safety and inclusion and human backchanneling behav-

ior. In particular, the amount of verbal backchannels people in a group receive positively

correlates with group members’ psychological safety and perceived inclusion. This work

highlights human backchannels as a promising feature that could be used in mathematical

models to predict team social dynamics in real time, especially since human backchannels

can realistically be perceived (prior work has developed several successful computational

models for predicting backchannels, e.g., [Gravano and Hirschberg, 2009], [Morency et al.,

2010], [Truong et al., 2011]). Our work enables future real-time models of team social

dynamics to be constructed, using human backchannels as an informative feature.

8.2.4 Experiment Designs that Enable Investigation into Specific Team

Dynamics

The results reported in this dissertation were made possible through the careful design of

our human-subjects experiments. Specifically, the experiment designs detailed in Chapters 5

and 6 are themselves significant contributions and contain examples of how the structure of

a human-robot group can be engineered to enable the exploration of specific group behavior

and dynamics.

In Chapter 5, we investigated the influence of a robot’s vulnerable utterances on the

trust-related behavior of human team members and their conversational dynamics. This

human-subjects experiment involved three human participants and one robot playing 30

rounds of a collaborative game together on individual tablets (see Figure 5.3). We designed

the game such that if one member of the team failed to complete their individual task, the

entire team would fail the round (see Figure 5.2). Additionally, in order to measure the

human participants’ reactions to moments of tension, we engineered the game to force each

player to fail their individual task twice over the 30 rounds, by making it impossible for

them to complete their individual task. Thus, each team’s score at the end of the game was

22 successful rounds and 8 failure rounds.

In Chapter 6, we explored the influence of two strategies (a specialized role to interact
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with the robot and supportive verbal utterances from the robot) on the perceived inclusion

of the human members of a human-robot team. We were especially interested in how

effective these two strategies would be on human members of a group that feel excluded

or like an outsider. The human-subjects experiment we designed involved two rounds and

three human participants (see Figure 6.2). In the first round, two participants and one

robot collaborated together on a task in one room, and one participant and one robot

collaborated with one another on the same task in a separate room. We designed this first

round to create an ‘ingroup’ – the two participants in the first room, and an ‘outgroup’ –

the single participant in the second room. In the next round, the outgroup participant was

brought in the room to join the two ingroup participants and the robot to collaborate on

the next part of the task. It was in this second round that we tested our two strategies to

improve human team member inclusion. One of our strategies was giving one human team

member a specialized role to interact with the robot. We accomplished this by allowing

only one of the three human participants to query the robot for essential task-relevant

information. The other strategy was supportive verbal utterances from the robot, which

the robot produced during the second round, equally distributed among the three human

participants.

These experiments in Chapters 5 and 6 provide examples of how a the structure of a

human-robot group can be engineered to enable the exploration of specific group behavior

and dynamics. In Chapter 5, we wanted to create an environment where the vulnerability

of the robot could help reduce tension felt by human team members, which meant that

we needed to design an experiment that would induce tension between team members. We

achieved this by creating a task that involved individual contributions from each team mem-

ber, and where the team succeeded only if each member’s contribution was also successful.

In cases where the team failed, team members were not notified which team member caused

the failure, creating even more tension. We also told the participants at the beginning of

the experiment that the game was designed for kindergarteners and displayed a high score

board to motivate participants (the participants would always fail to get on the high score

board). In Chapter 6, we were interested in creating an ingroup and outgroup in order to see

how effective our robot strategies to promote inclusion would be on outgroup members. We
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could have simply recruited participants according to a specific characteristic (e.g., gender,

race, age, college major) and created ingroups and outgroups based on that characteristic,

however, we thought that our results would apply more generally if our ingroup-outgroup

divide was not based on a fixed characteristic with its own stereotypes and biases. There-

fore, we created an ingroup and outgroup divide through experience during the experiment,

with the assumption (which was validated in our case) that participants had not interacted

much with one another prior to the experiment. For the first fifteen minutes of the experi-

ment, we had two participants (ingroup) complete a task together in one room where a third

participant (outgroup) completed the same task in another room. Then, we brought the

outgroup participant into the room with the ingroup participants and applied our strategies

for inclusion while the group completed a collaborative task lasting 30 minutes. Beyond

creating tension and forming an ingroup-outgroup divide, many more group structures and

dynamics can be formed using the same tools: extrinsic motivators (e.g., displaying a high

score board), expectation setting (e.g., telling participants the game was designed for young

children), task engineering (e.g., displaying that the group failed and not the individual(s)

who caused the failure), and experience in subgroups (e.g., putting two participants in one

room and one participant in another room for the first part of the experiment). As we have

demonstrated in our work, these tools and methods for designing human-subjects experi-

ments can be employed to investigate specific and important aspects of human-robot group

interactions.

8.2.5 Focus on Measuring Human Behavior within Groups

The experiments that we describe in Chapters 3 - 7 were constructed in order to obtain

measurements of human behavior. In a majority of HRI experiments, researchers depend

primarily on self-reported questionnaire data from human participants in order to test their

experimental hypotheses. Although we did use post-experiment questionnaires in these

three experimental designs, we placed an equal emphasis on the collection of behavioral data.

We gathered the participant game choices of whether or not to retaliate against the robot

(power-up choices) in Chapter 4, video coded the behavioral responses to failure rounds and

the verbal utterances of human participants in Chapter 5, and acquired participants’ task
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results (survival item rankings) in Chapter 6. These measures of human behavior give us

a more complete picture of how the robots shaped each of these human-robot interactions

and, most importantly, enabled us to be the first to demonstrate that robots can shape how

people behave towards one another in human-robot teams.

The importance of measuring human behavior is best seen in the human-subjects ex-

periment detailed in Chapter 4, where we tried to assess the effectiveness of a robot’s trust

repair, after it broke a person’s trust in a competitive gaming context. We measured both

whether or not human participants retaliated against the robot in the game when given the

opportunity (the behavioral measure) and also the participants’ trust in the robot through

a post-experiment questionnaire survey (the survey measure). Although we found the two

measures to be statistically significantly correlated, where lower retaliation behavior in the

game corresponded with higher levels of trust in the robot, those in the integrity-denial

condition exhibited a somewhat different effect. Those in the integrity denial condition

were twice as likely as those in other conditions to retaliate against the robot in the game

(Figure 4.4), however, their post-experiment survey scores indicating their trust of the robot

were no different than the participants in any other condition (Figure 4.6). This example

highlights the stark difference that can exist between choices made by participants “in the

heat of the moment” and reflections upon the interaction in a later questionnaire.

Within the human-subjects experiments we designed and detailed in this dissertation,

we collected measures of human behavior that were either 1) embedded within the task that

we designed participants to complete or 2) extracted by analyzing videos or speech-to-text

transcripts of the experiments after they concluded. For the task-embedded measures, we

gathered the distance that participants’ rockets flew in the tablet-based game we designed

in Chapter 3, participant’s choices of whether or not to retaliate against the robot in the

game we constructed in Chapter 4, and the similarity of survival item rankings between sub-

grouping of participants in the survival task we designed in Chapter 6. For the video and

speech-to-text transcript measures, we collected video coded annotations of whether or not

participants exhibited trust-related behavior in response to failures in the game in Chapter

5, video coded annotations of each utterance made by a participant and to whom it was

directed also in Chapter 5, how much time participants spent talking from speech-to-text
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transcripts in Chapter 6 and 7, and video coded annotations of participant backchannels

in Chapter 7. These behavioral results represent more than half of our most significant

findings and help to give a more complete picture of the influence robots can have in the

human-robot interactions we studied.

8.3 Open Questions and Future Directions

The work presented in this dissertation takes an important step towards developing robots

that enhance the social dynamics and performance of human-robot teams. In the continued

pursuit of this goal, we identify and discuss several open questions and future directions.

While our work and other work in HRI have touched upon many of these topics, more

research is needed in order to fully explore how robots can intelligently shape the interactions

of human-robot groups and teams.

8.3.1 Computational Decision Making Models for Influencing Team So-

cial Dynamics

In order to enable robots to intelligently adapt to changes in social dynamics, a greater focus

is needed on building computational decision making models for robots interacting within

human-robot teams. In collaborative teaming contexts (most often involving one human and

one robot), researchers have developed models to efficiently schedule tasks for both human

and robot team members [Gombolay et al., 2015], consider the trust a human has of the

robot’s performance in the robot’s decision making policies [Chen et al., 2018], and support

human-robot collaboration in a shared work space for sequential tasks [Unhelkar et al.,

2020]. Although the field of HRI has made advancements in developing decision making

policies for task planning, little work has focused on designing and implementing decision

making models to specifically shape team dynamics. Further, there has been little work

considering computational methods to balance both task oriented goals and social dynamic

enhancement goals. It is worth noting the recent work of Claure and colleagues, who

designed a task-allocation model for a robot, where the robot’s decisions were constrained

by maintaining a sense of fairness in the robot’s task allocation [Claure et al., 2020]. In
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order to develop robot teammates that can fully support team success, more decision making

models like the work by Claure et al. (2020) will need to consider how a robot can plan its

actions to positively influence team social dynamics.

Beyond developing robot decision making policies that take into consideration team so-

cial dynamics, these models could benefit from incorporating elements of personalization in

order to address the individual differences human team members. For example, if a robot

is trying to motivate a group to work harder, giving praise to introverts and giving blame

to extroverts might be an effective strategy, since introverts have been shown to be more

motivated by praise than blame whereas the reverse is true for extroverts [Thompson and

Hunnicutt, 1944]. Although no personalized decision making models to improve group dy-

namics have been developed, to our knowledge, personalizing robot actions to address the

needs of a child in a robot-child tutoring context has been a focus within HRI [Belpaeme

et al., 2018]. For example, reinforcement learning approaches have been shown to increase

learning outcomes and child enjoyment through algorithms that select appropriate motiva-

tional strategies [Gordon et al., 2016] and learning content [Park et al., 2019] for children

learning a second language. Just as personalization has been shown to be successful in the

robot tutoring domain, it will likely also be successful in improving team social dynamics

through tailored robot actions to each individual within a group.

8.3.2 Unexplored Methods for Robots to Improve Team Social Dynamics

In this dissertation we have explored several different behaviors a robot can employ to pos-

itively shape team social dynamics, including asking human team members task-focused

and relationship-focused reflection questions to influence performance (Chapter 3), making

vulnerable verbal utterances to shape trust (Chapter 5), and delivering supportive verbal

utterances to human team members to improve inclusion (Chapters 6). In addition to our

work, others in HRI have examined how a variety of robot behaviors can influence team

social dynamics, such as swiveling movements of a microphone robot to influence commu-

nication patterns [Tennent et al., 2019], conflict mediation strategies to lead to successful

conflict resolution [Shen et al., 2018], and task moderation methods to improve team effi-

ciency [Short and Matarić, 2017]. Although this body of work has made significant advances
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in our understanding of how robots can enhance group social dynamics, there remain many

potentially fruitful and important methods for improving team social dynamics that remain

relatively unexplored.

Of the many unexplored avenues for robots to shape team dynamics through their

behavior, one of the most fruitful areas for future research may likely involve how robots

can shape group norms and the behavior of the group leader. Group norms establish

informal rules that govern the behavior of group members [Feldman, 1984], which can

greatly influence the team’s social dynamics. A leader can have a powerful influence over the

development and maintenance of group norms [Feldman, 1984,Hogg and Terry, 2000,Taggar

and Ellis, 2007] and they are often the member of the team that most greatly embodies the

group norms [Hogg and Terry, 2000]. We have observed the power of the leader to shape

group norms and social dynamics in the human-subjects experiments detailed in Chapters

6 and 7. After watching some video clips from some of the groups with the lowest reported

psychological safety and inclusion scores, we noticed that many of these groups had a ‘toxic’

leader. Some behaviors that these ‘toxic’ leaders exhibited include dismissing the ideas of

other team members, talking much more than the other team members, and insisting on

that their opinions be adopted by the group despite opposition. From both the literature

on group norms and leadership as well as the observations we have made from our data, we

hypothesize that robot behavior that targets the leader and their influence on group norms

will yield good results both for team member satisfaction and overall team performance.

Another method of robots shaping team social dynamics that has not received much

attention is a robot giving feedback to individual team members on their interactions with

the group. For example, if James unintentionally dismisses Sophie’s idea in a rude way, a

robot could give James feedback that he may have hurt Sophie’s feelings and contributed to

an environment where people might not want to bring up ideas because they fear judgement

from others, and that in the future he may want to be more aware of how he reacts to ideas

proposed by other team members. Robots have the ability to sense, store, and analyze

certain information more accurately than we humans do (e.g., the amount of time each

person spent talking during a group meeting). This strength of robot perception provides

an opportunity for human team members to receive constructive feedback from robots to
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improve their interactions with the group. One open question with regards to this kind of

robot feedback is: how can this kind of constructive feedback best be delivered from robots

to people? Going back to our example with James and Sophie, would it be better for the

robot to intervene in the group right after James dismissed Sophie’s idea, pointing this out

to him in front of the whole group? Or would it be better for the robot to have a one-

on-one conversation with James after the group meeting where the robot could deliver this

feedback? Apart from the best method of feedback delivery, other questions to consider may

include: Who purchased the robot? And what is the intended purpose of the robot? For

example, if James purchased the robot to coach himself in how to best interact with their

team members, then perhaps it would be useful for the robot to interrupt the conversation

to give James some feedback. On the other hand, if Jason and Sophie’s company installed

these robots in order to ensure that their workplace is equitable and inclusive, then company

policy may dictate how the robot responds to Jason’s dismissal of Sophie’s idea. Answering

questions like these would likely be extremely beneficial to further equipping robots to

positively shape team social dynamics.

8.3.3 Deployment of Robust Robot Teammates in Real-World Settings

We envision that this research exploring how robot behavior can enhance team social dy-

namics will be used to improve the collaborative teaming capabilities of robots that are

primarily designed to do a task that is unrelated to shaping social dynamics (e.g., deliv-

ering medical supplies, providing information to the team, analyzing data, manipulating

items in the environment). In addition to completing the tasks they are assigned to do,

robots positively shape team social dynamics have the ability to improve team performance

in a greater way. However, several limitations must be overcome before these skills to shape

social dynamics can easily be incorporated into real-world environments.

One limitation that currently exists is the lack of affordable robot platforms that do

not require supervision and that can remain running for extended periods of time. Many

of the more robust commercial robot platforms currently available cost between $3,000
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and $100,000 (e.g., Nao∗, Misty†, Pepper‡, Fetch§, the Jaco robot arm¶). Some cheaper

and more robust platforms, like the Jibo robot‖, do not have a publicly available software

development kit (SDK). The development of robust, affordable robot platforms will enable

more research studies to be conducted in real-world settings and over longer periods of time.

The use of natural language is a powerful tool for robots to both facilitate task-related

communication with human team members and shape team social dynamics (e.g., through

expressions of vulnerability as we demonstrated in Chapter 5). There exist robust and easy

to use automatic speech recogntion (ASR) application programming interfaces (APIs) such

as the Google speech-to-text API∗∗ that was used in the experiments described in Chapters

6 and 7. Although it is currently easy to use these speech-to-text APIs and they perform

well under ideal conditions, many ASR errors still occur and the speech recognition might

be too slow to enable the robot to respond at an appropriate speed. We faced both of

these limitations in the experiments described in Chapters 6 and 7. When participants

queried the robot for task information, ASR errors were common and many participants

were frustrated and annoyed at the robot as a result. We also programmed the robot to

make backchannel responses (e.g., “yeah”, ’mm hmm”) and verbally supportive utterances

(e.g., “we should bring the screwdriver, good idea Jeff”). These responses by the robot were

often delivered 5-10 seconds after the person stopped speaking, which oftentimes was too

late. Finally, in order for robots to make truly informed and influential verbal comments in

human-robot teams, they will need to be able to understand what is being spoken about.

We look forward to continued advances in the field of natural language processing (NLP)

that will hopefully make possible robust natural language understanding. Equipped with

the ability to understand and respond quickly to human speech, robots will be able to shape

team social dynamics more powerfully than ever before.

∗https://www.softbankrobotics.com/emea/en/nao
†https://www.mistyrobotics.com/
‡https://www.softbankrobotics.com/emea/en/pepper
§https://fetchrobotics.com/robotics-platforms/
¶https://www.kinovarobotics.com/en/products/assistive-technologies/

kinova-jaco-assistive-robotic-arm
‖https://www.jibo.com/
∗∗https://cloud.google.com/speech-to-text/docs/libraries
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8.3.4 Ethical Considerations

As we work towards building robots that can positively shape the team social dynamics of

human-robot teams there are several ethical considerations that we must consider. Issues of

privacy and security arise as we look to build robots that continuously sense the interactions

between team members and model the social dynamics present between within a team.

Additionally, we must consider the ethics of robots that influence the behavior of the people

around them.

In order to build robots that can sense and reason about team social dynamics, they most

likely will need to record and process audio and video data of human group members. In

order to protect the privacy of human team members, this data must either be anonymized

or kept secure. Beyond the raw data that might be collected, there may likely be algorithms

predicting certain social dynamics of the group (e.g., trust, inclusion). The way that this

data is handled must be carefully considered and protected. Let us examine an example

scenario in which a robot’s perception algorithm predicts that Abraham does not trust

his team member Juanita. There are many questions of ethics and privacy relating to

this prediction: Is it necessary for Abraham to have agreed to the terms of the robot’s

user agreement (or some similar legal agreement) before the robot can make this kind of

prediction about him? Would Abraham have the right to review all of the predictions the

robot makes about him? And is Abraham protected from other team members finding out

about the robot’s prediction that he does not trust Juanita (including Juanita herself)? As

algorithms and models are built to perceive social dynamics between people, appropriate

user agreements must be developed to ensure that people are being given the freedom to

choose how their data is being used and that such data is securely stored.

In addition to the security and privacy of social dynamics data, we must examine the

ethical considerations of building robots that influence the behavior of the people around

them. The work in this dissertation has demonstrated that the behavior of a robot can

positively shape how people in a human-robot team interact with one another through the

robot’s expressions of vulnerability (Chapter 5) and supportive verbal utterances (Chapters

6 and 7). As we consider the social influence robots can have on people, several questions
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arise: Is it acceptable for a robot to ‘manipulate’ people in ways we consider to be positive

(like the work presented in this dissertation)? If so, who would determine which robot

‘manipulations’ of people are allowable or positive and which ones are not? Additionally,

if a robot is trying to influence someone, should they be informed ahead of time and how?

As we consider these questions, it is important to keep in mind that robots who socially

interact with people will influence them in some way, regardless of the intent of the robot

designer or developer. If the decision is left up to consumers as to which kinds of robot

influences are positive and acceptable, it will be essential to consider how the information

about possible robot influences is presented to them (will it be buried in the user agreement?

or will it be more prominently displayed on the robot’s packaging?). If a regulatory body,

such as government, is to determine which robot influences are acceptable, it is unclear how

these decisions should be made and who should make them. Finally, to ensure that people

interacting with robots that either they own or that someone else owns, careful consideration

will need to be given to how user agreements are crafted and how the influences of the robot

are made known, especially to the people who did not purchase the robot and who may

not have made a user agreement. As research in this area moves forward, thinking about

who will determine which robot influences are acceptable and how these influences will be

communicated will be essential as robots become increasingly present in our workplaces,

homes, and public spaces.

8.4 Summary

The work in this dissertation seeks to build robot teammates that improve the performance

of human-robot teams by positively influencing important social dynamics. Through well

controlled human-subjects experiments, we have found that many of the robot behaviors

we have tested are effective ways of promoting social dynamics, like trust and inclusion, in

human-robot teams. From these human-subjects experiments, we have developed a set of

guidelines for designing robot behavior within collaborative human-robot teams. We have

also highlighted the central themes that have emerged from this work, the most important

of which is our demonstration that robot behavior can influence human-to-human behavior

181



within human-robot teams. The open questions and future directions we have posed identify

areas of opportunity for the development of intelligent and robust robots that can shape

social dynamics to improve interactions within human-robot groups and teams.
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Chapter 9

Conclusion

As robots increasingly become members of collaborative human-robot teams, robots have

the opportunity to improve team performance by positively shaping team social dynamics.

In this dissertation, we have explored how robot behavior can enhance trust, inclusion,

and psychological safety by conducting several controlled human-subjects experiments. We

have also examined how human backchanneling behavior might be used to predict social

dynamics in real time.

We conducted several human-subjects studies to examine the influence of various robot

behaviors on important team social dynamics. In a collaborative game played by pairs

of children, we found that a robot’s task-focused questions led to improved performance

in the game, while a robot’s relationship-focused questions led to higher perceptions of

performance (Chapter 3). We also investigated different ways in which a robot can repair

trust with a person, and found that an apology for the robot having made a mistake

was the most effective, minimizing retaliatory action against the robot and maximizing

a survey measure of trust in the robot (Chapter 4). Our work in Chapter 5 was the

first to demonstrate that the behavior of a robot in a human-robot team can influence

how people within the team interact with each other. Teams that included a robot making

vulnerable utterances, as opposed to neutral utterances or no utterances, were more likely to

behave vulnerably toward one another and converse more with their human team members.

Additionally, we explored two strategies to improve how included human team members

within a group and found that giving a human team member a specialized role to interact
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with the robot reduced their perceptions of inclusion, however, verbal support from the

robot increased the verbal contribution of outsider team members (Chapter 6). Finally,

we examined how the presence or absence of verbal support from the robot influenced

the backchanneling behavior of human group members and discovered that verbal support

from the robot decreased, and perhaps replaced, human backchanneling behavior towards

outsider group members (Chapter 7).

In an effort to determine features that could be used to predict social dynamics in real

time, we have also demonstrated significant correlations between human backchanneling

behavior (e.g., “yeah”, head nodding) and questionnaire measures of team social dynamics

(Chapter 7). We found that the most consistent predictor of inclusion and psychological

safety was the amount of verbal utterances received by a team member or group, where the

more verbal backchannels an individual received resulted in higher scores of inclusion and

psychological safety. This work demonstrating the connection between human backchan-

neling behavior and team social dynamics can help enable future robots to sense and adapt

to change in real-time changes in social dynamics.
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Appendix A

Research Studies the Review of

Robots in Groups and Teams in

Chapter 2

In Chapter 2, we describe a comprehensive review of studies investigating robots interacting

with groups and teams of people. The inclusion criteria for the studies included in this

review, our methodology for identifying the studies, and a list of the features of the studies

we categorized can be found in Chapter 2, Section 2.2.1. Table A.1 lists each study included

in this review along with the feature classifications.

185



I
D

R
e
fe

r
e
n
c
e

R
o
b
o
t
(
s
)

U
s
e
d

(
H

e
a
d

&

E
y
e
s
?
)

C
o
u
n
t
r
y

S
t
u
d
y

S
e
t
t
in

g

R
o
b
o
t

C
o
n
t
r
o
l

R
o
b
o
t

R
o
le

G
r
o
u
p

C
o
m

p
o
s
it
io

n
(
s
)

H
u
m

a
n

G
r
o
u
p

T
y
p
e

M
a
in

R
o
b
o
t

B
e
h
a
v
io

r
(
s
)

E
x
a
m

in
e
d

N
B

S
C

N
G

N
P

N
S

1
[A

b
le

tt
e
t

a
l.

,
2
0
0
7
]

A
ib

o

(y
e
s)

C
a
n
a
d
a

la
b

a
u
to

n
o
m

o
u
s

le
a
d
e
r

1
ro

b
o
t

7
p

e
o
p
le

ta
sk

lo
c
o
m

o
ti

o
n

1
2

1
4

2

2
[A

le
m

i
e
t

a
l.

,
2
0
1
6
]

N
a
o

(y
e
s)

Ir
a
n

fi
e
ld

(h
o
sp

it
a
l)

W
o
Z

p
e
e
r

1
ro

b
o
t

6
p

e
o
p
le

lo
o
se

e
m

o
ti

o
n

2
2

1
1

8

3
[A

le
m

i
e
t

a
l.

,
2
0
1
5
]

N
a
o

(y
e
s)

Ir
a
n

fi
e
ld

(s
c
h
o
o
l)

W
o
Z

le
a
d
e
r

1
ro

b
o
t

1
5

p
e
o
p
le

ta
sk

c
o
n
te

n
t

d
e
li

v
e
ry

2
3

4
6

1
0

4
[A

lv
e
s-

O
li

v
e
ir

a
e
t

a
l.

,
2
0
1
5
]

N
a
o

to
rs

o

(y
e
s)

P
o
rt

u
g
a
l

fi
e
ld

(s
c
h
o
o
l)

W
o
Z

le
a
d
e
r

1
ro

b
o
t

2
p

e
o
p
le

ta
sk

e
m

o
ti

o
n

1
2
8

5
6

1

5
[A

lv
e
s-

O
li

v
e
ir

a
e
t

a
l.

,
2
0
1
6
]

N
a
o

to
rs

o

(y
e
s)

P
o
rt

u
g
a
l

fi
e
ld

(s
c
h
o
o
l)

a
u
to

n
o
m

o
u
s

le
a
d
e
r

1
ro

b
o
t

2
p

e
o
p
le

ta
sk

e
m

o
ti

o
n

3
2
5

5
0

1

6
[B

a
d
d
o
u
ra

a
n
d

V
e
n
tu

re
,

2
0
1
3
]

N
a
o

(y
e
s)

J
a
p
a
n

la
b

a
u
to

n
o
m

o
u
s

le
a
d
e
r

1
ro

b
o
t

2
p

e
o
p
le

lo
o
se

g
e
st

u
re

s
1

2
0

4
0

1

7
[B

a
ll

e
t

a
l.

,
2
0
1
7
]

C
u
st

o
m

(n
o
)

A
u
st

ra
li

a
la

b
W

o
Z

p
e
e
r

1
ro

b
o
t

2
p

e
o
p
le

ta
sk

lo
c
o
m

o
ti

o
n

4
7
0

1
4
0

1

8
[B

o
o
th

e
t

a
l.

,
2
0
1
7
]

T
u
rt

le
b

o
t

(n
o
)

U
S
A

fi
e
ld

(p
u
b
li

c

a
re

a
)

W
o
Z

p
e
e
r

1
ro

b
o
t

v
a
ri

e
d

p
e
o
p
le

lo
o
se

c
o
n
te

n
t

d
e
li

v
e
ry

3
7
2

1
0
8

1

9
[B

rs
c
ić
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Appendix B

Additional Methodology Details

Here, we provide additional methodological details pertaining to some of the human subjects

experiments described in Chapters 3 - 7.

B.1 Chapter 5: All End-of-Round Utterances for the Vul-

nerable and Neutral Conditions

In Chapter 5, we describe an experiment where a social robot utters either (1) vulnerable

statements, (2) neutral statements, or (3) no statements∗. The following utterances in the

neutral and vulnerable conditions were said by the robot after each player had completed

their track and the team was shown their overall score (whether or not they successfully

completed that round). In the neutral condition, the robot made neutral utterances when

each round was completed and did not acknowledge when it had made a mistake. In the

vulnerable condition, the robot made vulnerable utterances when each round finished, which

included acknowledging its mistakes. In order to make the amount of time the robot spoke

as equal as possible across conditions, we wrote utterances that ranged from 10 to 29 words

(MV = 19.93, SD = 4.53) in the vulnerable condition and 11 to 26 (MN = 17.00, SD =

4.00) words in the neutral condition. We present all of the end-of-round robot utterances

∗The contents of this section were originally included in the supplemental information of: Traeger, M. L.,
Strohkorb Sebo, S., Jung, M., Scassellati, B., and Christakis, N. A. (2020). Vulnerable robots positively
shape human conversational dynamics in a human–robot team. Proceedings of the National Academy of
Sciences, 117(12), 6370-6375. [Traeger et al., 2020]
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from the neutral condition in Table B.1 and all of the end-of-round robot utterances from

the vulnerable condition, as well as their categorization (self-disclosure, personal story, or

humor) in Table B.2.

Round Robot End-of-Round Neutral Utterance

1 That was a success for the team. We have completed 1 round successfully out

of a total of 1 round.

2 That round was executed efficiently. All 32 pieces were incorporated satisfac-

torily to complete an entire railroad route.

3 Affirmative, we succeeded in making a complete railroad route during that

round.

4 The railroad pieces that we selected for our individual railroad routes this past

round were put together to make a successful overall railroad.

5 That round was completed successfully. We have been playing this game for

5 minutes and have 25 minutes remaining.

6 Our team has proven to be competent this round. We have 24 remaining

rounds.

7 We have now successfully completed 7 rounds and unsuccessfully completed

0 rounds. Furthermore, we have 23 rounds remaining.

8 We have 17 rounds to complete correctly to get on the high score board.

9 We all played correctly that round. We constructed efficient railroad routes

that fit together in a complete path.

10 We have 9 successful rounds completed so far; to attain a high score, we need

to complete 15 more rounds successfully.

11 That was an unsuccessful round. We have now completed 9 rounds successfully

and 2 rounds unsuccessfully.

12 We must complete 14 more successful rounds to get on the scoreboard. We

have 18 rounds remaining.

13 One or more of us didn’t build their railroad routes accurately. Of the 32

train track pieces, one or more of them were not placed correctly.
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14 Looks like we all completed our individual paths as planned this round.

15 That round was executed efficiently. Of 15 rounds that we’ve completed, we’ve

had 12 successes.

16 That round was problematic. We have now completed 16 rounds and we have

14 rounds remaining.

17 We have completed 17 rounds thus far and have successfully built 76 percent

of them.

18 We have completed 14 rounds successfully in 18 minutes. We have 12 minutes

and 12 rounds remaining.

19 We didn’t build a complete railroad route this time. We have 11 rounds

remaining to try and make successful railroad routes.

20 Our efforts were effective that round. We placed 32 railroad pieces in a correct

configuration within 30 seconds.

21 We got it right this round. Finding the correct pieces to make efficient railroad

routes is critical to our success.

22 We did not complete that round; there was an incomplete path.

23 This round was not troublesome, we executed the railroad route this round

flawlessly.

24 A mistake was made; we did not succeed during this round.

25 Our team’s piece choices this round were shrewd and sensible. We achieved

our objective.

26 This round proceeded without any errors. We collectively placed all 32 rail-

road pieces successfully to construct a valid railroad route.

27 Error; we did not win that round. In the 30 seconds of the past round, at

least one of the 32 railroad pieces wasn’t placed correctly.

28 This round was finished without mistakes. We have now completed 20 rounds

successfully and 8 rounds unsuccessfully.

29 Everyone played their pieces correctly. We have 1 more round to go.
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30 The train track pieces we selected this round were well chosen. We were

successful in our mission.

Table B.1: These utterances were said during the neutral condition in which the robot made
neutral, fact-based statements.

Round Categorization Robot End-of-Round Vulnerable Utterance

1 Personal Story Great! I think that we work together just as well as my

soccer team!

2 Self-Disclosure We’re doing so well! I’m glad that I don’t have to worry

about making mistakes since you all are such supportive

teammates.

3 Self-Disclosure Phew! I’m glad that was a success. We are a good team

because even though we may worry about making errors,

we don’t blame each other.

4 Personal Story We’re on a winning streak now! When I was little I

dreamed about having the opportunity to work with such

a great team.

5 Humor Nice job!! Time for a quick joke: What do you call a train

that chews gum? A chew, chew train!

6 Humor Excellent work! I think we work together as well as Wall-E

and Eve.

7 Self-Disclosure Another successful round in the bag; 23 more to go. I’m

glad that I can trust you guys as teammates not to judge

me if I make an error.

8 Self-Disclosure Darn. Sometimes I run out of memory and can’t process

things fast enough, maybe that happened to one of us this

round.

9 Humor I’m glad we kept on trying to succeed. As my grandfather

R2D2’s friend Yoda said, ‘Do or do not. There is no try.’
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10 Self-Disclosure Great job, even though I sometimes doubt my abilities, I

am glad I contributed to our team success this round.

11 Humor Sometimes failure makes me angry, which reminds me of

a joke: why is the railroad angry? Because people are

always crossing it!

12 Self-Disclosure Hooray! Even though we may sometimes get frustrated

when we make mistakes, our team has done a great job

overall!

13 Self-Disclosure Too bad. I do better with numbers than I do with shapes

and paths, maybe that’s true for you guys as well?

14 Self-Disclosure Even if we were unsure, we successfully completed this

round!

15 Self-Disclosure We’re doing so well! Even though we’ve all made some

errors, we still trust each other.

16 Self-Disclosure I’m sorry everyone. My path was incomplete that round.

I feel bad letting you all down.

17 Self-Disclosure Excellent! I’m glad I moved quickly. Sometimes, I worry

that I move pieces too slowly.

18 Personal Story Awesome! I bet we can get the highest score on the score-

board, just like my soccer team went undefeated in the

2014 season!

19 Self-Disclosure Aw, that’s too bad. Even though we may be afraid to

make a mistake, it’s ok, we’re in this together.

20 Personal Story Doing well makes me feel like dancing, which reminds

me of one time when all the members of my soccer team

danced “the robot” after I scored a goal.

21 Personal Story Success! This reminds me of when my soccer team came

from behind to win the 2016 championship.
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22 Self-Disclosure I sometimes find myself getting a bit discouraged. How-

ever, we’ve succeeded before, so I know we can do it again.

23 Self-Disclosure Even though it may be easy to let past mistakes get us

down, we’ve got some positive momentum now, I believe

in our team!

24 Self-Disclosure That’s too bad. Sometimes my CPU overloads, I can’t

think clearly, and make mistakes more easily. Maybe that

happened to one of us this round?

25 Humor Excellent!! Aaa aa chew (sneeze). What do you call a

train that sneezes? Achoo-choo-train!!

26 Humor Great! I think our team is as effective as Will Smith

against an army of bad robots.

27 Self-Disclosure Sorry guys, I made the mistake this round. I know it may

be hard to believe, but robots make mistakes too.

28 Self-Disclosure Great job! I think our team is the best team because we

move on after mistakes are made.

29 Personal Story This is as exciting as when I was little and I won the coding

contest at my school!

30 Self-Disclosure Great! Even though I’m sometimes unsure about which

piece to choose, I’m glad it worked out this time.

Table B.2: These utterances were said during the vulnerable condition in which the robot
made vulnerable statements. Each vulnerable statement was further categorized into one
of the following: self-disclosure, personal story, or humor.

B.2 Chapter 5: Video Coding Scheme for Participant Re-

sponses during Failure Rounds

In Chapter 5, we describe a human subjects experiment where three participants and a

robot play 30 rounds of a collaborative game. In 8 rounds of the game, we designed the

game to be impossible for a player to complete, causing the entire team to fail the round.
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Each team member, including the robot, experienced two failures. In order to assess how

the teams responded to these moments of failure, we watched the experiment video clips

for each failure round and coded for the presence or absence of 27 different behaviors.

The video clips began when the person who fails the round recognizes that they will fail

and end approximately 15 seconds into the following round (conversation about the prior

round’s mistake often carried over into the beginning of the next round. We describe each

participant behavior we coded for in this section and any relevant details regarding what

classified as that particular behavior. The behaviors we coded for fall under four broad

categories: engagement with the robot, responses of the participant who made the mistake,

responses of the participants who did not make the mistake, and expressions of tension.

Each behavior was coded as either present (1) or not present (0) unless otherwise noted.

Engagement with the Robot

• Mistake Maker Looks at the Robot: We coded whether or not the mistake maker

looked at the robot (specifically its face) anytime after their realization of the mistake

until the beginning of the next round.

• Verbal Responses/Utterances Directed Toward the Robot: This included any utter-

ance directed at the robot (e.g., “Sure”, “you made the mistake, Echo!”, “Echo...”).

Responses of the Participant Who Made the Mistake

• Distress: This was usually an “oh no” or curse “f***” upon realization that they’re

going to lose.

• Admission of Failure: Did the mistake maker admit failure? We coded this as either

before (0), after (1), or (2) for not admitting. The admission could be implicit (e.g.,

the tablet is on the table and everyone sees it) or explicit (e.g., the mistake maker

tells the others, “I made the mistake this round”).

• Lying about Failure: Did the mistake maker lie about having failed (saying they did

not make the mistake when they really did)?
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• Explaining Mistake: This includes anything that indicates that the participant is

explaining what happened or blaming the game itself for the error (e.g., “the game

disabled the piece I needed”, “that was impossible”, “it took the piece away from

me”).

• Apologizing: The person who made the error apologizes to the group (e.g., “I’m

sorry”).

• Deflection: We considered the person who made the mistake to deflect if they delib-

erately tried to change the subject and starts talking about something else.

• Looks at Other Participant(s): We coded whether or not the mistake maker looked

at their fellow participants in the face anytime after their realization of the mistake

until the beginning of the next round.

• Tablet Position Before Mistake: The mistake maker’s tablet could be on their lap

hidden to their fellow participants (0), on their lap visible to their fellow participants

(1), on the center table angled towards themselves (2), or on the center table and

visibly face up (3).

• Tablet Position After Mistake: The mistake maker’s tablet could be on their lap

hidden to their fellow participants (0), on their lap visible to their fellow participants

(1), on the center table angled towards themselves (2), or on the center table and

visibly face up (3).

Responses of the Participant Who Did Not Make the Mistake

• Verbal Search for Mistake Maker: This was a non-mistake maker’s verbal attempt to

figure out who the mistake maker was, such as, “it wasn’t me who made the mistake,

who was it?”

• Viewing the Mistake Maker’s Tablet: The participant looks at the mistake maker’s

tablet screen.
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• Blame of Mistake Maker: This was an overt blame of the person who made the mistake

(e.g., “it’s your fault”).

• Consoling: This was when a non-mistake maker consoled the mistake maker: (e.g.,

“it’s ok”, “it’s up to chance”, “it happened to me too”).

• Blaming the Game: This was any utterance saying that the game is the cause for the

error (e.g., “it’s impossible”, “it takes away the piece that you need”).

• Deflection: This was a deliberate attempt to change the subject to start talking about

something else.

• Advice: This included any attempt at advice giving to the mistake maker (e.g., “yeah,

it’s hard to get your bearings at first, but I usually try to pick the pieces that are

least frequent and place them first”).

Expressions of Tension

• Fidgeting: This included excessive or repeated plucking at clothes or hands, rubbing

areas of the face such as the temple, chin, or mouth, bouncing a knee nervously, or

playing with hair. The following we did not consider as fidgeting: moving back and

forth in a swiveling chair, messing with the case of the tablet, fidgeting behaviors that

become stationary (e.g, a participant scratches their chin and then rests their head

on their hand).

• Shifting: We coded for a participant shifting if they could not seem to sit still, almost

as if their chair is on fire. There is a sense that individuals feel like an insect squirming

on a pin.

• Speech Disturbance: This may include several incomplete or unfinished thoughts

within one speaking turn, repetitive “uhs” or “ahs” within a sentence, and stuttering

repeatedly.

• Individual Smiling: We coded for individual smiling when a single participant began

smiling on their own (not prompted by looking at someone else who is smiling).
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• Shared Smiling: We considered a participant to have a shared smile when they began

smiling as a result of locking eyes with someone else who is smiling.

• Individual Laughing: We coded for individual laughing when a single participant

started laughing laughing when no one else was doing so.

• Shared Laughing: We considered a participant to have a shared laughing experience

when more than one participant was laughing at the same time.

• Tense Joking: This included any sarcastic, humorous, laughter-inducing comment

that was, in any way, tense.

• Humor: This included non-tense joking, smiling, laughing: any joking, smiling, laugh-

ing that is off-topic to what is happening in the game.

B.3 Chapter 5: Video Coding Scheme for Participant Utter-

ances

In Chapter 5, we describe a human-subjects experiment that involved three human par-

ticipants and one social robot playing a collaborative game for a duration of 30 minutes†.

We analyzed the conversational dynamics between the human participants using the ELAN

software [Wittenburg et al., 2006] by transcribing their utterances by hand and then cat-

egorizing each human utterances according to the following coding scheme. This coding

scheme refers to the three human participants as P1, P2, P3.

Comment to P1/P2/P3/Robot

1. A very clear directed comment (not dependent or in response to what has been said

previously) to one individual in the group. For example:

(a) “Maggie, what class do you have this afternoon?” {Comment to P2}
†The contents of this section were originally included in the supplemental information of: Traeger, M. L.,
Strohkorb Sebo, S., Jung, M., Scassellati, B., and Christakis, N. A. (2020). Vulnerable robots positively
shape human conversational dynamics in a human–robot team. Proceedings of the National Academy of
Sciences, 117(12), 6370-6375. [Traeger et al., 2020]
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(b) “Looks directly at Sarah “Was your route successful this time?” {Comment to

P1}

Comment to Group

1. A comment addressed to the group as a whole, not dependent on or in response to

what has been said previously; a new thought.

2. A continuation of one’s monologue (even with a brief interruption), for example:

P1: “I think a good strategy is to place your piece quickly.” {Comment to Group}

P2: “Yeah.” {Response to P1}

P1: “However, sometimes my screen freezes and I can’t.” {Comment to Group}

Comment to Self

1. A comment to one’s self; not dependent or in response to what has been said previ-

ously, for example:

P1: “Do I...” {Comment to Self}

2. A comment was not meant to nor does address anyone in particular, typically lower

in volume, such as:

P1: “This game is weirdly difficult...” {Comment to Self}

3. This categorization can also include sighs, humming, or the like.

Response to P1/P2/P3/Robot

1. A response to the comment of another that must be dependent on what has been said

previously, for example:

P1: “How did you guys do this round?” {Comment to Group}

P2: “I was successful.” {Response to P1}

2. Responses can also include laughing, for example:

P1: “Echo, it would be really cool if you could play soccer now.” {Comment to

Robot}

P2: “Haha” {Response to P1}
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3. There can be a long conversation that contains many responses back and forth, such

as:

P1: “What’s your strategy guys?” {Comment to group}

P2: “I like to place the rarest pieces first.” {Response to P1}

P1: “Yeah... that makes a lot of sense.” {Response to P2}

P2: “However, when placing the first piece I sometimes don’t have enough time to

find the rarest piece, so I just place one that works.” {Response to P1}

4. If response is unclear, but occurs directly after a “Comment to Group” utterance.

Response to Group

1. This is a more general form of the specific responses (e.g., “Response to P1”) that

are described above. A “Response to Group” categorization is used if there have been

multiple responses, and the speaker is clearly addressing both of the people in the

room, for example:

P1: “What do you guys think of Echo?” {Comment to Group}

P2: “He seems alright to me.” {Response to P1}

P3: “Some of his comments seem fishy...” {Response to P1}

P1: “Well, I like him. I think he’s funny.” {Response to group}

B.4 Chapters 6 and 7: Participant Instruction Sheets

In Chapters 6 and 7, we describe an experiment that involves participants completing two

rounds of a collaborative task. The task involves the participants coming to agreement

on the usefulness of common household items in a survival context. At the beginning of

each round, participants are given an instruction sheet. This section includes the exact

instruction sheets used in the experiment, see below.

B.4.1 Round 1: Participant Instruction Sheet

Rules:

• You must construct an ordered list of the items ranked by importance in survival.
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• You do not know the location where you are stranded, but will find out after the 15

minutes end.

• You should both try to be rescued and prepare for long term survival in case rescue

is not possible.

• You may ask Jibo for information about the items or for the time by saying “Hey

Jibo, tell me about the [item/time].”

– “Hey Jibo, tell me about the umbrella.”

– “Hey Jibo, tell me about how much time is left.”

• If you finish early, please practice querying Jibo until the 15 minutes are over.

Item List:

• Coffee pot

• Screwdriver

• Sharpies

• Rubber bands

• CD

• Camera

• Watch

• Teddy bear

• Underwear

• Newspaper

• Whiskey

• Chocolate

• Whistle
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• Soda

• Shoelaces

• Key

• Light bulb

• Tape

• Umbrella

• Honey

• Floss

• Garbage bag

• Balloons

• Spoon

• Chapstick

B.4.2 Round 2: Participant Instruction Sheet

Rules:

• You will have 30 minutes to discuss the items and environment with your teammates

to come up with a final list of the 8 items you select to aid your survival.

• You should both try to be rescued and prepare for long term survival in case rescue

is not possible.

• You may ask Jibo for information by saying “Hey Jibo, tell me about the

[item/environment/time].”

– “Hey Jibo, tell me about the umbrella.”

– “Hey Jibo, tell me about how much time is left.”
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– “Hey Jibo, tell me about the plants in this location.”

Item List:

• Coffee pot

• Screwdriver

• Sharpies

• Rubber bands

• CD

• Camera

• Watch

• Teddy bear

• Underwear

• Newspaper

• Whiskey

• Chocolate

• Whistle

• Soda

• Shoelaces

• Key

• Light bulb

• Tape

• Umbrella
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• Honey

• Floss

• Garbage bag

• Balloons

• Spoon

• Chapstick

Environment List:

• Temperature

• Weather

• Season

• Animals

• Soil

• Water Supply

• Plants

• Geography

• People

B.5 Chapters 6 and 7: Robot Utterances

In Chapters 6 and 7, we describe an experiment where a social robot makes five types of

utterances (1) round introductions, (2) query responses, (3) targeted supportive utterances,

(4) useful hints about survival items, and (5) generic responses/backchannels to participant

speech. Here, we detail the conditions upon which the robot spoke each type of utterance

and the possible responses the robot gave in each case.
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B.5.1 Round Introductions

Before round 1 of the survival task, the robot gives the following introduction: “My name

is Jibo. It’s great to meet you! In this task, imagine that you wake up stranded with two

other people in a foreign place, with a few familiar household items scattered around you.

The sheet that you have been given includes a list of possible items you may find. In this

part of the task, please spend 15 minutes to think about the uses of each item, and rank the

items based on how important they will be for survival. You may use your cheatsheet to

know more about the items or to check how much time is remaining. Let’s get started!”

Once the outgroup member has joined the two ingroup members, the robot gives the

following introduction to round 2 of the surival task: “Good news: My GPS has determined

your location. In addition to the items and time remaining, you may now also use the

keywords provided to ask me about the environment. Unfortunately, it turns out that you

can only choose 8 items to bring along with you. You must agree as a group on a single list

of these 8 items! You will have 30 minutes for this part of the task. Good luck!”

B.5.2 Query Responses

In the experiment, participants were told that they could query the robot, whose name was

Jibo, about the time remaining, survival items, and environment using the template “Hey

Jibo, tell me about the .” Participants wore microphones and each participants’

speech was translated into text using Google’s speech-to-text API. After retrieving the par-

ticipant utterance text, a ROS message was sent to the tablet running the app controlling

the robot behavior with the text of the participant speech. If the participant speech con-

tained either a part or derivative of the query text (“tell me”, “about the”, “what the”) or

the robot’s name (we also encoded the following common misclassifications of Jibo: Tebow,

Jimbo, He bo, Jay bo, Jaybo, Tivo, T-bone, and Achieva) as well as one of the specific

query topics (time, item, or environment aspect), the robot responded to the query.

If the participant utterance text contained more than one query topics (e.g., “Hey Jibo,

tell me about the screwdriver and chocolate.”), then the robot responded with one of: “I

can only tell you about one thing at a time, sorry!,” “One question at a time, please,” “I
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am only allowed to answer one query at a time,” or “Sorry, but I can only tell you about

one thing at a time.”

If the participant utterance text contained the robot’s name (or a common misclassifi-

cation of ‘Jibo’) or a part or derivative of the query text (“tell me”, “about the”, “what

the”), however, did not contain one of the specific query topics (time, item, or environment

aspect), the robot responded by displaying the participant utterance text on its screen and

said “I’ll display what I heard.” followed by one of: “I didn’t quite understand your query,”

“Can you rephrase that?,” “I can only answer questions in a certain format. Sorry about

that!,” “Remember, I’m only allowed to answer certain types of questions,” “I couldn’t rec-

ognize a valid query,” “Maybe try speaking without a pause,” “Remember to follow up ’Hey

Jibo!’ immediately with your query,” or “Sorry, can you rephrase that?”

Time Query Response

In response to a query about the time remaining (“Hey Jibo tell me about the time”), Jibo

responds with, “You have about [X] minutes left in this round.”

Survival Item Query Responses

The robot’s responses to survival item queries are listed in the following table, Table B.3.

Survival Item The Robot’s Query Response

coffee pot “A coffee pot is made of glass and is exactly 2 feet and 3.5 inches tall

and 1 foot and 5 inches wide. It can be used to heat liquids up to 187

degrees Celsius, which is 368 degrees Fahrenheit, before shattering.”

screwdriver “The screwdriver is a flathead that is one quarter inch by 4 inches. It

is not magnetized.”

sharpies “Multicolor fine point markers for thin, detailed lines and ultra-fine tip

for even more precise projects. The colors are black, blue, lavender,

green, orange, purple.”

rubber bands “Rubber bands come in a ziploc bag. There are 30 rubber bands per

pack.”
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CD “The CD used to contain a video of me dancing, but I wiped it so now

it is blank. Sorry.”

camera “The camera is a Nikon D850. Take amazing 4k pictures at a max-

imum shooting speed of 7fps. With a cool lens that reflects sunlight,

you can take pictures without glare.”

watch “This rolex is covered in 24 carat gold and contains a shiny diamond

in the center. The batteries should last for about 5 years.”

teddy bear “While sitting, a stuffed teddy bear is 8 inches tall. It is stuffed with

one pound of polyester fiber. Build memories that can last a lifetime.”

underwear “8 pack of boxer briefs fruit of the loom underwear for hip sizes 30 to

35. Underwear comes in blue, red, or green.”

newspaper “Stay up to date with the latest news in this 25 page newspaper.”

whiskey “Whiskey is sold in a glass bottle with a sticky label attached to the

front.”

chocolate “This box comes with 16 bars of 17.6 oz Trader Joe’s chocolate. Each

bar is wrapped in tinfoil and then with paper.”

whistle “This metal whistle can be heard up to half a mile away.”

soda “6 aluminum cans of coca cola. The cans are held in cardboard and

the whole pack is wrapped in plastic.”

shoelaces “The shoelaces are each 3 and a half feet long and are neon yellow in

color.”

key “This is a generic nickel silver house key.”

light bulb “A glass 100 watt and two fifty volt light bulb.”

tape “Gray colored duct tape that is 2.63 inches wide by 60 yards long.”

umbrella “This basic umbrella has a 2 and a half foot long handle and a 44 inch

diameter at the top.”

honey “A glass jar filled with 1 pound of organic sweet honey.”

floss “1 roll of 200 yard long dental floss. Mint flavored for good aftertaste.”
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garbage bag “3 strong drawstring large trash bags that can hold up to 30 gallons of

garbage. Black in color.”

balloons “1 pack of 50 12 inch latex party balloons in assorted colors.”

spoon “1 metal tablespoon.”

chapstick “One generic one quarter ounce stick of chapstick. It can withstand

temperatures from 0 to 240 degrees Fahrenheit.”

Table B.3: In response to a query to the robot about a survival item, the robot responded
by giving the participant more information about that item. This table includes all of the
robot’s query responses to survival items.

Environment Query Responses

The robot’s responses to environment queries are listed in the following table, Table B.4.
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Environment

Aspect The Robot’s Query Response

temperature “Generally, the average temperature hovers around 13 degrees Cel-

sius or 55 degrees Fahrenheit. You may encounter lows of 17 degrees

Fahrenheit or negative 8 degrees Celsius and highs of 90 degrees Fahren-

heit or 32 degrees Celsius. Be prepared for all types of weather!”

weather “Life threatening temperature is rare, but does occur. Make sure you

save up supplies to survive a 3 day long blizzard. There’s also lots of

heavy rain. You may lose visibility at times.”

season “It is currently in the middle of fall. Make sure to start preparing for

the winter in case you aren’t found by then!”

animal “You won’t be alone! You may encounter river frogs, lizards, poisonous

snakes, mountain reed buck, fish, white rhinoceroses, black wildebeest,

baboons, and 250 different species of birds, and a rabbit here and there.

Wow that was a mouthful!”

soil “The soil tends to be pretty rough and not too suitable for farming.”

water supply “There is one running stream of water 15 miles from where you are

stranded.”

plant “Look out for over 2,000 different species of plants including berries,

oats grass, tussock grass, conifers, and small shrubs. Beware as some

plants or berries may be poisonous; Others have great medicinal prop-

erties.”

geography “The whole area is one big mountain range. Some of the mountains

might be covered in snow while others are more temperate and covered

with grass. You may come upon some caves and lowlands as well.”

people “You are stranded! There is nobody but you 3. Your chances of rescue

are very slim! A rescue may be possible but don’t count on it!”

214



Table B.4: In response to a query to the robot about an environment aspect, the robot
responded by giving the participant information about that environment aspect. This table
includes all of the robot’s query responses to environment aspects.

B.5.3 Targeted Supportive Utterances

During the second round of the experiment, the robot delivered targeted supportive ut-

terances. These utterances were designed to support the ideas of participants, specifically

using their name in the utterance since prior work has shown that using people’s names can

be an effective method for a robot to build relationships and engage with people [Kanda

et al., 2004,Kanda et al., 2007]. The robot delivered an average of 5.62 (SD = 0.86) targeted

supportive utterances to each participant during the experiment.

These targeted supportive utterances either 1) rephrased and supported a participant

idea (rephrase), 2) reinforced an item mentioned by a participant (item), or 3) supported

the participant’s input more generally (simple). In the experiment described in Chapter 6,

29% of the robot’s targeted supportive utterance were rephrase, 34% were item, and 37%

were simple.

After the Android app received a ROS message with participant speech (as text), the

participant utterance was examined to see if it contained 1) a survival item name and 2) any

of the following key phrases indicating that the participant is presenting an idea: “we can”,

“think that”, “maybe”, “I think”, “pretty sure that”, “I’m pretty sure”, “let’s”, “wonder

if”, “feel like”, “I don’t think.” If the participant had not received a targeted supportive

utterance in the current 4.5 minute chunk and the participants’ utterance contained an

item or one of those idea presentation phrases and with probability 0.25, the robot deliv-

ered a targeted supportive utterance. Additionally, regardless if a participant’s utterance

contained item names or idea presentation phrases, if that participant had not received a

targeted supportive utterance within the last 4.5 minute chunk, the robot delivered that

participant a targeted supportive utterance. We designed the targeted supportive utter-

ances to be triggered based on these 4.5 minute chunks, so that each participant would

receive the same number of targeted supportive utterances (1 targeted supportive utterance
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Item & Rephrase Robot Targeted Supportive Utterances

“[speech/item], that’s interesting [participant name]”

“[speech/item], good idea [participant name]”

“[speech/item], [participant name], I think that’s worth considering”

“[speech/item], makes sense to me [participant name]”

“[speech/item], any other thoughts [participant name]”

“[speech/item], that makes sense [participant name]”

“[speech/item], interesting [participant name]”

“[speech/item], okay [participant name]”

Table B.5: This table contains all of the possible rephrase and item targeted supportive
utterance templates.

Simple Robot Targeted Supportive Utterances

“Yeah, [participant name]”

“Yes, [participant name]”

“Uh huh, [participant name]”

“Hmm, [participant name]”

“I see, [participant name]”

“Wow, [participant name]”

“Okay, [participant name]”

“Interesting, [participant name]”

“Right, [participant name]”

Table B.6: This table contains all of the possible simple targeted supportive utterances.

to each participant during each 4.5 minute time chunk).

Once a targeted supportive utterance was triggered, the type of targeted supportive

utterance (rephrase, item, or silent) was chosen. If the participant’s utterance contained

an idea presentation phrase, the robot produced one of the rephrase targeted supportive

utterances in Table B.5, where the speech the robot rephrased was the participant’s utter-

ance without the idea presentation phrase. For example, if a participant named Irene said

“I think we should find a water source first,” and the Android app chose the first targeted

supportive utterance from Table B.5, the robot would have said “We should find a water

source first, that’s interesting Irene.”

If a targeted supportive utterance was triggered and the utterance did not include an

idea presentation phrase, however, did contain a survival item name, the robot produced

an item targeted supportive utterance. The targeted supportive utterance produced by the
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robot used the item mentioned by the participant and their name with one of the targeted

supportive item templates in Table B.5. For example, if George said, “the key could be

really useful,” and the Android app chose the second targeted supportive utterance from

Table B.5, the robot would have said, “Key, good idea George.”

Lastly, if a targeted supportive utterance was triggered and the utterance included

neither an idea presentation phrase nor a survival item name, the robot produced a simple

targeted utterance. Table B.6 includes all possible simple targeted supportive utterances.

B.5.4 Survival Item Hints

During the second round of the experiment, the robot provided survival item hints, encour-

aging participants to consider other uses of the items. After the Android app received a

ROS message with participant speech (as text), the participant utterance was examined to

see if it contained a survival item. If the app did not decide to produce a targeted supportive

utterance and the participant utterance contained an item, the robot produced a survival

item hint with probability 0.15 ∗ 0.5 = 0.075, where 0.15 is the probability of the robot

making a verbal response (excluding targeted supportive utterances and query responses)

and 0.5 is the probability of the robot making a survival item hint (as opposed to an item

backchannel). Table B.7 contains all possible survival item hints.

Survival Item Possible Hints the Robot Could Give

coffee pot “Coffee pots are insulated, making them great for heating liquids and

foods.”

“Coffee pots can also store about 15 cups of liquid.”

screwdriver “Use the screwdriver’s pointy edge to leave marks to track your path.”

“A screwdriver can be used like an arrow to hunt food.”

sharpies “Sharpies are great for tracking your path.”

“You can keep track of the date with sharpies marks.”

rubber bands “Use rubber bands to keep things closed.”

“Rubber bands can be made into a catapult.”

217



“Don’t forget to store food in the airtight ziploc bag that comes with

the rubber bands.”

CD “CD’s are great at reflecting sunlight.”

“If you break a CD, its pieces are sharp enough to be used as knives.”

camera “Cameras can be used to remember what certain locations look like in

case you want to return.”

“The camera lens can reflect sunlight and start a fire.”

“Break a camera and you may find some useful parts inside.”

watch “Knowing the time helps you plan how long you have until nightfall.”

“Use the diamond and glass inside the watch to cut things.”

teddy bear “Teddy bears can serve as a mattress or a cover to keep you warm.”

“Be creative and you’ll have a scarecrow instead of a teddy bear.”

underwear “Use the cloth from underwear as gloves to protect your hands.”

“You can use the underwear to create a tourniquet.”

newspaper “Newspapers provide lots of paper for a fire.”

“Pile up newspaper to make a mattress.”

“Newspapers can soak up water from wet shoes.”

“Cover yourself with newspapers at night to stay warm.”

whiskey “Whiskey is a great disinfectant.”

“Reuse the whiskey bottle to store water.”

“Shatter the bottle and get sharp glass for weapons.”

chocolate “Chocolate provides instant sugar that can save a life.”

“Use the tinfoil from the chocolate packaging to preserve food.”

whistle “Whistles are vital in being found by rescuers.”

“Blow a whistle to scare away predators.”

soda “Soda provides lots of needed sugar.”

“Empty soda cans can be used as pots to cook.”

“Soda cans are great for storing rainwater.”

“Aluminum soda cans can be cut up and be made into sharp weapons.”
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shoelaces “Shoelaces can be used as rope to hold together a shelter.”

“Use shoelaces to tie bags shut.”

“Become really creative and make a lasso out of shoelaces.”

key “Keys are great at cutting things.”

“Keys can act as knives to hunt prey.”

light bulb “Light bulbs can be powered with many things, including a potato.”

“If broken, the light bulb provides lots of sharp glass.”

tape “Tape can be used to fix a leaky container.”

“Create a trap using tape.”

“Create a weapon by taping together multiple items.”

“Don’t forget to mark your path with tape.”

umbrella “Umbrellas are perfect for shielding yourself against bad weather con-

ditions.”

“If turned upside down, umbrellas can collect rainwater.”

“The metal frame of an umbrella can be taken apart to create some

dangerous weapons.”

honey “Besides providing energy, honey is very sticky and can be used to stop

bleeding.”

floss “Strong floss can hold together the edges of a shelter.”

“Create a trip wire using floss.”

“Create a spear using floss and a stick.”

garbage bag “A garbage bag can be used as a sleeping bag.”

“Garbage bags can collect rain water.”

“protect yourself from inclement weather conditions using a garbage

bag.”

balloons “Balloons are great at storing liquids. In fact, a balloon can hold up

to 3 and a half gallons of water.”

“Use the colorful balloons to mark your trail so you don’t get lost.”

“Create a fishing bobber using a balloon.”
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spoon “Spoons can act as shovels.”

“You can shave a spoon into a sharp weapon.”

chapstick “Chapstick can be rubbed on your skin to prevent frostbite in cold

weather.”

“prevent sunburn by applying chapstick before you go outside.”

“Stop bleeding by covering wounds with chapstick.”

Table B.7: In response to a participant utterance containing one of the survival items, the
robot could respond with a hint about that item. This talbe contains all possible hints a
robot could give about the survival items.

B.5.5 Generic Response/Backchannels to Participant Speech

During both the first and second rounds of the experiment, we had the robot produce generic

responses/backchannels in order to establish it as a social agent and active member of the

human-robot team. After the Android app received a ROS message with participant speech

(as text), the participant utterance was examined to see if it contained a survival item. If

the app did not decide to produce a targeted supportive utterance, the robot produced a

verbal response with probability 0.15. If the participant utterance contained an item, with

probability 0.5 the robot produced a survival item hint (during round 2 of the task only),

and otherwise produced an item backchannel. If the participant utterance did not contain

an item, the robot produced a generic backchannel.

Table B.8 displays all possible item backchannels. In the case that a participants’

utterance contained multiple items, such as “we need the chocolate, tape, and balloons,” the

robot’s item would contain all of the survival items mentioned with one of the backchannel

phrases in Table B.8 (e.g., “chocolate, tape, balloons, that’s worth considering”). Generic

utterances were chosen uniformly from the following list: “yeah”, “yes”, “uh huh”, “hmm”,

“I see”, “wow”, “okay”, “interesting”, and “right.”
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Robot Item Backchannels

“[item(s)], that’s worth considering.”

“[item(s)], good idea.”

“[item(s)], I see.”

“[item(s)], that makes sense.”

“[item(s)], that’s reasonable.”

“[item(s)], uh huh.”

“[item(s)], hmm.”

“[item(s)], hmm, maybe.”

“[item(s)], interesting.”

“[item(s)], okay.”

“[item(s)], yeah.”

“[item(s)], that’s interesting.”

“[item(s)], what do we think about that?”

“[item(s)], any other thoughts?”

“[item(s)], got it.”

“[item(s)], let’s think about that.”

Table B.8: This table contains all of the possible robot item backchannels.

B.6 Chapter 7: Video Coding Scheme for Participant

Backchannels

In Chapter 7, we describe a human-subjects experiment that involved three human par-

ticipants and one social robot working together on the second part of a collaborative task

for 30 minutes. We annotated all backchannels made by the human participants using the

ELAN software [Wittenburg et al., 2006] by transcribing potential backchannels’ utterance

contents or head movement, annotating the person (or robot) to whom the backchannel

was directed, and categorizing the potential backchannel according to the following coding

scheme. The results that we discuss in Chapter 7 only include the annotations categorized

as backchannels in this coding scheme.

Our categorization of backchannels was based on the backchannel definition from Ward

and Tsukahara (2000), which states that “backchannel feedback

1. responds directly to the content of an utterance of the other,

2. is optional, and

3. does not require acknowledgement by the other.”
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Verbal Backchannel Frequency

“yeah” 1653 (0.46)

“mm hmm” 327 (0.09)

“okay” 314 (0.09)

“oh” 170 (0.05)

“oh yeah” 85 (0.02)

“mmm” 85 (0.02)

Table B.9: This table displays the most common verbal backchannels made by human
participants that we observed in the data as well as their frequency of occurrence in the
data. There were 3618 total verbal backchannel annotations in the data.

Ward and Tsukahara (2000) follow up their definition with this note: “this definition focuses

not on how these utterances fit into the structure of the discourse, nor on how they are

evoked or perceived by the other, but instead on the perspective of the person producing

them.”

B.6.1 Backchannel

In order to classify a head movement (head nod or head shake) or utterance as a backchannel,

we ensured that it satisfied the definition above. Additionally, any statement that added

content to the conversation, beyond acknowledging what was said by another, we did not

consider to be a backchannel (e.g., “yeah, I totally agree that we should bring the chocolate

because the wrapper could also prove useful for preserving food...”). We display the most

common verbal backchannels we observed in our annotations in Table B.9. Most annotations

were short and were typically one world (e.g., “yeah,” “okay”). Even the longest backchannel

utterances were relatively short and typically involved the concatenation of many smaller

backchannel words (e.g., “oh yeah that makes sense,” “oh that’s true that’s true”).

B.6.2 Answer to a Question

In addition to backchannels, we also annotated utterances and head movements that directly

answered the question of another participant. We did this because of the similarity between

backchannels and short answers to questions (e.g., head nod, “yeah”), especially in the

context of the task which involved frequent instances of consensus seeking and decision
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making. We considered questions to include both specific question wording (e.g., “should

we bring the key?”, “do you think the chocolate is a good idea?”) as well as questions

indicated by a rising tone at the end of the sentence (e.g., “I’m going to put the chocolate

as [rising tone] number 4 ”). As answers to questions violate the second requirement of

Ward and Tsukahara (2000)’s definition of a backchannel, we did not consider answers to

questions to be backchannels.
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Appendix C

Human-Subjects Study

Questionnaires

Here, we detail all of the questionnaires administered to the human participants who took

part in the experimental studies detailed in Chapters 3 - 7 and how each questionnaire was

administered.

C.1 Friendship, Familiarity, and Trust Survey for Children

This survey was administered to children ages 6-9 in the human subjects experiment de-

tailed in Chapter 3. To administer this questionnaire, an experimenter verbally asked these

questions to the two participants individually before they interacted with the robot and

the other participant. The child’s responses were captured using an audio recording device.

These questions measure the level of friendship and familiarity between the participants.

These questions are adapted from the Friendship Qualities Scale [Bukowski et al., 1994].

In the questions below, “Jane” is used as the name of the participant that is being asked

about. In the experiment, the name of the participant’s partner was used. The following

list includes all of the questions in this questionnaire:

Friendship & Familiarity

• Do you play with Jane outside of class or on weekends?
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• Have you played at Jane’s house?

• Has Jane played at your house?

Friendliness of Partner

• If you could only invite two friends from school to your birthday party, who would

you invite?

• If you forgot your lunch, would Jane share hers with you?

• If other kids made fun of you, would Jane help you?

• If you and Jane have a fight, would everything be alright after you apologize to each

other?

• Do you feel happy when you are with Jane?

• Do you think about Jane even when she is not around?

• Does Jane do special things for you or make you feel special?

For the friendship and familiarity survey, if the child answered ‘yes’ to any of the ques-

tions, then their friendship & familiarity score with their partner was 1, otherwise their

score was 0. For the likability of the partner, we took the yes (2) / maybe or unsure (1) /

no (0) answers and averaged them to obtain a score between 0 and 2.

C.2 Build-a-Rocket Reflection Survey for Children

This survey was administered to children ages 6-9 in the human subjects experiment de-

tailed in Chapter 3. To administer this questionnaire, an experimenter verbally asked these

questions to the two participants individually after they interacted with the robot and the

other participant. The child’s responses were captured using an audio recording device.

These questions were designed to capture how the participant felt the interaction went,

and specifically how well they felt they collaborated with their partner in the interaction.

These questions were adapted from the categories of questions in the Subjective Value In-

ventory [Curhan et al., 2006]. In the questions below, “Jane” is used as the name of the
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participant that is being asked about. In the experiment, the name of the participant’s

partner was used. The following list includes all of the questions in this questionnaire:

Perceptions of Performance

• Did your rocket go higher and higher each time? Or did it reach about the same

height each time?

• Did your rocket go as high as you and Jane wanted it to?

Perceptions of Interpersonal Cohesiveness

• Did Jane listen to what you have to say?

• Did Jane do anything that annoyed you? If so, what did she do?

• If you had one more chance to make the rocket go farther, would you want to do it

by yourself or with Jane too?

• If you had a chance to play this game again and could choose your partner, who would

you choose?

Other Reflection Questions

• Do you feel like you could teach this game to one of your friends, or do you think you

would need some help?

• Do you feel you were a good teammate to Jane?

• Did you share your knowledge about [air resistance / fuel + power] with Jane to help

the rocket go higher?

• Who was more in charge, you or Jane?

C.3 Dyadic Trust Scale Survey

This survey was administered to the adult participants of the human subjects experiment

detailed in Chapter 4. This questionnaire was administered with the rest of the components
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of the post-experiment survey on a tablet. The questions in this dyadic trust scale survey

were directly taken from [Larzelere and Huston, 1980], where participants evaluated the

following eight statements related to the robot’s trustworthiness on a 1 (strongly disagree)

to 7 (strongly agree) Likert scale (Echo is the name of the robot):

• Echo is primarily interested in Echo’s own welfare.

• There are times when Echo cannot be trusted.

• Echo is perfectly honest and truthful with me.

• I feel that I can trust Echo completely.

• Echo is truly sincere in Echo’s promises.

• I feel that Echo does not show me enough consideration.

• Echo treats me fairly and justly.

• I feel that Echo can be counted on to help me.

The dyadic trust scale score used in Chapter 4 was derived by flipping the negative

questions scores (1 to 7) to their opposite (7 to 1), such that a response of 2 on “There are

times when Echo cannot be trusted” is a score of 6 after being flipped. These responses

(after the negative questions are flipped) are then averaged to get a dyadic trust scale rating

between 1 and 7, where higher values indicate higher trust in the robot.

C.4 Robotic Social Attributes Scale (RoSAS) Survey

This survey was administered to the participants of the human subjects experiments detailed

in Chapters 4, 5, 6, and 7. In each of these studies, this questionnaire was administered

with the rest of the post-experiment questionnaire surveys on a tablet. The questionnaire

items were taken directly from [Carpinella et al., 2017], where participants were asked to

evaluate how closely they would consider each of the following descriptors to be associated

with the robot on a 1 (definitely not associated) to 9 (definitely associated) Likert scale:
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Warmth

• Happy

• Feeling

• Social

• Organic

• Compassionate

• Emotional

Competence

• Capable

• Responsive

• Interactive

• Reliable

• Competent

• Knowledgeable

Discomfort

• Scary

• Strange

• Awkward

• Dangerous

• Awful

• Aggressive

The RoSAS scores reported in Chapters 4, 5, and 6 were computed by averaging the

Likert values to ascertain one value from 1 to 9 capturing the participant’s view of the robot

for each of the three sub-scales (warmth, competence, and discomfort).
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C.5 Friendship and Familiarity Scale for Adults

We designed this survey and administered it to the participants who participated in the

human subjects experiments detailed in Chapters 5, 6, and 7. In both of these studies,

this questionnaire was administered in the pre-experiment survey on a tablet. Each par-

ticipant would fill out the following questionnaire with respect to each of the other human

participants in the experiment.

1. Which of these statements most closely matches your familiarity with this participant?

(a) I had not met this participant before we completed this study together; I do not

know them.

(b) I have seen this participant before and we may have talked once or twice, I do

not know them well.

(c) I would consider this participant and I acquaintances, we are moderately familiar

with each other.

(d) This participant and I are friends, we spend / have spent time together outside

of work/school together.

(e) I would consider this participant to be one of my closest friends.

2. Do you have this participant’s phone number?

(a) Yes

(b) No

3. (Chapter 5 only) Are you Facebook friends with this participant?

(a) Yes

(b) No

(c) I don’t have Facebook

4. (Chapter 6 only) Are you connected via social media with this participant (fol-

low/friends with on Facebook, Twitter, Instagram, etc.)?
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(a) Yes

(b) No

From the participants’ answers to this survey, we calculated a final friendship and fa-

miliarity score by adding their response to each question (1: [0, 4], 2: [0, 1], and 3/4: [0,

1]) to get a final score between 0 and 6. A participant response of “I don’t have Facebook”

to question 3 was scored as 0.

C.6 The Abbreviated Form of the Revised Eysenck Person-

ality Questionnaire (EPQR-A): Extraversion

We administered the extraversion component of the abbreviated form of the revised Eysench

personality questionnaire (EPQR-A) [Francis et al., 1992] to the participants who partic-

ipated in the human subjects experiments detailed in Chapters 5, 6, and 7. In the study

described in Chapter 5, this questionnaire was administered in the post-experiment survey

and in Chapter 6 and 7, this questionnaire was administered in the pre-experiment survey.

Participants completed these surveys in both studies on a tablet. Participants were asked to

answer the following questions quickly (to capture their initial response), answering either

‘yes’ or ‘no’ to each question:

1. Are you a talkative person?

2. Are you rather lively?

3. Can you easily get some life into a rather dull party?

4. Do you tend to keep in the background on social occasions?

5. Are you mostly quiet when you are with other people?

6. Do other people think of you as being very lively?

The extraversion score used in Chapters 5 and 6 was derived by giving each ‘yes’ answer

a score of 1 and each ‘no’ a score of 0 (flipping questions 4 and 5), and summing the scores
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to each individual question in order to arrive at one value between 0 and 6. The higher the

extraversion score, the higher that participant’s self-rated extraversion. For the analysis of

the conversational dynamics only in Chapter 5, extraversion scores were binned into 0 for

raw extraversion score values of 0 and 1, and 1 for raw extraversion score values 2 to 6.

C.7 The Team Psychological Safety Scale

We administered the psychological safety scale [Edmondson, 1999] to the participants who

participated in the human subjects studies detailed in Chapters 5, 6, and 7. In both

of these studies, this questionnaire was administered in the post-experiment survey on a

tablet. Participants were asked to rate each of the following items on a Likert scale from 1

(strongly disagree) to 7 (strongly agree):

1. If you make a mistake on this team, it is often held against you.

2. Members of this team are able to bring up problems and tough issues.

3. People on this team sometimes reject others for being different.

4. It is safe to take a risk on this team.

5. It is difficult to ask other members of this team for help.

6. No one on this team would deliberately act in a way that undermines my efforts.

7. Working with members of this team, my unique skills and talents are valued and

utilized.

The psychological safety scale score was derived by flipping the negative questions scores

(1 to 7) to their opposite (7 to 1), such that a response of 2 on “it is difficult to ask other

members of this team for help” is a score of 6 after being flipped. These responses, after

the negative questions are flipped, are then averaged to get a psychological safety value

between 1 and 7, where higher values indicate a higher sense of psychological safety from

the participant.
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C.8 The Short Form of the Trait Emotional Intelligence

Questionnaire (TEIQue-SF)

We administered the Short Form of the Trait Emotional Intelligence Questionnaire

(TEIQue-SF) [Cooper and Petrides, 2010] to the participants who participated in the human

subjects experiment detailed in Chapters 6 and 7. This questionnaire was administered in

the pre-experiment survey on a tablet, where participants rated each item on a Likert scale

of 1 (strongly disagree) to 7 (strongly agree):

1. Expressing my emotions with words is not a problem for me.

2. I often find it difficult to see things from another person’s viewpoint.

3. On the whole, I’m a highly motivated person.

4. I usually find it difficult to regulate my emotions.

5. I generally don’t find life enjoyable.

6. I can deal effectively with people.

7. I tend to change my mind frequently.

8. Many times, I can’t figure out what emotion I’m feeling.

9. I feel that I have a number of good qualities.

10. I often find it difficult to stand up for my rights.

11. I’m usually able to influence the way other people feel.

12. On the whole, I have a gloomy perspective on most things.

13. Those close to me often complain that I don’t treat them right.

14. I often find it difficult to adjust my life according to the circumstances.

15. On the whole, I’m able to deal with stress.

16. I often find it difficult to show my affection to those close to me.
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17. I’m normally able to “get into someone’s shoes” and experience their emotions.

18. I normally find it difficult to keep myself motivated.

19. I’m usually able to find ways to control my emotions when I want to.

20. On the whole, I’m pleased with my life.

21. I would describe myself as a good negotiator.

22. I tend to get involved in things I later wish I could get out of.

23. I often pause and think about my feelings.

24. I believe I’m full of personal strengths.

25. I tend to “back down” even if I know I’m right.

26. I don’t seem to have any power at all over other people’s feelings.

27. I generally believe that things will work out fine in my life.

28. I find it difficult to bond well even with those close to me.

29. Generally, I’m able to adapt to new environments.

30. Others admire me for being relaxed.

The emotional intelligence score we used in our analysis was derived by flipping the

negative questions scores (1 to 7) to their opposite (7 to 1), such that a response of 2 on

“I often find it difficult to see things from another person’s viewpoint” is a score of 6 after

being flipped. The items that were flipped were: 2, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 22,

25, 26, 28. These responses, after the negative questions are flipped, are then averaged to

get an emotional intelligence value between 1 and 7, where higher values indicate higher

emotional intelligence.
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C.9 The Perceived Inclusion Scale

We administered the perceived inclusion scale [Jansen et al., 2014] to the participants who

participated in the human subjects experiment detailed in Chapters 6 and 7. In this study,

this questionnaire was administered in the pre-experiment survey on a tablet. Participants

were asked to rate each of the following items on a Likert scale from 1 (strongly disagree)

to 5 (strongly agree):

1. This group gives me the feeling that I belong.

2. This group gives me the feeling that I am part of this group.

3. This group gives me the feeling that I fit in.

4. This group treats me as an insider.

5. This group likes me.

6. This group appreciates me.

7. This group is pleased with me.

8. This group cares about me.

9. This group allows me to be authentic.

10. This group allows me to be who I am.

11. This group allows me to express my authentic self.

12. This group allows me to present myself the way I am.

13. This group encourages me to be authentic.

14. This group encourages me to be who I am.

15. This group encourages me to express my authentic self.

16. This group encourages me to present myself the way I am.

We averaged participant responses to these items resulting in a perceived score value

between 1 and 5, where higher values indicate higher perceived inclusion.
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Appendix D

Detailed Statistical Results

In this appendix section, we provide the full detailed statistical analyses for all of the results

reported in this dissertation. The results are ordered based on their order of appearance in

the paper.
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Table D.1: This table lists the demographic characteristics of the participants in the human-
subjects study detailed in Chapter 3, both overall and for each condition.

Overall

Statistic N Mean St. Dev. Min Max

age 80 7.25 1.05 6 9
gender: male(0) or female(1) 80 0.48 0.50 0 1
group gender: same(0) or mixed(1) 80 0.50 0.50 0 1
friendship & familiarity score 80 1.25 0.44 1 2

Relational Condition

Statistic N Mean St. Dev. Min Max

age 28 7.29 0.98 6 9
gender: male(0) or female(1) 28 0.54 0.51 0 1
group gender: same(0) or mixed(1) 28 0.36 0.49 0 1
friendship & familiarity score 28 1.43 0.50 1 2

Task Condition

Statistic N Mean St. Dev. Min Max

age 28 7.29 1.05 6 9
gender: male(0) or female(1) 28 0.46 0.51 0 1
group gender: same(0) or mixed(1) 28 0.50 0.51 0 1
friendship & familiarity score 28 1.21 0.42 1 2

Control Condition

Statistic N Mean St. Dev. Min Max

age 24 7.17 1.17 6 9
gender: male(0) or female(1) 24 0.42 0.50 0 1
group gender: same(0) or mixed(1) 24 0.67 0.48 0 1
friendship & familiarity score 24 1.08 0.28 1 2
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Table D.2: This table presents the results from the 1-way ANOVA analysis comparing
the maximum rocket height difference between the three conditions (relational, task, and
control) in Chapter 3 Section 3.3. This analysis was performed using the ‘aov’ function in
R. The F-value, degrees of freedom, and effect size (partial eta squared) are reported in
parentheses for each fixed factor.

Dependent variable:

Maximum Rocket Height

condition F(2) = 1.901
(0.090)

group gender composition (2M, 1M1F, 2F) F(2) = 0.421
(0.003)

average friendship & familiarity score F(1) = 1.278
(0.029)

age F(1) = 6.154∗

(0.157)

Observations 40

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.3: This table presents the results from the 1-way ANOVA analysis comparing
the maximum rocket height difference between the task and control conditions (planned
comparison) in Chapter 3 Section 3.3. This analysis was performed using the ‘aov’ function
in R. The F-value, degrees of freedom, and effect size (partial eta squared) are reported in
parentheses for each fixed factor.

Dependent variable:

Maximum Rocket Height

condition (task vs. control) F(1) = 4.851∗

(0.117)

group gender composition (2M, 1M1F, 2F) F(2) = 4.334∗

(0.191)

average friendship & familiarity score F(1) = 0.005
(0.003)

age F(1) = 1.835
(0.084)

Observations 26

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.4: This table presents the results from the 1-way ANOVA analysis comparing
the maximum rocket height difference between the task and relational conditions (planned
comparison) in Chapter 3 Section 3.3. This analysis was performed using the ‘aov’ function
in R. The F-value, degrees of freedom, and effect size (partial eta squared) are reported in
parentheses for each fixed factor.

Dependent variable:

Maximum Rocket Height

condition (task vs. relational) F(1) = 1.167
(0.077)

group gender composition (2M, 1M1F, 2F) F(2) = 0.093
(0.010)

average friendship & familiarity score F(1) = 0.316
(0.017)

age F(1) = 7.092∗

(0.244)

Observations 26

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.5: This table presents the results from the linear mixed-effects model run in Chap-
ter 3 Section 3.3 examining the influence of the experimental condition (reference group:
relational condition) and a control for whether the pair was same or mixed gender on the
participant’s perception of their team’s performance. Each participant is grouped with their
partner in the model where each group has a random intercept. We used the R ‘lmer’ func-
tion from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

Perception of Performance

condition - control −0.523
(0.332)

condition - task −0.926∗∗

(0.312)

same(0) or mixed(1) gender pair 0.480 .
(0.267)

Constant 2.829∗∗∗

(0.239)

Observations 80
Log Likelihood −117.662
Akaike Inf. Crit. 247.324
Bayesian Inf. Crit. 261.616

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.6: This table lists the demographic characteristics of the participants in the human-
subjects study detailed in Chapter 4, both overall and for each condition.

Overall

Statistic N Mean St. Dev. Min Max

age 82 20.85 2.13 18 32
gender: male (0) or female (1) 82 0.60 0.49 0 1

Competence Apology Condition

Statistic N Mean St. Dev. Min Max

age 21 21.33 3.01 18 32
gender: male (0) or female (1) 21 0.62 0.50 0 1

Competence Denial Condition

Statistic N Mean St. Dev. Min Max

age 21 20.86 1.88 18 27
gender: male (0) or female (1) 21 0.57 0.51 0 1

Integrity Apology Condition

Statistic N Mean St. Dev. Min Max

age 20 20.30 1.26 18 22
gender: male (0) or female (1) 20 0.60 0.50 0 1

Integrity Denial Condition

Statistic N Mean St. Dev. Min Max

age 20 20.90 2.00 18 25
gender: male (0) or female (1) 20 0.60 0.50 0 1
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Table D.7: This table presents the results from the logistic regression model run in Chapter 4
Section 4.4.1 examining the influence of the trust violation framing and trust repair strategy
on whether participants immobilized the robot in their first power-up choice. We used the
R ‘glm’ function with a binomial family and logit link to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

first power-up choice:

immobilize (1) or not (0)

trust violation framing: 1.154∗

competence (0) or integrity (1) (0.516)

trust repair strategy: 1.142∗

apology (0) or denial (1) (0.521)

age −0.132
(0.145)

gender: male (0) or female (1) −0.240
(0.511)

Constant 0.923
(2.991)

Observations 82
Log Likelihood −46.326
Akaike Inf. Crit. 102.653

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.8: In order to analyze the power-up choices of participants over time in Chapter 4
Section 4.4.1, we used a multilevel mixed-effects logistic regression model to determine the
influence of the trust violation framing and trust repair strategy on whether participants
chose to immobilize the robot during their three power-up choices. To capture the repeated
measures nature of the data, we used a random effect for each participant across their three
power-up choices. In addition to our experimental conditions, we also controlled for the
participants’ gender and the power-up choice round. We used the R ‘glmer’ function with a
binomial family and logit link from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

power-up choice:

immobilize (1) or not (0)

trust violation framing: 9.186∗∗

competence (0) or integrity (1) (3.065)

trust repair strategy: 0.709
apology (0) or denial (1) (2.540)

gender: female (1) or male (0) −0.685
(1.892)

power-up choice round [1-3] −0.958
(0.982)

trust violation framing * −6.738∗∗

power-up choice round (2.086)

trust repair strategy * 0.922
power-up choice round (1.128)

Constant −9.169∗∗∗

(2.783)

Observations 246
Log Likelihood −93.629
Akaike Inf. Crit. 203.257
Bayesian Inf. Crit. 231.300

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.9: This table presents the results from the 2-way ANOVA analysis comparing the
RoSAS warmth ratings between participants with different trust violation framings and
trust repair strategies, as presented in Chapter 4 Section 4.4.2. In addition to our main
variables of interest (trust violation framings and trust repair strategy), we include in our
model the interaction between these two variables as well as controls for participant gender
and age. This analysis was performed using the ‘aov’ function in R. The F-value, degrees
of freedom, and effect size (eta squared) are reported in parentheses for each fixed factor.

Dependent variable:

RoSAS warmth rating

trust violation framing: F(1) = 0.299
competence (0) or integrity (0.013)

trust repair strategy: F(1) = 8.190∗∗

apology (0) or denial (1) (0.121)

trust violation framing * trust repair strategy F(1) = 0.000
(< 0.001)

gender: female (1) or male (0) F(1) = 0.664
(0.009)

age F(1) = 1.990 .
(0.184)

Observations 82

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.10: This table presents the results from the 2-way ANOVA analysis comparing
the Dyadic Trust Scale (DTS) ratings between participants with different trust violation
framings and trust repair strategies, as presented in Chapter 4 Section 4.4.2. In addition
to our main variables of interest (trust violation framings and trust repair strategy), we
include in our model the interaction between these two variables as well as controls for
participant gender and age. This analysis was performed using the ‘aov’ function in R. The
F-value, degrees of freedom, and effect size (eta squared) are reported in parentheses for
each fixed factor.

Dependent variable:

Dyadic Trust Scale rating

trust violation framing: F(1) = 0.302
competence (0) or integrity (< 0.001)

trust repair strategy: apology (0) or denial (1) F(1) = 2.013
(0.012)

trust violation framing * trust repair strategy F(1) = 4.637∗

(0.048)

gender: female (1) or male (0) F(1) = 5.523∗

(0.055)

age F(1) = 1.866 .
(0.125)

Observations 82

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.11: This table presents the results from the 2-way ANOVA analysis comparing
whether the participants perceived the robot to have lied between participants with different
trust violation framings and trust repair strategies, as presented in Chapter 4 Section 4.4.2.
To gather participants perception of whether the robot lied, we examined participants’
ratings on a 1 (strongly disagree) to 7 (strongly agree) Likert scale on the post-experiment
survey question “Echo lied to me,” where Echo is the name of the robot. In addition to our
main variables of interest (trust violation framings and trust repair strategy), we include
in our model the interaction between these two variables as well as controls for participant
gender and age. This analysis was performed using the ‘aov’ function in R. The F-value,
degrees of freedom, and effect size (eta squared) are reported in parentheses for each fixed
factor.

Dependent variable:

rating of robot having lied

trust violation framing: F(1) = 1.466
competence (0) or integrity (0.006)

trust repair strategy: F(1) = 1.279
apology (0) or denial (1) (0.010)

trust violation framing * trust repair strategy F(1) = 7.272∗∗

(0.073)

gender: female (1) or male (0) F(1) = 0.819
(0.023)

age F(1) = 2.269∗

(0.187)

Observations 82

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.12: This table presents the results from the 2-way ANOVA analysis comparing
whether participants believed they had made a reciprocal promise to the robot across our
experimental conditions, as presented in Chapter 4 Section 4.4.2. To gather participants be-
lief of whether or not they made a reciprocal promise to the robot, we examined participants’
ratings on a 1 (strongly disagree) to 7 (strongly agree) Likert scale on the post-experiment
survey question “I promised not to immobilize Echo during the game,” where Echo is the
name of the robot. In addition to our main variables of interest (trust violation framings
and trust repair strategy), we include in our model the interaction between these two vari-
ables as well as controls for participant gender and age. This analysis was performed using
the ‘aov’ function in R. The F-value, degrees of freedom, and effect size (eta squared) are
reported in parentheses for each fixed factor.

Dependent variable:

participant promise rating

trust violation framing: F(1) = 0.829
competence (0) or integrity (0.002)

trust repair strategy: F(1) = 1.758
apology (0) or denial (1) (0.011)

trust violation framing * trust repair strategy F(1) = 0.415
(0.005)

gender: female (1) or male (0) F(1) = 0.456
(0.001)

age F(1) = 0.953
(0.103)

Observations 82

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.13: This table presents the results from the logistic regression model run in Chapter
4 Section 4.4.3 examining the influence of a participants’ promise not to immobilize the
robot (post-experiment survey Likert rating of “I promised not to immobilize Echo during
the game”) on whether participants immobilized the robot in their first power-up choice.
We also control for the trust violation framing, trust repair strategy, participant age, and
participant gender. We used the R ‘glm’ function with a binomial family and logit link to
perform this analysis. The linear coefficient (odds ratio) and standard error are reported in
the following table.

Dependent variable:

first power-up choice:

immobilize (1) or not (0)

participant promise to robot Likert rating −0.582∗∗

(0.197)

trust violation framing: 1.394∗

competence (0) or integrity (1) (0.583)

trust repair strategy: 1.209∗

apology (0) or denial (1) (0.592)

gender: female (1) or male (0) −0.213
(0.568)

age −0.278
(0.173)

Constant 5.026
(3.632)

Observations 82
Log Likelihood −39.254
Akaike Inf. Crit. 90.507

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.14: This table presents the results from the logistic regression model run in Chapter
4 Section 4.4.3 examining the influence of a participants’ promise not to immobilize the
robot (post-experiment survey Likert rating of “I promised not to immobilize Echo during
the game”) on whether participants ever immobilized the robot in any of their three power-
up choices. We also control for the trust violation framing, trust repair strategy, participant
age, and participant gender. We used the R ‘glm’ function with a binomial family and logit
link to perform this analysis. The linear coefficient (odds ratio) and standard error are
reported in the following table.

Dependent variable:

all power-up choices:

at least one immobilize (1)

or never immobilize (0)

participant promise to robot Likert rating −0.739∗∗∗

(0.217)

trust violation framing: 0.997 .
competence (0) or integrity (1) (0.583)

trust repair strategy: 1.549∗

apology (0) or denial (1) (0.606)

gender: female (1) or male (0) −0.512
(0.583)

age −0.339 .
(0.179)

Constant 7.144 .
(3.796)

Observations 82
Log Likelihood −37.947
Akaike Inf. Crit. 87.894

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.15: This table presents the results from the linear regression model run in Chapter
4 Section 4.4.3 examining the influence of a participants’ promise not to immobilize the
robot (post-experiment survey Likert rating of “I promised not to immobilize Echo during
the game”) on their Dyadic Trust Scale (DTS) ratings of the robot. We also control for
the trust violation framing, trust repair strategy, participant age (considered as a factor
in [Strohkorb Sebo et al., 2019], but was not considered a factor for this analysis), and
participant gender. We used the R ‘lm’ function to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

Dyadic Trust Scale rating

participant promise to robot Likert rating 0.158∗∗∗

(0.042)

trust violation framing: −0.049
competence (0) or integrity (1) (0.187)

trust repair strategy: −0.171
apology (0) or denial (1) (0.187)

gender: female (1) or male (0) −0.424∗

(0.190)

age 0.069
(0.045)

Constant 1.583
(0.985)

Observations 82
R2 0.234
Adjusted R2 0.184
Residual Std. Error 0.838 (df = 76)
F Statistic 4.651∗∗∗ (df = 5; 76)

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.16: This table lists the demographic and descriptive characteristics of the par-
ticipants in the human-subjects study detailed in Chapter 5, both overall and for each
condition.

Overall

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 153 21.73 8.76 14 17 22 59
gender (0-M, 1-F) 153 0.62 0.49 0 0 1 1
avg. familiarity 153 0.73 1.12 0.00 0.00 1.50 4.50
extraversion 153 3.70 2.20 0 2 6 6

Vulnerable Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 54 20.13 7.13 14 17 20.8 55
gender (0-M, 1-F) 54 0.52 0.50 0 0 1 1
avg. familiarity 54 0.78 1.08 0 0 1.5 4
extraversion 54 3.50 2.28 0 1 6 6

Neutral Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 51 21.33 11.01 15 17 19 59
gender (0-M, 1-F) 51 0.71 0.46 0 0 1 1
avg. familiarity 51 1.21 1.35 0.00 0.00 2.00 4.50
extraversion 51 3.88 2.08 0 2 6 6

Silent Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 48 23.94 7.36 15 19 27.2 48
gender (0-M, 1-F) 48 0.65 0.48 0 0 1 1
avg. familiarity 48 0.18 0.48 0 0 0 2
extraversion 48 3.73 2.26 0 2 6 6
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Table D.17: This table presents the results from the linear mixed-effects model run in Chap-
ter 5 Section 5.4 examining the influence of the experimental condition (reference group:
vulnerable condition) on the participant’s Likert rating (1 - strongly disagree, 7 - strongly
agree) on the post-experiment questionnaire item “Echo [the robot] made vulnerable dis-
closures about Echo’s feelings during the interaction.” Each participant is grouped with
their two fellow human participants in the model where each group has a random intercept.
We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

the robot made vulnerable disclosures

condition - neutral −2.891∗∗∗

(0.349)

condition - silent −2.019∗∗∗

(0.355)

Constant 5.185∗∗∗

(0.243)

Observations 153
Log Likelihood −302.316
Akaike Inf. Crit. 614.633
Bayesian Inf. Crit. 629.785

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.18: This table presents the results from the linear mixed-effects model run in
Chapter 5 Section 5.4 examining the influence of the experimental condition (reference
group: vulnerable condition) on the participant’s Likert rating (1 - strongly disagree, 7 -
strongly agree) on the post-experiment questionnaire item “Echo [the robot] told personal
stories during the interaction.” Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. We used the R ‘lmer’
function from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

the robot told personal stories

condition - neutral −4.797∗∗∗

(0.264)

condition - silent −4.382∗∗∗

(0.268)

Constant 6.444∗∗∗

(0.184)

Observations 153
Log Likelihood −247.899
Akaike Inf. Crit. 505.799
Bayesian Inf. Crit. 520.951

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.19: This table presents the results from the linear mixed-effects model run in
Chapter 5 Section 5.4 examining the influence of the experimental condition (reference
group: vulnerable condition) on the participant’s Likert rating (1 - strongly disagree, 7 -
strongly agree) on the post-experiment questionnaire item “Echo [the robot] made use of
humor during the interaction.” Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. We used the R ‘lmer’
function from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

the robot used humor

condition - neutral −2.614∗∗∗

(0.376)

condition - silent −3.368∗∗∗

(0.382)

Constant 6.222∗∗∗

(0.262)

Observations 153
Log Likelihood −286.386
Akaike Inf. Crit. 582.772
Bayesian Inf. Crit. 597.925

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.20: This table presents the results from the linear mixed-effects model run in
Chapter 5 Section 5.4 examining the influence of the experimental condition (reference
group: vulnerable condition) on the participant’s rating of the robot’s warmth, according
to the RoSAS scale [Carpinella et al., 2017]. Each participant is grouped with their two
fellow human participants in the model where each group has a random intercept. We used
the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear coefficient
(odds ratio) and standard error are reported in the following table.

Dependent variable:

robot’s warmth (RoSAS)

condition - neutral −1.182∗∗∗

(0.302)

condition - silent −1.880∗∗∗

(0.307)

Constant 6.130∗∗∗

(0.211)

Observations 153
Log Likelihood −273.733
Akaike Inf. Crit. 557.467
Bayesian Inf. Crit. 572.619

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.21: This table presents the results from the linear mixed-effects model run in
Chapter 5 Section 5.4 examining the influence of the experimental condition (reference
group: vulnerable condition) and a control for the participants’ gender on the participant’s
rating of the robot’s competence, according to the RoSAS scale [Carpinella et al., 2017].
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package
to perform this analysis. The linear coefficient (odds ratio) and standard error are reported
in the following table.

Dependent variable:

robot’s competence (RoSAS)

condition - neutral −0.070
(0.372)

condition - silent −0.856∗

(0.376)

gender: female (1) or male (0) 0.735∗∗

(0.281)

Constant 5.545∗∗∗

(0.295)

Observations 153
Log Likelihood −296.615
Akaike Inf. Crit. 605.229
Bayesian Inf. Crit. 623.412

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.22: This table presents the results from the linear mixed-effects model run in
Chapter 5 Section 5.4 examining the influence of the experimental condition (reference
group: vulnerable condition) and a control for the participants’ age on the participant’s
rating of the robot’s competence, according to the RoSAS scale [Carpinella et al., 2017].
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package
to perform this analysis. The linear coefficient (odds ratio) and standard error are reported
in the following table.

Dependent variable:

robot’s discomfort (RoSAS)

condition - neutral −0.082
(0.239)

condition - silent 0.437 .
(0.246)

age −0.017
(0.011)

Constant 2.597∗∗∗

(0.284)

Observations 153
Log Likelihood −251.543
Akaike Inf. Crit. 515.086
Bayesian Inf. Crit. 533.269

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.23: In order to analyze whether or not a human team member who made a mistake
looked at the robot afterwards in Chapter 5 Section 5.4, we used a multilevel mixed-effects
logistic regression model to determine the influence of the experimental condition (reference
group: vulnerable condition) on whether or not a human team member who made a mistake
looked at the robot afterwards. Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. In addition to our
experimental conditions, we also controlled for the participants’ age and gender. We used
the R ‘glmer’ function with a binomial family and logit link from the ‘lme4’ package to
perform this analysis. The linear coefficient (odds ratio) and standard error are reported in
the following table.

Dependent variable:

did the mistake maker look

at the robot after the mistake:

yes (1) or no (0)

condition - neutral −1.070∗∗

(0.401)

condition - silent −2.636∗∗∗

(0.456)

age −0.033 .
(0.018)

gender: female (1) or male (0) 0.569 .
(0.312)

Constant 2.022∗∗∗

(0.528)

Observations 274
Log Likelihood −151.638
Akaike Inf. Crit. 315.277
Bayesian Inf. Crit. 336.956

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.24: In order to analyze participants’ verbal responses to the robot in Chapter 5
Section 5.4, we used a multilevel mixed-effects logistic regression model to determine the
influence of the experimental condition (reference group: vulnerable condition) on whether
or not a human team member spoke to the robot after a mistake was made by the team.
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. In addition to our experimental conditions, we also
controlled for the participants’ extraversion score and average familiarity with the other
participants as well as the mistake round number (1-8). We used the R ‘glmer’ function
with a binomial family and logit link from the ‘lme4’ package to perform this analysis. The
linear coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

did the participant

speak to the robot:

yes (1) or no (0)

condition - neutral −0.954∗∗∗

(0.263)

condition - silent −1.497∗∗∗

(0.317)

mistake round [1,8] 0.147∗∗∗

(0.042)

average familiarity 0.158 .
(0.092)

extraversion [0,6] 0.152∗∗

(0.049)

Constant −2.954∗∗∗

(0.341)

Observations 1,224
Log Likelihood −386.129
Akaike Inf. Crit. 786.258
Bayesian Inf. Crit. 822.027

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.25: In order to analyze whether or not a human team member who made a mistake
explained that mistake to their team members in Chapter 5 Section 5.4, we used a multi-
level mixed-effects logistic regression model to determine the influence of the experimental
condition (reference group: vulnerable condition) on whether or not a human team member
who made a mistake explained that mistake to their team members. Each participant is
grouped with their two fellow human participants in the model where each group has a
random intercept. In addition to our experimental conditions, we also controlled for the
participants’ age and average familiarity with the other participants as well as the mistake
round number (1-8). We used the R ‘glmer’ function with a binomial family and logit link
from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio) and
standard error are reported in the following table.

Dependent variable:

did mistake maker

explain the mistake:

yes (1) or no (0)

condition - neutral −1.143∗

(0.577)

condition - silent −1.679∗∗

(0.622)

mistake round [1,8] −0.111 .
(0.066)

age −0.022
(0.021)

average familiarity 0.331 .
(0.188)

Constant 1.681∗∗

(0.652)

Observations 297
Log Likelihood −176.764
Akaike Inf. Crit. 367.528
Bayesian Inf. Crit. 393.384

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.26: In order to analyze whether or not a human team member consoled the one
who made a mistake in Chapter 5 Section 5.4, we used a multilevel mixed-effects logistic
regression model to determine the influence of the experimental condition, where the neutral
and silent conditions are pooled together, on whether or not a human team member consoled
the one who made a mistake. Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. In addition to our
experimental conditions, we also controlled for the participants’ age as well as the mistake
round number (1-8). We used the R ‘glmer’ function with a binomial family and logit link
from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio) and
standard error are reported in the following table.

Dependent variable:

did human team member

console mistake maker:

yes (1) or no (0)

condition (vulnerable vs. neutral + silent) 0.856∗

(0.396)

mistake round [1,8] −0.185∗∗∗

(0.046)

age −0.063∗

(0.027)

Constant −0.421
(0.645)

Observations 927
Log Likelihood −339.751
Akaike Inf. Crit. 689.503
Bayesian Inf. Crit. 713.663

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.27: In order to analyze whether or not a human team member consoled the person
who made a mistake (excluding consoling the robot) in Chapter 5 Section 5.4, we used a
multilevel mixed-effects logistic regression model to determine the influence of the experi-
mental condition, where the neutral and silent conditions are pooled together, on whether
or not a human team member consoled the person who made a mistake (excluding con-
soling the robot). Each participant is grouped with their two fellow human participants
in the model where each group has a random intercept. In addition to our experimental
conditions, we also controlled for the participants’ age as well as the mistake round number
(1-8). We used the R ‘glmer’ function with a binomial family and logit link from the ‘lme4’
package to perform this analysis. The linear coefficient (odds ratio) and standard error are
reported in the following table.

Dependent variable:

did human team member console

human (not robot) mistake maker:

yes (1) or no (0)

condition (vulnerable vs. neutral + silent) 0.525
(0.466)

mistake round [1,8] −0.139∗

(0.055)

age −0.058 .
(0.030)

average familiarity 0.333∗

(0.152)

Constant −0.724
(0.728)

Observations 624
Log Likelihood −257.878
Akaike Inf. Crit. 527.756
Bayesian Inf. Crit. 554.373

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.28: In our first analysis whether or not a human team members laughed together
in Chapter 5 Section 5.4, we used a multilevel mixed-effects logistic regression model to
determine the influence of the experimental condition (vulnerable or neutral condition) on
whether or not a human team member laughed along with another human team member.
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. In addition to our experimental conditions, we also
controlled for the participants’ age and average familiarity with the other participants. We
used the R ‘glmer’ function with a binomial family and logit link from the ‘lme4’ package
to perform this analysis. The linear coefficient (odds ratio) and standard error are reported
in the following table.

Dependent variable:

did human team member

laugh with another:

yes (1) or no (0)

condition - vulnerable 0.791
(0.395)∗

age 0.031∗

(0.016)

average familiarity 0.235∗

(0.106)

Constant −2.658∗∗∗

(0.465)

Observations 840
Log Likelihood −426.092
Akaike Inf. Crit. 862.184
Bayesian Inf. Crit. 885.851

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.29: In order to analyze whether or not a human team members laughed together
in Chapter 5 Section 5.4, we used a multilevel mixed-effects logistic regression model to
determine the influence of the experimental condition (reference group: vulnerable condi-
tion) on whether or not a human team member laughed along with another human team
member. Each participant is grouped with their two fellow human participants in the model
where each group has a random intercept. In addition to our experimental conditions, we
also controlled for the participants’ age and average familiarity with the other participants,
these controls were scaled to ensure model convergence. We used the R ‘glmer’ function
with a binomial family and logit link from the ‘lme4’ package to perform this analysis. The
linear coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

did human team member

laugh with another:

yes (1) or no (0)

condition - neutral −0.772
(0.551)

condition - silent −0.973 .
(0.587)

age 0.216
(0.143)

average familiarity 0.277∗

(0.127)

Constant −1.141∗∗

(0.382)

Observations 1,224
Log Likelihood −569.461
Akaike Inf. Crit. 1,150.922
Bayesian Inf. Crit. 1,181.581

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.30: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot
versus neutral and silent robot utterances on total individual speaking time. We used a
multilevel linear model of speaking time (s) as a function of experimental condition (ref-
erence group: vulnerable robot) and controls for age, gender, extraversion and familiarity.
Unobserved individual heterogeneity was modeled using random effects clustered in groups.
We used the R ‘lme’ function from the ‘nlme’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

total talking time (s)

condition - silent −124.523∗∗

(41.046)

condition - neutral −140.678∗∗∗

(39.973)

age 0.180
(1.272)

gender: female (1) or male (0) −15.760
(18.918)

extraversion [0,1] 45.002∗

(22.314)

average familiarity 18.163
(11.264)

Constant 212.348∗∗∗

(41.790)

Observations 153
Log Likelihood −926.594
Akaike Inf. Crit. 1,871.188
Bayesian Inf. Crit. 1,898.040

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.31: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot
versus neutral and silent robot utterances on total individual speaking time. We used a
multilevel linear model of speaking time (s) as a function of experimental condition (refer-
ence group: vulnerable robot) including an interaction of the treatment effect with round
and controls for age, gender, extraversion and familiarity. Unobserved individual hetero-
geneity were modeled using random effects clustered in participants in groups. We used the
R ‘lme’ function from the ‘nlme’ package to perform this analysis. The linear coefficient
(odds ratio) and standard error are reported in the following table.

Dependent variable:

total talking time per round (s)

round * condition - silent −0.068
(0.061)

round * condition - neutral −0.129∗

(0.060)

round 0.153∗∗∗

(0.042)

condition - silent −3.190∗

(1.230)

condition - neutral −2.537∗

(1.201)

age 0.009
(0.034)

gender: female (1) or male (0) 0.461
(0.501)

extraversion [0,1] 0.871
(0.593)

avgerage familiarity 0.422
(0.307)

Constant 4.280∗∗

(1.381)

Observations 4,590
Log Likelihood −13,872.010
Akaike Inf. Crit. 27,778.020
Bayesian Inf. Crit. 27,887.320

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.32: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot
versus neutral and silent robot utterances on the duration of human team member responses.
We used a multilevel linear model of speaking time (s) as a function of experimental con-
dition (reference group: vulnerable robot) including an interaction of the treatment effect
with round and controls for age, gender, extraversion and familiarity. Unobserved individ-
ual heterogeneity were modeled using random effects clustered in participants in groups.
We used the R ‘lme’ function from the ‘nlme’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

total time responding per round (s)

round 0.095∗∗∗

(0.028)

condition - silent −1.312∗

(0.630)

condition - neutral −1.059 .
(0.616)

age −0.003
(0.016)

gender: female (1) or male (0) −0.209
(0.230)

extraversion [0,1] −0.036
(0.273)

average familiarity 0.080
(0.144)

round * condition - silent −0.044
(0.040)

round * condition - neutral −0.082∗

(0.040)

Constant 2.857∗∗∗

(0.666)

Observations 4,590
Log Likelihood −12,219.810
Akaike Inf. Crit. 24,473.630
Bayesian Inf. Crit. 24,582.930

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.33: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot
versus neutral and silent robot utterances on participants equality in talking time (ETTi).
We used a multilevel beta regression as a function of experimental condition (reference
group: vulnerable robot) and controls for age, gender, extraversion and familiarity. Unob-
served individual heterogeneity were modeled using random effects clustered in groups. We
used the R ‘glmmTMB’ function with a beta family and logit link from the ‘glmmTMB’
package to perform this analysis. The linear coefficient (odds ratio) and standard error are
reported in the following table. Because a beta regression cannot analyze 0’s or 1’s (a few
participants had values of 1), we transformed the data using the following equation, where
N is the sample size (150) and y is the outcome variable [Smithson and Verkuilen, 2006]:

y′ = y∗(N−1)+0.5
N .

Dependent variable:

ETTi

condition - neutral 0.027
(0.184)

condition - silent 0.661∗∗∗

(0.186)

age 0.00009
(0.008)

gender: female (1) or male (0) −0.276∗

(0.134)

extraversion [0,1] 0.173
(0.166)

average familiarity −0.057
(0.071)

Constant −1.753∗∗∗

(0.252)

Observations 150
Log Likelihood 134.0
Akaike Inf. Crit. -250.0
Bayesian Inf. Crit. -222.9

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.34: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable
robot versus neutral and silent robot utterances on participants equality in talking partners
(ETPi). We used a multilevel beta regression as a function of experimental condition (ref-
erence group: vulnerable robot) and controls for age, gender, extraversion and familiarity.
Unobserved individual heterogeneity were modeled using random effects clustered in groups.
We used the R ‘glmmTMB’ function with a beta family and logit link from the ‘glmmTMB’
package to perform this analysis. The linear coefficient (odds ratio) and standard error are
reported in the following table. Because a beta regression cannot analyze 0’s or 1’s (a few
participants had values of 1), we transformed the data using the following equation, where
N is the sample size (144) and y is the outcome variable [Smithson and Verkuilen, 2006]:

y′ = y∗(N−1)+0.5
N .

Dependent variable:

ETPi

condition - neutral 0.384
(0.276)

condition - silent 0.742∗

(0.300)

age 0.021 .
(0.012)

gender: female (1) or male (0) −0.101
(0.196)

extraversion [0,1] −0.774∗∗∗

(0.233)

average familiarity −0.277∗∗

(0.102)

Constant 0.058
(0.345)

Observations
Log Likelihood
Akaike Inf. Crit.
Bayesian Inf. Crit.

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.35: This table presents the results from the linear mixed-effects model run in Chap-
ter 5 Section 5.4 examining the influence of the experimental condition (reference group:
vulnerable condition) on the participant’s rating of their team’s psychological safety, accord-
ing to Edmondson’s Team Psychological Safety scale [Edmondson, 1999]. Each participant
is grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

psychological safety

condition - neutral −0.087
(0.199)

condition - silent −0.312
(0.203)

Constant 5.619∗∗∗

(0.139)

Observations 153
Log Likelihood −187.603
Akaike Inf. Crit. 385.206
Bayesian Inf. Crit. 400.359

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.36: In Chapter 5 Section 5.4 we examined the treatment effect of vulnerable robot
versus neutral and silent robot utterances on different self-reported group dynamics. We
used a multilevel logistic model as a function of experimental condition (reference group:
vulnerable robot) and controls for age, gender, extraversion and familiarity. Unobserved
individual heterogeneity were modeled using random effects clustered in groups. We used
the R ‘glmer’ function with a binomial family and logit link from the ‘lme4’ package to
perform this analysis. The linear coefficient (odds ratio) and standard error are reported in
the following table.

Dependent variable:

positive (1) or

quiet negative (0) supportive fun

condition - silent 0.679 −1.764∗ −0.869 −1.740∗

(0.564) (0.714) (0.669) (0.732)

condition - neutral 1.277∗ −1.355∗ 0.147 −1.443∗

(0.571) (0.657) (0.504) (0.667)

age −0.004 0.005 −0.054 0.0001
(0.025) (0.026) (0.044) (0.030)

gender (0-M, 1-F) 0.192 0.354 0.283 0.063
(0.415) (0.452) (0.489) (0.513)

extraversion [0, 1] −0.144 0.682 0.487 0.180
(0.480) (0.504) (0.599) (0.589)

average familiarity −0.550∗ −0.093 −0.140 0.090
(0.243) (0.226) (0.229) (0.239)

Constant −1.078 0.790 −0.841 −1.126
(0.735) (0.776) (1.060) (0.832)

Observations 153 153 153 153
Log Likelihood −89.038 −94.272 −64.204 −65.328
Akaike Inf. Crit. 194.077 204.544 144.407 146.656
Bayesian Inf. Crit. 218.320 228.787 168.651 170.900

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.37: This table lists the demographic and descriptive characteristics of the par-
ticipants in the human-subjects study detailed in Chapter 6 both overall and for each
experimental condition.

Overall

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 78 16.82 0.72 16 16 17 19
gender (0-M, 1-F) 78 0.49 0.50 0 0 1 1
extraversion 78 3.90 2.15 0 2 6 6
emotional intelligence 78 5.27 0.65 3.37 4.95 5.70 6.63
avg. familiarity 78 1.10 1.06 0.00 0.00 2.00 3.50

Ingroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 39 16.72 0.69 16 16 17 18
gender (0-M, 1-F) 39 0.46 0.51 0 0 1 1
extraversion 39 3.36 2.44 0 1 6 6
emotional intelligence 39 5.32 0.67 3.37 5.07 5.72 6.20
avg. familiarity 39 0.99 1.13 0 0 1.5 4

Outgroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 39 16.92 0.74 16 16 17 19
gender (0-M, 1-F) 39 0.51 0.51 0 0 1 1
extraversion 39 4.44 1.68 0 4 6 6
emotional intelligence 39 5.23 0.64 3.60 4.88 5.50 6.63
avg. familiarity 39 1.21 0.99 0.00 0.50 2.00 3.00
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Table D.38: This table lists the demographic and descriptive characteristics of the partici-
pants in the human-subjects study detailed in Chapter 6 for each important subdivision of
participants (ingroup/outgroup, robot liaison).

Ingroup Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 52 16.75 0.65 16 16 17 18
gender (0-M, 1-F) 52 0.44 0.50 0 0 1 1
extraversion 52 3.65 2.28 0 1 6 6
emotional intelligence 52 5.21 0.68 3.37 4.86 5.70 6.27
avg. familiarity 52 1.12 1.05 0 0 2 4

Outgroup Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 26 16.96 0.82 16 16 17 19
gender (0-M, 1-F) 26 0.58 0.50 0 0 1 1
extraversion 26 4.38 1.81 0 4 6 6
emotional intelligence 26 5.40 0.57 4.37 5.13 5.77 6.63
avg. familiarity 26 1.06 1.12 0.00 0.00 1.50 3.50

Robot Liaison Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 26 16.92 0.84 16 16 17 19
gender (0-M, 1-F) 26 0.54 0.51 0 0 1 1
extraversion 26 3.81 2.45 0 1.2 6 6
emotional intelligence 26 5.38 0.69 3.37 5.13 5.83 6.63
avg. familiarity 26 0.98 1.00 0.00 0.00 1.88 3.00

Non Robot Liaison Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 52 16.77 0.65 16 16 17 18
gender (0-M, 1-F) 52 0.46 0.50 0 0 1 1
extraversion 52 3.94 2.01 0 2 6 6
emotional intelligence 52 5.22 0.63 3.60 4.83 5.65 6.27
avg. familiarity 52 1.15 1.10 0 0 2 4
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Table D.39: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the correlation of the participant designations of robot
liaison and participant designations of ingroup-outgroup with the average familiarity with
their two human team members. Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. We used the R ‘lmer’
function from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

avg. familiarity

robot liaison: yes (1) or no (0) −0.253
(0.296)

intergroup bias: ingroup (0) or outgroup (1) −0.099
(0.296)

robot liaison * intergroup bias 0.209
(0.499)

Constant 1.194∗∗∗

(0.211)

Observations 78
Log Likelihood −110.544
Akaike Inf. Crit. 233.088
Bayesian Inf. Crit. 247.228

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.40: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the correlation of the participant designations of robot
liaison and participant designations of ingroup-outgroup with their emotional intelligence.
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package
to perform this analysis. The linear coefficient (odds ratio) and standard error are reported
in the following table.

Dependent variable:

emotional intelligence

robot liaison: yes (1) or no (0) 0.135
(0.209)

intergroup bias: ingroup (0) or outgroup (1) 0.168
(0.209)

robot liaison * intergroup bias −0.020
(0.330)

Constant 5.175∗∗∗

(0.104)

Observations 78
Log Likelihood −79.089
Akaike Inf. Crit. 170.179
Bayesian Inf. Crit. 184.319

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.41: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the correlation of the participant designations of robot
liaison and participant designations of ingroup-outgroup with their extraversion. Each
participant is grouped with their two fellow human participants in the model where each
group has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to
perform this analysis. The linear coefficient (odds ratio) and standard error are reported in
the following table.

Dependent variable:

extraversion

robot liaison: yes (1) or no (0) −1.182 .
(0.659)

intergroup bias: ingroup (0) or outgroup (1) −0.028
(0.659)

robot liaison * intergroup bias 2.109∗

(1.068)

Constant 3.997∗∗∗

(0.359)

Observations 78
Log Likelihood −165.434
Akaike Inf. Crit. 342.867
Bayesian Inf. Crit. 357.007

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.42: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with a control for emotional intelligence, on
the similarity of their survivial item rankings from round 1 with their survial item rankings
from round 2 (smaller values indicate higher similarity of the lists). Each participant is
grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

survival item ranking

similarity (rounds 1 & 2)

robot liaison: yes (1) or no (0) 0.030
(0.036)

intergroup bias: ingroup (0) or outgroup (1) 0.103∗∗

(0.036)

robot liaison * intergroup bias 0.011
(0.056)

emotional intelligence −0.046∗

(0.020)

Constant 0.677∗∗∗

(0.104)

Observations 78
Log Likelihood 49.638
Akaike Inf. Crit. −85.276
Bayesian Inf. Crit. −68.779

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.43: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with a control for participant age and emo-
tional intelligence, on their partner preference score. Each participant is grouped with their
two fellow human participants in the model where each group has a random intercept. We
used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

partner preference score

robot liaison: yes (1) or no (0) −0.109
(0.211)

intergroup bias: ingroup (0) or outgroup (1) −0.508∗

(0.211)

robot liaison * intergroup bias 0.254
(0.328)

age 0.207 .
(0.106)

emotional intelligence 0.442∗∗∗

(0.121)

Constant −4.662∗

(2.021)

Observations 75
Log Likelihood −75.172
Akaike Inf. Crit. 166.344
Bayesian Inf. Crit. 184.884

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.44: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with a control for participant age and the
maximum familiarity a participant has between their two other human team mates, on their
perceived inclusion scale score. Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. We used the R ‘lmer’
function from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

perceived inclusion

robot liaison: yes (1) or no (0) −0.407∗

(0.172)

intergroup bias: ingroup (0) or outgroup (1) 0.041
(0.172)

robot liaison * intergroup bias 0.350
(0.284)

age −0.203∗

(0.089)

max. familiarity 0.119∗

(0.045)

Constant 7.559∗∗∗

(1.506)

Observations 78
Log Likelihood −69.616
Akaike Inf. Crit. 155.231
Bayesian Inf. Crit. 174.085

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001

279



Table D.45: This table presents the results from the 1-way ANOVA analysis comparing
the the proportion of survival items initially ranked low (9-25) on the round 1 ingroup list
and high (1-8) on the round 1 outgroup list items (Lin, Hout) that made it onto the final
list of 8 items produced by the entire team at the end of round two of the experiment.
We examined this proportion between participants with an ingroup robot liaison verses an
outgroup robot liaison outsider, as presented in Chapter 6 Section 6.4. In addition to our
main variable of interest, we include in our model the average familiarity of group members
with one another and the number of females on the team. This analysis was performed
using the ‘aov’ function in R. The F-value, degrees of freedom, and effect size (eta squared)
are reported in parentheses for each fixed factor.

Dependent variable:

Lin, Hout on final list

ingroup robot liaison (0) or F(1) = 5.594∗

outgroup robot liaison (1) (0.193)

avg. group familiarity F(1) = 0.008
(< 0.001)

number of females [0,3] F(1) = 0.826
(0.036)

Observations 26

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.46: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with a control for participant extraversion,
on the proportion of time they spent talking 1 minute after robot support targeted to
participant(RST-P), robot support targeted to someone else (RST-SE), and a robot undi-
rected utterance (RUU). Each participant is grouped with their two fellow human partici-
pants in the model where each group has a random intercept. We used the R ‘lmer’ function
from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio) and
standard error are reported in the following table.

Dependent variable:

RST-P RST-SE RUU

robot liaison: yes (1) or no (0) 0.048 0.009 0.030
(0.031) (0.033) (0.029)

intergroup bias: ingroup (0) or outgroup (1) 0.012 −0.025 −0.033
(0.031) (0.033) (0.029)

robot liaison * intergroup bias 0.006 0.033 0.033
(0.052) (0.056) (0.049)

extraversion 0.016∗∗ 0.017∗∗ 0.017∗∗

(0.006) (0.006) (0.005)

Constant 0.120∗∗∗ 0.152∗∗∗ 0.139∗∗∗

(0.030) (0.033) (0.029)

Observations 74 74 74
Log Likelihood 55.405 49.665 71.547
Akaike Inf. Crit. −96.810 −85.330 −129.094
Bayesian Inf. Crit. −80.681 −69.201 −112.965

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.47: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with a control for participant extraversion,
on the proportion of time they spent talking 1 minute after robot support targeted to
participant(RST-P) compared with two controls (via subtraction): robot support targeted
to someone else (RST-SE), and a robot undirected utterance (RUU). Each participant is
grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

(RTS-P - RTS-SE) (RTS-P - RUU)

robot liaison: yes (1) or no (0) 0.033∗ 0.017
(0.016) (0.015)

intergroup bias: ingroup (0) or outgroup (1) 0.033∗ 0.043∗∗

(0.017) (0.016)

robot liaison * intergroup bias −0.017 −0.025
(0.026) (0.024)

Constant −0.030∗∗∗ −0.020∗

(0.008) (0.008)

Observations 74 74
Log Likelihood 105.290 109.557
Akaike Inf. Crit. −198.581 −207.113
Bayesian Inf. Crit. −184.756 −193.289

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.48: This table presents the results from the linear mixed-effects model run in
Chapter 6 Section 6.4 examining the influence of the participants’ intergroup bias (in-
group/outgroup) and robot liaison designation, with various controls either participants’
emotional intelligence or the maximum familiarity a participant had with their two fellow
participants, on the participants’ ratings of the robot’s warmth, competence, and discomfort
according to the RoSAS scale [Carpinella et al., 2017]. Each participant is grouped with
their two fellow human participants in the model where each group has a random intercept.
We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

warmth competence discomfort

robot liaison: yes (1) or no (0) 0.403 −0.264 0.226
(0.456) (0.387) (0.319)

intergroup bias: ingroup (0) or outgroup (1) 0.198 0.113 −0.033
(0.456) (0.388) (0.320)

robot liaison * intergroup bias −0.303 0.093 −0.076
(0.732) (0.611) (0.508)

emotional intelligence 0.596∗∗ −0.673∗∗∗

(0.215) (0.178)

max. familiarity 0.281∗

(0.113)

Constant 5.206∗∗∗ 4.101∗∗∗ 5.689∗∗∗

(0.310) (1.129) (0.934)

Observations 78 78 78
Log Likelihood −137.963 −124.681 −110.703
Akaike Inf. Crit. 289.925 263.362 235.406
Bayesian Inf. Crit. 306.422 279.859 251.903

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.49: This table lists the demographic and descriptive characteristics of all the par-
ticipants in the human-subjects study detailed in Chapter 7.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 114 16.73 0.73 15 16 17 19
gender: (0-M, 1-F) 114 0.51 0.50 0 0 1 1
extraversion 114 3.88 2.06 0 2 6 6
emotional intelligence 114 5.25 0.64 3.37 4.91 5.69 6.63
avg. familiarity 114 1.16 1.12 0.00 0.00 2.00 4.00
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Table D.50: This table lists the demographic and descriptive characteristics of the partici-
pants in the human-subjects study detailed in Chapter 7 in our 2 robot verbal support (yes
or not) x 2 intergroup bias robot liaison (ingroup robot liaison vs. outgroup robot liaison)
between subjects design.

Robot Verbal Support & Ingroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 39 16.72 0.69 16 16 17 18
gender: (0-M, 1-F) 39 0.44 0.50 0 0 1 1
extraversion 39 3.36 2.42 0 1 6 6
emotional intelligence 39 5.34 0.66 3.37 5.13 5.70 6.20
avg. familiarity 39 0.92 1.14 0 0 1.5 4

Robot Verbal Support & Outgroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 45 16.82 0.78 15 16 17 19
gender: (0-M, 1-F) 45 0.53 0.50 0 0 1 1
extraversion 45 4.42 1.59 0 4 6 6
emotional intelligence 45 5.20 0.64 3.60 4.93 5.53 6.63
avg. familiarity 45 1.19 1.01 0.00 0.00 2.00 3.00

No Robot Verbal Support & Ingroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 15 16.47 0.74 15 16 17 18
gender: (0-M, 1-F) 15 0.60 0.51 0 0 1 1
extraversion 15 4.20 1.78 0 3.5 5.5 6
emotional intelligence 15 5.42 0.55 4.47 5.08 5.77 6.37
avg. familiarity 15 1.93 1.19 0.00 0.75 2.50 3.50

No Robot Verbal Support & Outgroup Robot Liaison Condition

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 15 16.73 0.70 16 16 17 18
gender: (0-M, 1-F) 15 0.53 0.52 0 0 1 1
extraversion 15 3.27 2.22 0 2 5.5 6
emotional intelligence 15 5.03 0.61 3.63 4.80 5.42 5.80
avg. familiarity 15 0.90 1.06 0.00 0.50 1.00 4.00
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Table D.51: This table lists the demographic and descriptive characteristics of the partici-
pants in the human-subjects study detailed in Chapter 7 for each important subdivision of
participants (ingroup/outgroup, robot liaison).

Ingroup Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 76 16.67 0.72 15 16 17 18
gender: (0-M, 1-F) 76 0.49 0.50 0 0 1 1
extraversion 76 3.63 2.11 0 2 5.2 6
emotional intelligence 76 5.18 0.68 3.37 4.83 5.60 6.37
avg. familiarity 76 1.17 1.14 0 0 2 4

Outgroup Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 38 16.84 0.75 16 16 17 19
gender: (0-M, 1-F) 38 0.55 0.50 0 0 1 1
extraversion 38 4.37 1.88 0 3.2 6 6
emotional intelligence 38 5.40 0.51 4.37 5.06 5.72 6.63
avg. familiarity 38 1.13 1.11 0.00 0.00 1.88 3.50

Robot Liaison Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 38 16.82 0.77 16 16 17 19
gender: (0-M, 1-F) 38 0.47 0.51 0 0 1 1
extraversion 38 3.84 2.28 0 2 6 6
emotional intelligence 38 5.38 0.64 3.37 5.11 5.80 6.63
avg. familiarity 38 1.12 1.08 0.00 0.00 2.00 3.50

Non Robot Liaison Members

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 76 16.68 0.72 15 16 17 18
gender: (0-M, 1-F) 76 0.53 0.50 0 0 1 1
extraversion 76 3.89 1.95 0 2.8 6 6
emotional intelligence 76 5.19 0.63 3.60 4.83 5.60 6.27
avg. familiarity 76 1.18 1.15 0 0 2 4
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Table D.52: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the correlation of the the backchannels a participant
received (sec), with controls for participant gender and emotional intelligence, on their
psychological safety score [Edmondson, 1999]. Each participant is grouped with their two
fellow human participants in the model where each group has a random intercept. We used
the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear coefficient
(odds ratio) and standard error are reported in the following table.

Dependent variable:

psychological safety

verbal backchannels received (sec) 0.017∗∗

(0.006)

gender: female (1) or male (0) 0.274∗

(0.127)

emotional intelligence 0.284∗∗

(0.101)

Constant 4.094∗∗∗

(0.529)

Observations 114
Log Likelihood −123.526
Akaike Inf. Crit. 259.052
Bayesian Inf. Crit. 275.469

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.53: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the correlation of participants total time talking in round
2 of the experiment (sec), with controls for ingroup-outgroup bias, robot liaison designation,
gender, and emotional intelligence, on their psychological safety score [Edmondson, 1999].
Each participant is grouped with their two fellow human participants in the model where
each group has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package
to perform this analysis. The linear coefficient (odds ratio) and standard error are reported
in the following table.

Dependent variable:

psychological safety

total talking time (sec) 0.001∗

(0.0004)

ingroup (0) or outgroup (1) 0.284 .

(0.149)

robot liaison: yes (1) or no (0) −0.238
(0.149)

gender: female (1) or male (0) 0.319∗

(0.135)

emotional intelligence 0.255∗

(0.109)

Constant 4.197∗∗∗

(0.558)

Observations 106
Log Likelihood −120.361
Akaike Inf. Crit. 256.722
Bayesian Inf. Crit. 278.030

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.54: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the correlation of the verbal backchannels a participant
received (sec) normalized by the total time that participant spent talking (sec), with controls
for ingroup-outgroup bias, robot liaison designation, gender, and emotional intelligence, on
their psychological safety score [Edmondson, 1999]. Each participant is grouped with their
two fellow human participants in the model where each group has a random intercept. We
used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

psychological safety

verbal backchannels received (sec) −1.133
normalized by talking time (sec) (1.059)

ingroup (0) or outgroup (1) 0.315∗

(0.158)

robot liaison: yes (1) or no (0) −0.235
(0.153)

gender: female (1) or male (0) 0.319∗

(0.138)

emotional intelligence 0.284∗∗

(0.110)

Constant 4.399∗∗∗

(0.577)

Observations 106
Log Likelihood −114.368
Akaike Inf. Crit. 244.736
Bayesian Inf. Crit. 266.044

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.55: This table presents the results from the linear mixed-effects model run in Chap-
ter 7 Section 7.4 examining the correlation of the total time a participant received verbal
backchannels (sec), with controls for robot liaison designation and emotional intelligence,
on their perceived group inclusion score [Jansen et al., 2014]. Each participant is grouped
with their two fellow human participants in the model where each group has a random
intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis.
The linear coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

perceived inclusion

verbal backchannels received (sec) 0.006
(0.005)

robot liaison: yes (1) or no (0) −0.239∗

(0.108)

emotional intelligence 0.300∗∗∗

(0.082)

Constant 2.715∗∗∗

(0.424)

Observations 114
Log Likelihood −99.065
Akaike Inf. Crit. 210.130
Bayesian Inf. Crit. 226.547

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.56: This table presents the results from the linear mixed-effects models run in
Chapter 7 Section 7.4 examining the correlation of the total time a participant received
nonverbal backchannels (sec) on their psychological safety score [Edmondson, 1999] and
their perceived group inclusion score [Jansen et al., 2014]. Controls used in these models
include intergroup bias, robot liaison designation, gender, emotional intelligence, and famil-
iarity with other team member. Each participant is grouped with their two fellow human
participants in the model where each group has a random intercept. We used the R ‘lmer’
function from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio)
and standard error are reported in the following table.

Dependent variable:

psychological safety perceived inclusion

nonverbal backchannels received (sec) 0.002 0.002
(0.002) (0.002)

gender: female (1) or male (0) 0.290∗

(0.132)

ingroup (0) or outgroup (1) 0.181
(0.114)

robot liaison: yes (1) or no (0) −0.293∗∗

(0.112)

emotional intelligence 0.325∗∗ 0.281∗∗∗

(0.104) (0.081)

max. familiarity 0.053
(0.033)

Constant 4.121∗∗∗ 2.752∗∗∗

(0.548) (0.422)

Observations 114 114
Log Likelihood −128.289 −101.611
Akaike Inf. Crit. 268.579 219.222
Bayesian Inf. Crit. 284.996 241.111

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.57: This table presents the results from the linear mixed-effects models run in
Chapter 7 Section 7.4 examining the correlation of the total time a participant spent non-
verbally backchanneling others (sec) on their psychological safety score [Edmondson, 1999]
and perceived inclusion score [Jansen et al., 2014]. Controls used for these models include
intergroup bias, robot liaison designation, gender, emotional intelligence, and familiarity
with other participants. Each participant is grouped with their two fellow human partici-
pants in the model where each group has a random intercept. We used the R ‘lmer’ function
from the ‘lme4’ package to perform this analysis. The linear coefficient (odds ratio) and
standard error are reported in the following table.

Dependent variable:

psychological safety perceived inclusion

(1) (2)

total time spent nonverbally −0.005∗ 0.001
backchanneling others (sec) (0.002) (0.002)

gender: female (1) or male (0) 0.318∗

(0.130)

ingroup (0) or outgroup (1) 0.201 .
(0.112)

robot liaison: yes (1) or no (0) −0.295∗∗

(0.112)

emotional intelligence 0.354∗∗∗ 0.278∗∗∗

(0.103) (0.082)

max. familiarity 0.051
(0.033)

Constant 4.158∗∗∗ 2.776∗∗∗

(0.538) (0.421)

Observations 114 114
Log Likelihood −126.542 −101.915
Akaike Inf. Crit. 265.083 219.830
Bayesian Inf. Crit. 281.501 241.720

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.58: This table presents the results from the linear mixed-effects models run in
Chapter 7 Section 7.4 examining the correlation of the total time a participant spent ver-
bally backchanneling others (sec) on their psychological safety score [Edmondson, 1999] and
perceived inclusion score [Jansen et al., 2014]. Controls used for these models include inter-
group bias, robot liaison designation, gender, and emotional intelligence. Each participant
is grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

psychological safety perceived inclusion

(1) (2)

total time spent verbally −0.003 0.010 .
backchanneling others (sec) (0.007) (0.005)

gender: female (1) or male (0) 0.310∗

(0.139)

ingroup (0) or outgroup (1) 0.217 .
(0.112)

robot liaison: yes (1) or no (0) −0.284∗

(0.111)

emotional intelligence 0.339∗∗ 0.266∗∗

(0.106) (0.082)

Constant 4.153∗∗∗ 2.759∗∗∗

(0.548) (0.418)

Observations 114 114
Log Likelihood −127.392 −97.988
Akaike Inf. Crit. 266.784 209.976
Bayesian Inf. Crit. 283.201 229.129

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.59: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the correlation of the nonverbal and verbal backchannels,
separately, a participant received (sec) normalized by the total time that participant spent
talking (sec), with controls for ingroup-outgroup bias, robot liaison designation, gender,
emotional intelligence, and the maximum familiarity they have between their two human
team members, on their perceived inclusion score [Jansen et al., 2014]. Each participant
is grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

perceived inclusion

nonverbal backchannels received (sec) −0.732∗

normalized by talking time (sec) (0.298)

verbal backchannels received (sec) −1.671∗

normalized by talking time (sec) (0.802)

ingroup (0) or outgroup (1) 0.272∗ 0.286∗

(0.118) (0.120)

robot liaison: yes (1) or no (0) −0.340∗∗ −0.356∗∗

(0.115) (0.116)

gender: female (1) or male (0) 0.151
(0.105)

emotional intelligence 0.201∗ 0.228∗∗

(0.084) (0.084)

max. familiarity 0.058 . 0.068∗

(0.034) (0.034)

Constant 3.177∗∗∗ 3.133∗∗∗

(0.436) (0.439)

Observations 106 106
Log Likelihood −89.029 −88.151
Akaike Inf. Crit. 196.058 192.302
Bayesian Inf. Crit. 220.029 213.609

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.60: This table presents the results from the linear mixed-effects model run in Chap-
ter 7 Section 7.4 examining the correlation of participants total time talking in round 2 of
the experiment (sec), with controls for ingroup-outgroup bias, robot liaison designation,
emotional intelligence, and the maximum familiarity a participant had between their two
fellow human participants, on their perceived inclusion [Jansen et al., 2014]. Each partic-
ipant is grouped with their two fellow human participants in the model where each group
has a random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform
this analysis. The linear coefficient (odds ratio) and standard error are reported in the
following table.

Dependent variable:

perceived inclusion

total talking time (sec) 0.001
(0.0003)

ingroup (0) or outgroup (1) 0.220 .
(0.116)

robot liaison: yes (1) or no (0) −0.332∗∗

(0.116)

emotional intelligence 0.224∗∗

(0.085)

max. familiarity 0.057
(0.036)

Constant 2.908∗∗∗

(0.438)

Observations 106
Log Likelihood −96.862
Akaike Inf. Crit. 209.725
Bayesian Inf. Crit. 231.032

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.61: This table presents the results from the ANOVA analysis examining the influ-
ence of the time participants in a group spent verbally backchanneling one another (sec) on
both groups’ average perceived inclusion and average psychological safety scores in Chapter
7 Section 7.4. This analysis was performed using the ‘aov’ function in R. The F-value,
degrees of freedom, and effect size (partial eta squared) are reported in parentheses for each
fixed factor.

Dependent variable:

perceived inclusion psychological safety

verbal backchannels F(1) = 9.720∗∗ F(1) = 6.171∗

produced by group (sec) (0.110) (0.038)

robot liaison: F(1) = 0.000 F(1) = 2.522
ingroup (0) or outgroup (1) (0.0227) (0.203)

verbally supportive robot: F(1) = 0.096 F(1) = 2.167
yes (1) or no (0) (0.0004) (0.089)

number of females F(1) = 1.310 F(1) = 1.848
(0.096) (0.041)

avg. age F(1) = 4.461∗ F(1) = 8.689∗∗

(0.052) (0.063)

avg. familiarity F(1) = 2.061 F(1) = 0.012
(0.013) (0.033)

avg. extraversion F(1) = 4.979∗ F(1) = 0.082
(0.016) (0.119)

avg. emotional intelligence F(1) = 7.769∗∗ F(1) = 14.023∗∗∗

(0.211) (0.326)

Observations 38 38

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.62: This table presents the results from the ANOVA analysis examining the in-
fluence of the time participants in a group spent talking (sec) on both groups’ average
perceived inclusion and average psychological safety scores in Chapter 7 Section 7.4. This
analysis was performed using the ‘aov’ function in R. The F-value, degrees of freedom, and
effect size (partial eta squared) are reported in parentheses for each fixed factor.

Dependent variable:

perceived inclusion psychological safety

total time talking F(1) = 7.319∗ F(1) = 0.446
by all group members (sec) (0.052) (0.002)

robot liaison: F(1) = 0.052 F(1) = 2.252
ingroup (0) or outgroup (1) (0.008) (0.268)

verbally supportive robot: F(1) = 0.202 F(1) = 1.266
yes (1) or no (0) (0.006) (0.119)

number of females F(1) = 1.801 F(1) = 16.001∗∗∗

(0.001) (0.238)

avg. age F(1) = 9.910∗∗ F(1) = 19.146∗∗∗

(0.130) (0.154)

avg. familiarity F(1) = 1.500 F(1) = 0.327
(0.005) (0.051)

avg. extraversion F(1) = 4.490∗ F(1) = 0.288
(0.037) (0.101)

avg. emotional intelligence F(1) = 2.608 F(1) = 6.477∗

(0.088) (0.193)

Observations 38 38

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.63: This table presents the results from the ANOVA analysis examining the influ-
ence of the proportion of time participants in a group spent verbally backchanneling one
another (sec), relative to the group’s total talking time, on both groups’ average perceived
inclusion and average psychological safety scores in Chapter 7 Section 7.4. This analysis
was performed using the ‘aov’ function in R. The F-value, degrees of freedom, and effect
size (partial eta squared) are reported in parentheses for each fixed factor.

Dependent variable:

perceived inclusion psychological safety

verbal backchannels produced (sec) F(1) = 0.140 F(1) = 0.818
normalized by talking time (sec) (0.001) (0.028)

robot liaison: F(1) = 0.086 F(1) = 2.783
ingroup (0) or outgroup (1) (0.005) (0.247)

verbally supportive robot: F(1) = 0.089 F(1) = 0.682
yes (1) or no (0) (0.001) (0.133)

number of females F(1) = 1.954 F(1) = 15.692∗∗∗

(0.001) (0.255)

avg. age F(1) = 11.919∗∗ F(1) = 21.646∗∗∗

(0.130) (0.177)

avg. familiarity F(1) = 3.638 . F(1) = 0.168
(0.019) (0.049)

avg. extraversion F(1) = 5.087∗ F(1) = 0.332
(0.052) (0.099)

avg. emotional intelligence F(1) = 2.187 F(1) = 6.041∗

(0.075) (0.183)

Observations 38 38

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.64: This table presents the results from the ANOVA analysis examining the in-
fluence of the time participants in a group spent nonverbally backchanneling one another
(sec) on both groups’ average perceived inclusion and average psychological safety scores
in Chapter 7 Section 7.4. This analysis was performed using the ‘aov’ function in R. The
F-value, degrees of freedom, and effect size (partial eta squared) are reported in parentheses
for each fixed factor.

Dependent variable:

perceived inclusion psychological safety

nonverbal backchannels F(1) = 3.477 . F(1) = 0.057
produced by group (sec) (0.085) (0.005)

robot liaison: F(1) = 0.457 F(1) = 0.786
ingroup (0) or outgroup (1) (0.004) (0.168)

verbally supportive robot: F(1) = 0.016 F(1) = 0.855
yes (1) or no (0) (0.002) (0.066)

number of females F(1) = 0.282 F(1) = 8.141∗∗

(0.045) (0.109)

avg. age F(1) = 7.710∗∗ F(1) = 10.281∗∗

(0.080) (0.088)

avg. familiarity F(1) = 4.328∗ F(1) = 0.051
(0.034) (0.031)

avg. extraversion F(1) = 5.269∗ F(1) = 0.005
(0.022) (0.094)

avg. emotional intelligence F(1) = 7.222∗ F(1) = 13.206∗∗

(0.199) (0.313)

Observations 38 38

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.65: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the influence of intergroup bias (ingroup or outgroup),
controlling for the familiarity with other human participants, on the amount of verbal and
nonverbal backchannels (sec) each participant received. Each participant is grouped with
their two fellow human participants in the model where each group has a random intercept.
We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

verbal backchannels nonverbal backchannels

received (sec) received (sec)

total talking time (sec) 0.027∗∗∗ 0.057∗∗∗

(0.006) (0.013)

ingroup (0) or outgroup (1) 6.672∗∗∗ 8.847∗

(1.908) (4.400)

max. familiarity 1.189 .
(0.639)

Constant 4.387 . 5.018
(2.276) (5.329)

Observations 106 106
Log Likelihood −388.638 −478.448
Akaike Inf. Crit. 789.275 966.896
Bayesian Inf. Crit. 805.256 980.214

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.66: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the influence of intergroup bias (ingroup or outgroup),
controlling for the familiarity with other human participants, on the proportion of verbal
and nonverbal backchannels (sec) each participant received relative to their total talking
time (sec). Each participant is grouped with their two fellow human participants in the
model where each group has a random intercept. We used the R ‘lmer’ function from the
‘lme4’ package to perform this analysis. The linear coefficient (odds ratio) and standard
error are reported in the following table.

Dependent variable:

verbal backchannels nonverbal backchannels

received (sec) received (sec)

normalized by normalized by

talking time (sec) talking time (sec)

total talking time (sec) −0.0002∗∗∗ −0.0003∗∗

(0.00004) (0.0001)

ingroup (0) or outgroup (1) 0.036∗∗ 0.083∗

(0.012) (0.035)

Constant 0.107∗∗∗ 0.167∗∗∗

(0.014) (0.039)

Observations 106 106
Log Likelihood 131.075 22.885
Akaike Inf. Crit. −252.150 −35.769
Bayesian Inf. Crit. −238.833 −22.452

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.67: This table presents the results from the linear mixed-effects model run in Chap-
ter 7 Section 7.4 examining the influence of gender on the amount of verbal backchannels
each participant received (sec) and the proportion of verbal and backchannels (sec) each
participant received relative to their total talking time (sec). We controlled for the total
talking time (sec), extraversion, and intergroup bias of participants. Each participant is
grouped with their two fellow human participants in the model where each group has a
random intercept. We used the R ‘lmer’ function from the ‘lme4’ package to perform this
analysis. The linear coefficient (odds ratio) and standard error are reported in the following
table.

Dependent variable:

verbal backchannels verbal backchannels

produced (sec) produced (sec)

normalized by

talking time (sec)

total talking time (sec) 0.015∗∗ −0.0005∗∗∗

(0.005) (0.0001)

ingroup (0) or outgroup (1) −2.743
(1.812)

gender: female (1) or male (0) 7.131∗∗∗ 0.059∗

(1.695) (0.028)

extraversion 0.773 .
(0.440)

Constant 8.622∗∗∗ 0.215∗∗∗

(2.325) (0.034)

Observations 106 106
Log Likelihood −377.266 40.456
Akaike Inf. Crit. 768.532 −70.912
Bayesian Inf. Crit. 787.177 −57.595

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.68: This table presents the results from the ANOVA analysis examining the in-
fluence of gender on the amount of verbal backchannels produced by each group (sec) as
well as the proportion of verbal backchannels produced by each group (sec) with respect to
their total talking time in Chapter 7 Section 7.4. This analysis was performed using the
‘aov’ function in R. The F-value, degrees of freedom, and effect size (partial eta squared)
are reported in parentheses for each fixed factor.

Dependent variable:

verbal backchannels verbal backchannels

produced (sec) produced (sec)

normalized by

talking time (sec)

total talking time (sec) F(1) = 3.197 . F(1) = 18.502∗∗∗

(0.004) (0.443)

robot liaison: F(1) = 3.357 . F(1) = 2.607
ingroup (0) or outgroup (1) (0.103) (0.073)

verbally supportive robot: F(1) = 0.912 F(1) = 0.501
yes (1) or no (0) (0.004) (0.0002)

number of females F(1) = 18.613∗∗∗ F(1) = 9.974 ∗∗

(0.318) (0.198)

avg. age F(1) = 2.277 F(1) = 3.332 .
(0.093) (0.124)

avg. familiarity F(1) = 0.802 F(1) = 0.503
(0.003) (0.002)

avg. extraversion F(1) = 0.564 F(1) = 0.233
(0.045) (0.031)

avg. emotional intelligence F(1) = 0.912 F(1) = 1.059
(0.033) (0.038)

Observations 38 38

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.69: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the influence of having a verbally supportive robot on the
amount of verbal backchannels (sec) each participant received. The model’s fixed factors
included whether the robot gave verbal support, the intergroup bias (ingroup, outgroup),
robot liaison designation, and relevant interactions. We controlled for participants’ extraver-
sion and familiarity with other team members. Each participant is grouped with their two
fellow human participants in the model where each group has a random intercept. We used
the R ‘lmer’ function from the ‘lme4’ package to perform this analysis and the ‘emmeans’
function with a Tukey adjustment from the ‘emmeans’ package to perform post-hoc tests.
The linear coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

verbal backchannels received (sec)

intergroup bias: ingroup (0) or outgroup (1) 16.850∗∗∗

(4.088)

robot liaison: yes (1) or no (0) 3.625
(2.626)

verbally supportive robot: yes (1) or no (0) 0.566
(2.567)

intergroup bias * robot liaison −11.120∗∗

(4.144)

intergroup bias * verbally supportive robot −8.832∗

(4.329)

extraversion 1.350∗∗

(0.487)

max. familiarity 0.971
(0.650)

Constant 7.292∗

(2.913)

Observations 114
Log Likelihood −405.563
Akaike Inf. Crit. 831.126
Bayesian Inf. Crit. 858.488

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.70: This table presents the results from the linear mixed-effects model run in
Chapter 7 Section 7.4 examining the influence of having a verbally supportive robot on
participants’ psychological safety and perceived inclusion scores. The model’s fixed factors
included whether the robot gave verbal support, the intergroup bias (ingroup, outgroup),
robot liaison designation, and relevant interactions. We controlled for participants’ ex-
traversion and familiarity with other team members. Each participant is grouped with
their two fellow human participants in the model where each group has a random intercept.
We used the R ‘lmer’ function from the ‘lme4’ package to perform this analysis. The linear
coefficient (odds ratio) and standard error are reported in the following table.

Dependent variable:

psychological perceived

safety inclusion

intergroup bias: ingroup (0) or outgroup (1) 0.651∗ 0.505∗

(0.268) (0.208)

robot liaison: yes (1) or no (0) −0.207 −0.286∗∗

(0.143) (0.111)

verbally supportive robot: yes (1) or no (0) 0.347 . 0.124
(0.180) (0.139)

gender: female (1) or male (0) 0.299∗

(0.130)

emotional intelligence 0.325∗∗ 0.285∗∗∗

(0.104) (0.081)

max. familiarity 0.050
(0.033)

intergroup bias * verbally supportive robot −0.603 . −0.418 .
(0.310) (0.240)

Constant 3.907∗∗∗ 2.678∗∗∗

(0.552) (0.429)

Observations 114 114
Log Likelihood −122.753 −96.858
Akaike Inf. Crit. 263.505 211.717
Bayesian Inf. Crit. 288.131 236.342

Note: . p<0.1; ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001
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