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Abstract 

The analysis of eye-tracking data hinges on the ability of 
automated algorithms to separate rapid saccadic eye 
movements from stable eye fixations.  However, though it has 
long been known that changing the parameters of fixation-
identification algorithms can lead to very different qualitative 
impressions, less is known about how algorithmic parameters 
interact with quantitative eye-tracking measures.  In this study 
we show that by manipulating aspects of fixation 
identification, we can completely reverse the patterns of 
observed results for mean fixation duration, a measure 
traditionally associated with cognitive load.  However, by 
linearly mapping mean fixation duration over its parameter 
space, we obtain a new formulation which addresses many of 
the deficits of the standard analysis.  We use our methods to 
analyze the gaze patterns of toddlers with autism spectrum 
disorder and control populations and discuss the observed 
differences in terms of the physical and cognitive 
ramifications of our methodology.   

Keywords: eye-tracking; cognitive load; fixation; saccades; 
autism. 

Introduction 
Knowing where a subject is looking provides a wealth of 
information regarding his motivations, expectations, and 
innate preferences.  For this reason, eye-tracking has 
become a standard tool for cognitive and psychological 
investigation.  However, though the direct examination of 
the scanpath obtained by eye-tracking systems tells us 
where individuals are looking, it does not tell us why they 
choose to look at different locations, and, of course, it does 
not tell us what these differences mean.  In order to answer 
the more difficult question, that of how scan patterns should 
be interpreted, more sophisticated methods for distilling 
information from raw visual trajectories are required. 

The core method by which gaze trajectories are first 
dissected is through fixation identification algorithms 
(Duchowski, 2003; Salvucci and Goldberg, 2000).  These 
algorithms take as an input the raw stream of visual 
positions provided by an eye-tracker and group the data 
points of that stream into a series of saccades (rapid, 
ballistic movements of the eye) and fixations (periods where 
the point of regard by the eye is spatially relatively stable).  
This dichotomous parsing is employed for two reasons.  
First, there is psychological and neurophysiological 
evidence that visual field processing is suppressed via 
saccadic masking during rapid movements of the eye (Burr, 

Morrone, and Ross, 1994; Erdmann and Dodge, 1898) and 
so it makes sense to discard saccades from experiments that 
focus on conscious perception.  Second, the ability to deal in 
quanta of fixations simplifies analysis and interpretation, as 
each fixation can be seen as being associated uniquely with 
a particular spatiotemporal location which in turn can be 
associated with particular perceptual qualities of the visual 
scene.  Fixations can then be aggregated at many different 
levels, resulting in a wealth of psychophysical measures 
such as the total amount of time spent in fixations, the 
average duration of fixations, the number of fixations, 
latency of the first fixation after stimulus presentation, etc. 
(Inhoff and Radach, 1998; Jacob and Karn, 2003). 

However, though the concept of a fixation is crucial for 
standard scan pattern analysis, the actual identification of 
these fixations can be quite challenging.  Karsh and 
Breitenbach in “Looking at Looking: The Amorphous 
Fixation Measure” (1983) showed that, by varying the 
parameters of a fixation identification algorithm, different 
qualitative patterns of scanning emerged.  This was a point 
also confirmed by Widdel (1984), for a different fixation 
identification algorithm, while examining the expected 
number of fixations over a grid of points.  From these 
studies it was generally concluded that the interpretation of 
scan patterns could be quite ambiguous if the exact 
algorithm and parameters of analysis were left unreported. 

Unfortunately, though many of the most popular fixation 
identification algorithms were developed more than thirty 
years ago (e.g. see Anliker, 1971), and despite the caveats of 
many eye-tracking researchers, the difficulties in eye-
tracking analysis resulting from fixation identification 
instabilities have persisted.  Not only is there still no 
consensus as to which fixation identification algorithm 
should be used, there is no agreement even within a 
particular algorithm as to what choice of parameters should 
be employed.  Part of the difficulty, of course, stems from 
the multifaceted and diverse applications in which eye-
tracking now finds a role.  A study of reading, for instance, 
does not have the same spatial and temporal constraints as a 
study investigating face processing.  Similarly, the demands 
of a visual search task are quite different from those in the 
free-viewing of artwork.  However, many problems arise 
simply due to an indifference towards consistency in eye-
tracking.  There has been, for example, no great push for 
different manufacturers of commercial eye-tracking systems 
to use the same exact algorithms for fixation identification 



or to allow for the ability to cut scanpaths with an 
assortment of different algorithms.  The lack of motivation 
for finding agreement is possibly attributable to the fact that 
the use of different parameters or algorithms can quite often 
generate qualitatively similar results (Figure 1).   This leads 
to the assumption that different algorithms for fixation 
identification are interchangeable and that their raw 
parameters are somewhat comparable.  This assumption is 
false (Shic, Chawarska, and Scassellati, 2008).  As we will 
later discuss, though the basic behavior of different 
algorithms may be similar, the specific correspondence of 
the parameters upon results, especially when considering 
quantitative measures, can be very different. 

 

 
Figure 1: Effects of fixation identification algorithm 

parameter changes on processed gaze trajectories.  The raw 
scanpath (left) is converted by a distance-dispersion 
algorithm with a low (mid) and high (right) spatial 

constraint parameters. 
 

This paper examines the instabilities that arise from using 
different algorithms and different parameters in drawing 
conclusions from eye-tracking data.  Whereas it has been 
known that variations in parameters lead to variations in 
qualitative impressions and quantitative measures, we 
demonstrate that the extent of these variations is even 
greater than what has been previously established, going so 
far as to completely reverse observed trends.  We examine 
parameter effects on stimulus comparisons (faces versus 
blocks), diagnostic categories (children with autism 
spectrum disorder (ASD), children with developmental 
delay without autism symptoms (DD), and typically 
developing children (TD)), and for several different 
algorithms, extending our previous work along similar lines  

For all of our analyses, we focus on the quantitative 
measure of mean fixation duration.  The mean fixation 
duration has been taken as a measure of cognitive load 
(Crosby, Iding, and Chin, 2001; Jacob and Karn, 2003; but 
also see Irwin, 2004), with fixation duration positively 
correlated with increasing task demands.  We show that the 
structure of this measure, despite its variation, is remarkably 
simple.  This simplicity allows us to build a correspondingly 
parsimonious model of the effect of parameter changes on 
mean fixation durations, giving us a formulation which may 
allow us to discuss fixation duration behavior differences 
between groups, conditions, and algorithms in a language 
free from the traditional biases.  We illustrate how the facets 
of this model may be interpreted by examining differences 
between children with ASD and control groups as these 
children view static images of faces and blocks. 

Fixation Identification Algorithms 
There are several different categories of fixation 

identification algorithms, and here we consider two of the 
most common: velocity-threshold algorithms and dispersion 
(dwell-time) based algorithms (Duchowski, 2003; Salvucci 
and Goldberg, 2000).  Velocity-based algorithms target 
saccades by finding points in the stream of gaze behavior 
with velocity v exceeding some threshold velocity vt.  The 
contiguous regions that do not correspond to saccades are 
marked as potential fixations.  By contrast, dispersion-based 
algorithms mark a group of contiguous points {pi..pj} as 
being part of some fixation F if those points satisfy a spatial 
constraint S(F) ≤ s, where s is some spatial threshold.  
Regions not marked as fixations are considered saccades.  

In addition to spatial constraints for both classes of 
algorithms, there are temporal constraints which affect 
velocity and dispersion algorithms differently.  The 
temporal constraint is a minimum duration requirement for 
fixations, tmin.  Every candidate fixation with a duration t is 
admissible as a true fixation only if t ≥ tmin.  For velocity 
algorithms this is a pure rejection criterion for the entirety of 
a fixation.  For dispersion algorithms, this leads to a sliding 
window effect: if a group consisting of points {pi..pj} are 
part of a candidate fixation F’ but the duration of time 
covered by F’ does not exceed tmin, the next set of candidate 
points becomes {pi+1..pj+n} where n is increased until the 
spatial constraint over the candidate points fails. 

In this study, we consider one velocity algorithm and two 
dispersion algorithms: 1) a velocity-threshold algorithm 
(Anliker, 1976); 2) a distance-dispersion algorithm where 
S(F) is the maximal distance between any pair of points in 
F; and 3) the I-DT algorithm by Salvucci and Goldberg 
(2000), where S(F) is the maximal horizontal distance 
between any pair of points in F plus the maximal vertical 
distance between any pair of points (the pairs need not be 
the same for horizontal and vertical calculations). 

   

Subjects and Methods 
Participants in this study were 16 typically developing 
children (TD) (age 25.9±4.7 months), 12 children diagnosed 
with autism spectrum disorder (ASD) (age 23.9±4.6 
months), and 5 children diagnosed with developmental 
disabilities but without autistic syndrome (DD) (age 
25.4±5.8 months).  Children were presented with 6 color 
images of faces (Lundqvist, Flykt, and Öhman, 1998) and 6 
color images of blocks (Figure 2) on a 20” (51cm) 
widescreen (16:9 aspect ratio) LCD monitor centered at a 
distance 75cm from the centerline of the children’s eyes.  
Each image was 12.8º wide and 17.6º tall.  Gaze patterns 
were recorded using a SensoMotoric Instruments IView X 
RED table-mounted dark-pupil 60Hz eye-tracker. 

Stimulus images were preceded by a central fixation to 
refocus the child’s attention and were then displayed as long 
as was required for the child to attend to the image for a 
total of 10 full seconds.  Actual trials could last longer than 



10 seconds; however, to maintain comparability, only the 
first 10 seconds of each trial were used in our analysis, and 
trials which did not contain at least 5 seconds of valid eye-
tracking data, or which did not meet other automated quality 
criteria, were discarded.  Furthermore, only data falling 
within the stimulus image area were considered in analysis.  
This task was embedded within a visual paired comparisons 
recognition task (Fantz, 1964), i.e. was followed by 
exposure to both the same face and a novel face on either 
side of the screen.  We do not consider the recognition 
phase in this study.  In total, TD children contributed 26 
trials on faces and 44 trials on blocks; ASD children 34 
faces and 40 blocks; DD children 13 faces and 15 blocks.  
Loss of data was typically caused by poor affect (e.g. 
crying) or poor attention and was within the range expected 
for this subject population. 

 

  
Figure 2: Experimental stimuli – Blocks and Faces  

 
In order to characterize the behavior of mean fixation 

duration over the various algorithms, diagnostic groups, and 
stimulus classes, custom code was developed in MATLAB 
for handling the eye-tracking data processing pipeline from 
raw input stream to final outcome measure.  Mean fixation 
duration was calculated for each algorithm and trial over a 
uniform grid of temporal (N=16) and spatial (N=21) 
parameter selections.   

The Amorphous Measure 
We first examine the effect of changing spatial and temporal 
constraints on mean fixation duration behavior for TD 
children as they view faces for each of the three algorithms 
in this investigation (Figure 3).  Note that the dispersion 
algorithms share a somewhat similar scale as they are both 
in units of spatial degrees, whereas the velocity algorithm 
has units of degrees per second.  For display purposes only, 
velocity was scaled down by a factor of 10 spatially.  
Results for ASD and DD populations were similar. 

If the two dispersion algorithms were comparable in terms 
of parameters, they would directly overlap one another.  
However, the two surfaces are offset and have different 
slopes, implying that they are not comparable.  In other 
words, a spatial constraint of 1º for the distance algorithm is 
not equivalent to a spatial constraint of 1º for the I-DT 
algorithm.  Likewise, the velocity algorithm has no natural 
basis for comparison with other algorithms.  We also note 
that the mean fixation duration behavior of the algorithms, 
within the chosen range, appears linear, with mean fixation 

duration increasing as the spatial and temporal thresholds 
increase.  The spatial and temporal ranges are quite large, 
implying that the observed trend is stable even to the limits 
of foveal vision, though we should note that, as observed in 
previous work (Shic et al., 2008), if we keep extending the 
range (e.g. for s>7º in the distance algorithm) a saturation 
effect appears as the fixation algorithms begin to pull all 
points in the scanpath into a small number of fixations.   

         

2
4 50

100
150

200
250

200

400

600

800

tmin(ms)
s(°) or .1vt(°/s)

m
ea

n 
fix

at
io

n 
tim

e 
(m

s)

 
Figure 3: Mean fixation duration of TD children viewing 

faces for different algorithms as a function of spatial and 
temporal parameters.  The velocity algorithm has been 

scaled down spatially by a factor of 10 for comparability. 
 
In order to examine the stability of stimulus class effects, 

we chart the difference between mean fixation durations for 
viewing faces and for viewing blocks (Figure 4) as a 
function of spatial and temporal parameters.  We find that as 
parameters change the pattern of results can reverse.  This 
effect was primarily driven by spatial parameters changes, 
though we should note that we had no knowledge of this 
before we plotted the parameter space.   

In the interest of brevity, we only consider the distance-
dispersion algorithm onwards from this point as other 
algorithms give similar results. 
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Figure 4: Differences in mean fixation duration between 
different stimulus classes (Faces-Blocks) for TD children 
under the distance-dispersion algorithm.  The difference 
surface is shown on the left.  Areas where differences are 

positive are shown in white on the right, negative in black. 
 
In order to examine the stability of outcome measures for 

making comparisons between diagnostic groups, we also 
examine the difference in mean fixation duration as a 



function of parameter changes.  As there was little effect 
due to temporal parameter changes, we plot only a 
representative example at a common tmin (Figure 5).   

 

0 1 2 3 4 5 6
-100

-50

0

50

100

150

200

250

Δ
 m

ea
n 

fix
at

io
n 

tim
e 

(m
s)

s(°)

Scanning of Faces at tmin=100 ms

TD - ASD
TD - DD
ASD - DD

 
Figure 5: Differences in mean fixation duration between 

diagnostic groups for faces under the distance-dispersion 
algorithm at tmin=100ms.  The crossing of the zero-line by 

comparison lines represent effect reversals.   
 
We can see that by manipulating the parameters 

associated with fixation identification algorithms, our 
reported results can reverse.  With one set of parameter 
choices one group is associated with longer mean fixation 
durations.  With another set of parameters, a different group 
becomes the group with longer fixations.  Notice, however, 
that the regimes of behavior are fairly large and contiguous, 
extending to the border of the parameter space.  This implies 
that rather than some random effect, the reversals are tied 
with some specific spatiotemporal transition. 

The reversals of mean fixation duration are quite 
prominent in the results we have shown.  In a traditional 
analysis, a particular choice of spatial and temporal 
parameters would be chosen a priori and the observed effect 
would be taken as representative of some global 
psychological effect.  For example, one might look at the 
low spatial regime of Figure 5 while focusing on the 
fixation duration differences between TD and ASD children.  
From just this small slice of the analysis, one might 
conclude that typical individuals experience a greater 
cognitive load when observing faces than do children with 
ASD; from Figure 4 one might conclude that, for TD 
children, blocks do not engage as many neural mechanisms 
as do faces.  However, such analyses miss the larger pattern 
of behavior which includes the reversals occurring at higher 
spatial parameter settings.  Furthermore, as shown by the 
essentially flat behavior of algorithms in Figure 3, a natural, 
universal parameter scale for mean fixation duration does 
not exist.  This, combined with the differences observed for 
stimulus classes, argues against the existence of a unique set 
of parameters that can be appropriately selected in advance. 

The Amorphous Measure Revisited 
Faced by a confusion of algorithms and parameters and 
struck by effect reversals in every comparison, we might be 
tempted to throw our hands up in surrender and either 
decide that measures on fixations have no inherent value or 
decide to escape into a corner of the parameter space with 

neurophysiological constraints, such as the diameter size of 
the foveola, as our shelter.  However, though both of these 
decisions would not be completely without merit, we 
believe that there is in fact a better solution, one which will 
allow us not only to model and interpret the reversals that 
we have observed, but will also give us a hope for unifying 
the disparate results of prior work which to date defy 
comparison for lack of a common language. 

The hint for our method lies in the strikingly simple, 
linear behavior observed in Figure 3.  If the behavior of 
mean fixation duration can be well modeled by a regression, 
we would be able to summarize the variations we observe 
through 3 coefficients: a temporal slope, slopet, a spatial 
slope, slopes, and an offset, t0.  Furthermore, this would also 
provide us scaling factors which would allow us to convert 
one algorithm’s results into another algorithm’s domain. 

In order to examine this, we first ensured that all 
algorithms were within a comparable regime by pegging 
them to the distance algorithm.  This was accomplished by 
first choosing, for each stimulus type, a candidate set of 
temporal (50 ms ≤ tmin ≤ 250 ms) and spatial (0.6º ≤ s ≤ 5.1º) 
parameters for the distance algorithm and observing the 
minimum and maximum mean fixation duration for TD 
children over this range.  This candidate set served as a 
reference algorithm.  Every other algorithm’s range was 
then restricted so as to fall within the mean fixation duration 
limits of the reference algorithm.   

We then collapsed (by averaging) the trials associated 
with each algorithm-diagnosis-stimulus combination.  The 
resultant mean fixation duration, tfix, was then fit by a linear 
regression (1) (Table 1): 

 

          0),( tsslopetslopestt smintminfix +⋅+⋅=          (1) 
 

Table 1: Linear Regression of Mean Fixation Duration 
 

 Distance-Dispersion Algorithm 
 slopet slopes t0 R2 

diag. Face Block Face Block Face Block Face Block 
NC 0.67 0.74 142 175 83 -2 .981 .997 
DD 0.80 0.78 128 183 86 -15 .922 .987 

ASD 0.63 0.57 172 171 21 4 .996 .996 
         

 I-DT Algorithm 
 slopet slopes t0 R2   

diag. Face Block Face Block Face Block Face Block 
NC 0.63 0.64 97 118 64 -26 .989 .997 
DD 0.85 0.68 105 116 -6 -13 .934 .985 

ASD 0.55 0.49 118 119 -7 -32 .995 .996 
         

 Velocity-Threshold Algorithm 
 slopet slopes t0 R2 

diag. Face Block Face Block Face Block Face Block 
NC 0.95 1.11 11.2 11.4 -138 -205 .984 .983 
DD 0.97 1.09 9.6 12.6 -104 -229 .993 .981 

ASD 1.04 0.94 13.7 13.5 -244 -271 .914 .949 
 

As we can see, the linear regressions fit the data quite 
well, with the worst case still accounting for over 90% of 
sample variance.  The good match suggests that converting 
between algorithms should be fairly straightforward and 
effective.  In Figure 6, we use the coefficients from Table 1 
to convert all algorithms to a common axis.  
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Figure 6: Mean fixation duration of TD children viewing 

faces for different algorithms as a function of spatial and 
temporal parameters all scaled to distance algorithm as 
given by coefficients in Table 1.  Compare to Figure 3. 

 
We also can simulate idealized versions of mean fixation 

duration behavior.  For instance, the comparison of Figure 
4, which examines how TD children differentially treat 
faces as opposed to the less ecological block designs, can be 
modeled ideally (Figure 7).  These results suggest that the 
variation and reversals observed when manipulating fixation 
identification algorithms is partly due to the natural 
structure and dependencies of the measure and not some 
spurious error nor an artifact to be hidden. 
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Figure 7: Idealized model of Figure 4, showing a 

correspondence between theoretical and experimental 
reversal patterns. 

Interpretations and Applications 
Though it appears that, owing to its limitations, the strategy 
of choosing a single set of fixation-identification parameters 
for analyzing mean fixation duration is lost, the regression 
model coefficients may offer a practical replacement.  In 
this section we focus on interpreting coefficients from the 
distance-dispersion algorithm.  We focus on this particular 
algorithm as it is perhaps the most transparent of dispersion 
algorithms (Shic et al., 2008); velocity algorithms deserve a 
separate treatment which will be a future exploration.   

With the caveat that our investigation into interpreting 
these coefficients is very preliminary, we have developed a 
model which may elucidate the function of some of the 
coefficients.  We employ an idealized model of saccade 

generation.  In this model, the distribution of saccades is 
power law distributed (Brockmann and Geisel, 1999): 

α−= kaap )(    (2) 
where p(a) is the probability of a saccade of amplitude a, α 
is a constant (1.2 to 1.35), and k is a normalizing constant 
for the discrete range-limited case only.  The duration of 
each saccade is given by the square-root main saccade rule 
(Lebedev et al, 1996): 

aat 17.)( =                                  (3) 
By increasing α we increase the spatial slope, slopes 

(α=1.2, slopes=132;  α=1.4, slopes=179).  This suggests that 
higher spatial slopes correspond to denser scanning patterns. 

The temporal coefficient, slopet, characterizes how the 
mean fixation duration increases as the minimum time 
requirement tmin increases.  A larger temporal slope, counter-
intuitively, implies a greater loss of data: by removing 
fixations with shorter durations, the average fixation 
duration tends to increase.  This process explains the 
discrepancy in temporal slopes for the velocity algorithm as 
compared to dispersion algorithms.  The temporal constraint 
for velocity algorithms is a pure rejection criterion; by 
comparison, dispersion algorithms have a chance to partially 
recover a fixation as the candidate fixation window slides.  
In terms of scanpath effects, a larger temporal coefficient 
implies more non-recoverable short-time fixations, i.e. short 
time fixations which are separated by large distances.   

The duration offset, to, is a parameter for which we are 
currently seeking simulation results.  This offset may be 
viewed as a constant added to every fixation regardless of 
spatial or temporal parameters, reflecting an overhead which 
might be associated with increased cognitive processing, 
greater affective charge, or difficulties in disengaging.  In 
terms of differences between the subjects in our study, we 
note that for blocks all groups should very little contribution 
due to to.  However, both the NC and DD groups show an 
increased load to faces, whereas the ASD subjects showed 
only a minor increase. 

The crucial point regarding these parameters is that 
together the three coefficients capture the behavior of mean 
fixation duration quite well.  If we examine the behavior of 
TD and DD individuals in Table 1, we find that the there is 
a modulation of coefficients as the stimulus changes from 
faces to blocks.  This suggests that there is some 
distributional reaction to the difference in stimuli for these 
two subject populations.  By comparison, the ASD group is 
largely invariant to the change.  This effect is consistent 
with known face processing abnormalities and social 
difficulties in autism (Boucher and Lewis, 1992).  It is 
possible that individuals with autism, especially at this 
young age, view the face in a more pattern-like fashion than 
their TD or DD peers, unfortunately setting the stage for a 
cascade of future deficits. 

Discussion 
This current study has several limitations.  First, the 

populations under study are extremely young children.  It is 



possible that the highly linear effect that we see for mean 
fixation duration is reflective of the simplicity of early 
perceptual processing systems.  For this reason, this study 
should be replicated in adults.  However, if it turned out that 
adults did in fact, generate nonlinearities that were not 
found in children, this would be extremely interesting in its 
own right, as it would imply that some cognitive mechanism 
coming online was intercepting the more primitive process 
in children.  Furthermore, such a finding would actually 
strengthen our case for charting the parameter space, 
because such an effect would likely be poorly characterized 
by single a priori choices in parameter settings. 

The task that we use is free-viewing embedded within a 
recognition task.  It might be possible that the free-viewing 
aspects of the experiment are responsible for the simple 
structure we observe for mean fixation duration and that the 
imposition of any greater experimental structure would 
break this effect.  Again, however, it is important to note 
that revealing this would not be possible except by charting 
parameters as we have suggested. 

Finally, though the subject sample we have chosen is 
certainly unique, it is small.  Notably, there are only five 
subjects in the DD population.  It is our hope that future 
studies with larger populations and extended experimental 
conditions will bear out the main results of this study.  

Conclusions 
We have shown that choosing a single set of parameters for 
calculating mean fixation duration is a problematic task, as 
effect reversals occur both between diagnostic groups and 
between stimulus classes.  We have also shown that no 
natural comparability exists between different algorithms.  
However, by computing mean fixation duration over a range 
of parameters, we are able to model mean fixation duration 
in a straightforward manner.  This gives us the capability to 
better understand the underpinnings from which differences 
in mean fixation duration arise, and gives us a method for 
unifying the multitude of disparate fixation identification 
methods.  Finally, the coefficients of our model have given 
us insight into autism, showing us that even at the very 
young ages of the subjects in our study, differences in 
processing the world are already apparent.   
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