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Abstract

Teaching a humanoid robot to reach for a
visual target is a complex problem in part be-
cause of the high dimensionality of the control
space. In this paper, we demonstrate a biolog-
ically plausible simplification of the reaching
process that replaces the degrees of freedom
in the neck of the robot with sensory read-
ings from a vestibular system. We show that
this simplification introduces errors that are
easily overcome by a standard learning algo-
rithm. Furthermore, the errors that are neces-
sarily introduced by this simplification result
in reaching trajectories that are curved in the
same way as human reaching trajectories.

1. Introduction

Redundancy in the kinematic structure of the hu-
man body enables the same sensorimotor task to be
executed in different ways. However, this flexibil-
ity comes at a cost. Bernstein first recognized that
the large number of degrees of freedom (DOFs) in
the kinematic structure make the learning of senso-
rimotor tasks a very hard problem (Bernstein, 1967).
In statistical learning theory, this same problem has
been called ’the curse of dimensionality’.

Reaching is one of the most thoroughly inves-
tigated sensorimotor tasks. Because the human
arm contains more joints than there are dimen-
sions in the work space, there are in principle
infinite postures that reach the same target in
space. The experiments carried out by Morasso
showed the remarkable result that human reach-
ing movements invariably possess two characteris-
tics: the trajectory is gently curved and the ve-
locity profile is bell-shaped (Morasso, 1981). Many
theories have been proposed to explain the ob-
servations made by Morasso with the assumption
that motor learning is governed by some optimiza-
tion measure. The optimization measures sug-
gested include minimum jerk (Hogan, 1984), max-
imum smoothness (Flash and Hogan, 1985), min-
imum torque (Uno et al., 1989) and, recently,

minimum variance of the final hand position
(Harris and Wolpert, 1998). For a comprehensive re-
view, please refer to (Todorov, 2004).

This paper offers a new hypothesis to explain the
curvature in reaching trajectories from a different
perspective. Guenther and Barraca observed that
the curvature in reaching trajectories can be a side
effect of motor learning due to a bias in the training
data (Guenther and Barreca, 1997). This bias leads
to the desirable consequence of singularity avoidance.
We hold the same view that trajectory curvature can
be just a side effect of motor learning. But we believe
that the cause of this side effect is more fundamental:
it is the simplification made by the learning system
to reduce the dimensionality of the reaching problem
that leads indirectly to curved trajectories.

We have shown previously that a humanoid
robot can learn the task of reaching with
a very modest number of training samples
(Sun and Scassellati, 2004). One major weakness of
our approach was that the head of the robot needed
to remain stationary during learning. If the head
posture were changed, a new round of training would
be required. In this paper, we extend our previous
approach so that all DOFs in the arm and the neck
are involved during learning, but the learned forward
model has the same input and output dimensions as
before. With the aid of visual feedback during the
arm movement, reaching accuracy remains the same
as previously achieved. The only apparent change is
that reach trajectories that were previously straight
(in Cartesian coordinates) are now gently curved.
This observation serves as the foundation of our hy-
pothesis to explain the curvature of human reach tra-
jectories.

The next section describes the original system we
used for learning to reach and provides arguments
for its biological plausibility. In Section 3, we extend
the original system to allow simultaneous activation
of all motors in the arm and the neck during motor
babbling and explain the cause of the resulted gentle
curvature in the reaching trajectories. A discussion
is given in Section 4. Section 5 concludes this paper
by summarizing our contributions.



2. The Basic System

Nico is an upper-torso humanoid robot developed to
match the body dimension of an average one-year-old
infant. It has four DOFs in the neck and six DOFs in
each arm. A gyroscope is mounted in the head on top
of all neck joints. Fig. 1(A) shows a dimetric view
of Nico. Fig. 1(B) shows the kinematics structure of
the neck joints and the joints in the right arm viewed
from behind.
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Figure 1: (A) A dimetric view of Nico, an upper-torso

humanoid designed to match the size of an average one-

year-old infant. (B) The kinematic structure of the neck

and the right arm viewed from behind. The origins of

the eye and the body-centered coordinate system are in-

dicated with Oright cam and Obody respectively.

In (Sun and Scassellati, 2004), we introduced a
learning-based approach that enables Nico to incre-
mentally generate reaching trajectories. The ap-
proach can be summarized by the diagram in Fig. 2.
The forward model shown in the diagram is learned
with a Radial Basis Function Network (RBFN) on
training samples gathered during a motor babbling
phase. It approximates the forward kinematics func-
tion farm : θarm → x of the arm. θarm is a vector
that describes the angles of the arm joints and x is a
vector that describes the corresponding 3D position
of the end-effector. During a reaching movement,
vector ∆x that describes the moving direction in the
task space is computed as ∆x = α(xtarget−xee). xee

represents the current position of the end effector. It
can be either predicted by the forward model or per-
ceived by the stereo vision system whenever the end
effector is visible to both eye cameras. The factor α
ensures that the magnitude of ∆x is equal to a prede-
termined value of step size. After ∆x is computed,
it is multiplied by the pseudo-inverse of Jacobian J
extracted from the forward model. The result is a
vector ∆θ that indicates the moving direction in the
joint space. The newly generated ∆θ is added into
θarm which is sent to both the arm motors for gener-
ating movement and the forward model for updating

xpred and J . This process is repeated until the end
effector of the arm reaches the target.

Figure 2: Diagram summarizing our approach of using a

learned forward model to incrementally generate reaching

trajectory. xpred and xperc stand for the end effector

position predicted by the forward model and perceived

by the stereo system respectively.

The concept of forward model was first illus-
trated by (Jordan and Rumelhart, 1992). Jordan
and Rumelhart use a learned forward model to train
a second network in order to obtain a unique in-
verse kinematic mapping for a redundant arm. There
is growing biological evidence supporting the view
that the brain uses forward models for motor control
(Wolpert et al., 1995) (Mehta and Schaal, 2002). In
contrast to Jordan and Rumelhart’s paper, we use
the forward model for the purpose of prediction,
which is in line with the prevalent opinion about
the function of forward models. We adopt a RBFN
to represent the forward model partially because it
is a universal function approximator that allows for
fast training. It has also been suggested as one of
the mechanisms used by the brain for motor learn-
ing (Pouget and Snyder, 2000). The copy of the vec-
tor θarm that is sent back to the forward model is
called efference copy in the neurophysiological liter-
ature. Efference copy is useful in that it avoids most
part of the delay of the proprioceptive feedback that
has to travel from the periphery to the central ner-
vous system. The proprioceptive feedback from the
arm is completely ignored by us as can be seen from
Fig. 2 because the motors in our robotic arm al-
ways faithfully execute the commands sent to them
by the central control. Our approach is closely re-
lated to the one proposed by (Bullock et al., 1993).
One of the major differences between our approach
and theirs is that they learn the direction mapping
from ∆x to ∆θ independently while we compute the
direction mapping directly from the information in
the forward model.

In our original paper, both the neck joints and two
wrist joint in the arm were kept fixed during motor
babbling. By assigning a large value (110◦) to the
spread of the Gaussians in the RBFN, only 120 train-
ing samples are sufficient to enable a 4-DOF arm to
reach accurately. Visual feedback of the end-effector



position can further improve the accuracy. Unpub-
lished follow-up experiments show that when all 6
DOFs in the arm are activated during motor bab-
bling, approximately 400 training samples are needed
to learn a forward model of the same quality. Al-
though the increase of the requirement for the train-
ing set size is considerable, the total amount of time
for gathering these samples is still just around 30
minutes.

3. The Extended System

To extend the applicability of our approach to more
human-like situations, we now allow the neck joints
to move freely during motor babbling. With the
neck joints activated, the kinematic function map-
ping the joint vector into the end-effector position
vector becomes: farm neck : (θarm, θneck) → x. One
way to cope with the expanded kinematic function
is simply to increase the number of training samples.
However, as has been shown above, the requirement
for the number of training samples has more than
tripled when we allowed the 2 wrists joints to be
activated in addition to the upper 4 DOFs in the
arm. If farm neck were to be learned directly, sub-
stantially more training samples would be required.
Fortunately, this drastic increase of the time to be
spent on sample gathering can be avoided by utiliz-
ing additional sensory information.

Fig. 3 illustrates a simplified situation where a
shift of the head posture leads to changes in both
the position and the orientation of the head. The
eyes are assumed to stay stationary in relation to the
head. The head in its original and shifted posture is
painted in black and gray respectively. Although the
eye-centered coordinate system’s positional change
can not be perceived directly, its change in orienta-
tion can be sensed by the gyroscope (the vestibular
system in case of human). The information delivered
by the gyroscope/vestibular system can then be used
to correct this orientation shift caused by the posture
change of the head, i.e. the coordinate system OXY
can be corrected into OX ′Y ′ as shown in Fig. 3.

The original input and output of the kinematics
function farm neck are θ = (θarm, θneck) and

x = T eye
body(θneck) · T body

ee (θarm) · [0, 0, 0, 1]t (1)

respectively, where T eye
body and T body

ee are homogenous
transformation matrices. T eye

body can be expressed as

T eye
body =

[
R3×3 T3×1

01×3 11×1

]
, (2)

R is the rotation matrix and T is the translation vec-
tor. As has been pointed out in the last paragraph,
R can be constructed directly from the readings from
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Figure 3: Illustration showing the effect a shifted head

posture on the eye-centered coordinate system. The orig-

inal and the shifted head posture is painted in black and

gray respectively. The sensory readings from the gy-

roscope (the vestibular system in human) allow for the

correction of the eye-centered coordination system OXY

into OX ′Y ′.

the gyroscope/vestibular system. We denote T ′eye
body

as

T ′eye
body =

[
R3×3 03×1

01×3 11×1

]
. (3)

Using T ′eye
body, the perceived position x of the end-

effector can be transformed into

x′ = (T ′eye
body)−1 · x. (4)

This is similar to correcting OXY into OX ′Y ′ as has
been illustrated by Fig. 3.

If we assume that the combined effect of
the neck joints is purely rotational so that it
is fully eliminated in x′, we can learn a for-
ward model with the transformed training sam-
ples in the form of ((θarm)input, (x′)output) instead
of ((θarm, θneck)input, (x)output). In reality, this as-
sumption does not hold true, which can be easily
recognized in Fig. 3. Learning a forward model
with transformed training samples is equivalent to
regarding the translational effect of the neck joints
as noise. Through simulations based on the pa-
rameters of Nico, we have found out that the stan-
dard deviation of the possible positions of the end
effector is about three times larger than that of
the eye translations caused by the neck joint rota-
tions. Fig. 4 shows a scatter plot for 1000 ran-
dom positions of the end-effector and a scatter plot
for 1000 random positions of the right eye cam-
era. This difference in the ranges of motion be-
tween the end-effector and the eye camera means
that the position change of the end-effector in the
eye-centered coordinate system is caused to a much
greater extent by the arm posture than by the
head posture. The forward model learned with
((θarm)input, (x′)output) is not as accurate as the one
learned with ((θarm, θneck)input, (x)output), but it can
suffice for the purpose of reaching spatial targets.



Since the body dimensions of Nico and the ranges of
motion of its joints closely match those of a one-year-
old, the conclusions drawn in this paragraph also ap-
ply to a one-year-old.
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Figure 4: 1000 random positions for both the right eye

camera (in black) and the end effector (in gray) are plot-

ted in the body-centered coordinate system. It can be

easily seen that the range of motion of the eye camera is

much smaller than that of the end effector.

The proposed learning approach dealing with the
DOFs in both the head and the arm retains the orig-
inal dimensionality of problem. It has the additional
advantage that the framework shown in Fig. 2 does
not need to be changed for generating reaching tra-
jectories. Simulations show that the average posi-
tional error of blind reaching is about 20mm. Al-
though this is significantly larger than the average
positional error (<5mm) of the system that handles
only the DOFs in the arm, it can be eliminated by
exploiting visual feedback during the reaching move-
ments. When the end effector of the arm is visible to
the stereo cameras, the direction vector ∆θ can be
calculated as

∆θ = αJ t(JJ t)−1(xtarget − xperc), (5)

If both xtarget and xperc contain no stereo perception
error, the error in ∆θ is solely caused by the approx-
imation error in the Jacobian J extracted from the
forward model. Since ∆θ determines the actual spa-
tial direction the end effector moves along, the error
in it causes the actual reaching trajectory deviating
from the straight line connecting the starting posi-
tion of the end effector and the target.

Fig. 5 shows two reaching trajectories produced
by simulations. The trajectory that appears to be
straight is generated with a forward model f̃arm that
is learned during a motor babbling phase when all 6
DOFs in the arm are activated and the head is kept in
a fixed posture. 400 samples are used to train f̃arm.
The high quality of this forward model results in a
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Figure 5: The reaching trajectory that appears to be

straight is based on a forward model learned during a mo-

tor babbling phase when only the 6 DOFs in the arm are

activated. The curved trajectory is based on a forward

model learned on samples that use the sensory informa-

tion of the gyroscope/vestibular system to substitute the

proprioception of the neck joints.

reaching trajectory that is apparently straight. The
curved trajectory is generated by a forward model
f̃arm neck trained on 400 samples gathered during a
motor babbling phase when all DOFs in the neck
and the arm are activated. These samples take the
form of ((θarm)input, (x′)output) signifying that the
sensory feedback of the gyroscope/vestibular system
is employed to keep the input dimension of the for-
ward model fixed to 6. Due to the lower quality of
f̃arm neck and hence the larger error in J extracted
from it, the reaching trajectory based on f̃arm neck

is visibly curved. The correct reaching directions on
selected points on the trajectory are marked with
arrows.
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Figure 6: The comparison of these two trajectories show

that the curvature of reaching trajecotories is indeed de-

termined by the magnitude of the ignored head transla-

tion caused by the neck joint rotations.

To further confirm the conjecture that the curva-
ture of the reaching trajectories based on f̃arm neck

is due to the ignored translational effect of the neck
joints, we have carried out simulations to compare
the trajectories based on two different f̃arm necks.
For the first model, the neck joints move within
their normal ranges of motion when training sam-



ples are being gathered, while for second model, each
neck joint moves within a range of motion enlarged
by 25%. Such an enlargement increases the aver-
age head translation during motor babbling, which
in turn leads to larger errors in the second forward
model. Fig. 6 displays two trajectories with the
same starting end effector and target position. It
shows the expected result that the trajectory based
on the first forward model is less curved than its
counterpart.
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Figure 7: Comparison of two reaching trajectories based

on different values of step size. Increasing step size in-

creases the curvature of the trajectory and makes it ap-

pear less graceful. However, it also reduces the require-

ment for the frequency of the visual feedback.

For generating the reaching trajectories shown in
Fig. 5 and 6, the starting position of the end effec-
tor is chosen such that it can be perceived by the
stereo vision system. The direction vector ∆θ is al-
ways calculated according to Eq. (5). The variable
step size is assigned with a value of 1mm to achieve
the best reaching accuracy. Assigning a larger value
to step size magnifies the error in the extracted Ja-
cobian J and increases the curvature in the reaching
trajectory as shown in Fig. 7. A larger step size can
cause the end effector to oscillate around the tar-
get before settling down. However, it also brings the
benefit of reducing the requirement for the frequency
of visual feedback and the computational burden as-
sociated with it. During the physical experiments
on Nico, the step size is initially set high and is re-
duced after the end effector has been moved close to
the target. Fig. 8 shows a series of pictures captur-
ing an actual reaching trajectory during a physical
experiment on Nico. A wooden ball is attached to
the distal end of Nico’s arm as the end effector. A
wooden ball of the same size is used as the reaching
target. The centers of the end effector in the eight
different positions on the trajectory are marked with
white circles and superimposed onto the original pic-
tures. The trajectory looks quite natural and is only
slightly more curved than the trajectories recorded
by Morasso in his 1981 paper. This larger curva-
ture can be explained by the fact that Morasso used

adults for his experiments. An adult’s hand has a
much larger range of motion compared with his/her
head. So ignoring the translational effect of the neck
joints has a lesser impact on the quality of the for-
ward model and hence results in straighter reaching
trajectories.

4. Discussion

The results of both simulations and physical experi-
ments shown in the previous section provide support
from the perspective of robotics for the feasibility of
substituting neck proprioception with sensory infor-
mation from the gyroscope/vestibular system dur-
ing motor learning. In fact, the same substitution
is used by humans for an important function - the
vestibular-ocular reflex (VOR) (Kandel et al., 2000).
VOR actively uses the sensory output of the vestibu-
lar nerve instead of the neck proprioception to ad-
just eye orientations to stabilize images on the reti-
nas. To control eye movement, both angular veloc-
ity and angular position signals are required. The
vestibular nerve outputs velocity signals only. These
velocity signals are integrated in the brain stem to
obtain position signals. The result of this integra-
tion can be directly used to transform the position of
reaching target from the eye-centered coordinate sys-
tem into the body-centered coordinate system. Since
no individual-specific parameters are needed for this
transformation, it does not have to be learned and
can be hard-coded in the genes. All simulations and
physical experiments previously described are based
on Nico that is designed to match an average one-
year-old. The naturally curved trajectories gener-
ated by our biologically plausible approach strongly
suggest that a similar approach can be used by in-
fants for learning to reach.

The previous section implicitly assumes that the
body stays stationary relative to the outside world.
If the assumption is violated, e.g. the body is pas-
sively rotated together with the head, θgyro registers
a change, but the position and the orientation of the
head relative to the body have not changed. Con-
structing the rotation matrix R in Eq. (3) according
to the value of θgyro under this situation will lead
to a reaching failure. However, this problem can be
easily solved by allowing the integration of θ̇gyro only
during the time the neck is moving.

According to (Buneo et al., 2002), there are two
schemes which can be used to reach a target. The
first scheme transforms the position of the target
from the eye-centered coordinate system into the
body-centered coordinate system before the reaching
movement is initiated. The second scheme uses the
target position in the eye-centered coordinate sys-
tem directly for reaching. We have assumed that
the former system is correct for our learning algo-
rithms, but the latter assumption can also be easily



Figure 8: An actual reaching trajectory captured during a physical experiment on Nico.

implemented with the same architecture. The tar-
get position x in the eye-centered coordinate system
is first transformed into x′ as described in the pre-
vious section. Though in a strict sense, x′ is not
exactly the target position in the body-center co-
ordinate system, it can be used as a substitute for
that without sacrificing much reaching accuracy. In
order to be useful for the second scheme, our ap-
proach can be slightly modified, such that a forward
model is learned with training samples in the form of
((θarm, θgyro)input, (x)output), where θgyro is a three
dimensional vector representing the sensory readings
of the gyroscope/vestibular system. After training,
the target position in the eye-centered coordinate
system can be directly used for reaching.

It is worth noting that if samples in the form
of ((θarm, θgyro)input, (x)output) are used for learn-
ing the forward model, the dimension of the input
is 9, only one less than that of the input of the orig-
inal farm neck. While this seems to be only a small
change in the dimensionality for our robot system,
the advantage will scale with additional joints in the
neck. Since the human neck has more than 4 DOFs
even only at the joint level, this reduction can be sub-
stantially more. On the level of muscle activation,
using θgyro to represent the principle effect of the

head posture delivers enormous advantage for learn-
ing to reach.

One notable paper (D’Souza et al., 2001) studying
sensorimotor learning on a robotic platform tries to
solve the degrees-of-freedom problem with a sophis-
ticated statistical learning algorithm called Locally
Weighted Projection Regression (LWPR). LWPR is
used to learn the direction mapping from δx to δθ
with the effort put into reducing the dimensionality
locally. Our experiments suggest that the dimen-
sionality of the problem can be reduced globally by
substituting all DOFs in the neck altogether with
sensory readings from the gyroscope, of which ev-
ery human possess an equivalence, the vestibular sys-
tem. Furthermore, our approach is based on a well-
studied learning algorithm (RBFN) for which there
are a large number of existing implementations.

5. Conclusion

In this paper we have demonstrated (1) that sensory
information from a vestibular system can be used to
replace a portion of the kinematic chain involved in
learning to reach, (2) that this replacement can re-
sult in a decrease of the dimensionality of the learn-
ing problem, and (3) that the errors that are neces-
sarily introduced by this replacement strategy lead



to curved reaching trajectories similar to those ob-
served in human reaches. We have shown that these
results hold true both in simulation and on a hu-
manoid robot that is specifically designed to match
an average one-year-old.
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