
Abstract

From Motor Learning to Social Learning:
A Study of Development on a Humanoid Robot

In this thesis, we describe how a humanoid robot designed to match the kinematics

of a one-year old infant can learn to reach to visual targets, point toward visual targets,

and share attention with a human. These three skills span the domains of motor

learning and social learning. Instead of developing each of these skills independently,

the robot naturally progresses from reaching to pointing and then from pointing to

joint attention by taking advantage of social conventions and the assistance of a

human.

We first present a biologically plausible model for learning to reach to visual

targets. This model is then extended to allow the robot to point toward distant objects

that are outside of its reach without requiring additional learning. We demonstrate

that the development of joint attention can be greatly facilitated by using pointing

gestures to actively direct the attention of the robot’s caregiver, resulting in learning

times that are two orders of magnitude less than comparable published models and

eliminating the need for hand-labeling training data. A dedicated system to evaluate

this idea is presented and its performance is demonstrated.
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Chapter 1

Introduction

1.1 Motivation

As a scientific and engineering discipline, humanoid robotics has advanced signifi-

cantly in the past few decades. Today’s state-of-art humanoid robots such as ASIMO

and QRIO are far cries from the heavy and clumsy first-generation robots.

There are two driving forces behind the growth of humanoid robotics. The first

one is the hope that one day humanoid robots will be able to perform useful tasks for

society, e.g. assisting the elderly or working in hazardous environments. The second

force is the use of humanoid robots as experimental platforms to test ideas about

artificial intelligence. No matter what the ultimate goal is, it has been recognized

that engineering alone does not scale up to the challenges ahead, which, according to

Brooks et al.[23] and Asada et al.[5], can only be met by allowing humanoid robots

to develop and learn just as infants do. In recent years, developmental learning as a

methodology has been quickly adopted by researchers not only in humanoid robotics

but also in other fields of robotics. (See [86] for a summary of the applications of this

field.)

Despite some success, the full potential of developmental learning is yet to be

realized. In particular, one important feature of development — skill progression —
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CHAPTER 1. INTRODUCTION 2

has been largely ignored in humanoid robotics. Skill progression refers to the fact that

although there is a great deal of variability among individual infants, typical skills in

different domains are acquired in an orderly fashion. Infants usually (but not always)

learn to sit and crawl before they start to walk. Single words are uttered before

syntax and grammar are mastered. Such a progressive development of skills allows

for a structured decomposition of a complex system. Constraints based on limited

perceptual or cognitive capabilities of an infant aid in the acquisition of complex skills

by allowing learning to occur first in lower-dimensional spaces. As infants master

basic skills, the already acquired skills become useful tools to reduce the complexity

of learning more complex skills.

Humanoid robotics started as an engineering discipline and many researchers in

the field still tend to rely on “engineering thinking” to solve problems. It is a common

practice in engineering to break a complex problem into smaller pieces and then focus

on the smaller pieces one at a time. When this divide-and-conquer approach is directly

applied to skill learning on a humanoid robot, it often causes one to focus too much

on individual skills and to overlook the connections between them. When the learning

of an advanced skill is taken out of the development context, it often appears to be a

much harder problem (e.g., learning in a very high dimensional space) that warrants

a large number of training samples or the application of exotic techniques. The

complexity of the problem could, however, be substantially reduced if the robot were

able to take advantage of the benefits of skill progression and learn the underlying

and more basic skills first.
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1.2 Overview

The primary contribution of this thesis is that it provides the first demonstration of

the efficiency of skill progression in the field of humanoid robotics. The demonstration

uses Nico, an upper-torso humanoid robot designed and constructed by the author

over the past few years, as the experiment platform. Nico’s body dimensions and

kinematic structure closely match those of an average one-year-old such that Nico

faces similar physical constraints to one-year-old infants. The small body size of Nico

also tends to make experiment subjects treat and respond to Nico as if it were an

infant. This thesis describes how Nico acquires reaching, pointing and joint attention

— three important skills that span the domains of the motor learning and social

learning. Although the close connections among these skills have long been recog-

nized in developmental psychology, this thesis represents the first attempt to exploit

these connections for building computational models of these skills in an incremental

fashion. To improve the performance of the models, various aspects of developmental

learning have been extensively examined and explored.

The development of reaching is based on motor babbling, which is driven by

the self-exploration instinct of the robot. The production of pointing gestures is

developed out of the reaching skill and an interplay between the body structure of

the robot and the cooperative nature of its caregiver. After the development of

pointing, the robot then actively uses pointing gestures to manipulate its caregiver’s

gaze direction for the learning of joint attention. This progression of skill development

allows the robot to acquire the joint attention skill with a training set that is a

few magnitudes smaller than that required by previous models. Throughout the

development process, only a common type of neural network — Radial Basis Function

Networks (RBFN) — has been used. This on the one hand demonstrates the power of
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skill progression that eliminates the need for highly customized learning algorithms.

On the other hand, it seems to provide support to the conjecture raised by many

developmental psychologists that only a few general learning mechanisms are required

for the acquisition of a large variety of functions/skills.

The thesis is organized as follows:

• Chapter 2 : Background

In the first part of this chapter various facets of development psychology that

are relevant to the main body of the thesis are described. In particular, findings

regarding the development of reaching, pointing and joint attention are pre-

sented. In the second part of this chapter, previous work in humanoid robotics

on skill learning is introduced.

• Chapter 3 : Nico: A New Humanoid Robot

The main features of both the hardware and the software system of Nico, a

new humanoid robot that served as the experiment platform for this thesis, are

presented.

• Chapter 4 : Learning to Reach

After an examination of previous models, a new model for generating reaching

movements toward spatial targets is proposed. It is based on a learned model of

the forward kinematics of the arm and a directional mapping that is extracted

from the forward model. These two components enable the robot to reach

targets with or without visual feedback.

• Chapter 5 : Extensions of the Reaching Model

Two extensions of the reaching model are presented. The first extension incor-

porates the neck joints of the robot into the forward model without increasing
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the dimensions of the learning space. This results in gently curved reaching

trajectories similar to those produced by humans. The second extension makes

a minor modification of the reaching model to handle the situation of kinematic

singularity. This naturally produces a pointing gesture when the target it tries

to reach is too far away.

• Chapter 6 : Active Learning of Joint Attention

The concept and the details of the experiments for joint attention learning

are described. In contrast to previous approaches, the experiments exploit the

active nature of infants and the social dynamics between infants and their care-

givers. It is demonstrated that by actively pointing and watching for contingent

responses, Nico is able to learn the joint attention skill online through its inter-

actions with multiple experiment subjects.

• Chapter 7 : Conclusion

A summary of the contributions of the thesis is given. The results from the

previous chapters are re-evaluated in terms of the performance of both the

individual pieces and the overall system.



Chapter 2

Background

This chapter provides background on the two fields that are most relevant to this

thesis: developmental psychology and humanoid robotics. First, an introduction of

the major theories of developmental psychology is provided. The current status on the

nature versus nurture debate is summarized and philosophy of the constructivist view

of development described there serves as an important guide for this thesis. Next, two

concrete examples drawn from developmental psychology are used to illustrate that in

contrast to divide-and-conquer approach commonly used in engineering, development

is a dynamic process where the existence of one skill can greatly benefit the acquisition

of another skill. Following these examples, an important learning mechanism that

forms the basis of a later chapter in this thesis is described and details regarding the

development of reaching, pointing and joint attention in infants are presented.

The second section of this chapter provides a brief history of humanoid robots.

Particular emphasis is placed on the learning of perceptual and motor skills and on

various aspects of social skills. The relationship of other humanoid robot projects to

this thesis is discussed at the end of the chapter.

6



CHAPTER 2. BACKGROUND 7

2.1 Developmental Psychology

2.1.1 Influential Theories of Development

According to [102], developmental psychology can be defined as “the discipline that

attempts to describe and explain the changes that occur over time in the thought,

behavior, reasoning, and functioning of a person due to biological, individual, and

environmental influences”. Its origin can be traced back to Rene Descartes and John

Locke. Among the most influential modern day theories are Piaget’s cognitive-stage

theory, Gibson’s perceptual-development theory, social learning theory and connec-

tionist theory[96].

• Piaget’s theory posits that children go through four distinct stages of develop-

ment as they grow and that they continually build new mental representations

or schemas of the world. Learning takes place through assimilation (fitting

the reality into the current schemas) and accomodation (modifying schemas to

adapt to new experiences).

• In contrast to Piaget’s view that children construct over time more elaborate

representations of the world, Gibson maintains that development is a process

during which children become more efficient at extracting information from per-

ception [56]. The concept of affordance occupies a special position in Gibson’s

theory. An object’s affordances are the actions offered by the environment and

the object and is believed to be directly perceived by humans [57]. It intimately

links perception and action together.

• According to Albert Bandura, the pioneer of modern social learning theory,

the confluence of past experiences and internal preferences makes each child

behave in a unique way [7]. The environment responds to different behaviors
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in different ways and this further leads to divergent experiences. In this sense,

children create their environment.

• Over the past few decades, psychologists have increasingly used the metaphor of

the human mind as an information processing machine. The advent of artificial

neural networks (ANNs) provides researchers with new tools to represent mental

functions of humans with quantitative models. Models based on ANNs are often

called connectionist models. Such models often take perceptual information as

their input. Their output can either lead to observable behaviors or be routed

to higher-level models.

Each of the four theories very briefly described above offers an overarching frame-

work for developmental psychologists. Although contemporary developmental psy-

chologists often study development from their own unique perspectives, these the-

ories remain influential. A common theme of these theories is the recognition that

children play an active role during their development. According to Piaget, children

actively reconcile their mental representations of the world with the reality through

assimilation and accommodation. Like Piaget, Gibson views children as inherently

motivated creatures that try to understand the world with active exploration. Ban-

dura’s social learning theory gives the activeness of children a prominent place as they

create their environment. Though connectionist theory is more focused on replicating

mental functions with connectionist models, the actions of children heavily influence

the input to these models and consequently the update of their internal parameters.

From birth to the age of around 24 months, infants change from helpless creatures

that are unable to hold up their head to active explorers that are perpetually on

the move, speak a few hundred words and interact socially with their parents and

peers. Studies of infant development focus on the changes taking placing during this



CHAPTER 2. BACKGROUND 9

Domain Research topics and representative works

Perceptual development Face perception [61], depth perception [58], percep-
tion of biological motions [52] and auditory tuning to
native language [145].

Motor development Reaching [141], grasping [110], pointing [135], crawl-
ing [1], walking [131] and posture control [12].

Cognitive development A-not-B effect [133], numerical concepts [151] and ob-
ject categorization [118].

Social development Imitation [90], joint attention [121], theory of mind
[8] and language acquisition [17].

Table 2.1: Major domains of infant development studies

important period of time. Researchers believe that by studying the development

of infants, a deeper understanding of the behaviors displayed by older children and

adults can be achieved. They also hope that with a detailed characterization of

normal development available, abnormal development can be detected at the earliest

sign so that clinical intervention can be introduced as soon as possible.

The body of infant development research consists of the following four major

domains: perceptual development, motor development, cognitive development and

social development. Several important research topics along with the most represen-

tative works for each domain are listed in Table 2.1. It should be noted that some of

the topics in the table can be categorized into multiple domains. For example, point-

ing is often studied within the context of social development because of its referential

purpose. The development of reaching, pointing and joint attention in infants will be

described in detail in Section 2.1.5.
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2.1.2 Nature versus Nurture

For centuries, philosophers and scientists have been debating what makes us become

who we are. Is it nature or is it nurture? At the one end of the continuum is Rene

Descartes’s belief that human behaviors are fully determined by the innate resources

of the mind. At the other end is John Locke’s tabula rasa view that humans come to

the world with a mind like a blank slate that awaits to be written on by experience.

Today the tabula rasa view in its pure form is largely abandoned since the effect

of genes on a living organism is simply undeniable. On the other hand, the landscape

of development psychology is stilled dotted with strong nativist rhetoric. In his book

Modularity of Mind published in 1983, philosopher Jerry A. Fodor presents a view

that the mind is composed of domain specific modules. According to this view,

development is a maturation process of these modules rather than a learning process

[51].

Although Fodor’s radical nativism has been challenged by philosophers of diverse

orientations, its influence can be still felt. For example, some researchers have sug-

gested that face perception is innate. This hypothesis is supported by experiments

showing that newborn infants exhibit a preference to face-like stimuli and are able to

imitate the expressions on the face they see [61][90]. Additional support is provided

by clinical studies of prosopagnosia (face blindness), which show that face perception

in adults are localized in a specific brain region [44][9]. Another example of nativism

is the “theory of mind” proposed by Baron-Cohen who suggests that a innate system

consisting of four specialized modules provides the neural basis for humans’ social

behaviors [8]. Among the four modules is an Eye-Direction Detector (EDD) that

gives people the ability to determine where their communication partners are looking

at.
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In contrast to the nativist/maturation views on development, another line of think-

ing, often labeled as constructivism, suggests that for many of the brain functions,

genes have only specified some general neural structures and development mecha-

nisms rather than containing detailed blueprints [76][72]. Recent experiments show

that many seemingly sophisticated functions indeed do not have to be directly im-

plemented by genetic programs. They can either emerge as the aggregates of several

interconnected general structures or be based on general structures that are subse-

quently molded by experiences. The constructivist explanations on the origins of face

perception and eye direction detection are described below.

Several cleverly designed experiments carried out by Francesca Simion et al. show

that newborn infants show a preference to top-heavy geometric arrangements of

square elements and this preference can be explained by the sensitivity difference

between the upper and the lower visual field [128]. Since the elements of humans

faces are also arranged in a top-heavy way, Simion et al. argue that humans’ exper-

tise in face processing may be the result of the interaction between a bias in the visual

system and postnatal experiences. In [55], Gauthier et al. point out that the fusiform

gyrus, which is often seen as the innate cortical module for face perception, also shows

increased activity in individuals who have recently acquired expertise in recognizing

artificial objects called greebles. This discovery provides support for the view that

face perception is based on a more general neural structure for object perception.

The infant experiments carried out by Mark Johnson et al. cast doubt on the

existence of an innate brain module for eye direction detection [45]. They demonstrate

that infants’ perception of eye direction is heavily influenced by motion cues and the

presence of a face. They propose that the function of eye direction detection can be

imbedded in the general structures for motion detection and face perception. Face



CHAPTER 2. BACKGROUND 12

perception, in turn, can be developed out of a bias in the visual system and postnatal

experiences as has just been argued in the last paragraph. In [37], Corkum and Moore

show that infants younger than 15 months mostly rely on head orientation instead of

eye orientation to assess the attention focus of their caregivers. This result implies

that a dedicated eye direction detector does not have to exist at birth; it can be

developed from postnatal experiences.

2.1.3 The Dynamics of Development

Divide-and-conquer is one of the most important paradigms in engineering. It breaks

a complex problem into a set of simpler sub-problems. The sub-problems are attacked

individually and their solutions are later put together (typically in a sequential chain)

to produce a solution to the larger problem. In contrast to divide-and-conquer, which

is more or less static, development is a dynamic process. During this process mul-

tiple skills are learned in parallel and they exert influences over each other. For a

better appreciation of the dynamic aspect of development, two concrete examples are

presented below.

Co-development of locomotion and perception of optical flow [4]

Visual perception plays an important role in postural control. When the body travels

through space, the visual system determines the positional and orientational change of

the body with respect to the environment using optical flow information. It has been

discovered that young infants use both central foveal vision and peripheral vision for

postural control while adults rely primarily on the peripheral vision for this purpose.

This phenomenon gives rise to the question of when infants start to switch to a more

economical way of using only peripheral vision for postural control. Experiments

show that the transition occurs during the time infants start to learn locomotion
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skills such as crawling. But why should the development of these two skills coincide?

The answer lies in the different patterns of optical flow the vision system encounters

under different conditions. When infants are passively transported, the angle between

their line of sight and their moving direction is arbitrary. So the patterns of optical

flow falling on the central visual field and the peripheral visual field are unpredictable,

which makes them more difficult to decode. When infants start to crawl, their line

of sight and their movement direction usually overlap. This makes radial optical flow

and lamellar optical flow fall on the central visual field and the peripheral visual field

respectively. Over time, the peripheral visual field becomes specialized to lamellar

optical flow. The central visual field gradually focuses more on other tasks such as

steering around obstacles and detecting surface conditions. This in turn enhances

infants’ locomotion skills.

Joint attention facilitates word learning [6]

Word learning is a difficult task. A simplistic model for word learning would sug-

gest that infants could learn the meaning of new words simply by detecting the co-

occurrences between the words their parents say and the objects in their environment.

But a careful examination of this model reveals that such a covariance detection pro-

cess would result in many mapping errors. For example, an infant can be playing

with a toy when his/her mother is making a phone call. In this scenario, the words

the infant hears bear no relationship to the toy the infant is focussing on. However,

studies on infant word learning show that infants scarcely acquire false mappings for

concrete nouns. How do infants manage to only learn correct mappings most of the

time? Experiments conducted by Baldwin show that 18-month-old infants rely on

joint attention skill to learn new words. When infants at this age hear a new word,

they actively look back at the speaker and only associate the new word to the object
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at the speaker’s attention focus. This mechanism leads to a correct association of

the new word and the object it refers to. Baldwin conjectures that the extraordinary

pace at which infants at 18-20 months acquire new words can be attributed to a

well-developed joint attention skill.

The first example demonstrates that locomotion aids the visual system in pro-

cessing optical flow information more efficiently such that posture control can be

achieved using only peripheral vision. On the other hand, better posture control and

the released computational resources for central vision facilitate the learning of loco-

motion. The second example shows that a well-developed joint attention skill helps

disambiguate referents in the environment to make word learning possible. Locomo-

tion skills and the processing of optical flow could probably be engineered separately.

However, to design an artificial system that can learn new words in a natural environ-

ment without engaging joint attention skill would be extremely difficult, if possible

at all.

2.1.4 Contingency Learning

Contingency is the relationship between behavior and its consequences. In a land-

mark paper, Murray and Trevarthen [104] used a closed-circuit video system to study

infants’ sensitivity to social contingency. In the initial experiment, mothers interact

contingently with their infants through the video system. The infants respond posi-

tively to the contingent interactions by gazing more at the video and smiling. In the

second experiment, the live interactions recorded during the first experiment are re-

played to the infants. The infants become visibly upset in the absence of contingency

between infants’ own actions and mothers’ actions in the video. This experiment

paradigm has been rapidly adopted by other researchers whose studies confirm in-
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fants’ ability to detect contingency [63][106].

Other studies have used objects such as a furry animal [73] or a simple robot

[101] to investigate whether novel objects can invoke similar responses of infants

by displaying contingent behaviors. The outcome of these studies demonstrates that

contingency is a powerful mechanism that affects infants’ attitude toward both people

and objects. Infants even exhibit gaze following behavior during their interactions

with a box-like robot (Baby-9) that does not bear any resemblance to a human [101].

This observation is remarkable because some researchers believe that gaze following

is based on an innate eye-direction detection module (see Section 2.1.2). It suggests

that contingency may play a critical role in the development of other functions. For

example, it has been postulated that contingency detection can be used by infants

to distinguish self from others because of the difference between self contingency and

social contingency [143][144]. An example of self contingency is seeing one’s own body

part move after sending a motor command while an example of social contingency is

seeing other people react to one’s own action.

After publishing the experiments on infants’ response to Baby-9, Movellan de-

signed Infomax, a sophisticated model based on information theory for the detection

of social contingency [100]. Infomax was recently used on a robot that can spon-

taneously make noises through a mounted microphone [27]. After it makes a noise,

the robot captures an image from its camera and labels the image as positive when

Infomax detects a contingent response. These data are then used to train an object

classifier. After the training, the classifier shows a remarkable preference for face-like

stimuli because the images labeled as positive usually contain a human face. This re-

sult again shows that contingency can be used as a powerful mechanism for an infant

to learn from its environment.
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Movellan’s experiments show that his contingency detector Infomax has many

potential uses. However, Infomax is a complex model. Evidences from infant studies

suggest that a simpler contigency detector based on time delay may benefit learning

as well. Early studies show that infants learn the association between their action and

the outcome only when the the outcome occurs within a 3 second time window after

infants’ action [95]. More recent results by Striano, Henning and Stahl (unpublished)

show that infants are even sensitive to when the outcome occurs within this already

very narrow time window. Michel, Gold and Scassellati recently report that by relying

on a simple model of the time delay between the output of motor commands and the

perception of the motion of its own end effector, a humanoid robot can pass the mirror

test of self-recognition [111][54].

2.1.5 Development of Reaching, Pointing and Joint Atten-
tion

Reaching

According to some experiments, newborn infants can already extend their arms in the

general direction of a target when they are properly supported [140][3]. Longitudinal

studies by von Hofsten, Thelen and Konczak show that the first time an infant suc-

ceeds in contacting a stationary target after an attempted reach occurs at an age of

three to five months [141][132][77]. Three months after the onset of successful reaches,

infants can already reliably reach toward spatial targets although adult-like reaching

movements are only seen after the age of two years.

Von Hofsten reported that young infants’ reaching movements consist of multiple

segments [141]. Each of the segments has an acceleration phase and a deceleration

phase. While von Hofsten found that the number of the segments in each reaching

movement decreases dramatically when infants grow older and become more experi-
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enced with reaching, other researchers found that the number of segments decreases

only moderately or stays stable [46][132][15]. This difference in opinion may the re-

sult of the different ways movement data are filtered. This controversy aside, it is

generally agreed upon that infants’ reaching trajectories are significantly curved and

become straighter over time.

Initially, it was believed that infants continually monitor the position of their hand

visually and correct its moving direction until it reaches the target. The multiple

segments in their reaching trajectories would then reflect such online corrections.

However, Clifton and her colleagues later discovered that infants can reach toward

glowing objects in the dark [35]. This discovery means that infants do not necessarily

need to visually monitor their hand while they reach. It suggests that infants can

also use proprioception to guide their hand toward a target when visual feedback is

not available.

Although adults can apparently reach toward a target without much effort, the

control behind reaching movements are by no means simple. At the kinematic level,

there are 7 degrees of freedom in the human arm that can be simultaneously con-

trolled. If this does not seem to be complicated enough, humans can only exert direct

control over the muscles that generate the forces to make the arm move. The number

of degrees of freedom in the arm at the force control level is much larger than that

at the kinematics level. Bernstein was the first to point out this “degrees of freedom

problem” [11].

Bernstein believed that well coordinated arm movements are unlikely to emerge

without a sound learning strategy. He proposed a three-stage process of motor learn-

ing based on his observations. According to Bernstein, when a human learns a new

motor skill, he/she first freezes his/her distal joints (joints at the periphery) to reduce
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the dimensionality of the control space. Later, the distal joints are gradually released

and incorporated into the newly acquired skill. At the end, reactive phenomena such

as gravity are exploited to refine the skill. Data of several studies on adults’ learn-

ing of new motor skills such as dart throwing and skiing are supportive of Berstein’s

proposition [89][139]. Other researchers suggest that during the time infants learn

the reaching skill, they may just be forced by nature to follow the three-stage process

proposed by Bernstein [13][14]; due to the proximodistal direction of maturation of

the neural and muscular system supporting arm movements (joints close to the body

develop before joints close to the hand), infants mostly use their shoulder joints to

move the hand around at the time they start to reach toward spatial targets; the

more distal joints in the elbow and the wrist are kept stiff. Only later are these joints

used for reaching when their control system has matured.

Another proposed mechanism to harness the dimensionality of the control space

during motor learning is based on the theory of muscle synergy. This theory posits

that the base control unit of the central nervous system (CNS) is muscle synergy,

sometimes also called motor primitives, instead of individual muscles. A muscle syn-

ergy is a simultaneous activation of multiple muscles that leads to a distinct limb

posture. Muscle synergy was first discovered in frogs [60]; and it seems that humans

use muscle synergies for the control of arm movements as well[124]. These observa-

tions have led to the hypothesis that each arm movement corresponds to a trajectory

in a virtual space where each point is a linear combination of muscle synergies [105].

The task of CNS is to activate the right synergies at the right time. Muscle synergies

shield the CNS from the nasty nonlinearity of direct muscle control. Because the

number of muscle synergies is believed to be small in comparison with the number

of muscles, the dimensionality of the control space is reduced, thus making motor
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learning easier.

Pointing

Pointing is often seen as a communicative gesture. A canonical point is defined

by Butterworth as a posture with both the index finger and the arm extended in

the direction of an object [29]. Vygotsky suggests that pointing is simply an adapted

form of reaching [142]. According to Vygotsky, during the practice of reaching toward

attractive objects in the environment, an infant occasionally fails to reach an object

because it is too far away. Such a failed reach has the characteristics of a fully extended

arm toward the desired object. The caregiver sees this situation and retrieves the

object for the infant. Through repetition of this scenario, the infant learns that

showing the posture of an extended arm toward an object can serve as a means

to obtain it. This way, a failed reach is gradually transformed into a prototype of

pointing that the infant uses as an instrument to obtain distal objects. Over time, the

infant observes the canonical points displayed by the mother and through imitation,

increasingly points in the canonical way.

An intriguing study by Povinelli and Davis shows that in anesthetized humans,

the index finger of an arm at rest is always sticking out with respect to other fingers

due to the anatomy of the human arm [116]. So even before a young infant adopts

the canonical pointing gesture, the index finger may be inadvertently extended for

anatomical reasons. Vygotsky’s account on the origin of pointing implicates that

infants do not initially understand the functional significance of pointing. This is

supported by experiments showing that early pointing also occurs without the pres-

ence of adults and that young infants show both reaching and pointing behaviors

toward distal objects [10][103].

According to Butterworth, the average age of the onset of canonical pointing is
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11 months [29]. If Vygotsky’s theory on the origin of pointing is true, the onset of

pointing can be dated back several months earlier when infants can already reliably

reach close objects. Butterworth, however, does not agree with Vygotsky’s theory.

He believes that canonical pointing is a human-specific adaption. Butterworth and

his colleagues have presented evidence suggesting that canonical pointing does not

develop out of reaching, but serves the purpose of establishing joint attention first its

first onset [53]. In particular, they argue that canonical/index-finger pointing may

have evolved from pincer grip, which is a human-specific way of grasping by closing

the thumb and the index finger onto an object [31].

Although Butterworth’s view on the origin of canonical pointing has several sup-

porters [85][33], other researchers point out that canonical pointing is not a unique

gesture for referential purpose in some non-western cultures; in those cultures, point-

ing with the whole hand is commonly used as well [67][147]. Most interestingly,

David Wilkins mentions that Micheal Olson, an expert on the Barai culture of Papua

New Guinea, found that Barai people do not understand the referential meaning

of canonical/index-finger pointing [147]. These observations suggest that relying on

canonical pointing to direct other people’s attention may be a cultural phenomenon

rather than a universal phenomenon.

Joint Attention

Joint attention, sometimes called joint visual attention, can be defined operationally

as “looking where someone else is looking”. It also can be defined more subtly as

following the direction of attention of another person to the object of their attention

[43]. Joint attention is not merely a coincidence of two lines of gaze; it serves a

number of very important functions in the development of an infant. For example, by

assessing the mother’s attention focus and her facial expression, infants can determine
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whether a novel object is dangerous [129]. Joint attention can also help infants learn

the correct mapping from a word spoken by the caregiver to an associated object

[6][17]. It has been suggested that a deficit of joint attention can lead to serious

disorders such as autism [82][8].

A paper published by Scaife and Bruner in 1975 is often cited as one of the most

influential studies on joint attention [121]. In that paper, Scaife and Bruner described

an experiment on thirty-four infants ranging in age from 2 to 14 months. During an

experimental trial, an infants sat facing an experimenter. After some initial interac-

tions, the experimenter made two head turns, one 90◦ to the right and one 90◦ to the

left, with a interval of 20 to 50 seconds between the two turns. When the experimenter

made a head turn 30% of 2 month old infants looked in the same direction. Infants’

responses during the experiment were recorded. Scaife and Bruner found that 30% of

2 month old infants looked to the same direction when the experimenter made a head

turn. The percentage grew quickly with increasing age. Scaife and Bruner concluded

from this experiment that infants had from a very early age a rudimentary ability to

follow other people’s attention.

Later, Butterworth and Jarrett detailed a three stage model for the development

of joint attention in infants [28]. The first stage corresponds to an age of around

6 months. At this stage, infants are able to turn their head in the same direction

as their mother, but will stop at the first object they encounter. The second stage

corresponds to the age of 12 months. At this stage, infants are not only able to

determine the direction their mother is looking, but also find the right object if it is

initially within their field of view. At the third stage, or at the age of 18 months,

infants are eventually able to find the object their mother is looking at even when it

is initially out of view.
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Although both the work of Scaife and Brunner and the work of Butterworth and

Jarrett report that a significant proportion of infants at the age of 6 months can

engage in joint attention [121][28], other researchers believe that the emergence of

joint attention in infants does not occur until months later. The lack of agreement

on when joint attention begins is partly caused by variations in experiment settings

and evaluation criteria. For example, infants may spontaneously change their gaze

direction [149]. When Corkum and Moore applied a more stringent criterion to study

the onset of joint attention, they found that infants at the age of 12 months exhibit

only very rudimentary joint attention skill and that only after the age of 15 months

do infants show reliable joint attention responses characterized by significantly more

matches of their gaze direction and the experimenter’s gaze direction than mismatches

[37].

Besides the studies to determine when joint attention starts, researchers have also

tried to determine how the performance of joint attention is influenced by the cues

exhibited by the caregiver. As mentioned earlier, Corkum and Moore found that

before the age of 15 months, infants mostly rely on the caregiver’s head orientation to

assess his/her attention focus [37]. Interestingly, Butterworth and Itakura found that

adults can locate a target more accurately when the experimenter wears sunglasses

than when the experimenter’s eyes are visible [30]. In parallel to the studies on

infants’ response to the change of caregiver’s head or eye orientation, experiments have

been conducted to examine infants’ comprehension of pointing gestures. Murphy and

Messer have observed that it often takes significant effort for an adult to make young

infants follow a pointing hand to the object [103]. Morissette and his colleagues also

found that infants younger than 12 months mostly stare at the pointing hand rather

than follow its direction [99]. Messer believes that infants’ comprehension of pointing
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gestures before the age of 12 months is opportunistic at best [91]. This evidence

suggests that pointing comprehension emerges later than pointing production.

2.2 Humanoid Robotics

2.2.1 A Brief History of Humanoid Robots

The term “humanoid robot” loosely refers to robots with a morphology similar to

that of humans. These robots usually possess a subset of the sensory, motor and

cognitive functions of humans.

Japan has a longer history of building humanoid robots than any other country

in the world. The long-term goal of many humanoid projects in Japan is to build

robots that can be integrated into society and serve useful roles such as caring for

the elderly. Although the humanoids built in Japan are usually equipped with both a

vision system and a communication system, their sophisticated motor skills are what

truly distinguish them. Often considered as the first full-scale humanoid robot in

history, WABOT (Fig. 2.1(a)) was constructed under the direction of Ichiro Kato at

Waseda University in 1973. It was able to walk, although in an awkward fashion, and

transport objects with its gripper. These simple acts were no small achievement at

that time. However, it was WASUBOT (Fig. 2.1(b)), another creation of Ichiro Kato

constructed more than a decade later, that truly stunned the world. At its debut at

Japan’s Expo ’85, WASUBOT played J.S. Bach’s Air on the G String on a keyboard,

accompanied by the NHK Symphony Orchestra. Today, more than three decades

after the birth of WABOT, Japan is home to the largest proportion of the world’s

humanoid robots. Among these are Honda’s ASIMO (Fig. 2.1(c)), Toyota’s Partner

Robots (Fig. 2.1(d)) and Sony’s QRIO (Fig. 2.1(e)). All of these robots possess a

large number of degrees of freedom and can execute complex motor skills such as
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(a) WABOT (b) WASUBOT

(c) ASIMO (d) Partner Robot (e) QRIO

Figure 2.1: Humanoid robots designed in Japan

climbing stairs, playing the trumpet and dancing.

The history of humanoid robots in the United States started out with a few scat-

tered projects such as the Green Man and the Robotic Mannequin that were designed

specifically for military studies. In 1993, the MIT AI lab started the construction of

a humanoid robot called Cog (Fig. 2.2(a)) under the direction of Rodney Brooks.

The goal of the Cog project was to use a humanoid robot as a platform to study

human intelligence. Achieving human level intelligence has always been the dream of

researchers in the field of Artificial Intelligence (AI). In the three decades following

the establishment of this field in the 50s, most work in AI was carried out based

on the assumptions that perfect representations of the world are available and that
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(a) Cog (b) Kismet

(c) Domo (d) Robonaut (e) Dav

Figure 2.2: Humanoid robots designed in the United States

intelligence manifests itself mainly in the decision making or problem solving pro-

cesses based on these representations. Brooks suggested that true intelligence could

only emerge from a physical body situated in the real world [22]. Building on his

early successes with insect-like robots, Brooks described a grand plan for Cog [24].

Although some of the most ambitious parts of that plan were eventually eventually

not realized, the Cog project attracted the interest of many researchers in humanoid

robots and spawned several other humanoid projects such as Kismet (Fig. 2.2(b)),

and most recently, Domo (Fig. 2.2(c)) [19][42]. Other humanoid robots built in US

include Robonaut (Fig. 2.2(d)) by NASA and Dav (Fig. 2.2(e)) by Michigan State

University [2][64].
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2.2.2 Sensory and Motor Learning

Imitation Learning

Imitation is the ability to recognize and reproduce others’ actions. While the con-

troversy of whether infants can imitate other people immediately after they are born

is not yet settled [90], there is no doubt that imitation learning is essential to both

children and adults for the acquisition of a variety of skills. Ethological studies have

revealed that imitation learning exist in other species as well. Neuroscience studies

show that a neural circuit in the brain of monkey becomes active both when the

monkey sees another monkey or a human manipulate an object and when it performs

the same manipulation [120]. Similar neural circuits have also been found in humans

[38]. These circuits are often called the “mirror neuron” systems and are believed to

serve a critical role in imitation learning.

Most research on imitation learning in humanoid robots focuses on learning of

skillful movements. Ideally, the information regarding these movements is delivered

by a vision system. However, current computer vision systems are still unable to

reliably parse human movements. Typically, when a person demonstrates a movement

to a humanoid robot, several motion sensors are attached to his/her body to gather

data regarding this movement. Sometimes, the demonstrator also puts a colored

marker on his hand so that the position of the hand can be continuously monitored

by a dedicated vision system. Such experimental settings produce a large amount of

raw data from even a single demonstration. Thus, it is important to find an efficient

representation of these data.

Inspired by the discovery that humans use muscle synergies/motor primitives to

simplify the control of their limbs, Auke Ijspeer and his colleagues suggested that

movements can be decomposed into a combination of primitives as well [71]. They
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(a) (b)

Figure 2.3: Learning tennis swing by imitation [71].

showed that by using attractor dynamics or limit cycle dynamics (both of which

can be described with autonomous differential equations) as primitives, complicated

movements such as a tennis swing (see Fig. 2.3) can be reliably reproduced on hu-

manoid robots. The usefulness of using differential equations as movement primitives

has also been demonstrated by a study on learning biped locomotion by imitation

[109]. The research group led by Maja Mataric demonstrated that instead of being

designed by hand, movement primitives can be automatically derived from human

movement data as well [50].

Calinon and Billard’s work on gesture learning is another study on imitation

learning [32]. They use both motion sensors and a vision system to gather data from

the demonstration of several gestures. The resulting data consist of a sequence of

joint angle vector and hand position vector. These data are first preprocessed by

PCA to produce a more compact representation. Then they are fed into a learning

algorithm to construct a Hidden Markov Model (HMM) for each of the gestures.

Recognition of a new gesture can be achieved by estimating the likelihood that the

newly observed gesture is generated by one of the learned HMMs. By recovering

the joint vector sequence from a learned HMM and interpolating with splines, the
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(a) (b)

Figure 2.4: Learning gesture by imitation [32].

corresponding gesture can be reproduced on a humanoid robot (see Fig. 2.4).

Progressive Learning

In his Ph.D. thesis, Giorgio Metta gives a description of a simulated development of

motor skills on Babybot (see Fig. 2.5), a humanoid robot developed by the Lira-Lab

at the University of Genoa [92]. The stages of development for Babybot are organized

in a way similar to how infants develop motor skills.

The first step of Babybot’s development is to learn the closed-loop gain for target

foveation, which relies on a feedback controller to incrementally move a target closer to

the center of the visual field. Since such a feedback control scheme may take multiple

steps to achieve foveation, a saccade map is learned as the next step. The saccade

map converts the retinal error (the distance between the projection of a target and

the center of visual field) to eye motor commands for adjusting gaze direction. During

the third stage of the development, another map is learned for the generation of neck

movement to orient the head towards a target. The eye control and the neck control

operate independently in Babybot. These two redundant controls are mediated by a

controller similar to the human Vestibular Ocular Reflex (VOR). This controller is
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Figure 2.5: Babybot - the humanoid robot used by Metta for his experiments on
motor skill development [92].

tuned in parallel to the learning of the closed loop gain, the saccade map and the neck

map. The learning of all these control modules takes place through self-exploration

and enables Babybot to efficiently adjust its gaze direction toward spatial targets.

Once the ability to control gaze direction is obtained, Babybot also develops the

skill of reaching. The reaching skill is based on the motor primitive hypothesis pro-

posed by Mussa-Ivaldi and Bizzi [105]. It is realized by constructing a head-arm map

that converts the angles of the neck and eye joints to the coefficients of four hand-

designed motor primitives of the arm. When Babybot finds an interesting target, it

first adjusts its gaze direction toward the target and then generates commands for

the arm motors using the information provided by the head-arm map.

In contrast to Metta’s work, which describes a development scheme that pro-

gresses from the learning of gaze direction control to the learning of reaching, Paul

Fitzpatrick’s work assumes that basic motor skills are already acquired and focuses

on how these motor skills can benefit the development of perceptual skills [48]. He

carries out his experiments on the humanoid Cog (see Fig. 2.2(a)).

Fitzpatrick demonstrates that by actively exploring with the arm, the task of

segmenting objects lying on a table becomes much easier for Cog (see Fig. 2.6). Once
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(a) (b) (c)

Figure 2.6: Discovering the boundary of an object by poking [48].

an object has been segmented, the orientation of its boundary can be determined.

By decomposing the boundary into small patches and identifying the orientation

of the edge within each patch, a lookup table can be constructed that maps small

image patches to the orientation of the edges they contain. To test the performance

of the lookup table constructed this way, Fitzpatrick applies it to both artificial

and natural images and achieves remarkable results. He also shows that through

manipulation, Cog can capture images of an object from different perspectives and

build an appearance model of this object. Appearance models built in this way enable

Cog to recognize an object.

2.2.3 Research on Social Skills for Humanoid Robots

Designing sociable robots

Designing sociable robots is a very challenging task. Many issues need to be resolved

along the way. The two most important issues are (1) to make robots properly

interpret the natural social cues exhibited by people and (2) to enable robots to

produce these cues themselves. Additional issues include proper regulation of social

interactions and real-time performance.
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In [21], Breazeal describes in detail the design of Kismet, a sociable humanoid head

known for its rich social behaviors (see Fig. 2.2(b)). Kismet is equipped with a variety

of dedicated systems. Its facial expression system is powered by a large number of

servo motors. There are nine basic facial postures such as fear, anger, surprise and

disgust, which can be blended to create more nuanced expressions. Kismet’s auditory

system is designed to pick up the prosodic signals in human speech. These signals

provide clues as to the emotional status of a person interacting with the robot. Kismet

also has a vocalization system that can convey a repertoire of emotions by varying

elements such as pitch, loudness and speech rate. Its vision system contains several

low-level modules to process color, motion and etc. The outputs of these low-level

modules are used by a higher-level module that decides what Kismet should pay

attention to. A motivation system modifies Kismet’s internal emotional status based

on environmental stimuli. This internal emotional status in turn influences the way

Kismet behaves toward the next stimulus. All these carefully engineered systems

interact with each other and together ensure that Kismet can carry out natural social

interactions with humans.

Several researchers believe that the social competency exhibited by humans can be

to a great extent attributed to an innate brain module enabling a person to attribute

desires, beliefs and goals to other people. Scassellati has designed a hybrid model for

this hypothesized “mindreading” module [123]. Implemented piece by piece on the

humanoid robot Cog (see Fig. 2.2(a)), his model combines the elements of the models

proposed by Leslie and Baron-Cohen [83][8]. Scassellati shows that the high-level

cognitive skills required by Leslie’s and Baron-Cohen’s theories can be realized with

low-level perceptual abilities. The performance of his hybrid model is demonstrated

on Cog in a basic social learning task.
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Figure 2.7: Leonardo learns to associate the rightmost button with a label by following
the pointing gesture of the experimenter [20].

Leonardo is a new robot designed by Stan Winston Studio for the Robotic Life

Group at the MIT Media Lab. Leonardo is not a humanoid robot in a strict sense;

it has the appearance of a furry animal rather than a human. It is equipped with

a sophisticated vision system and a speech recognition system. Its large number

of degrees of freedom enable it to produce many social signals that are easy for

humans to understand. The researchers in the Robotic Life Group use Leonardo as

a platform to study human-robot collaboration. Extensive turn taking skills have

been implemented on Leonardo such that the progress of the collaboration can be

easily assessed [20]. For example, when an experimenter points to a novel object and

assigns a label to it by speech, Leonardo will first follow the pointing gesture to the

object and then look back to the person to acknowledge that an association between

the object and the label has been established and further instructions can follow. In

addition, Leonardo is programmed in such a way that it can build a hierarchical task

representation through its interactions with a human.



CHAPTER 2. BACKGROUND 33

(a) Infanoid (b) Keepon

Figure 2.8: The two robots designed by Hideki Kozima to study the social develop-
ment of children [79][81][80].

Using robots to study social development

Not only can sociable humanoid robots learn skills from humans in a natural setting,

they can also serve as valuable tools to study human social behaviors. By tweaking

the social modules inside these robots, different responses from humans may be ob-

served. These observations can lead to a deeper understanding of the mechanisms

that enable humans to behave socially. By carrying out longitudinal studies of how

infants or children change their attitude toward a sociable robot put in their natu-

ral environment, a more detailed and accurate picture of when different social skills

emerge and how they gradually improve can be depicted. More importantly, by in-

vestigating how children with developmental disorders differ in the way they interact

with sociable robots, earlier diagnosis and intervention of these disorders may become

possible.

Hideki Kozima and his team have carried out an experiment on how children

of different ages interact with Infanoid, an upper-torso humanoid robot with basic

social skills (see Fig. 2.8(a)) [79]. During the experiment, Infanoid alternates between

an eye-contact behavior and a joint attention behavior. According to Kozima, the
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interactions of most of the children with Infanoid consist of three phases. In the

first phase, children show embarrassment because they do not know how to deal with

the robot. In the next phase, children gradually understand that the robot produces

predictable behaviors and actively explore the capabilities of the robot. In the third,

children become comfortable with the robot and treat the robot as a social agent and

even start verbal conversation with it.

Keepon (see Fig. 2.8(b)) is another robot designed by Kozima and his team.

It does not have a human-like shape. However, the author feels obliged to give a

description of it here because of its unique design and the responses it elicits from

children. Keepon is deliberately designed to have a simplistic appearance. It has

a spherical head connected to a slightly larger spherical body. The head has just

two eyes (microcameras) and a nose (microphone). The body contains mechanical

mechanisms that allow Keepon to change its gaze direction, exhibit head nodding

and shaking, and display side-to-side rocking and up-and-down bobbing behaviors.

The surface of Keepon is made of silicone rubber. The robot is installed on top of

a moving platform that contains a battery and wireless communication devices. Its

simplistic and self-contained design makes it virtually impossible to inadvertently

hurt children, so it can be safely put into a playroom where children can approach

and interact with it. Longitudinal observations have been carried on how children

with developmental disorders develop a bond to Keepon. Major findings from these

observations are (1) that children that are considered to have underdeveloped social

skills approach Keepon with curiosity and security, (2) that some of children are able

to engage in diadic or triadic interactions with Keepon and (3) that each child has

his/her own style during the interactions with Keepon. More detailed accounts on

such interactions can be found in [81] and [80].
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Simulating social development on robots

It has been shown that equipping humanoid robots with basic social skills can be

achieved by careful engineering. However, infants are not born with these skills;

these skills develop over time. Developmental psychologists have not yet been able

to reach a consensus regarding how infants develop social skills. But it is clear that a

few basic sensorimotor skills on the infant side, such as moving the head around and

finding salient objects in the environment, combined with cooperation from caregivers

undoubtedly play important roles over the course of infants’ social skill development.

In [107], Nagai describes two models that allow a humanoid robot to develop joint

attention — a basic, yet important social skill. The reasonable assumptions used by

these two models are based on the observations from developmental psychology. In

the context of Nagai’s work, joint attention is defined as a mapping from an image

that describes the head orientation of the caregiver to the motor commands that move

the object the caregiver is looking at to the center of the robot’s vision field. The

hypothesis of a three-stage development of joint attention proposed by Buttorworth

and Jarrett [28] is taken by Nagai as a ground truth.

Nagai’s first model assumes that the visual acuity of the robot matures gradually

so that the resolution of the images the robot receives is rather low initially but

increases over time. Another assumption is the caregiver gives the robot explicit

evaluation for each training sample. The evaluation criterion is initially loose and

becomes more stringent as the robot’s performance improves. The robot uses a four-

layer neural network for learning the joint attention mapping. Learning takes place

by repeating the following process: The robot first looks at the caregiver and sends

the image describing her head orientation to the neural network. The output of the

neural network is used to change its gaze direction. The caregiver then gives an
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Figure 2.9: Setting used by Nagai to study the development of joint attention [107].

evaluation of the accuracy of the robot’s gaze direction. This evaluation is used in

turn by the robot to modify the weights of the neural network. Nagai shows that both

the maturation process of the robot’s visual acuity and the change of the caregiver’s

evaluation criterion facilitate the learning of joint attention.

In Nagai’s second model, the caregiver simply changes her gaze direction to look

at different objects without giving explicit evaluation of the robot’s performance. In

contrast to the first model where the robot has no initial skills, the robot in the

second model has the innate ability of shifting its gaze to track salient objects in

the environment. This innate ability is used to jump-start the learning of the joint

attention mapping. Over time, the increasingly more sophisticated joint attention

mapping takes over to control gaze directions. According to Nagai’s results, joint

attention can be successfully learned only if there are a small number of salient objects

in the environment.
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2.2.4 Discussion

Almost all of the research introduced above on humanoid robots are more or less

inspired by the insights gained from infant development studies. For example, Ijspeer

and his colleagues have used imitation learning to accelerate the transfer of human

movement skills to a humanoid robot. That Leonardo is made to rely heavily on

social cues to communicate with humans during collaboration is another example.

However, these studies are not aimed at improving the current understanding of

the development process. In contrast, Metta’s work and Nagai’s work study how

skills such as reaching and joint attention develop on robots the way they develop in

humans. More importantly, Metta, Nagai and Fitzpatrick explicitly or implicitly view

development as a dynamic process where the learning of a skill may depend on more

elementary skills. Metta’s Babybot develops reaching upon the completion of learning

basic visual-motor tasks. Fitzpatrick’s Cog develops the skill of object recognition

through active manipulation. The joint attention skill developed by Nagai’s robot

is jump-started by the ability to shift gaze direction to salient objects. The work

described in this thesis falls in the same category as the work of Metta, Fitzpatrick and

Nagai. Whereas each of the three projects focuses on a single domain — Metta’work

on motor learning, Fitzpatrick’s work on perception learning and Nagai’s work on

social learning — the work in this thesis spans the domains of motor learning and

social learning and demonstrates the benefits of skill progression.



Chapter 3

Nico - a New Humanoid Robot

Nico is a humanoid robot designed and assembled in our lab. All the physical exper-

iments described in the following chapters are carried out on Nico. The two sections

in this chapter are devoted to the description of its hardware features and its software

platform respectively.

3.1 Nico’s Hardware

Nico is modeled on the 50 pecentile, male, one-year old infant [134]. It has altogether

21 degrees of freedom (DOFs), 7 in the head, 2 in the torso and 6 in each arm. Its

primary dimensions are shown in Fig. 3.1. Its current design allows for more DOFs

to be added to its head for facial expression display. In addition, simple graspers

can be attached to its wrists to enable it to pick up small and light objects. All

of Nico’s structural parts are designed in Solidworks, a 3D CAD program that can

produce both 3D models and 2D drawings. The drawings of finalized designs were

sent to an outside company for machining. After the finished parts were received they

were assembled in the lab together along with some off-the-shelf components such as

bearing and gears. The main challenge of the design procedure was to find a good

compromise between the size of Nico and its motion range. The larger the size, the

38
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Figure 3.1: The frontal view of Nico along with its major dimensions in millimeters.

bigger the motion range. However, increasing the size too much would violate the

design goal of keeping Nico about the same size as an average one-year old. During

the design procedure, a considerable amount of time has been spent on tweaking the

shape of various parts such that a maximum motion range is realized while the overall

dimensions of Nico are kept in check.

3.1.1 The Head Design

The axes of the seven joints in the head are illustrated in Fig. 3.2. The three neck

joints (Neck Pitch, Neck Roll, Neck Pan) together simulate the motor function of a

human neck. The Head Pitch joint has two functions. One is to simulate head nodding

without moving the whole mass of the head. The other function is to expand the range

of pitch motion of the head. With Neck Pitch supplemented by Head Pitch, Nico is



CHAPTER 3. NICO - A NEW HUMANOID ROBOT 40

Head Pitch

Neck Pan

Neck Pitch

Neck Roll

(a) Nico’s head viewed from the left. Axes
of Neck Pitch, Neck Roll, Neck Pan and Head
Pitch are shown.

Left Eye PanRight Eye Pan

Eye Tilt

(b) Nico’s eye assembly viewed from the
front. Axes of Eye Tilt, Right Eye Pan and
Left Eye Pan are shown.

Figure 3.2: Head joints

able to look either straight down at the floor or straight up at the ceiling without

actuating the Eye Tilt joint. Neck Pitch, Neck Roll and Head Pitch are directly

driven by three DC motors while Neck Pan is driven by a belt system (see Fig. 3.3).

The belt system is driven by another DC motor and its tension can be adjusted by

changing the position of an idler. Nico’s head can be moved into a variety of postures

by actuating the neck joints and Head Pitch in different ways (see Fig. 3.4).

The other three joints in the head constitute a pan-tilt camera system. The Eye

Tilt is driven by a worm mechanism (see Fig. 3.5(a)). This mechanism not only

provides another stage of speed reduction, it also makes Eye Tilt non-backdrivable

such that Eye Tilt can hold to its configuration when the motor driving it is turned off.

The worm is supported from beneath by a sintered bronze washer that cancels out the

downward thrust force exerted by the camera system on the worm and additionally

provides some lubrication. The Left Eye Pan and Right Eye Pan are driven by
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Neck Pan

Idler

Figure 3.3: Belt system used in the Neck Pan joint (viewed from the top).

(a) (b)

(c) (d)

Figure 3.4: Nico can obtain a variety of head postures by actuating the three neck
joints and the Head Pitch joint.
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Worm gear

Eye Tilt Worm

Sintered bronze
bearing

(a) Worm mechanism for the Eye
Tilt joint (viewed from the left).

Right Eye Pan

(b) Belt drive for the Right Eye Pan
joint (viewed from the top).

Figure 3.5: Mechanisms in Nico’s pan-tilt camera system

(a) (b)

(c) (d)

Figure 3.6: Pictures illustrating the range of motion of Nico’s camera system
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belt systems similar to the one used for Neck Pan (see Fig. 3.5(b)). There are two

miniature CCD cameras for each eye. The long focal length camera is used for fovial

vision and the short focal length camera is used for peripheral vision. A plastic

“eyeball” encloses the two cameras on each side and gives Nico a more human-like

appearance. The range of motion of the pan-tilt camera system is illustrated in

Fig. 3.6. The pan-tilt camera system enables Nico to make saccades and track moving

objects. In addition, the sensory information provided by the gyroscope can be used

for simulating the vestibular-ocular reflex (VOR).

3.1.2 The Arm Design

Each of Nico’s arms has six joints whose axes are illustrated in Fig. 3.7. The Shoulder

Roll and Shoulder Pitch joints need to drive the whole arm, so they are driven by the

most powerful motors used in Nico. Each arm is mounted onto the shoulder through

a double row angular contact bearing. The shaft of the motor driving the Lower

Arm Twist joint is extended by a custom designed shaft adapter. This adapter is

squeezed onto the motor shaft by an off-the-shelf clamp. This clamp is sandwiched

between two mounting pieces that help to transfer the weight of the lower arm onto

the frame of the upper arm. A sintered bronze washer on top of the clamp provides

some lubrication and a spring washer beneath the clamp cuts out the remaining slack.

The Wrist Twist joint has a very similar design.

Cable drive systems are becoming popular in robotic systems. The main advan-

tages of cable drives over traditional gear transmissions include zero backlash and

design flexibility. Cable drives are used on Nico for driving the Elbow Pitch joint

and the 1-DOF waist. In the Elbow Pitch joint (adapted from the elbow design in

Cog [148]), a cable drive system changes the rotation axis of the dedicated motor by

90◦. This system is shown in Fig. 3.8. A small pulley with an external thread and
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Shoulder Pitch

Shoulder Roll

Elbow Pitch

Lower Arm Twist

Wrist Twist

Wrist Roll

Figure 3.7: Axes of the 6 joints in the right arm (trimetric view).

Motor pulley

Large pulley

Idle pulleys

Tension adjust-
ment screw

Cable fitting
Cable tensioner

Hole for cable
fitting

Tap hole

Figure 3.8: Cable drive for the Elbow Pitch joint.
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a large pulley are attached to the motor shaft and the elbow shaft respectively. The

small pulley drives the large pulley through a steel cable that is routed by two idle

pulleys. In order for this system to work without backlash, proper cable tension must

be maintained. Cable tension can be fine-tuned by an adjustment screw coupled with

a cable tensioner. When the cable tensioner is moved to the left or to the right, the

cable tension increases or decreases accordingly.

3.1.3 Additional Design Features

There is one additional joint in Nico’s shoulder that gives the robot the ability to

perform a shrug-like movement. It needs to be both compact and capable of delivering

a large amount of torque. The final solution is shown in Fig. 3.9. The joint is powered

by a DC motor that drives a worm. The worm in turn distributes the torque to the

two shoulder pieces through two worm gears. This mechanism is non-backdrivable

just like the worm mechanism used in the Eye Tilt joint. The worm and the worm gear

together provide a speed reduction ratio of 20:1. This reduces the torque requirement

on the driving motor. Since the worm gears exert an upward thrust force on the

worm when the shoulder pieces are lifted up, a clamp and a sintered bronze washer

are attached to the motor shaft to transfer the thrust force to the body.

Although all of the motors used on Nico have built-in optical encoders, they can

provide a consistent reading of the motor shaft position only after they have been

calibrated. For calibration, a reference point needs to be set for each motor. A simple

design is used for this purpose. An example of it is shown in Fig. 3.10. In this figure,

a 3D view of the Neck Pitch joint is shown. In the piece that supports the shaft of

the driving motor, a small hole is drilled. A short stainless steel shaft is pushed into

this hole and used as a limiter. During calibration, the lower neck piece is turned

slowly in the clockwise direction until it hits the limiter and stalls. The position of the



CHAPTER 3. NICO - A NEW HUMANOID ROBOT 46

Worm gears

Right shoulderLeft shoulder

Worm

Clamp

Sintered bronze
washer

Figure 3.9: Mechanism that gives Nico the ability to shrug (view from the back).

Lower neck
piece

Motor limiter

Neck Pitch

Figure 3.10: A simple mechanism for motor calibration.
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motor shaft at this moment is set as the zero position upon which all future encoder

readings of this motor will be based.

Nico’s 1-DOF waist is also implemented with a cable drive system. This system is

however simpler than the one used in Elbow Pitch since no change of rotation axis is

necessary. In contrast to Elbow Pitch, the large pulley in the waist is kept stationary

and the small pulley along with the upper body revolves around it.

3.1.4 Motor Selection

Motor selection is a critical part of the whole design procedure. Motors constitute

about one third of the total mass of Nico. Because of the constraints put on the

dimensions of Nico, the sizes of the motors need to be kept as small as possible. On

the other hand, the motors on Nico must deliver enough power and torque to make

the robot as agile as possible. Micromo and Maxon are the two leading manufacturers

for miniature motors. Both companies can deliver parts in small quantities within a

very short period of time. Therefore, only the products from these two companies are

considered for the design of Nico. All of the motors we purchased for Nico are pre-

assembled with a gear head for speed reduction and a high-resolution optical encoder

for keeping track of the shaft position.

The first step of motor selection is to estimate the maximum torque Tspec and the

required speed Sspec at this torque for a particular joint. This estimation should take

in consideration factors such as whether there is an extra speed-reduction stage in the

joint. After Tspec and Sspec have been estimated, for each candidate motor+gearhead

assembly, the torque Tm the motor must produce to make the output torque of the

assembly be Tspec is calculated by dividing Tspec by the product of the ratio and the

efficiency of the gearhead. Tm should be no larger than half of the motor’s stall torque

to ensure good service life. The speed output Sm of the motor at Tm is calculated by
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subtracting the product of Tm and the slope of the speed-torque curve of the motor

from the no-load speed of the motor. Dividing Sm by the ratio of the gearhead results

in the output speed So of the motor+gearhead assembly. So should be no smaller

than Sspec. After such evaluations, the selection of a specific assembly from all the

qualified ones is determined by further comparison of features such as length, weight

and the amount of backlash at the output.

3.2 Nico’s Software

All sensors and motors on Nico are connected to a 16-node computation cluster run-

ning the QNX real-time operating system. Nodes are connected through a gigabit

backbone switch and a number of point-to-point network links. Two additional com-

puters running Windows and Linux respectively are also connected to the backbone

switch. These machines run softwares such as Small Vision System (for stereo vision)

and Watson (for head pose estimation) that are currently not available on QNX.

The software package of Nico consists of a large number of small modules. Each

of them implements a specific function. Many of these modules are low-level drivers

that communicate directly with the sensors and motors on Nico. Other modules

implement higher-level functions such as visual attention and object tracking. The

internal workings of individual modules will be described in detail in the following

chapters.

During run-time, selected modules are allocated to processing nodes based on

their computation requirements. Active modules can selectively communicate with

one another through a special communication interface. This communication inter-

face is based on two main classes - TcpIpSender and TcpIpReceiver. To send and

receive data, a module needs to instantiate a sender object based on TcpIpSender
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and an received object based on TcpIpReceiver respectively. A sender object can be

connected to multiple receiver objects so that one data piece can be propagated to

multiple modules with only one function call at the application level. Within each

connection, multiple channels can be established, each handling a unique type of data.

The times on all nodes in the computation cluster and the two external computers

are synchronized using Network Time Protocol (NTP). A module can examine the

“freshness” of the data pieces it receives by checking their embedded time stamps. In

this way, mistakes caused by mixing up information originated at different times can

be avoided.



Chapter 4

Learning to Reach

In this chapter, a model for learning reaching movements toward spatial targets is

presented. It consists of two main components. The first component is a learned

model of the forward kinematics of the arm (often called the forward model of the

arm), which transforms joint angles of the arm into the position of the arm end effec-

tor. The second component is a directional mapping that maps a desired movement

direction of the end effector into angular increments of the arm joints. It is derived

from the forward model and does not need to be learned separately. Based on the

information provided by these two components and the visual perception of the arm

end effector (whenever available), accurate reaching movements toward spatial targets

can be generated. Compared with other published methods, the model proposed in

this chapter requires far fewer training samples and a smaller representation space. It

is also consistent with psychological and physiological observations. Its performance

is demonstrated through both simulations and physical experiments on Nico.

The first section of this chapter reviews some of the previous work on reaching.

The next section describes our new model in detail, putting the emphasis on how the

forward model is learned and how reaching movements are generated. Following that,

the physical experiments carried out on Nico to test the model in the real world are

50
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presented. This chapter is concluded with a final discussion.

4.1 Related Works

In robotics, early work on reaching focused primarily on inverse kinematics. Many of

the solutions were based on the Resolved Motion Rate Control (RMRC) algorithm

which requires the forward kinematics of the arm to be known for the computation of

Jacobian matrices [146]. In contrast to high-precision robotic manipulators, the arm

kinematics of a human is difficult to describe as a closed-form function and changes

over an individual’s lifespan, especially in the early years. In humans, proficiency in

reaching is not present immediately after birth; it must be learned through practice

over time. As introduced in Section 2.1.5, infants typically make their first successful

reach at the age of three to five months. They can reliably reach spatial targets about

three months later. However, adult-level proficiency is only achieved after many more

months of practice.

What must be learned in order to achieve accurate reaching movements if the

values of the arm parameters are not readily available to the learning system? One

seemingly straightforward approach is to learn the inverse kinematic mapping from

xtarget to θ directly, where xtarget denotes the task vector that describes the target

position and θ denotes the joint vector describing the corresponding arm posture. This

approach is problematic in the case of human arm movements and many humanoid

robot arm movements because the dimension of the joint vector is larger than that

of the task vector. The result of this redundancy is that there can exist multiple

values of θ which correspond to the same xtarget. Choosing an appropriate one from

all possible values of θ can be difficult [39].

Jordan and Rumelhart suggested an approach that circumvented the difficulty
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mentioned above [74]. Instead of learning the inverse kinematics of a redundant arm

directly, a model of the forward kinematics of the arm is learned with a neural net-

work. Such a model is often called forward model. (There is physiological evidence

that forward models are used by the brain for a variety of sensorimotor tasks [94].)

After learning the forward model, a second neural network is constructed and its

output neurons are directly connected to the input neurons of the network repre-

senting the forward model. The combined network accepts task vector x as input

and outputs another task vector x′. In the next step, the connective weights in the

second network are modified through error backpropagation such that the combined

network represents an identity function in the end. At this point the second network

is disconnected from the forward model and is used afterwards for computing a joint

vector θ for any given target vector xtarget.

While Jordan and Rumelhart’s approach yields a one-to-one inverse mapping of

the arm, this inverse mapping remains fixed after learning. This, in effect, removes

the flexibility brought by the redundancy in the arm. Moreover, their approach does

not provide a measure to reduce the residual errors in the inverse mapping. Bullock

et al. suggested that a better solution to the reaching problem should contain both

a learned forward model of the arm and a learned mapping that maps a direction

vector in the task space to a direction vector in the joint space. Instead being used

to obtain a unique inverse mapping of the arm, the forward model in Bullock et al.’s

solution serves the purpose of predicting the current position of the arm end effector.

Arguments supporting the learning of both a forward model and a directional mapping

have also been put forth by other researchers [93][125][126]. In particular, Miall

compared existing solutions to the reaching problem from the perspective of control

engineering [93]. From this perspective, a directional mapping acts as a feedback
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controller and a forward model stabilizes the system by removing the sensory delays.

A variety of learning algorithms have been suggested for acquiring these functions,

including Self Organizing Maps (SOM) [119][25], Multiple Layer Perceptrons (MLP)

[74] and Locally Weighted Projection Regression (LWPR) [41]. The choice of learning

algorithm determines directly the compactness of the representations of the forward

model and the directional map, as well as the number of training samples required

to ensure good convergence. The larger the dimension of the joint vector θ, the

greater the need for compact representations and reduced training set sizes. Bernstein

identified this as the “degrees of freedom problem” [11] and it is known in statistical

learning theory as the curse of dimensionality [66].

While many have argued about which mappings should be learned and which

learning algorithms are most appropriate for this task, the dimensionality problem

remains. As an example of scale, Bullock et al. employed 15625 neurons to learn a

forward model of a 3-DOF arm based on a 40000-sample training set [25]. Besides the

dimensionality problem, the question of how perceptual noise affects the accuracy of

reaching has not been sufficiently addressed in the literature. Also, the performance

of the previously proposed models has been demonstrated primarily in simulations;

evidence that they also work in the real world is lacking.

4.2 A New Model for Learning to Reach

Fig. 4.1 provides an overview of a novel model for learning to reach. The basis of the

model is a forward model of the arm that is learned autonomously through motor

babbling. It is important that the parameters for learning the forward model are set

appropriately in order to keep the required number of training samples and the size

of the representation space as low as possible. After the forward model is learned, it
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is used during a reaching movement to predict the position of the end effector from

the current arm posture. The pseudo-inverse of the Jacobian corresponding to the

current arm posture is computed directly from the forward model. ∆x is a direction

vector of small magnitude in the task space pointing from the predicted end effector

position to the target position. It is transformed into a joint vector increment ∆θ that

is relayed to the arm motors. If the end effector can be perceived by the stereo vision

system during the reaching movement, xpred is replaced by xperc and ∆x becomes

a direction vector pointing from the perceived end effector position to the target

position. A description of the stereo vision component is given in Section 4.2.1. The

training of the forward model and the algorithm for incremental trajectory generation

are described in detail in Sections 4.2.2 and 4.2.3 respectively.

Figure 4.1: Overview of a new model for learning to reach based on a learned forward
model of the arm kinematics. During a reaching movement, the forward model is
used both for the prediction of the end effector position and the computation of the
pseudo-inverse of the current Jacobian. The dashed line representing the data flow
from the stereo vision component indicates that visual feedback is optional during
reaching.
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4.2.1 Stereo vision

The stereo vision component shown in Fig. 4.1 retrieves video data from the two

short focal length cameras as input. The two long focal length cameras prove to

be impractical for the stereo vision needed for the reaching behavior because their

common vision field has only a small overlap with the reachable space of the robot

arm. The radial distortion coefficients K1 and K2 and other parameters are measured

for each camera through the Camera Calibration Toolbox for Matlab developed by

J.-Y. Bouguet [18]. The pixel value of position (x, y) in the corrected frame is filled

with the pixel value of position (x′, y′) in the original frame through the following

equation [69]:

x′ = x(1 + K1r
2 + K2r

4)
y′ = y(1 + K1r

2 + K2r
4)

(4.1)

If values of x′ and y′ are not integers, they are replaced by their respective integer

parts. During the startup of the vision subsystem, a lookup table is built for each

camera consisting of the mappings from (x, y) to (x′, y′) for all possible (x, y). The

pre-built lookup tables enable an efficient distortion correction in real time.

(a) (b)

Figure 4.2: Original image (a) and image (b) corrected for radial distortion through
Eq. (4.1)

Currently, a φ19.05mm wooden ball is attached to the distal end of the robot arm
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as the end effector and a wooden ball of the same diameter is used as the reaching

target. The projection of either the end effector or the target on each camera image

plane is replaced by its centroid. For the experiments described in this chapter , the

two eye cameras are positioned parallel to each other. These simplifications make it

straightforward to determine the position of both the end effector and the target in

the eye-centered coordinate system [127].

4.2.2 Learning a forward model

The forward kinematic function of the arm is defined as a mapping farm : θ → x.

Each of Nico’s arms has 6 degrees of freedom, so we have θ ∈ R6. At the current stage,

we require our robot to touch a presented target without putting any restriction on

the orientation of its end effector. This makes x ∈ R3. A forward model of the arm

is learned through motor babbling, during which the arm is repeatedly moved into

random postures. If the end effector can be perceived by the stereo vision system

at the end of an arm movement, the joint vector θ corresponding to the current arm

posture and the perceived 3D position x of the end effector is recorded as a training

sample. The arm stops moving only when a pre-specified number of training samples

are gathered.

Learning a forward model of the arm is essentially approximating the function

farm through training samples of the form (θi, xi)i=1,2,...,n, where n is the size of the

training set. Each xi in (θi, xi) contains noise introduced by the stereo vision system.

Neural networks such as MLP and RBFN are commonly used function approximation

techniques [68]. The most important reason for our adoption of RBFN for learning

the forward model is that the only weights to be learned are those connecting the

hidden layer and the output layer. They can be determined directly by the linear

least square method, which avoids the problem of local minima that MLPs often
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encounter. Arguments favoring RBFN from the perspective of biological plausibility

will be given in Section 4.2.2.

Optimization of learning parameters

The Gaussian function is used as the basis function in the hidden layer of our RBFN.

It can be expressed as g(x) = exp(‖x−c‖·0.8326/spread), where x is the input vector

and c is the center of the Gaussian. The parameter spread controls the extent of g’s

influence in its neighborhood. Since it has been shown that a RBFN with a set of

basis functions that have a common form but different centers can approximate any

continuous input-output mapping [112], the same value is assigned to the spread of

each Gaussian. We use the Orthogonal Least Squares (OLS) algorithm to determine

the number and the centers of the Gaussian functions automatically from the training

data [34]. The training stops when the root mean square error (rmse) of the net-

work falls below a certain margin. The optimal values for both spread and margin

must be determined before training. In addition, we are also interested in keeping

the size of the training set as small as possible to save the time spent on gathering

training samples. Computer simulations are used to optimize the three learning pa-

rameters (spread, margin and training set size) because it is very difficult to measure

accurately the quality of the learned forward model through physical experiments.

Since the optimal spread of the Gaussian functions in the hidden layer depends

primarily on the actual function to be approximated, the effect of noise is excluded

in the simulations conducted to optimize spread, which means the value of xi in the

training sample (θi, xi) is for the time being the true end-effector position correspond-

ing to the joint vector θi. Fig. 4.3 shows four rmse-spread curves for four different

training set sizes. The line style of each curve indicates which size it corresponds to.

Each data point is generated by averaging the rmse values measured on 40 random
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Figure 4.3: rmse-spread curves for four different training set sizes. The averaged
optimal spread is 130. (Data generated by simulations.)
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Figure 4.4: rmse-margin curves for four different training set sizes and two camera
resolutions. For each camera resolution, the optimal margins for different training
set sizes lie quite close to each other. (Data generated by simulations.)

training sets of the same size. It can be observed that for all of the four curves dis-

played, the rmse falls sharply at the beginning. As spread grows larger, the rmse

appears to stay constant although it actually rebounds very gently after reaching a

minimum point. The average of the optimal spread values of the four rmse-spread

curves is about 130.
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A large part of the noise in the perceived 3D position of the end effector is the

stereo perception error, which is dependent on the resolution of the camera images.

To find the optimal values of margin for different camera resolutions, simulations

were conducted that use training samples whose task vector components contain

stereo perception errors. spread was set to a constant value of 130. The results

of the simulations to optimize margin are shown in Fig. 4.4, where the curves are

plotted in different styles according to the same convention used in Fig. 4.3. As

expected, the optimal margin for a 160x120 camera resolution is more than 2mm

higher than that for a 320x240 camera resolution. Lower-resolution images result in

higher stereo perception error which in turn requires a larger value for margin to

prevent overfitting. Fig. 4.4 also shows that the more training samples we use, the

higher the quality of the learned forward model. However, a 400-sample training set

already leads to a small rmse very close to that achieved by a 800-sample training

set. 400 samples require a very moderate amount of time to gather on a physical

robotic platform, less than 30 minutes in our case.

In the real world, the stereo perception error only partially contributes to the

noise in the perceived position of the end effector. The end effector of a robotic arm

is a 3D structure. Its projection on the camera image plane is not a point, but a blob.

Using the centroid of the blob as we do for the calculation of the end effector position

introduces additional error since the two centroids on the right and left image planes

do not represent the same point on the end effector. Putting a special marking on

the end effector does not solve the problem effectively because it is hard to guarantee

that this marking is visible for all arm postures. From Fig. 4.4, we can see that

rmse rises significantly as margin moves away from its optimal value. For a RBFN

learned through motor babbling on a physical robot, it is difficult, if not impossible, to
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Figure 4.5: Hidden layer size versus margin curves for four different training set sizes
and two camera resolutions. Unlike the rmse-margin curves that are difficult to
generate on a physical robotic platform, these curves can be easily produced. (Data
generated by simulations.)
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Figure 4.6: (a) shows the rmse-margin curve of a RBFN trained on a 400-sample
set. (b) shows that the hidden layer size versus margin curve of the same network
can be fitted very well with two straight lines (dashed). The intersection of these two
lines corresponds roughly to the optimal margin. A 160x120 camera resolution is
used during motor babbling. (Data generated by simulations.)

measure the true error vector farm(θi)− f̃arm(θi) accurately, where f̃arm is the learned

forward model represented by a RBFN. Thus, finding out the optimal margin on a

physical robot through gathering data to plot the rmse-margin curve is impractical.
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Fortunately, the representation of the RBFN provides a measurement that is easy to

gather and useful for determining the optimal margin. Fig. 4.5 shows the curves of

the hidden layer size of the RBFN versus margin. Many of those curves appear to

be consisted of two straight segments whose intersection corresponds approximately

to the optimal margin. Some curves exhibit a third segment in the middle, but this

phenomenon is caused by the coarse increment for margin used for generating these

curves. This observation leads to the following practical strategy: First generate a

curve of hidden layer size versus margin by training a new RBFN each time with a

slightly larger margin on the same training set. Then find the splitting point e for

which the sum of the errors for fitting the left and the right part of the curve with two

different straight lines is minimal. e can be found with a simple exhaustive search.

Fig. 4.6 shows an example.

A biologically plausible implementation

Radial basis function networks have a solid theoretic foundation and close ties to

regularization theory and Support Vector Machine (SVM) [117][113][59][138]. Poggio

has suggested that RBFN is one of the learning mechanisms in the brain [114]. Pouget

et al. saw RBFNs as a form of population coding that could play an important role

in sensorimotor transformation [115][40].

Our implementation of RBFN uses the OLS algorithm to determine the number

and the centers of the basis functions in the hidden layer. OLS is a sophisticated

algorithm that tries to approximate an unknown function with a minimum number

of hidden neurons; it is highly unlikely to be used by a biological learning system.

However, OLS is not essential for RBFN training; other algorithms or even heuristics

can be used as substitutes. To consider the worst-case performance, we compared the

performance of two RBFNs, one of which is trained with OLS while for the other, the
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Figure 4.7: The solid curve is generated by training a RBFN repeatedly on a 400-
sample set with OLS, each time with slightly larger margin. Each data point on the
dashed curve is the averaged rmse of a RBFN trained on 40 different 400-sample
sets. Each time, the number of the basis functions in the RBFN is kept the same,
but their centers are randomly set to the joint vectors of randomly selected samples
from the training set. A 320x240 camera resolution is used during motor babbling.
(Data generated by simulations.)

centers of the hidden layers are set to the joint vectors of randomly selected samples

from the training set. The results of the simulation are shown in Fig. 4.7. It can be

observed that the rmse of the second network is within a factor of 2 of that of the

first network if both networks use the same number of hidden neurons. Compared

with the overall range of motion of the arm, this error is still quite small.

Once the number and the centers of the basis functions in the hidden layer have

been determined, the weights from the hidden layer to the output layer can be calcu-

lated directly. The output of the hidden layer for the task vector θi of the training sam-

ple (θi, xi) can be described with vector hi. Using H = [h1 h2 ...] and X = [x1 x2 ...]

respectively, we would like to find a weight matrix W such that

WH = X. (4.2)
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Usually no exact solution can be found. A minimum norm solution can be computed

through the linear least square algorithm as

W = XHT (HHT )−1. (4.3)

From another perspective, W in Eq. (4.2) can be seen as an associative memory. It

can be formed through an incremental learning rule such as the biologically plausible

Hebbian learning, which is the only learning mechanism needed to learn a forward

model of the arm with a RBFN since the centers of the basis functions in the RBFN

can be randomly selected as discussed in the previous paragraph [119][68].

4.2.3 Incremental trajectory generation

Algorithm description

The forward kinematics equation x = farm(θ) can be transformed into

ẋ = J(θ)θ̇ (4.4)

by taking derivative on both sides. Resolved Motion Rate Control (RMRC) solves

Eq. (4.4) with

θ̇ = J#ẋ, (4.5)

where J# is the pseudo-inverse of the Jacobian matrix J [146]. θ̇ in Eq. (4.5) is the

minimum norm solution to ẋ satisfying Eq. (4.4). Liegois proposed an extension

θ̇ = J#ẋ + α(J#J − In)∇H (4.6)

that exploits the null space of J to incorporate an additional optimization criterion

H into Eq. (4.5) [84]. Typical applications of Eq. (4.6) include singularity avoidance

and obstacle avoidance [108][87]. We use the original form of RMRC as the basis for
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our incremental trajectory generation algorithm (ITGA). However, it should be noted

that our ITGA can be easily adapted to any extension of RMRC based on Eq. (4.6).

Eq. (4.5) can be approximated by

∆θ = J#∆x. (4.7)

J# in Eq. (4.7) can be understood as a directional mapping which transforms the

direction vector ∆x in the task space into direction vector ∆θ in the joint space. Bul-

lock et al. suggested that an approximation of the directional mapping J#, denoted

as J̃#, can be learned independent of the forward model f̃arm. However, the most

direct way to obtain J̃# is to extract J̃ from f̃arm and transform it into J̃#. (Recall

that f̃arm can be easily learned as was shown in Section 4.2.2) One way to extract J̃

is to replace the basis functions in the hidden layer of the RBFN representing f̃arm

with their appropriate partial derivatives [16]. For instance, in order to get an ap-

proximation of [J11, J21, J31]
T , we simply replace the basis functions by their partial

derivatives with respect to θ1 and use the output of the network as the approxima-

tion for [J11, J21, J31]
T . In this way, a complete Jacobian approximation J̃ can be

constructed. Another way to derive J̃ is simply to use numerical differentiation. Our

ITGA that relies on both f̃arm and J̃ is listed in Table 4.1. This version assumes that

visual feedback of the end effector position is not available throughout the reaching

movement.

Based on the predicted current position of the end effector x̃(i− 1) and the target

xtarget, the joint vector θ̃(i) at step i is calculated using

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − x̃(i− 1)), (4.8)

where xtarget − x̃(i − 1) represents the direction vector in the task space toward the
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Table 4.1: Incremental Trajectory Generation Algorithm (ITGA).

1 initialize θstart, xtarget, step size
2 θ̃(0) ← θstart

3 x̃(0) ← f̃arm(θ̃(0))
4 i ← 0
5 loop
6 i ← i + 1
7 if ‖xtarget − x̃(i− 1)‖2 > step size
8 α(i) ← step size/‖xtarget − x̃(i− 1)‖2

9 else
10 α(i) ← 1
11 end
12 Calculate J̃ and J̃# for θ̃(i− 1)
13 ∆x ← α(i)(xtarget − x̃(i− 1))
14 θ̃(i) ← θ̃(i− 1) + J̃#∆x
15 Output θ̃(i) to the motor controller
16 x̃(i) ← f̃arm(θ̃(i))
17 if α(i) equal 1
18 break
19 end
20 end

reaching target. α(i) ensures that the magnitude of α(i)(xtarget − x̃(i − 1)) is equal

to step size before the final reaching step. Eq. (4.8) can be seen as a further approx-

imation of Eq. (4.7).

Analysis

To make it clear that both the learned forward model f̃arm and the extracted Jacobian

J̃ are involved in Eq. (4.8), we can rewrite Eq. (4.8) as

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − f̃arm(θ̃(i− 1))). (4.9)

Eq. (4.9) shows that the errors in both J̃ and f̃arm contribute to the final position
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error. In order to isolate the effects of these two kinds of errors, we consider three

variants of Eq. (4.9), which rely upon exact models:

θ̃(i) = θ̃(i− 1) + J#α(i)(xtarget − f̃arm(θ̃(i− 1))). (4.10)

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − farm(θ̃(i− 1))) (4.11)

and

θ̃(i) = θ̃(i− 1) + J#α(i)(xtarget − farm(θ̃(i− 1))) (4.12)

In contrast to Eq. (4.9), Eq. (4.10) only uses f̃arm to generate a reaching trajectory

while Eq. (4.11) only uses J̃ . So the final position error resulting from an ITGA based

on Eq. (4.10) or (4.11) is caused solely by the error in f̃arm or J̃ respectively. Eq. (4.12)

can be seen as an exact reformulation of Eq. (4.7). Because Eq. (4.12) relies on the

exact forward kinematics and Jacobian, among the four equations listed above, it

should achieve the best reaching performance and can serve as a benchmark. For the

sake of simplicity, the four different versions of ITGA based on Eq. (4.9), (4.10), (4.11)

and (4.12) are referred to below as ITGA(f̃arm, J̃), ITGA(f̃arm, J), ITGA(farm, J̃) and

ITGA(farm, J) respectively.

Error histograms of the four ITGAs defined above are shown in Fig. 4.8. They

are generated by simulations based on the same forward model. A 320x240 camera

resolution is used during motor babbling. It is assumed that xtarget contains no

perceptual noise. 10mm is assigned to the variable step size. The starting posture is

selected such that all joints assume values in the middle of their motion ranges. Since

ITGA(f̃arm, J̃) uses no visual feedback at all, it is very satisfying to see that almost

all of its errors are below 5mm. Despite the good reaching performance achieved,

there are two very interesting questions to be answered: What are the most important

factors that determine the reaching accuracy? Does our model scale to tasks requiring
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Figure 4.8: Error histograms of the four different versions of ITGA. A 320x240 camera
resolution is used during motor babbling. 10mm is assigned to step size. (Data
generated in simulations.)

very high reaching accuracy, e.g. threading a needle?

Fig. 4.9 shows a second set of error histograms for the four ITGAs with reduced

camera resolution of 80x60. With all other simulation parameters held constant, the

error histograms of ITGA(f̃arm, J̃) and ITGA(f̃arm, J) look much worse than their

counterparts in Fig. 4.8. However, the error histogram of ITGA(farm, J̃) does not de-

teriorate significantly. More interestingly, it can observed in both Fig. 4.8 and Fig. 4.9

that the reaching accuracy of ITGA(farm, J̃) is much higher than that ITGA(f̃arm, J),

which seems to indicate that the quality of J̃ is much better than f̃ . Through a care-

ful examination of the original ITGA algorithm listed in Section 4.2.3 and Eq. (4.10)

and (4.11), it can be discovered that while the reaching accuracy ITGA(f̃arm, J) is
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Figure 4.9: Error histograms of the four different versions of ITGA. A 80x60 camera
resolution is used during motor babbling. 10mm is assigned to step size. (Data
generated in simulations.)
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Figure 4.10: Error histograms of ITGA(f, J̃) based on reduced step sizes. A 80x60
camera resolution is used during motor babbling. (Data generated in simulations.)
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almost single-handedly determined by the errors in f̃arm, the reaching accuracy of

ITGA(farm, J̃) is determined by both the errors in J̃ and the variable step size. Fur-

thermore, the reaching accuracy can be improved by reducing step size while keeping

J̃ fixed. Fig. 4.10 shows two error histograms produced by ITGA(farm, J̃) with re-

duced step sizes while inheriting the rest of the parameters from the lower left plot

in Fig. 4.9. The mean reaching error achieved by ITGA(farm, J̃) with step size = 2

is only 0.26mm, enough for threading a needle considering the average size of a nee-

dle eyelet. This result is surprising because the forward model used for Fig. 4.10 is

learned with a very crude camera resolution.

For physical experiments on a robotic platform, we have no other choice than

using ITGA(f̃arm, J̃) for trajectory generation. But if we use the feedback from the

stereo vision to track the position of the end effector during reaching movements, we

no longer need f̃arm for prediction, as long as the end effector is visible to the stereo

vision system. In fact, if xpred is substituted by xperc in Fig. 4.1, the actual reaching

movements are controlled by a new ITGA. Its core equation can be described as

θ̃(i) = θ̃(i− 1) + J̃#α(i)(xtarget − st(farm(θ̃(i− 1)))), (4.13)

where the function st() is the stereo perception function. The higher the resolution of

visual feedback, the closer st(x) is to x. With a very high camera resolution for visual

feedback, the term st(farm(θ̃(i− 1))) in Eq. (4.13) is virtually indistinguishable from

farm(θ̃(i − 1)) such that the new ITGA in effect becomes ITGA(farm, J̃). With the

discussion above and the results shown in Fig. 4.10, it can be concluded that a very

high reaching accuracy can be achieved with a small step size and the aid of visual

feedback of a high resolution. This combination can compensate for the relatively

large errors in a forward model trained on samples that are gathered under a crude
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camera resolution.

4.3 Physical Experiments on Nico

Experiments have been carried out on Nico to test the performance of our model. A

320x240 camera resolution is used during motor babbling. 400 samples are collected

to train a forward model of the arm kinematics. It takes less than 30 minutes to

collect these samples. spread is set to 130. margin is determined by the heuristics

described in Section 4.2.2. The reaching target is attached to the tip of a modified

retractable TV antenna to facilitate its positioning. A fixed starting posture is used

to generate all reaches. At the beginning of a reaching movement, step size is set

to 10mm and a 320x240 camera resolution is used to locate the target. After the

difference between the target position and the end effector position estimated by

the forward model becomes smaller than 50mm, step size is reduced to 5mm and

the camera resolution is switched to 640x480. Visual feedback of the end effector is

exploited whenever available after the resolution switch. Fig. 4.11 shows two groups

of pictures. Each group consists of six pictures organized from left to right with the

pictures in the second row following the pictures in the first row. Group (A) shows

a successful reach by Nico that moves its end-effector toward the target with the

guidance of visual feedback. The pictures in Group (B) shows a reaching movement

from the perspective of Nico’s stereo vision system. Segmentation results presented in

these pictures are computed using prior knowledge about color. The camera images

in the first picture are captured before the resolution switch. The images in the rest

of the pictures are captured with a 640x480 resolution. It can be seen from the last

picture that at the end of the movement, the end effector already touches the target

from the perspective of Nico’s stereo vision system.
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(a)

(b)

Figure 4.11: Picture sequence (a) shows Nico reaching toward a target with its end-
effector. Part of Nico’s body is covered with black cardboard to make it easier to
identify both the target and the end-effector. Picture sequence (b) captures what
the robot sees during a reaching movement. Images from both the right and left eye
camera are presented in each picture. It can seen from the last picture that from
the robot’s perspective, the end-effector hits the target at the end of this reaching
movement. Please refer to Section 4.3 for more detailed description.
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4.4 Discussion

In the model proposed in this chapter for learning to reach, the only learning algo-

rithm used is a general-purpose neural network that is widely believed to exist in

the brain. While its performance can be maximized by using a carefully-designed

training algorithm (OLS), simple and biological plausible Hebbian learning can used

for its training as well. The iterative way the model generates reaching trajectories

is consistent with the observation that infants’ reaching trajectories exhibit multiple

segments. The model can use visual perception of the end effector to improve reach-

ing accuracy. It can also choose to rely on proprioception alone when the end effector

is out of view or speedy trajectory generation is critical.

Previous sections have shown through both simulations and physical experiments

that a very good reaching performance can be achieved with a forward model learned

with a 400-sample training set. The number of hidden neurons in such a forward

model is around 100. To put that into perspective, Bullock et al. used 40,000 training

samples to learn the forward kinematics of a hypothetical arm with a self-organizing

map containing 15625 neurons [25]. Bullock’s hypothetical arm has only three DOFs

and is constrained to move on a vertical plane. In contrast, our robotic arm has

six DOFs and moves unconstrained in the 3D space. In Metta’s work introduced

in Section 2.2.2, only two of the DOFs in Babybot’s arm are activated for reaching.

Learning takes place through filling up a look-up table. Although the size of look-up

table is not explicitly given by Metta, it grows exponentially with each additional

DOF used for reaching.

In Section 4.2.3 we came to the conclusion that a very high reaching accuracy can

be achieved with high resolution visual feedback and small step size even when the

forward model is learned with a crude visual resolution. If we assume that each reach-
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ing step is completed within a constant amount of time, this conclusion is consistent

with the observation made on humans that the accuracy of a reaching movement is

inversely related to the speed of the movement [47]. However, if high resolution vi-

sion can be used for feedback during reaching movements, why not use it for forward

learning as well? Why bother to consider using a crude visual resolution at all? As

mentioned in Section 4.2.2, because we replace the projections of the end effector on

the two camera image planes with their centroids for the calculation of 3D position,

the effective resolution can be crude even if a high camera resolution is used. When

an infant starts to make spontaneous reaches, its vision is quite poor compared with

that of an adult. The conclusion drawn in Section 4.2.3 suggests that a forward model

learned with crude vision may well be used for generating accurate reaches later on

when high resolution vision becomes available.



Chapter 5

Extensions of the Reaching Model

In last chapter a new model was described that allowed our humanoid robot Nico

to learn to reach quickly and efficiently. The major disadvantage of this new model

is that the head of the robot must maintain a fixed posture both during and after

learning. If the head posture changes, learning must start all over again. In the

first part of this section, an extension of the model is introduced that allows the

neck joints of the robot to move freely. Instead of learning the extended kinematic

chain from the eyes to the end effector directly, the sensory feedback of the vestibular

system is exploited in a special way such that the dimensionality of the learning space

stays unchanged. The only apparent change is that reaching trajectories that were

previously straight (in Cartesian world coordinates) are now gently curved just as

those produced by humans. This observation leads to the hypothesis that the gentle

curvature in human reaching trajectories reflects the attempt of the brain to mitigate

the degrees of freedom problem in motor learning.

While pointing involves the movement of the arm to align it with a target, it

is often considered a social skill because it is used by adults to direct other people’s

attention. In the second part of the this chapter, another extension of the reach model

is presented that allows for the production of pointing gestures without additional

74
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Figure 5.1: Morasso’s experiments showed that when the hand moves from one planar
position to another, the trajectory it follows is often mildly curved [97] The six resting
positions are marked with crosshairs. The dotted curves represent some of the hand
trajectories recorded during the experiments.

learning. This is achieved by manipulating the Jacobian matrix that is used for

the iterative generation of motor commands. Our conjectures regarding how infants

learn to distinguish between reachable and out-of-reach targets and how their pointing

gestures become adult-like over time completes this chapter.

5.1 Incorporation of the Neck Joints

5.1.1 Curved Reaching Trajectories in Humans

Reaching is one of the most thoroughly investigated sensorimotor tasks. Because the

human arm contains more joints than there are dimensions in the work space, there

are in principle infinite postures that reach the same target in space. The experiments

carried out by Morasso showed the remarkable result that human reaching movements

invariably possess two characteristics: the trajectory is gently curved (see Fig. 5.1)

and the velocity profile is bell-shaped [97]. Many theories have been proposed to

explain the observations made by Morasso. Some are based on the assumption that

reaching movements are governed by some optimization measure. For example, Uno

et al. suggested that when the arm executes a reaching movement, it tries to minimizes
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the square of the rate of torque change over the entire movement [137]. Harris and

Wolpert argued that for many types of arm movements the most important goal is

to make the final position of the end effector as accurate as possible and the the

stereotypical arm movements observed in humans are the result of pursuing this goal

[65]. Alternative explanations of Morasso’s observations include Hollerbach et al.’s

hypothesis that humans plan reaching movements in the joint space and different

joints start to move at different times [70]. Flash suggested that the curvature in the

reaching trajectories is caused by the interactions between the viscoelastic properties

of muscles and the inertial properties of the arm [49]. Wolpert et al., on the other

hand, attributed the curvature to the inherent distortion in the visual perception

system [150].

Guenther and Barraca’s study [62] is one of the few that try to explain the curva-

ture in reaching trajectories from the perspective of development. It is based on the

work of Bullock et al. [25] described in the previous chapter. An important concept

for their study is the manipulability ellipsoid [152], which refers to the phenomenon

that if all joint increment vectors ∆θs lying on the unit sphere are mapped into spa-

tial displacement vectors ∆xs of the arm end effector, these ∆xs form an ellipsoid.

The long axis of the ellipsoid is the direction along which end effector movement of

unit length can be achieved with the minimum amount of joint rotation. Simulations

showed that the direction mapping ∆x → ∆θ learned on the data gathered during

motor babbling tends to warp the moving direction of the end effector toward the long

axis of the manipulability ellipsoid. Guenther and Barraca proposed that this learn-

ing bias and the tendency of the arm to move into comfortable postures contribute

to the curvature in reaching trajectories observed by Morasso.

While we agree with Guenther and Barraca that the curvature in reaching tra-
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jectories can be just a side effect of motor learning, it is our belief that the cause of

this side effect is more fundamental. In the next few sections, the reaching model

proposed in the previous chapter will be extended to a more natural setting and we

will illustrate there how a dimension reduction mechanism in the extended model

results in curved reaching trajectories similar to those observed in humans.

5.1.2 Exploiting the Vestibular System

To extend the applicability of the model for learning to reach described in the

previous chapter to more human-like situations, we now allow the neck joints to

move freely during motor babbling. With the neck joints activated, the kinematic

function mapping the joint vector into the end-effector position vector becomes:

farm neck : (θarm, θneck) → x. One way to cope with the expanded kinematic function

is simply to increase the number of training samples. Despite the simplicity of this

approach, its disadvantage is obvious. It was shown in [130] that if the two wrist

joints in Nico’s arm are frozen during motor babbling, about 120 training samples

are needed to learn a forward model of the arm. When the two wrist joints are ac-

tivated together with the shoulder and elbow joints during motor babbling, about

400 training samples are needed (see Chapter 4). In other words, the requirement

for the number of training samples triples when two additional DOFs at the bottom

of the arm kinematic chain are activated during motor learning. If farm neck were to

be learned directly, the increase of the training sample requirement would be even be

more substantial because the neck joints are located at the top of the kinematic chain

extending from the eyes to the arm end effector. Fortunately, this dramatic increase

of the time to be spent on sample gathering can be avoided by taking advantage of

additional sensory information.

Fig. 5.2 illustrates a simplified situation where a shift of the head posture leads to
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changes in both the position and the orientation of the head. The eyes are assumed

to remains stationary in relation to the head. The head in its original and shifted pos-

ture is painted in black and gray respectively. Although the eye-centered coordinate

system’s positional change can not be perceived directly, its change in orientation can

be derived from inertial information from the human vestibular system, or on Nico

from a gyroscope. This information can then be used to correct this orientation shift

caused by the posture change of the head, i.e. the coordinate system OXY can be

corrected into OX ′Y ′ as shown in Fig. 5.2.

O

X

Y

X'

Y'

Figure 5.2: Illustration showing the effect a shifted head posture on the eye-centered
coordinate system. The original and the shifted head posture is painted in black and
gray respectively. Inertial information allows for the correction of the eye-centered
coordination system OXY into OX ′Y ′.

The original input and output of the kinematics function farm neck are θ = (θarm,

θneck) and

x = T eye
body(θneck) · T body

ee (θarm) · [0, 0, 0, 1]t (5.1)

respectively, where T eye
body and T body

ee are homogenous transformation matrices. T eye
body

can be expressed as
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T eye
body =

[
R3×3 T3×1

01×3 11×1

]
, (5.2)

R is the rotation matrix and T is the translation vector. R can be constructed directly

from sensory data from the gyroscope/vestibular system. We denote T ′eye
body as

T ′eye
body =

[
R3×3 03×1

01×3 11×1

]
. (5.3)

Using T ′eye
body, the perceived position x of the end-effector can be transformed into

x′ = (T ′eye
body)

−1 · x. (5.4)

This is similar to correcting OXY into OX ′Y ′ as illustrated by Fig. 5.2.
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Figure 5.3: 1000 random positions for both the right eye camera (in black) and the
end effector (in gray) are plotted in the body-centered coordinate system. It can be
easily seen that the range of motion of the eye camera is much smaller than that of
the end effector.

If we assume (falsely) that the combined effect of the neck joints is purely ro-

tational so that it is fully eliminated in x′, we can learn a forward model with
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the transformed training samples in the form of ((θarm)input, (x
′)output) instead of

((θarm, θneck)input, (x)output). In reality, this assumption does not hold true, which can

be easily recognized in Fig. 5.2. Learning a forward model with transformed training

samples is equivalent to regarding the translational effect of the neck joints as noise.

Through simulations based on the parameters of Nico, we have found that the stan-

dard deviation of the possible positions of the end effector is about three times larger

than that of the eye translations caused by the neck joint rotations. Fig. 5.3 shows a

scatter plot of 1000 random positions of the end-effector and 1000 random positions

of the right eye camera. This difference in the ranges of motion between the end-

effector and the eye camera means that the position change of the end-effector in the

eye-centered coordinate system is caused to a much greater extent by the arm posture

than by the head posture. The forward model learned with ((θarm)input, (x
′)output) is

not as accurate as the one learned with ((θarm, θneck)input, (x)output), but it can suffice

for the purpose of reaching spatial targets. Since the body dimensions of Nico and

the ranges of motion of its joints closely match those of a one-year-old child, the

conclusions drawn in this paragraph also apply to a one-year-old.

The proposed learning approach which encompasses the DOFs in both the head

and the arm retains the original dimensionality of problem. It has the additional

advantage that the framework shown in Fig.4.1 does not need to be changed for

generating reaching trajectories. Simulations show that the average positional error

of blind reaching is about 20mm. Although this is significantly larger than the average

positional error of the system that handles only the DOFs in the arm (<5mm), it can

be eliminated by exploiting visual feedback during the reaching movements. When

the end effector of the arm is visible to the stereo cameras, the direction vector ∆θ

can be calculated as
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∆θ = αJ#(xtarget − xperc), (5.5)

If both xtarget and xperc contain no stereo perception error, the error in ∆θ is solely

caused by the approximation error in the Jacobian J extracted from the forward

model. Since ∆θ determines the actual spatial direction the end effector moves along,

the error in it causes the actual reaching trajectory to deviate from the straight line

connecting the starting position of the end effector and the target.
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Figure 5.4: The reaching trajectory that appears to be straight is based on a forward
model learned during a motor babbling phase when only the 6 DOFs in the arm are
activated. The curved trajectory is based on a forward model learned on samples
that use the sensory information of the gyroscope/vestibular system as a substitute
for the proprioception of the neck joints. The plot is presented in the Cartesian world
coordinate system. (Data generated in simulations.)

Fig. 5.4 shows two reaching trajectories produced by simulations. The trajectory

that appears to be straight is generated with a forward model f̃arm that is learned

during a motor babbling phase when all 6 DOFs in the arm are activated and the

head is kept in a fixed posture. 400 samples are used to train f̃arm. The high quality

of this forward model results in a reaching trajectory that is apparently straight. The

curved trajectory is generated by a forward model f̃arm neck trained on 400 samples
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gathered during a motor babbling phase when all DOFs in the neck and the arm are

activated. These samples take the form of ((θarm)input, (x
′)output) signifying that the

sensory feedback of the gyroscope/vestibular system is employed to keep the input

dimension of the forward model fixed to 6. Due to the lower quality of f̃arm neck

and hence the larger error in J extracted from it, the reaching trajectory based on

f̃arm neck is visibly curved. The correct reaching directions on selected points on the

trajectory are marked with arrows.

5.1.3 Additional Results

To further confirm the conjecture that the curvature of the reaching trajectories based

on f̃arm neck is due to the ignored translational effect of the neck joints, additional

simulations have been carried out to compare the trajectories based on two different

estimates of f̃arm neck. For the first model, the neck joints move within their normal

ranges of motion when training samples are being gathered, while for second model,

each neck joint moves within a range of motion enlarged by 25%. Such an enlargement

increases the average head translation during motor babbling, which in turn leads to

larger errors in the second forward model. Fig. 5.5 displays two trajectories with the

same starting end effector and target position. It shows the expected result that the

trajectory based on the first forward model is less curved than its counterpart.

For generating the reaching trajectories shown in Fig. 5.4 and Fig. 5.5, the start-

ing position of the end effector is chosen such that it can be perceived by the stereo

vision system. The direction vector ∆θ is always calculated according to Eq. (5.5).

The variable step size is assigned with a value of 1mm to achieve the best reaching

accuracy. Assigning a larger value to step size magnifies the error in the extracted

Jacobian J and increases the curvature in the reaching trajectory as shown in Fig. 5.6.

A larger step size can cause the end effector to oscillate around the target before set-
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Figure 5.5: The comparison of these two trajectories show that the curvature of
reaching trajecotories is indeed determined by the magnitude of the ignored head
translation caused by the neck joint rotations. (Data generated in simulations.)
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Figure 5.6: Comparison of two reaching trajectories based on different values of
step size. Increasing step size increases the curvature of the trajectory and makes
it appear less graceful. However, it also reduces the requirement for the frequency of
the visual feedback. (Data generated in simulations.)

tling down. However, it also brings the benefit of reducing the requirement for the

frequency of visual feedback and the computational burden associated with it. During

the physical experiments on Nico, the step size is initially set high and is reduced

after the end effector has been moved close to the target. Fig. 5.7 shows a series
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Figure 5.7: An actual reaching trajectory captured during a physical experiment on
Nico. The centers of the end effector in the eight different positions on the trajectory
are marked with white circles and superimposed onto the original pictures.

of pictures capturing an actual reaching trajectory during a physical experiment on

Nico. A wooden ball is attached to the distal end of Nico’s arm as the end effector.

A wooden ball of the same size is used as the reaching target. The centers of the end

effector in the eight different positions on the trajectory are marked with white circles

and superimposed onto the original pictures. The trajectory looks quite natural and

is only slightly more curved than the trajectories recorded by Morasso in his 1981

paper. This larger curvature can be explained by the fact that Morasso used adults

for his experiments. An adult’s hand has a much larger range of motion compared
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with his/her head. So ignoring the translational effect of the neck joints has a lesser

impact on the quality of the forward model and hence results in straighter reaching

trajectories. Another plausible explanation for straighter reaching trajectories ob-

served in adults is that compared with children, adults have much more experiences

with reaching so that they have acquired a better forward model.

5.1.4 Discussion

The results of both simulations and physical experiments shown in the previous sec-

tions provide support from the perspective of robotics for the feasibility of substi-

tuting neck proprioception with sensory information from the gyroscope/vestibular

system during motor learning. In fact, the same substitution is used by humans for

an important function - the vestibular-ocular reflex (VOR) [75]. VOR actively uses

the sensory output of the vestibular nerve instead of neck proprioception to adjust

eye orientations to stabilize images on the retinas. To control eye movement, both

angular velocity and angular position signals are required. The vestibular nerve out-

puts velocity signals only. These velocity signals are integrated in the brain stem to

obtain position signals. The result of this integration can be directly used to trans-

form the position of reaching target from the eye-centered coordinate system into the

body-centered coordinate system. Since no individual-specific parameters are needed

for this transformation, it does not have to be learned and can be hard-coded in

the genes. All simulations and physical experiments previously described are based

on Nico, which is designed to match an average one-year-old. The naturally curved

trajectories generated by our biologically plausible approach strongly suggest that a

similar approach can be used by infants for learning to reach.

The previous sections implicitly assume that the body stays stationary relative to

the outside world. If the assumption is violated, e.g. the body is passively rotated
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together with the head, θgyro registers a change, but the position and the orientation

of the head relative to the body have not changed. Constructing the rotation matrix R

in Eq. (5.3) according to the value of θgyro under this situation will lead to a reaching

failure. However, this problem can be easily solved by allowing the integration of

θ̇gyro only during the time when the neck is moving.

According to [26], there are two schemes which can be used to reach to a target.

The first scheme transforms the position of the target from the eye-centered coordinate

system into the body-centered coordinate system before the reaching movement is

initiated. The second scheme uses the target position in the eye-centered coordinate

system directly for reaching. In the previous sections, we have assumed that the first

scheme is true. But the second scheme can be easily implemented with the same

architecture as well. The target position x in the eye-centered coordinate system is

first transformed into x′ as described in Section 5.1.2. Though in a strict sense, x′

is not exactly the target position in the body-center coordinate system, it can be

used as a substitute for that without sacrificing much reaching accuracy. In order to

be useful for the second scheme, the approach described in previous sections needs

to be slightly modified such that a forward model is learned with training samples

in the form of ((θarm, θgyro)input, (x)output), where θgyro is a three dimensional vector

representing the sensory readings of the gyroscope/vestibular system. After training,

the target position in the eye-centered coordinate system can be directly used for

reaching.

It is worth noting that if samples in the form of ((θarm, θgyro)input, (x)output) are

used for learning the forward model, the dimension of the input is 9, only one less than

that of the input of the original farm neck. While this seems to be only a small change

in the dimensionality for our robot system, the advantage will scale with additional
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joints in the neck. Since the human neck has more than 4 DOFs even at the joint

level, this reduction can be substantially more. On the level of muscle activation,

using θgyro to represent the principle effect of the head posture delivers enormous

advantage for learning to reach.

One notable paper [41] studying sensorimotor learning on a robotic platform tries

to solve the degrees-of-freedom problem with a sophisticated statistical learning al-

gorithm called Locally Weighted Projection Regression (LWPR). LWPR is used to

learn the direction mapping from ∆x to ∆θ with the effort put into reducing the di-

mensionality locally. Our experiments suggest that the dimensionality of the problem

can be reduced globally by substituting all DOFs in the neck altogether with sen-

sory readings from the gyroscope, of which every human possess an equivalence, the

vestibular system. Furthermore, the new approach described in this chapter is based

on a well-studied learning algorithm (RBFN) for which there are a large number of

existing implementations.

5.2 Development of Pointing

Marjanovic et al.’s work is one of the few papers in the literature that studies the

learning of pointing gestures on a humanoid robot [88]. It described a two-step

learning process. In the first step, a mapping from image coordinates to eye motor

coordinates is learned. In the second step, a mapping from eye motor coordinates

to pointing gestures is learned. After the learning, when the robot discovers an

interesting object in the environment, it foveates on the object using the first mapping

and then produces a corresponding pointing gesture using the second mapping. The

main drawback of this approach is that it requires an artificial definition of pointing as

the arm posture that makes the arm end effector cover the center the camera image.
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A more intuitive definition of pointing is the arm posture that aligns the whole arm

or at least the lower arm to the desired object. However, if this definition were used

to learn the pointing gesture directly, the visual detection of the position and the

orientation of the whole or at least part of the arm would be required. This computer

vision problem is by no means easy to solve with existing techniques.

While Marjanovic et al. treated pointing as a separate skill, the Russian psychol-

ogist Vygotsky hypothesized that pointing originates from failed reaches [142]. Such

reaches have the characteristics of a fully stretched arm toward objects that are too

far away. According to Vygotsky, the responses of infants’ caregivers to such circum-

stances help transform these unintentional acts into deliberate ones. (See Section

2.1.5 for more details.) The way our humanoid robot produces pointing gestures is

inspired by Vygotsky’s idea.

The model described in the last chapter for reaching trajectory generation is based

on the following key equation:

∆θ = J#∆x (5.6)

with

J# = JT (JJT )−1. (5.7)

When a target is too far away the elbow has to be fully extended to get as close

to the target as possible. (During pointing experiments, we only activate the shoul-

der joints and the elbow joints since the wrist joints are not particularly useful for

pointing.) After the elbow is fully extended, the 3-by-3 matrix JJT becomes singular

because the total number of degrees of freedom of the arm degenerates into 2. Under

this circumstance, J# can no longer be calculated with Eq. 5.7. In order to move the
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arm end effector closer to the target even when J becomes singular, an extension is

made regarding how ∆θ is calculated. In the extended model, the condition number

κ of J , which is the ratio of the largest to the smallest singular value of J , is continu-

ously monitored. When κ rises above a threshold, a truncated version of J , denoted

as J ′, is formed by cutting away the entries in J that correspond to the derivatives of

x to θ3 and θ4 (the angles of the two elbow joints). J ′ is a 3-by-2 matrix. Using J ′,

the increment of the two shoulder joint angles θ′ = [θ1, θ2]
T can be calculated with

∆θ′ = J ′#∆x, (5.8)

where

J ′# = (J ′T J ′)−1J ′T . (5.9)

∆θ′ is then issued to the controllers of the two shoulder joints to execute another

reaching step. This process is repeated until J ′ also becomes singular. Since the

reaching model iteratively generates motor commands to minimize the distance be-

tween the arm end effector, the arm eventually moves onto the straight line that

connects the shoulder base and the target. It means that the robot is in fact pointing

from the shoulder base toward the target although it does not have the explicit knowl-

edge of the vector from the origin of its camera coordinate system to the shoulder

base. This knowledge would be necessary if a purely engineering approach were used

for the production of pointing gestures. Fig. 5.8 shows how Nico uses the extended

model to move its arm from a starting position to point toward a target it cannot

reach.

As described in the previous chapter, the variable step size controls the size of

∆x at each reaching step and its value should be reduced when the end effector has

already been moved close to the target in order to achieve high reaching accuracy.
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(a) (b) (c)

Figure 5.8: A sample arm movement that leads to pointing

During the pointing experiments on Nico it has been discovered that if step size

maintains its initial value throughout the movement, the arm often oscillates around

the straight line that connects the shoulder base and the target (see Fig. 5.9). This

behavior is very similar to the imperative pointing produced by infants. In the joint

attention experiments that will be described in the next chapter, experiment subjects

often report that such oscillatory movements make Nico appear much more lifelike.

It is important to note that the extension just described is effectively the same as

freezing the elbow joints after the elbow is fully extended and then treating the arm as

a stick with two degrees of freedom at one end. This extension is also useful for certain

reaching situations where the elbow is fully extended before the end effector touches

the target. This can happen when the target lies at the boundary of the reachable

space. Nico currently does not distinguish between objects that are reachable and

objects that are too far away. But such distinction can be easily achieved by building

a sample set that labels spatial positions that Nico can reach within a fixed number

of steps as positive and other spatial positions as negative and then using this sample
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Figure 5.9: The arm often moves around the straight line that connects the shoulder
base and the target if step size maintains its initial value the whole time. This
behavior makes Nico appear much more lifelike.

set to train a neural network.

The extended reaching model for the production of pointing gestures always makes

the complete arm aligned with the target in the end. Obviously, it is not always the

most energy-efficient way to point. Adults often point to a target without fully ex-

tending the elbow. How does an infant gradually learn to produce adult-like pointing

gestures? Our conjecture is that the dimensions of infants’ body structure play a

role in this transition. Fig. 5.10 shows 25 pictures randomly captured by Nico’s right

camera during motor babbling. To distinguish the lower arm and the upper arm,

they are marked with a piece of red and pink tape respectively. The end effector of

the arm is present in all pictures. It can be seen that the lower arm is dominant in

most of the pictures while the upper arm can be barely seen. When Nico points to a

certain target, it keeps the end effector of the arm within its field of view. So it sees

mostly the lower part of its arm after it is moved into the final configuration. Since

Nico’s body dimensions are about the same as those of a one-year-old, the same thing

is likely to happen to infants. So when infants point to a desired object with a fully
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Figure 5.10: Twenty-five pictures randomly captured by Nico’s right camera during
motor babbling. The upper and lower arm is marked a piece of red and pink tape
respectively. The lower arm is dominant in most pictures while the upper arm is
barely visible.

extended arm and their caregiver retrieves the object for them, they may associate

the perception of the alignment of the lower arm and the target to the reward of

obtaining the object. Over time they may just stop an intended pointing movement

as soon as the lower arm is already aligned with the desired object. This stop can

occur when the elbow is still bent and hence results in an adult-like pointing gesture.



Chapter 6

Active Learning of Joint Attention

Joint attention is the skill of attending to the same object another person is looking

at. It is only fully acquired by infants after the age of 18 months and is crucial for the

development of further social and language abilities. Recently, researchers have built

computational models to explain how infants learn this important skill [122][107][136].

Despite some success, most of these models are based on the assumption that the in-

fants learn joint attention through passive observations. The models have not taken

the active nature of infants and the dynamics of development into account and often

require a huge number of training samples or time steps to converge. This chapter

describes a system that allows our humanoid robot, Nico, to learn the joint atten-

tion skill actively and autonomously by taking advantage of existing skills and the

cooperative nature of its caregiver. It results in a drastically lower requirement for

training set size and a better overall performance than any other published method to

date. A typical joint attention scenario between Nico and its caregiver is illustrated

in Fig. 6.1.

The first section in this chapter describes the motivation of our approach. The

next section presents the design of our joint attention experiments and a few technical

details. The results of the experiments are given in the third section, which is followed

93
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by a discussion.

Figure 6.1: Typical joint attention scenario. The caregiver (right) is looking at an
object. Nico (center) looks first at the caregiver and by judging his direction of gaze
finds the object the caregiver is looking at (left).

6.1 Motivation

In Section 2.2.3, Nagai’s work on simulating the development of joint attention on a

humanoid robot was introduced. Two models were proposed in that work. Although

both models allowed the success acquisition of joint attention, it is unlikely that they

are used by infants in practice. The first model assumes that the caregiver gives

the robot an explicit evaluation after it changes its gazing direction in response to

her head pose change. However, there are no empirical data showing that caregivers

constantly give infants right-or-wrong type evaluations during the time infants learn

joint attention. In the second model, the learning of joint attention is facilitated by

an innate visual attention module; explicit evaluations from the caregiver are not

necessary. The problem with this model is that when there are multiple objects

within the robot’s field of view, the object that the innate visual attention module

directs the robot’s attention to coincides only by chance with the object the caregiver
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is looking at. This results in a large number of false samples at early stages of

development when the innate visual attention module dominates the still immature

joint attention module. These false samples not only slow down the learning process,

but also decrease the system performance. For example, the model that employs the

joint attention module needs more than 45—48×104 training samples to achieve to a

success rate of 85% (five objects in the environment). The success rate drops quickly

when the number of objects increases further.

Recently, Triesch et al. [136] proposed a computational model for the development

of joint attention (or gaze following, the term preferred by the authors). The model

assumes that both the infant and the caregiver are located in an idealized grid world

where interesting objects can only exist at a limited number of positions (default=10).

All complex behaviors of the caregiver and the infant in the real world are abstracted

into a number of model parameters. Learning occurs though SARSA, a special form

of reinforcement learning. The infant receives a reward when it looks at a position

occupied by either the caregiver or an interesting object. The magnitude of the reward

diminishes over time if the infant keeps staring at the same position and the objects

in the grid world randomly move into new positions. Triesch et al. showed that in an

environment as simple as has just been described, joint attention eventually emerges

when the model parameters are properly set. They also postulated that the failure

of children with certain developmental disorders to develop the joint attention skill

can be attributed to anomalies in the parameter structure. Despite some successes,

Triesch et al.’s model, similar to Nagai’s model, requires a large number of time steps

(on the scale of 104) to converge. Its performance also deteriorates quickly with the

increase of the total number of objects in the grid world.

By taking a closer look at Nagai’s second model and Triesch et al.’s model, it
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can be seen that in both models the robot/infant learns joint attention by passively

watching for the change of the caregiver’s head pose; the caregiver does not respond

to the actions of the robot/infant in any way. Obviously, infants and caregivers in

the real world do not behave like that.

Almost all major theories of development psychology acknowledge the active role

played by children during their development. Infants, just like older children, do not

just make passive observations; they actively explore the environment with whatever

means available to them. The skills that they have already acquired often facilitate

the learning of new skills. Sometimes, new skills can develop out of existing skills.

Caregivers in the real world closely monitor the development of infants. They not

only try to actively engage infants, but also respond promptly to infants’ actions,

probably more so than the other way around. The work of Collis and Schaffer shows

that mothers spend much of their time following their infant’s gaze direction [36].

Other experiments show that infants apparently enjoy such contingent responses and

are very good at detecting them (for more details regarding contingency, please refer

to Section 2.1.4).

According to Butterworth [29], infants start to produce index-finger points at the

age of eleven months on average. If Vygotsky’s hypothesis [142] of pointing originating

from reaching is true, the onset of pointing can be dated back a few months earlier.

The experiments conducted by Corkum and Moore [37] showed that infants at the age

of twelve months exhibit very rudimentary joint attention; their joint attention skill

can be described as reliable only after the age of fifteen months. These findings suggest

that pointing precedes reliable joint attention by a few months. During these months,

the following scenario can occurs repeatedly: The infant first points to an object. This

salient gesture draws the attention of the caregiver and makes him/her look at the same
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object. The infant then associates the caregiver’s head pose at this particular moment

to the position of the object it is pointing to. Considering (1) the active nature of

infants, (2) the willingness of caregivers to respond to infants’ actions contingently and

(3) the ability of infants to detect such contingent responses, the scenario described

above is quite plausible and its repeated occurrences will help infants to develop joint

attention. The following sections test this idea on our humanoid robot.

6.2 Method

6.2.1 Experiment Design

Figure 6.2: During the joint attention experiments, Nico is presented with multiple
objects (stuffed animals) with salient colors lying in front of it. Object labels: LL:
lion front left, M: pig front middle, RR: genie front right, L: cow middle left, R: dog
middle right, B: rabbit in the back.

Our experiments are conducted in two phases on Nico. During the first phase,

Nico learns a mapping between the head pose of its caregiver (experiment subject)

and the position of the object he/she is looking at. During the second phase, Nico

tests this mapping by pointing to the object it thinks its caregiver is looking at.

Throughout the experiments, Nico is presented with multiple objects lying in front
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of it. These objects are stuffed animals with salient colors (see Fig. 6.2).

During the first phase of the experiments, Nico first engages its caregiver by

looking at him/her. The robot then looks down and records the position of a random

object. It then looks back at the caregiver and starts to move its arm to point

toward the recorded position. The learned forward model of the arm is at this point

already accurate enough to allow for the generation of pointing gestures without

visual feedback. Nico maintains the pointing gesture after it is completed for a short

period of time and then retracts its arm. Each of these events (start and completion of

pointing, start of arm retraction) is signaled to a joint attention module. These signals

are used by the joint attention module to determine when to extract an appropriate

head pose of its caregiver (details regarding how this is done will be presented in

Section 6.3.1). This head pose together with the position of the object Nico has just

pointed to constitute a training sample. The whole process is repeated until sufficient

training samples have been collected. A snapshot of this procedure is presented in

Fig. 6.3.

Figure 6.3: Nico points to one of the objects on the table to draw the attention of its
caregiver. The caregiver reacts by looking at the object the robot points to.
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In contrast to the approaches used by Nagai et al. and Triesch et al., our robot

actively selects which object to attend to instead of passively watching the caregiver

and trying to figure out his/her attention focus. In the process of repeatedly pointing

to salient objects and watching the caregiver’s responses, Nico might still collect false

samples when the caregiver looks at a different object or a glitch in some component

in the system causes inaccurate head pose estimation. However, it turns out that the

chance of these events occurring is small.

Once sufficient training samples have been collected, a neural network is trained

that maps head poses into spatial positions. The performance of the network is

tested during the second phase of the experiments. In each trial, Nico continuously

monitors the head pose of its caregiver. When the caregiver moves his/her head and

then maintains a fixed head pose for longer than a predetermined threshold, Nico

uses the trained network to project this head pose into a spatial position and points

to the object that is closest to this position. The trial is considered successful when

the caregiver indicates that Nico points to the object he/she has looked at.

Multiple subjects have participated in the experiments. They include members

of the Social Robotics Lab, students from the Computer Science Department and

students from other parts of the university. Each subject sat in front of the robot

and was told to treat Nico as if it were an infant and Nico would repeatedly point to

the objects on the table. The subjects were asked to keep their body still during the

experiments and to look straight at Nico at the beginning to initiate the head pose

estimation module in our system. Since only the head pose was estimated, we asked

the subjects to move their head to indicate their attention focus whenever possible.



CHAPTER 6. ACTIVE LEARNING OF JOINT ATTENTION 100

6.2.2 Technical Details

Fig. 6.4 illustrates the architecture of the software system for the joint attention

experiments. When Nico looks down at the objects on the table, the images from

its video cameras are filtered by color filters and subsequently fed into an object

detection module. The object detection module uses the information in the color-

filtered images to calculate the approximate positions of the objects. The forward

model for reaching and pointing is already learned and the main control module uses

it to generate pointing gestures toward the objects on the table. When Nico looks at

its caregiver, the images from its video cameras are fed into the Small Vision System

(SVS) [78], a commercial software package for calculating depth from stereo image

pairs. The output of SVS is used by Watson [98] to estimate the head pose of the

caregiver. Watson is a real-time head pose tracking library provided by Louis-Philippe

Morency from the MIT Vision Interface Group. It is based on a framework called

Adaptive View-Based Appearance Model and can track the pose of rigid objects

in real-time. A joint attention module uses the output of Watson to constructing

training samples for learning a mapping from head poses to object positions. During

the evaluation phase, it detects when the caregiver is possibly looking one of the

objects on the table and signals the main control module to generate a corresponding

pointing gesture.

The modules described above are distributed among a number of QNX, Windows

and Linux machines interconnected through a Gigabit network. The complete system

runs at ten frames per second.
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Figure 6.5: Coordinate system used to measure the positions of the objects on the
table and the head poses of the experiment subjects.

The same coordinate system (illustrated in Fig. 6.5) is used to measure the position

of the objects on the table and the head pose of the experiment subjects. It is based

on the position of the eye cameras when Nico moves its head into the upright posture

to look at its caregiver. The origin of the coordinate system is at the focal point of

the left camera. The X-axis points to the focal point of the right camera. The Y-axis

and Z-axis point straight down and toward the experiment subjects respectively. The

approximate X and Z coordinates (in mm) of the objects on table in the coordinate

system described above are as follows —
LL: [324, 640]T M: [54, 640]T

RR: [−236, 640]T L: [194, 460]T

R: [−126, 460]T B: [54, 280]T

The Y components of the object positions are all of the same value because the table

is parallel to the X-Z plane of the coordinate system we use. The average distance of

two neighboring objects is about 250mm.

The head pose a subject maintains at the beginning of an experiment is used by

Watson as the reference pose. It is described as [0, 0,−1]T , which is a vector parallel to

the table and pointing toward the robot. The head pose of a subject at any particular
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moment is described with a three dimensional vector that is relative to the reference

pose. Only two of the three components in this vector are independent.

6.3 Results

6.3.1 Social Delay

Fig. 6.6 shows examples of how three different experiment subjects respond to the

robot’s pointing gestures. The black curves represent the velocity of the subjects’

head movement within a time window of 12 seconds (the video grabbers operate at

10 frames/second). The blue curves are simply the smoothed-out versions of the

actual velocity curves using a box filter. The red line in each plot reflects the time

point when the robot completes the current pointing movement. It is obvious that

different subjects respond to the robot in different manners. Subject M follows the

robot’s arm movement closely and finds the object the robot is pointing to even before

the robot fully completes the movement. The velocity curves in Fig. 6.6(a) reflect this

behavior and show that the velocity of the head movement falls back to zero before

the red line. Fig. 6.6(b) shows the velocity curves of Subject P who also starts to

move the head soon after the robot starts the arm movement. However, P stops the

head movement after the robot completes the pointing gesture. The velocity curves in

Fig. 6.6(c) characterize the behavior of Subject L who apparent uses eye movements

to follow the robot’s arm movement and only starts to move the head after the robot

completes the pointing gesture. In addition to the difference in moving the head to

look at the object the robot points to, the length of the time spent looking at the

object varies from person to person. While subject M often looks at the object longer

than two seconds, subject L usually moves the head back quickly to look the robot

in the eyes.
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Figure 6.6: Examples of how three different subjects respond to the robot’s pointing
gestures. The black curve represents the velocity of the head movement recorded
during the experiments. The blue curve shows the smoothed data. The red line
marks the time when the robot completes a pointing gesture.
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Figure 6.7: Histogram of the time delays of the experiment subjects’ responses to
the robot’s point gestures. Despite individual differences, the distribution shows a
single peak and resembles a Gaussian. The mean and the standard deviation of the
distribution are 2.08s and 0.67s respectively.

During the experiments, each time the robot points to an object, the main control

module needs to extract from Watson’s continuous output a single head pose that

best characterizes the caregiver’s response. It has been hypothesized in [111] that the

response delay of an individual in a social interaction can be modeled by a Gaussian

distribution. A careful analysis of the data collected during our experiments has par-

tially confirmed this hypothesis. For each of the subjects, the original velocity curves

recorded during experiments are smoothed with a box filter that is twenty frames

wide (2 seconds). These curves are then segmented into a number of episodes, each

of them containing the subject’s response to a particular pointing gesture produced

by the robot. For each episode, the difference between the time the robot completes

the arm movement and the time the subject exhibits a minimum amount of head

movement is calculated. This difference characterizes the delay of the subject’s re-

sponse to the robot’s social gesture. These delays are then aggregated and plotted

in Fig. 6.7. It can be seen that despite the difference in the ways subjects react to
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the robot’s pointing (as illustrated in Fig. 6.6), the distribution of the social delays

shows a single peak and some resemblance to a Gaussian with a mean of 2.08s and a

standard deviation of 0.67s. During the automatic sample extraction mode, the main

control module records the head pose data obtained from Watson after a 2s delay

and associates this head pose with the position of the object the robot is currently

pointing to.

6.3.2 System Performance

All training samples for joint attention learning were collected using the social delay

approach described in the last section. Each training sample is in the form of (pi, oi),

where pi and oi describe the head pose and the associated object position respectively.

We use a simple Radial Basis Function Network (RBFN) to learn the association

between pi (input) and oi (output). The two free parameters for training a RBFN -

the spread of the Gaussians in the hidden layer and the error threshold as stopping

criterion - are determined by a simultaneous optimization procedure.

The performance of our system is first tested by using the data collected on one

subject to train a network and then evaluating the network on the same subject.

The training set and the test set consist of 80 and 20 samples respectively. The

performance of the trained network is very good in this case. An average recognition

rate of 95% is achieved (for six objects in the environment). However, if we use

a network trained on one subject directly to test on another subject’s head poses,

the average recognition rate is only 62%. The reason for this severe degradation is

the variance of head pose data among different subjects. Fig. 6.8(a) and Fig. 6.8(b)

visualize the head pose data of subject L and subject P by using only the first two

components of pi. (The third component is redundant since pi is a normalized vector.)

The shading of each marker indicates which object position it is associated with.
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(a) Head pose data of Subject L.
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(b) Head pose data of Subject P.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X

Y

LL M RR L R B

(c) A mixed data set from five different subjects (20 sam-
ples each) for training .
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(d) Another mixed data set from the same subjects (20
samples each) for testing.

Figure 6.8: Head pose samples collected autonomously by the robot. Each marker
represents a head pose vector projected to the X and the Y axis. The shading of each
marker indicates the object position it is associated with. Experiment setting: Six
objects are put at fixed positions on the table (see Fig. 6.2). Their coordinates are
listed in Section 6.2.2
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Figure 6.9: A RBFN is trained on a mixed data set portrayed in Fig. 6.8c. The
performance of this RBFN is tested on another mixed data set consisting of 100
samples. This plot shows the projection of the head pose data in the test set on the
X-Z plane. The original positions of the objects on the table (illustrated in Fig. 6.2)
are marked with red crosshairs. The shading of each marker is determined by the
closest-neighbor rule. Only 15 samples are misclassified. These samples are plotted
with diamond markers.

These two plots show that although both L’s and P’s head pose data are well clustered,

they have significant differences. These differences result in the network trained on

L failing for P. However, this performance issue can be resolved by training a neural

network on a mixed data set collected on different subjects. Fig. 6.8(c) shows the head

pose data of a training set (100 samples) created by mixing data collected from five

different subjects. When a network trained on this training set is applied to the head

poses contained in another mixed data set (100 samples), a recognition rate of 85%

is achieved. Fig. 6.9 shows the projection of the head poses in the test set. If a head

pose is misclassified by the network, its projected position is plotted with a diamond

marker instead of a round one. The axes of Fig. 6.9 are arranged in such a way

that the original positions of the objects (marked with crosshairs) are topologically

consistent with Fig. 6.2.
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6.4 Discussion

In this chapter, we have presented a complete system for online learning of joint

attention on the humanoid robot Nico. Nico applies its existing pointing skill to

actively direct the attention of its caregiver. Each time it completes a pointing gesture,

it captures the head pose of its caregiver after an experimentally determined time

delay and associates this head pose to the position of the object it points to. A high

quality training set can be built in a short amount of time by repeating this process

(less than 30 minutes for 100 samples). The training set is then used to train a neural

network that maps head poses into spatial positions. The performance of this network

can be tested by switching the system into the evaluation mode.

A comparison of our system to Nagai’s and Triesch et al.’s models for learning joint

attention is presented in Table 6.1. In contrast to the two existing models, the main

advantages of our system are that both learning and evaluation occur online and that

far fewer training samples are required. The reason why our system works so well is

that it exploits both the existing skills and the social dynamics between infant/robot

and its caregiver. Nagai’s and Triesch et al.’s models both assume that infants pas-

sively watch the head pose of their caregiver for clues of where he/she is looking at

while the caregiver’s behavior is complete independent of the infants’ actions. On

the contrary, our robot Nico learns joint attention by repeatedly pointing to some

object that it is interested in and recording the contingent response of its caregiver.

This effectively transforms the problem from extracting statistical information from

data of unknown structure to learning from data that are highly structured. It is this

transformation that reduces the training sample requirement of our system by several

magnitudes. The drastically reduced training sample requirement also allows us to

examine the differences in the response of the subjects to Nico’s pointing gestures.
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Currently, we rely on head pose alone to predict the attention focus of the care-

giver. In the future, eye tracking support will be added to make the joint attention

model more accurate. It could be achieved by first cleverly manipulating the output

of Watson to determine the rough locations of the eyes and then applying template

matching in the neighborhood of these locations. Another extension of the current

system is to learn pointing gesture recognition. For this purpose, the learned joint

attention mapping can be used to estimate the spatial position the caregiver is look-

ing at. A new training sample can be created by combining this position vector and

a feature vector that describes the pointing gesture displayed by the caregiver at the

same moment.
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Chapter 7

Conclusion

A completely new humanoid robot named Nico that matches the body dimensions

of an average one-year old infant has been designed and assembled by the author

of this thesis over the course of the past few years. It has a total of 21 degrees

of freedom, each individually driven by a miniature DC motor. Four micro CCD-

cameras, one gyroscope and the built-in optical encoders of the motors constitute the

sensory system of the robot. The software system of the robot has been co-developed

by the author and his colleagues. Not only has Nico served well as the platform for

the experiments in this thesis, it has also been used for the other studies such as

self-other discrimination, human perception of humanoid robot behaviors, pronoun

learning, to name just a few.

In this thesis, the development of reaching, pointing and joint attention has been

implemented on Nico to demonstrate the power of skill progression, an important

feature of development learning that has not been paid proper attention to in the

field of humanoid robotics. These three skills were chosen partially because they

have all been extensively studied by developmental psychologists. And outside the

field of development psychology, physiologists and neuroscientists have been trying

for years to uncover the neural basis of reaching and pointing. The large number

112
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of past observations and hypotheses on the development of these skills in infants

have provided both inspirations and a ground for comparison. Although there are no

lack of learning methods for humanoid robots to acquire these skills, today on most

humanoid robots, these skills are still implemented through careful engineering. Part

of the reason for that is that previously published learning methods are often either

very slow or difficult to implement, and can contain very specific assumptions. These

are the problems we have tried to overcome in this thesis.

The model for reaching introduced in Chapter 3 requires only a calibrated stereo

camera system and the ability to localize the arm end effector. It uses a Radial Basis

Function Network (RBFN), a general-purpose neural network, to approximate the

forward kinematics of Nico’s 6-DOF arm. When the two training parameters of the

RBFN are properly tuned, only 400 training samples are needed that can be collected

within 30 minutes. If visual feedback of the end effector is available during reaching,

the accuracy of the reaching movements generated by the model is only limited by the

highest visual resolution available. Chapter 4 describes two extension of the reaching

model. The first extension allows the neck joints of the robot to move freely during

motor babbling. The second extension enables the robot to produce pointing gestures

toward distant targets. Both extensions require no additional training samples. The

learning of joint attention takes advantage of the pointing skill and the cooperative

nature of the caregiver. The underlying software system contains a commercially

available stereo vision system and a head pose estimation system (that can actually

estimate the pose of any rigid object) free for educational and research purposes.

Using this system one hundred training samples can be collected within 30 minutes.

The resulting joint attention model, again, represented with a RBFN, performs at a

success rate of 85%.
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The previous paragraph has shown that the development of reaching, pointing

and joint attention on Nico requires little more than a few basic visual perception

abilities and a general learning algorithm (RBFN). However, because it has taken full

advantage of the intimate connections among these skills, the complete development

takes only about one hour in total (30 minutes for reaching and pointing + 30 minutes

for joint attention). Only 500 training samples need to be collected during the process

(400 for reaching and pointing + 100 for joint attention). This number is a few

magnitudes smaller than the one required by previous works just for the learning of

joint attention alone. Although this dramatic improvement of efficiency is unlikely to

occur for any arbitrary skill learning task, it appears that some further exploration

of the concept of skill progression is worthwhile.
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