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As the proliferation of visual and auditory communication media push human information process-
ing to its limits, many researchers turn to the haptic modality — the sense of touch - as a means
of conveying information. Presently, most haptic feedback systems are focal feedback mechanisms
designed to deliver alerting cues. However, not all tasks are urgent and require a person’s immediate
and focal attention, so these attention-capture methods may distract a user from more critical tasks.
Recently, researchers have begun to investigate ambient feedback systems that convey peripheral
information without distracting a user from a more important task. So far no efforts have been
made to combine these two separate categories to create a unified system for haptic attention cap-
ture. We thus propose the development of variable attention capture (VAC) feedback methods as a
new design paradigm for fluidly modulating a user’s attention capture along a spectrum depending
on task priority. This proposed VAC feedback paradigm will allow for the development of versatile
next-generation haptic devices capable of generating both focal and ambient stimuli depending on
the task at hand.

This dissertation represents a first step in creating VAC haptic feedback systems that can con-
vey information to a user at an appropriate level of attentional salience. We demonstrate that a
VAC haptic device is able to produce relevant stimuli without unnecessarily competing for a user’s
limited attentional resources. As with all VAC devices, this allows the haptic device to provide
important information to a user in a timely, accurate, and unobtrusive manner.

We begin the exploration of VAC haptic feedback through the specific application of seated
posture guidance. This task is a good candidate for VAC haptics as it is typically lower priority
and requires minimal cognitive bandwidth. A real-time posture sensing and feedback chair, Posture
Seat, was prototyped for this purpose. We created VAC versions of the chair with either vibration
or pressure actuators, and a non-VAC version with vibration actuators, to produce the necessary

stimuli for haptic feedback. In our initial experiments with the non-VAC Posture Seat, we measured



users’ ability to comply with postural guidance and their level of mental load while responding to
the feedback. We tested various haptic actuator parameters for their influence on affect and atten-
tion capture, and integrated these parameters into the design of the vibrotactile and pressure-based
VAC Posture Seat versions. Finally, we used the VAC Posture Seat for an in-the-wild study to
investigate user compliance, level of mental load, attention capture, and task interference from
haptic feedback. We thus were able to assess the impact of our VAC haptic system by comparing
the VAC and non-VAC experiments.

Our results represent important findings in the development of VAC haptic systems. We demon-
strated that VAC haptic actuators reduced the amount of disruption experienced by subjects com-
pared to those tested on the non-VAC system. We found that actuation rate was the most significant
parameter for achieving VAC - i.e., higher actuation rates produced more focal haptic stimuli, while
lower actuation rates produced more ambient haptic stimuli. Thus, an increase in the bandwidth
of actuator rate resulted in a wider range of attention capture. Actuation intensity was also an
important parameter for VAC: increasing the resolution of intensities from sub-threshold to supra-
threshold of detectability leads to better VAC. Finally, we found that pressure feedback was more
conducive to VAC than vibrotactile feedback, potentially due to the prioritization of the activation
of different cutaneous mechanoreceptors. Interestingly many parameters had no significant contri-
bution to VAC due to widely variable user preferences, and thus could be user-defined without loss
of VAC capability.

We have successfully designed, characterized, and tested a posture sensing and feedback system
employing VAC haptic feedback, including in-the-wild studies for real-time posture correction. We
demonstrate that VAC haptic feedback is both feasible and beneficial for modulating information
priority and improving task performance in our Posture Seat system, and determined the main
parameters for achieving VAC in our system. By quantifying the degree of attention capture in
our system and characterizing the necessary parameters for doing so, we lay the foundation for
a general approach in developing VAC-capable haptic systems. Qur findings form the basis for
further developments in VAC haptics that will produce a richness in haptic communication through

utilizing the full range of haptic vocabulary, tone, and context.
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