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The Effect of Personalization in Longer-Term Robot Tutoring
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The benefits of personalized social robots must be evaluated in real-world educational contexts over periods

of time longer than a single session to understand their full potential to impact learning outcomes. In this

work, we describe a personalization system designed for longer-term personalization that orders curriculum

based on an adaptive Hidden Markov Model (HMM) that evaluates students’ skill proficiencies. We present

a study investigating the effectiveness of this system in a five-session interaction with a robot tutor, taking

place over the course of 2 weeks. Our system is evaluated in the context of native Spanish-speaking first-

graders interacting with a social robot tutor while completing an English Language Learning educational task.

Participants either received lessons: (1) ordered by our adaptive HMM personalization system which selects a

lesson based on a skill that the individual participant needs more practice with (“personalized condition”) or

(2) ordered randomly from among the lessons the participant had not yet seen (“non-personalized condition”).

We found that participants who received personalized lessons from the robot tutor outperformed participants

who received non-personalized lessons on a post-test by 2.0 standard deviations on average, corresponding

to a mean learning gain in the 98th percentile.
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1 INTRODUCTION

Robot tutoring systems have demonstrated great potential as effective tutoring agents in the edu-
cational domain [5]. Recent work indicates that physically embodied tutoring agents can increase
cognitive learning gains, as well as boost enjoyment and compliance [2, 37, 43]. The social pres-
ence of a robot tutor can also put students at ease during learning, positively impacting students’
social behaviors [22]. Another promising capability of robot tutoring systems is providing person-
alization for an individual within an interaction, which can also strengthen learning outcomes.
Relatively straightforward personalization strategies for providing lessons have been shown to
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positively impact learning gains during a cognitive puzzle-solving task [36]. Though this body of
research indicates the clear benefits of personalized robot tutors, many of these studies deal with
adults, lab-based interactions, or single-session interaction contexts.

To more thoroughly understand how personalized robot tutors can impact learning gains, it is
crucial that we design and study longer-term interactions in real-world learning contexts. Further-
more, it is important to focus on educational problems with high-demand to accurately assess the
need for these systems—for example, to assist young children who need the additional educational
help. The role of personalized social robot tutors within these diverse learning contexts needs to be
more thoroughly explored. To this end, we seek to gain a better understanding of the effectiveness
of robot tutoring systems in high-impact application domains over periods of time longer than a
single session. We want to evaluate whether the observed learning benefits of personalization of
content within short-term interactions are also observed for longer-term interactions involving
children.

In this work, we investigate the impact of personalized robot tutoring specifically on learning
outcomes in a long-term educational interaction. We designed a personalization system that uses
an adaptive Hidden Markov Model (HMM) to order content within an interactive English Language
Learning (ELL) story task based on the skill proficiencies of students. We detailed our interaction
context design, which includes an interactive story with interchangeable chapters that requires
students to verbally complete Spanish-to-English translation exercises. We conducted a long-term
human–robot interaction study to evaluate the effectiveness of our personalization system over
the course of five tutoring sessions by comparing a personalized condition to a non-personalized
one. Our results show that children who received personalized lessons during the robot tutoring
sessions significantly outperformed those who received non-personalized lessons and that our
personalization system successfully identified student skills requiring practice.

2 BACKGROUND

In this section, we provide the relevant background on ELL education and why we chose to study
our personalized tutoring system in the context of this educational domain. We also review related
work from both the intelligent tutoring systems (ITS) community as well as the human–robot
interaction (HRI) community involving personalized learning systems.

2.1 ELL Education

According to the 2010 United States Census data, 20% of American households speak a language
other than English in the home [55]. Children raised in non-native English-speaking households
can face a preparatory disadvantage in school relative to their native-speaking peers and research
in education has frequently referenced an achievement gap between students proficient in English
and those that are English learners [47, 54]. Language-based disadvantages accumulate throughout
a student’s career and worsen in later grades as reading comprehension becomes more critical to
academic success in all subjects [7].

Effective ELL education is vital to leveling the playing field for children raised in non-native
English speaking homes. Though there are many successful programs supplying ELL education
across the country, especially in major metro areas like New York and Los Angeles, millions of
students still receive little or poor-quality ELL education [23]. Due to the necessity of effective ELL
instruction, in this study, we focus on teaching an English Language Learning task to children in
first grade (typically around ages 5 to 6). To evaluate the effectiveness of a personalized tutoring
system, we wanted to focus on an authentic teaching task with children who may benefit from
this type of instruction. When learning a second language, age is also very important. The age of
first consistent exposure to a second language is the best known predictor of future fluency [24].
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This finding influences our choice of target populations for this work, as it indicates that the best
time to start teaching a second language is well before puberty, ideally under 9 or 10 years of age
[24]. We chose to work with first-grade students for this reason.

We envision an in-home robot tutor that can serve as an English-fluent interaction partner for
non-native speakers. As a first step towards this vision, we created a robot tutor that provided
personalized one-on-one ELL instruction to Spanish-dominant first-grade students in a bilingual
elementary school.

2.2 Intelligent Tutoring Systems

In developing the algorithms necessary for a longer-term personalized automated tutoring interac-
tion, we base our work on that of the automated tutoring systems developed by the ITS community.
For this work, we made a curriculum-sequencing tutor that does not provide step-by-step feedback.
Instead, this tutor sequences an individualized path through available curriculum to maximize the
effectiveness of the lessons for each student [14]. Though various tutoring systems from the ITS
community have explored the impact of curriculum-sequencing on learning outcomes, our work
focuses on understanding the benefits of personalized curriculum-sequencing embedded within
an interactive robot tutoring ELL task.

The personalization a tutor does to match the needs of each student is what accounts for the
relative success of one-on-one tutoring over group instruction in traditional classroom settings
[40]. Personalization is a feature of all automated tutoring systems and many kinds of personal-
ization have been pursued by ITS researchers—from inferring a student’s motivation based on his
or her facial expressions or posture [10, 15] to detecting if students are trying to abuse the hint
and help features to game the system to improve their scores [3]. The most significant type of per-
sonalization in automated tutors is the student model [21]. The student model used in this article
extends the Bayesian Knowledge Tracing (BKT) family of student models originated by Corbett
and Anderson for use in a personalized robot tutoring system designed for the ELL domain [12].
Many ITSs utilize models derived from BKTs that typically model a student’s knowledge state dur-
ing the skill acquisition, where each individual skill is considered to be known or unknown to the
student at each opportunity to practice a given skill [12]. Based on observations of the student’s
performance on a given skill, these probabilities are updated to reflect which skills the student may
not know or need extra practice on. This is the most commonly used technique to model student
knowledge within automated tutoring systems and has been successfully used in a variety of tutor-
ing applications including tutoring for math and programming skills [12, 29]. There are also more
complex models that can also be used to model a student’s memory to plan practice opportunities
accordingly for given skills [38]. Rather than represent individual skills as being either known or
unknown, other models such as activation-based memory models typically represent learning as
individual skills that are acquired gradually over time where each item is remembered based on
the frequency and recency of practice opportunities and forgotten as a function of time [41]. Some
of these models have been shown to be successful in language learning tasks and have typically
been used to space out practice opportunities for vocabulary memorization tasks [41, 42].

In addition to the related ITS research, our work is also similar to a body of education research
called “Computer Assisted Language Learning” (CALL); for an overview see Reference [34]. CALL
is a branch of education research that studies the effectiveness and implementation of computer-
based tools that are intended to assist language learners or teachers, including static resources
like webpages and translation software [35]. A common paradigm in CALL research is systems
that process the speech of the user and correct errors in pronunciation, prosody, or grammar [16].
CALL systems typically do not vary their outputs based on a model of the user, like our automated
personalization system does for this robot tutoring intervention. We evaluate the effectiveness of
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our robot language tutor intervention with a standard pre-test/post-test metric, a common practice
in CALL and education research more broadly [39].

2.3 Personalized Robot Tutoring

Recent research has demonstrated the effectiveness of social robots as educational agents that fos-
ter learning benefits due to personalized interaction [20]. Social robots can personalize one-on-one
tutoring interactions for students based on a variety of dimensions, including a student’s nonver-
bal behavior, learning style, and task performance [9]. Adults receiving personalized lessons from
a robot tutor in a single session significantly improved their performance on a cognitive puzzle
task as compared to those who received non-personalized lessons [36]. The personalized lessons
were chosen based on a Bayesian network skill assessment model, which is closely related to the
HMM model we use in this work. Social robot tutors have also been used to accurately assess chil-
dren’s word-reading skills based on a Bayesian active-learning algorithm, and personalize aspects
of a story-telling interaction with young children [18]. Other studies have investigated the person-
alization of aspects of a learning interaction that are not directly related to the content, such as the
social behavior of the robot tutor. For example, children interacting with a social robot with higher
nonverbal immediacy and responsiveness demonstrated greater learning gains when compared to
a less immediate robot tutor [27]. Children also exhibited significant learning gains when given
breaks based on personalized timing strategies as compared to a fixed timing strategy during a cog-
nitively taxing learning interaction [45]. Though these studies each explore interesting aspects of
personalization within a learning interaction, they all measure the benefits of personalization over
the course of a single tutoring session. Our work seeks to isolate the benefits of personalization
within a robot tutoring interaction over a longer-term interaction.

There has been some work investigating the personalization within robot tutoring interactions
in a longer-term setting. A robot learning companion that displayed empathic behaviors towards
the user over a long-term interaction positively impacted perceptions of the robot over time [33].
Students who interacted with an adaptive robot tutor that regulated their help-seeking behavior
during a math tutoring interaction showed improved behavior and learning outcomes over multi-
ple tutoring sessions [46]. A social robot that personalized its affective reactions to each child over
the course of two months was shown to impact student valence as compared to a non-personalizing
robot in a language-learning context [19]. Several studies involving personalized robots in learning
have also explored methods to sustain engagement for students, for example, by leveraging atten-
tion data from wearable sensors [50] or by employing multi-activity switching over the course of
several interactions [11]. More recent work has gone farther by investigating a robot tutor that pro-
vides personalized feedback and encourages students to build self-regulated learning skills over
multiple sessions, demonstrating that students who interacted with the personalized robot that
provided scaffolding were able to more successfully enhance their self-regulated learning skills
[25]. These studies address the effects of various supportive mechanisms within a learning in-
teraction, whereas our work aims to understand the effect of content-based personalization with
a robot tutor over multiple sessions on learning outcomes. Furthermore, a more comprehensive
long-term field study demonstrated that students showed higher learning gains when interact-
ing with a robot with multiple dimensions of personalization including its nonverbal behavior,
its verbal behavior, and its content progression as compared to students interacting with a non-
personalized version of the same robot [4]. While one of the personalization components in this
study did involve content delivery, it utilized a fixed threshold to determine mastery of a given
topic, as compared to our work which utilizes a personalized model of the child’s knowledge of
the given skill to provide practice opportunities accordingly.

ACM Transactions on Human-Robot Interaction, Vol. 7, No. 3, Article 19. Publication date: December 2018.



The Effect of Personalization in Longer-Term Robot Tutoring 19:5

In recent years, there have also been advances in robot tutoring systems that focus specifically
on language-learning tasks [6]. Social robots have been shown to foster lasting learning gains in
a second-language tutoring task when compared to a no-robot baseline [28]. Students learning
English as a foreign language retained more vocabulary words when their traditional instruction
was supplemented with a robot tutor than when they did not receive additional time with the
robot over a long-term interaction of five sessions [1]. Children who practiced English language
skills with robot tutors designed to help language skills improved their speaking skills, and these
students reported increased interest, confidence, and motivation in learning English after spend-
ing multiple tutoring sessions with the robot [31]. Specifically regarding content personalization
techniques, new research exploring a content personalization approach based on an extension of
Bayesian Knowledge Tracing was shown to help adults learn new words in an artificial language
when compared to a random baseline for content selection [48]. These personalization techniques
were also applied to children in a single-session language tutoring task where children completed
a vocabulary exercise by identifying the correct animal on a screen during an interaction with a
robot. Results from this study indicated that children who received content based on the adaptive
content selection algorithm and a robot that displayed gestures demonstrated higher learning per-
formance during the interaction; however, these learning gains were not observed independent of
the interaction when measured from pre-test to post-test [13]. Building on the related work demon-
strating the efficacy of robot tutors in language learning scenarios, we specifically investigate the
effects of a robot tutor that personalizes its content progression in a real-world language learning
task for children over multiple tutoring interactions.

3 METHODOLOGY

In this section, we present the implementation details of our automated personalization system
and an experiment in which we evaluate the system’s effectiveness in a language learning task
with children in first grade. We authored an interactive adventure story in Spanish with 24 in-
terchangeable chapters, each offering students a chance to practice one of four English grammar
skills. We ordered these interchangeable chapters either by (1) the output of our adaptive HMM
personalization system (in the personalized condition) or (2) randomly from among the chapters
the participant had not yet seen (in the non-personalized condition). We evaluated students be-
fore they participated in this study and afterwards with a fixed pre-test and post-test administered
to both groups. These pre-tests and post-tests were disguised as chapters in the story and were
administered by the robot but were constant for both conditions. We evaluate the impact of our
personalization system based on the differences in pre-test/post-test measures between groups.

3.1 Interaction Content

During the course of this experiment, the robot engaged participants in an interactive adventure
story task. To make progress through the story, participants were asked to translate between 30
and 40 sentences from Spanish to English per session. We used these translation tasks to teach four
English grammar skills that are difficult for non-native speakers. An example translation task can
be seen in Figure 1. All of the translation tasks participants did in this study were sentences that,
in English, contain either the words “make” or “do.” In Spanish, both “make” and “do” translate to
a single word, “hacer.” As a result, native Spanish speakers often struggle to learn the distinction
English speakers make between these words. Native Spanish speakers often confuse the two. For
example, children might say, “I made my homework” instead of “I did my homework” or “I did a
cake today” instead of “I made a cake today.”

In the English language, there are as many as 10 distinct categories of usage for these two words
that distinguish them from one another, depending on the ELL curriculum one chooses. For this
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Fig. 1. A first-grade student interacts with the robot tutor. The caption here is an English translation of what
the robot is saying in Spanish. The robot told an adventure story to the participants, entirely in Spanish, and
participants were asked to perform Spanish-to-English sentence translations to progress in the story. Par-
ticipants performed either 30 or 40 translations per session, with sessions lasting approximately 20 minutes.
Each participant did five sessions over the course of two weeks.

work, we chose just four of these categories, two for the word “make” and two for “do.” All of our
translation tasks fit exactly into one of these four categories, as described in Table 1. We chose to
teach 4 categories rather than teaching all 10 so as to ensure that there were enough observations
per participant per category to train our model in the allotted time for the study. We treat each of
these four category as a distinct skill in the model.

Each translation that the participants did was interpreted by the experimenter, whose role is
described in Section 3.5. The experimenter categorized each of the participants’ translation tasks
using the following set of objective rules. Correctness in the context of this study was determined
entirely by the verb used in the translation. When participants used the correct verb (either “make”
or “do”) the translation was marked “correct” regardless of the rest of the translation. If the par-
ticipant used the verb “do” in the place of “make” or vice versa, then the translation was marked
“incorrect.” If neither verb was used in the translation, then it was marked “irrelevant.” If the partic-
ipant did not respond, then “silent” was marked. No explicit feedback was given after each answer
by the either the experimenter or the robot. Rather, each translation exercise was an opportunity
to practice a given skill.

3.2 Experimental Procedure

Participants were divided into two experimental conditions where the difference between groups
was the ordering of the translation tasks in the second, third, and fourth sessions. The participants
were blind to the condition they experienced. All participants followed the same procedure in this
study as outlined below.

The experimental procedure was designed to meet ethical guidelines and was approved by
an Institutional Review Board before it was conducted. Before the experiment began, a volun-
tary consent form was sent to parents of potential participants, all of whom were in the same
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Table 1. The English Words “Make” and “Do” Translate to One
Word in Spanish (“hacer”), and as a Result Many Native Spanish

Speakers Struggle to Learn the Distinction We Make between
These Words When They Learn English

“Make” “Do”
M1 D1

To construct or build. To perform a job or activity.
• make a cake • do the dishes
• make dinner • do your homework
• make a bridge • do a dance
• make a tent • do chores
• make a sound • do an assignment
• make a decision • do a project

M2 D2
To elicit a reaction. To perform unspecified action.
• make him happy • do something
• make her smile/laugh • do anything
• make it feel better • do nothing
• make us proud • “What should we do?”
• make him pack • “Let’s do it!”
• make sure that • “How are you doing?”

We picked four such distinctions between these two English words, of

which many more exist in the language. Every translation task partici-

pants did was designed to fit in exactly one of these categories.

first-grade class in a bilingual school, with help from school administrators. Students whose par-
ents consented were informed that they could stop their participation in the study at any time,
for any reason, simply by walking away from the robot. Participants were supervised during the
course of the study by the experimenter. Participants engaged in five sessions of approximately
20 minutes in length, no more than once per day, over the course of 2 weeks. The sessions were
conducted as follows:

• The first session was a pre-test. Its contents were identical for participants in both groups.
There were 40 translation tasks in this session, 10 per skill.

• The second, third, and fourth sessions consisted of 30 translation tasks each. These middle
sessions were composed of 3 interchangeable chapters each, with 10 translation tasks per
chapter. Each chapter targets exactly one of the 4 grammatical skills described above. We
authored a total of 24 interchangeable chapters for this study, 6 that targeted each of the 4
skills. Each of the chapters were designed to include translation tasks of the same general
difficulty level. In total, each participant saw only 9 of the 24 interchangeable chapters. This
limitation was necessitated by the population to avoid fatigue. For a visual representation
of the content of each session see Figure 2. The ordering and selection of the lessons was
determined by the condition the participant was in.

• The fifth and last session of the study was a post-test. Like the pre-test, there were 40 trans-
lations, 10 per skill, and every participant saw the same content in their fifth session with
the robot, regardless of their group. We compare the results of the pre-test and post-test
scores across groups in Section 5.
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Fig. 2. Participants engaged in five sessions over the course of a 2-week period. The first session was a pre-
test, the same across all participants, with 10 translation tasks per skill. The middle three sessions were
composed of three interchangeable chapters, each focused on one specific skill, and each containing 10
translation tasks. The post-test was the same across all conditions and contained 10 translation tasks per skill.
The ordering of the interchangeable chapters varied based on the condition, as described in Section 4 below.

3.3 Experimental Design

We designed a between-subjects study to understand the benefits of our personalized tutoring
system. The only independent variable in this study was the ordering of the interchangeable lesson
chapters during sessions two through four. Below, we provide descriptions of each of our two
experimental conditions: personalized and non-personalized.

3.3.1 Personalized Condition. In the personalized lessons condition, the episodes were ordered
based on a HMM that we built for each participant and skill. The model for each skill consisted
of three hidden states, (1) the participant does not know the skill, (2) the participant does know
the skill, or (3) the participant has forgotten the skill. In the personalized condition, the lessons
targeting “not-known” skills were chosen first, among those that the participant had not already
seen. The parameters of the HMM were updated after the pre-test and then again after each in-
terchangeable chapter. The details of the model can be found in Section 4 below. If no skills were
“not-known,” then lessons that targeted “forgotten” skills were chosen randomly among those not
yet seen. Last, if all of the skills were “known,” then the tutor chose a random episode among the
ones the participant had not yet seen.

3.3.2 Non-Personalized Condition. In the non-personalized lessons condition, participants re-
ceived a random episode that they had not yet seen, distributed uniformly over the four skills.
Because participants saw nine total chapters, they saw one skill three times and the others twice.
This condition is meant to simulate group classroom instruction in that the lessons are not in an
order best suited to any particular student but rather evenly sampled across all the material at the
teacher’s discretion.

3.4 Robot

The robot we used for this study, Keepon, is an 11-inch tall, stationary, yellow, snowman-shaped
robot with small, round eyes, one of which contains a camera, and a small, round nose containing
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Fig. 3. A Keepon robot. Keepon can rotate left and right, lean side to side, tilt up and down, and bounce up
and down. In this study, Keepon interacts one-on-one with a student in a tutoring context.

Fig. 4. Overhead view of the experimental apparatus. The participant, a first-grade student whose domi-
nant language is Spanish, is seated facing the robot. The experimenter, who provides adult supervision and
natural language processing for the robot, is seated beside the participant. The experimenter provided occa-
sional vocabulary assistance, as well as categorizing each of the participant’s responses as correct, incorrect,
irrelevant, or silent.

a microphone. For a photograph, see Figure 3. In this study, the robot faced the participant and
bounced while speaking in a personalized ordering of pre-recorded Spanish audio clips. See Fig-
ure 1 for the relative positioning of the robot and the participant.

3.5 Experimenter

The participant was in the constant supervision of an adult during the course of this study. This
adult, the first author, also played a role in the experiment. The experimenter and the participant
sat side by side as seen in Figure 4. The experimenter performed three roles as follows:

(1) First and foremost, the experimenter monitored the safety and wellness of the child. There
were no notable adverse incidents during the course of this study.

(2) The second role of the experimenter was to provide natural language processing. We
decided not to use Automated Speech Recognition systems to process the participants’
speech, because such systems have relatively high error rates with children and non-native
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speakers [8, 58]. Instead, the experimenter provided speech recognition information to the
system by coding each of the participants’ responses as “correct,” “incorrect,” “irrelevant,”
or “silent” using the objective rules described in Section 3.1.

(3) The last role of the experimenter was to provide occasional vocabulary assistance to
participants in the study. The experimenter could only provide help with nouns, and
not verbs, to preserve the integrity of the “make” vs. “do” distinction made entirely by
participants.

3.6 Participants

There were 19 participants in our study, 10 who received personalized lessons and 9 who received
non-personalized lessons. All of the participants were schoolchildren in the same first-grade class
at the same school. The participants were exclusively Spanish-dominant speakers, being raised
in Spanish-dominant homes. We verified with the teacher of these students that study content
(translation exercises within a story format) was at an appropriate level for all students who partic-
ipated. Additionally, the teacher categorized the students as being a homogeneous group in terms
of their individual ELL skill levels. Participants were randomly divided into the two experimental
conditions.

4 PERSONALIZATION MODEL

There were two conditions in this study, personalized lessons and non-personalized lessons. Below
we provide a detailed account of the model used to provide the personalized ordering of lessons
for the personalized condition.

The goal of the personalization in this system is to sequence the interchangeable chapters we
wrote to best suit the skill competencies of an individual student by challenging him or her with
the translation tasks that he or she needs to practice most. Here we describe a system that takes
as input the series of translation task observations coded by the experimenter, as described in
Section 3.5, and produces as output one of the four skills, by which the robot chose the next inter-
changeable chapter to give participants in the personalized lessons condition. Our modeling ap-
proach is based on the most commonly used student modeling technique in ITS research, a family
of models called BKT [12]. Though many other models exist, some of which offer ways to account
for more complex aspects of knowledge acquisition and memory [38, 41, 42], this simpler type of
modeling technique has not been thoroughly investigated in the context of a longer-term robot
tutoring interaction for children in a real-world educational setting. We deliberately designed our
personalization model to be derived from the family of BKT models to understand whether this
type of personalization model could impact learning outcomes in the context of an ELL task for
children.

For each skill and each participant, we created independent same-structured HMMs with three
hidden states: (1) the participant does not know that skill, (2) the participant does know that skill,
or (3) the participant forgot that skill. To see how these states are connected, see Figure 5. There
were four observable states in this model: (1) a correct answer, (2) incorrect answer, (3) irrelevant
answer, or (4) no answer. For each skill, the model was trained on the subset of the translation tasks
targeting that skill alone. Because each translation task targeted exactly one of the four available
skills, each of the four HMMs was trained on approximately one-fourth of the collected data across
all participants.

We fixed some parameters of the HMM in advance, and learned the rest with the Baum-Welch
algorithm based on the collected data [57]. In total, we fixed 4 parameters, and learned the remain-
ing 14. The learned parameters were first learned based on the pre-test data and then updated with
each new chapter’s worth of data as it was collected. We fixed the initial distributions of the hidden

ACM Transactions on Human-Robot Interaction, Vol. 7, No. 3, Article 19. Publication date: December 2018.



The Effect of Personalization in Longer-Term Robot Tutoring 19:11

Fig. 5. The HMM used to sequence curriculum for the personalized group. Four simultaneous copies of this
model were trained and run for each student, one for each of the English grammar skills defined above.
Implementation details of the HMM can be found in Section 4.

states for all four skills, based on the expert estimate of an ELL educator. She estimated that:

P (knows-skill) = 0.2,

P (forgot-skill) = 0.4, and

P (does-not-know-skill) = 0.4.

We also fixed the observation probability that a participant gives a correct answer given that
he or she is in the “KNOWS-SKILL” state. This choice was inspired by mastery learning literature
in education research, in which students are expected to demonstrate mastery of a skill before
learning another [30]. In this model, we wanted to ensure that the transition from “KNOWS-
SKILL” to a “CORRECT” answer was not learned by the Baum-Welch algorithm as a relatively
low probability, thereby overestimating the competency of participants. Instead, we set a rela-
tively high requirement for the HMM to end up in the “KNOWS-SKILL” hidden state by setting
P (CORRECT |KNOWS ) = 0.9 for all four skills.

We apply the Viterbi algorithm which gives a state for each of the observations resulting in the
most likely sequence of 10 states [17]. We use the latest state to pick the most likely hidden state
for the given skill. This tells us which of the four skills each student knows, does not know, or has
forgotten, and we use that information to choose a personalized lesson for each participant in the
following order:

• If any skill is unknown, then the robot chose a random lesson targeting one of those skills
from among the lessons that the participant had not yet seen.

• If any skill is forgotten, then the robot chose a random lesson targeting one of those skills
from among the lessons that the participant had not yet seen.

• If no skills are unknown and no skills are forgotten, then all skills are known and we choose
a random lesson targeting any skill from among the lessons that the participant had not
already seen.

The aim of this personalization is to target unknown or poorly understood skills first. Though
this challenges students, it enables them to distinguish skills from one another more accurately. As
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students learn the patterns inherent to each skill, they start to improve across all skills. Our model
includes a hidden state for forgetting a skill as a result of our experience running this experiment
with a pilot group over the course of 5 weeks. We noted that participants’ performance worsened
between sessions, especially sessions that had more than a week-long gap between them. This in-
ternal state is likely not necessary for shorter-term automated personalization systems. We com-
pare how this personalization system affected student learning gains relative to a non-personalized
control group in Section 5 below.

5 RESULTS

We investigated the effects of our personalization system on a longer-term robot tutoring inter-
action. Participants performed either 30 or 40 translation tasks per session and an experimenter
coded each translation as “correct”, “incorrect”, “irrelevant”, or “silent.” Each student is assigned
an accuracy score for each session to measure performance on the translation tasks. This score is
defined as the number of correct translations divided by the total number of translations in a given
session. We compare mean accuracy scores between groups to evaluate the impact of our person-
alization system. We used Student’s t-tests for all comparisons of performance between groups
and used an α level of .05 to determine significance for all statistical tests reported.

5.1 Personalization Impacts Learning Gains

To evaluate the performance of the two experimental groups over the course of the multiple tu-
toring sessions, we first compared the pre-test scores between groups and then compared the
post-test scores of both groups. There was no significant difference in the pre-test scores between
the two experimental groups, with mean scores of (M = .38, SD = .11) for the non-personalized
group and (M = .36, SD = .13) for the personalized group. Participants who received personalized
lessons (n = 10) performed significantly better on the post-test (M = .84, SD = .08) than partici-
pants who received non-personalized lessons (n=9) (M = .63, SD = .09), t (17) = 2.368, p = .030,
d = 2.47 (Figure 6). These results indicate that the two groups started with roughly the same
knowledge and, as a result of the personalization system, the group that received personalized
lessons learned significantly more over the course of the study than the group that received non-
personalized lessons. Furthermore, our personalization system led to significantly increased learn-
ing gains, by a mean of 2.0 standard deviations, corresponding to an improvement in the 98th
percentile of scores in the non-personalized group.

Another result of our personalization system is the difference in correctness scores between
groups during the second session, which was either the first personalized lessons session for
the personalized group, or the first non-personalized lessons session for the non-personalized
group. These data are plotted in Figures 7 and 8. The mean accuracy score was significantly
lower in the personalized lessons group, (M = .28, SD = .08), than in the non-personalized group,
(M = .50, SD = .10), t (17) = −2.898, p = .010, d = 2.43. This result indicates that participants who
received personalized lessons found the lessons more challenging than those who received non-
personalized lessons. We can conclude from this that our personalization system correctly identi-
fies the skills in which each participant lacks competency, and can be used successfully to sequence
curriculum to challenge students.

In the data we collected, we can see a difference in the patterns of the correctness data between
conditions over the course of the five sessions. In Figure 7, where the personalized participants
response distributions are plotted, there is a steep growth in the amount of “correct” answers from
the second session to the fifth session. The personalized lessons caused participants to struggle
with harder problems in the second session with the robot and thus made the rest of their time
significantly more effective. Though they faced material that was more personally challenging, and
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Fig. 6. Pre-test and post-test results across experimental groups, indicating the effectiveness of our person-
alization system. Participants who received personalized lessons performed significantly better on the post-
test than participants who received non-personalized lessons. (*) denotes p < .05. Error bars depict standard
error.

thus failed more often early in the study, their post-test scores were very high. In Figure 8, which
shows the corresponding data for the participants who received non-personalized lessons, we see
a growth pattern that steadily increases but less drastically as compared to the personalized group.
This may reflect a classroom style educational experience, in which curriculum is sequenced by a
teacher to suit the majority of the class rather than any individual, and as a result, produces steady
learning gains that are not as quick as with a personal tutor. The patterns in these data clearly
favor the personalized model, but only if the initial challenge presented by personalization is not
overwhelming to the point of frustration on the part of students. So long as students stay with the
tutoring, they will achieve much better end results.

5.2 Additional Observations

The most significant result in this study is the extent to which personalization impacted learning
gains. However, even participants who received non-personalized lessons significantly improved
their knowledge during the course of this study. Participants receiving non-personalized lessons
improved their scores by an average of 10 of 40 points (M = .25, SD = .14) between pre-test and
post-test. This is evidence that simply the act of repeated practice, with a robot, is enough to
stimulate significant learning gains in an ELL domain. When personalization is added to a robot
language tutor, which would be useful on its own, the gains are even higher.

Another interesting outcome of this study is the number of “incorrect” answers among the data
in either group. The mean overall occurrence of “incorrect” answers across both groups and all
sessions was 7% (SD = 3%). For a visual representation of the distribution of these answers per
session and group, see Figures 7 and 8. As a reminder, “incorrect” answers are those where a par-
ticipant used “make” in a sentence that was intended to be translated as “do” or vice versa. Though
somewhat infrequent, students still made mistakes by giving incorrect responses when interacting
with the robot. Young students who are English learners often feel anxiety when interacting with
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Fig. 7. Distribution of answers given by participants in the personalized lessons condition across all five
sessions with the robot. Between the pre-test and post-test, we see a momentary drop in accuracy scores
that then seem to rapidly increase until the post-test. This result validates our main manipulation, in which
we were attempting to challenge students to the hardest problems first. The lower initial scores, rising sharply
over time, indicate that our personalization system correctly identified which skills each participant needed
more practice with and that the personalized lessons each participant received caused a sharp increase in
learning gains over time.

other native English speakers due to various internal and external pressures [52]. It is possible that
students may perceive the robot differently from that of another person and could be more willing
to make mistakes in the presence of the robot. This idea is related to prior work that investigated
the roles of assistant versus teacher involving both robots and humans and how this impacts stu-
dent help-seeking behavior, and concluded that students may have felt less comfortable asking
for help from a human teacher as compared to the human assistant, the robot assistant, and the
robot teacher [22]. However, other work has shown that students ask for help more often from a
human tutor than from a robot tutor, indicating the need to understand student perceptions of the
robot’s capabilities prior to an interaction [49]. Toward the end of the study, students made fewer
mistakes and reduced the number of times they said something irrelevant and stayed silent, likely
because participants had more knowledge of the skills.

6 DISCUSSION

The success of our personalization approach of choosing the sequence of chapters to present to
each student contributes to the growing body of research in the HRI community highlighting the
importance of personalization mechanisms with educational interactions. Earlier work showed
this type of approach could be used to trace student knowledge during a puzzle task and provide
hints accordingly resulting in faster performance for adults [36]. More recent work has looked at
an adaptive approach to content selection also based on BKT models and has shown that adults
perform better with this approach applied specifically within a language learning setting [48].
Further research using the same model was applied to a real language learning scenario with
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Fig. 8. Distribution of answers given by participants in the non-personalized lessons condition across all five
sessions with the robot. Between the pre-test and post-test, we see a steady increase in correct responses, and
corresponding decrease in the incorrect, irrelevant, and silent responses. This result is consistent with the
expectation of a typical classroom learning experience, in which we expect students to perform incrementally
better the more material they are exposed to. Some students may be bored while others may be failing, but
the mean continues to rise.

children and it was successful, particularly when gestures were combined with the adaptive con-
tent selection approach [13]. The results from our study further validate these related results and
provide additional evidence towards the feasibility of a relatively simple personalization approach
to content sequencing over multiple sessions. Our results not only validate the effectiveness of a
content personalization model in a language learning setting, but we apply this to children in an
authentic ELL tutoring task and evaluate the model’s impact on learning outcomes over multiple
tutoring sessions rather than a single session. Based on our model design, we would expect a more
complex model of knowledge and memory that informs the personalization approach to yield sim-
ilar or better results. It is promising that a personalized content sequencing approach based on a
simpler family of models can still promote strong learning gains.

Students who participated in our study stayed engaged with the robot throughout each of the
five sessions and enjoyed their time with the robot as we observed that they smiled and laughed
during the sessions. Though this evidence is anecdotal, it is in line with what other studies that
have explored longer-term robot interactions with children have found: Children typically stay
engaged with robots over multiple sessions and often form social bonds with the robot [26, 32,
51]. Other work investigating on multiple-session robot interactions with children found that
multi-activity switching can be used to maintain engagement over multiple interactions [11]. Our
work highlights the idea that simple content personalization over multiple tutoring sessions may
help keep children engaged by providing them with exercises of the right level of challenge. This
combined with other recent findings provides several design recommendations and approaches
for robots to successfully engage with children over time, improving learning outcomes. Despite
these advances, additional research investigating truly long-term interactions, involving months
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or years of interaction time designed in conjunction with qualified educational authorities is nec-
essary to understand whether we can successfully deploy autonomous robot tutors in classrooms
and homes.

In addition, we must interpret our results carefully, making sure not to over-attribute the success
of the learning outcomes to the robot tutoring platform specifically. Our analysis and experimental
design showcases the value of a personalized approach to sequence curriculum within a ELL tutor-
ing task and specifically highlights the advantages of this model over utilizing a robot tutor with
a non-personalized content selection method. It was not our focus in this study to understand the
value of the presence of the robot tutor itself, as we relied on prior work [37, 44, 56] that indicates
the value of physically present robots. However, one limitation of the study is the fact that we did
not have the resources to also conduct a no-robot baseline control condition to isolate both the
effects of the robot tutor as well as the personalization approach, which other work in this area
has done [28]. Nonetheless, the no-robot baseline in the study conducted by Kennedy et al. did
not compare the same tutoring provided through another medium (such as a tablet or a computer
screen) and the robot tutoring interaction. This demonstrates the value of the robot tutoring in-
teraction as a whole, but not specifically the robot. Though we do have evidence from multiple
sources about the benefits physically embodied agents [2, 37, 43, 53], more work should still be
done to validate these findings and further explore more precisely when a robot is necessary as
well as what about the robots lead to more effective learning in certain contexts.

We also note that our personalization model performed better than a ”random” baseline. How-
ever, in our case, our control condition is not truly random, as it it does not present content in an
order that does not make sense. For curriculum sequencing approaches in particular, the control
condition can be well represented by what teachers do in classrooms when they must take a one-
size-fits-all approach. Similarly, in our user study, we designed a control condition that emulates
how a teacher generally presents content to a class without ordering it based on an individual’s
knowledge of particular skills. Though we did use a “random” baseline, we feel that in this context
it was a strong control condition, thereby highlighting the value of the personalization model that
corresponded to a larger learning improvement than the control.

Another challenge in designing robot tutors for these type of educational environments involv-
ing children is handling individual differences. The students who participated in this study were
quite homogeneous in terms of skill level on the translation task that was involved in the study. We
used our personalization model to track student knowledge on the given skills and present content
accordingly. However, learning is a complex process that often involves several other salient fac-
tors that can contribute to student performance and efficacy in learning, such as affective factors,
attention, and personality traits. Other work involving various applications of human–robot in-
teraction has investigated some of these aspects that are relevant in a tutoring setting for children
[19, 33, 50]. Studying each of these aspects individually is important; however, to build effective,
personalized tutors that can be used over longer term interactions, future work should investigate
personalization mechanisms that take many of these important factors into account, rather than
just one.

The relatively large increase in skill competency, across both groups, as measured by the post-
test, raises the question of whether these skills can be transferred to students’ daily speech and
ELL class performance. Though this is not the research question we ask in this work, as we are
focused on creating effective personalization systems for robot tutors, it is a question one should
ask of any education intervention in the long term. Do robot tutoring interventions like the one
we made produce learning gains that transfer into daily life? All of the participants in this study
were students in the same first-grade class and their teacher commented on an improvement in
the days after our work without the authors’ prompting. It was our experience that, generally,
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students were enthusiastic about interacting with the robot, even despite its limited capabilities at
present, and that, likely, the skills improved in the study did transfer, at least to some extent, to
the students’ lives. As such systems become more robust, future work should include follow-up
research to see what the long-term impacts are of such interventions.

7 CONCLUSION

In this work, we describe a personalization system for longer-term robot tutoring and we test
our system with ELL curriculum targeted towards Spanish-dominant first-grade students. In this
study, participants were divided into one of two conditions: they either received personalized
lessons as decided by our personalization system, or they received non-personalized lessons cho-
sen at random but evenly distributed among the ELL skills we targeted. We found that the par-
ticipants who received personalized lessons significantly outperformed participants who received
non-personalized lessons by a factor of 33%. We also found evidence that our personalization sys-
tem correctly identifies a student’s weakest skills and can be used to sequence curriculum to max-
imize a robot tutor’s effectiveness.
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