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Personalized learning environments have the potential to improve learning outcomes for children in a vari-

ety of educational domains, as they can tailor instruction based on the unique learning needs of individuals.

Robot tutoring systems can further engage users by leveraging their potential for embodied social interac-

tion and take into account crucial aspects of a learner, such as a student’s motivation in learning. In this

article, we demonstrate that motivation in young learners corresponds to observable behaviors when inter-

acting with a robot tutoring system, which, in turn, impact learning outcomes. We first detail a user study

involving children interacting one on one with a robot tutoring system over multiple sessions. Based on em-

pirical data, we show that academic motivation stemming from one’s own values or goals as assessed by the

Academic Self-Regulation Questionnaire (SRQ-A) correlates to observed suboptimal help-seeking behavior

during the initial tutoring session. We then show how an interactive robot that responds intelligently to these

observed behaviors in subsequent tutoring sessions can positively impact both student behavior and learn-

ing outcomes over time. These results provide empirical evidence for the link between internal motivation,

observable behavior, and learning outcomes in the context of robot–child tutoring. We also identified an ad-

ditional suboptimal behavioral feature within our tutoring environment and demonstrated its relationship

to internal factors of motivation, suggesting further opportunities to design robot intervention to enhance

learning. We provide insights on the design of robot tutoring systems aimed to deliver effective behavioral

intervention during learning interactions for children and present a discussion on the broader challenges

currently faced by robot–child tutoring systems.

CCS Concepts: • Applied computing → Interactive learning environments; • Human-centered computing

→ User studies;

Additional Key Words and Phrases: Child–robot interaction, tutoring, motivation, education

ACM Reference format:

Aditi Ramachandran, Chien-Ming Huang, and Brian Scassellati. 2019. Toward Effective Robot–Child Tutor-

ing: Internal Motivation, Behavioral Intervention, and Learning Outcomes. ACM Trans. Interact. Intell. Syst.

9, 1, Article 2 (February 2019), 23 pages.

https://doi.org/10.1145/3213768

The reviewing of this article was managed by associate editor LaViola, Joseph.

Part of this work was published in Proceedings of HRI’16 [57]. This work is supported by the National Science Foundation,

grant no. 1139078 (Socially Assistive Robotics).

Authors’ addresses: A. Ramachandran and B. Scassellati, Computer Science Department, Yale University, 51 Prospect St,

New Haven, CT 06511; emails: {aditi.ramachandran, brian.scassellati}@yale.edu; C. M. Huang, Computer Science Depart-

ment, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218; email: cmhuang@cs.jhu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2160-6455/2019/02-ART2 $15.00

https://doi.org/10.1145/3213768

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 1, Article 2. Publication date: February 2019.

https://doi.org/10.1145/3213768
mailto:permissions@acm.org
https://doi.org/10.1145/3213768


2:2 A. Ramachandran et al.

1 INTRODUCTION

Advancing personalized learning, or the shift from traditional one-size-fits-all teaching to learning
environments tailored to the needs of the individual student, has great potential to bolster conven-
tional models of education and positively impact educational outcomes for children with various
abilities and capacities [48, 49]. One aspect of a learner that varies significantly between children
is a student’s motivation [22, 25]. Differences in motivational goals and tendencies can notably in-
fluence students’ academic performance and learning outcomes [25, 80], indicating that a child’s
motivation in learning plays a large role in the type of personalized support the child may require
[48]. Motivation is a complex construct that involves various factors driving someone to engage
in certain behaviors. For younger learners this can be measured in terms of externally and inter-
nally motivated reasons for why they do certain school-related activities [22]. Externally driven
motivation involves engaging in activities in order to receive rewards or avoid consequences that
are specifically external to the person, such as money or getting in trouble with a teacher. Inter-
nally driven motivation refers to engaging in various behaviors to achieve internal satisfaction or
act in accordance with one’s own goals or values, such as doing work because it is enjoyable or
practicing a skill due to a belief that it is important to learn. Internal motivation includes intrinsic

motivation, which is defined as doing something because it is inherently interesting or enjoyable
and reflects a person’s highly internal satisfaction in engaging in an academic task [62]. Intrin-
sic motivation is positively associated with self-regulation and academic success [21, 80]. Students
who are intrinsically motivated are often considered to be self-regulated learners, as they typically
apply strategies to monitor and evaluate their own learning processes [78, 79]. While intrinsic mo-
tivation is important for academic success, there are also other categories of motivation, such as
identified and introjected motivation, that stem from an inner acceptance of the value or utility of a
task, making these types of internal motivation positive sources of motivation that are also useful
in fostering productive learning [62]. These internal categories of motivation have also been shown
to correspond to positive coping strategies with failure experience in an academic setting [61].

Robot tutoring systems, capable of engaging in embodied interactions and maintaining situated
awareness of the learning environments and users, hold the promise to deliver effective personal-
ized learning [13]. To fully support personalized learning, it is crucial that these systems consider
students’ motivation as part of their personalization approaches. However, it is challenging to de-
cipher a person’s motivation in learning, which involves hidden factors and processes that cannot
be acquired intuitively and directly via computing technologies. While it is difficult to directly ac-
cess the internal information of a person’s motivation, human behavior often reveals information
about a person’s internal states, including information about attention, emotion, and motivation.
Therefore, in practice, we must explore robot tutoring systems that monitor and shape students’
observable, manifested behavior without direct access to their internal states. Identifying how such
observable behaviors are linked to motivation in learning can help develop a holistic understand-
ing of the learning process and can inform the design of effective robot tutoring systems. We aim
to understand whether robot tutoring systems can leverage this understanding in order to provide
intelligent intervention behaviors that have the potential to positively impact student learning
outcomes.

In this article, we describe the linkage of motivation in learning, observable behavior, and learn-
ing outcomes, highlighting how motivation closely relates to behavior within a learning interac-
tion, which, in turn, can be used intelligently by a robot tutoring system to intervene accordingly
to strengthen learning outcomes. In a user study involving children interacting with a robot tutor-
ing system over multiple sessions (Figure 1), we first show how motivation in learning as assessed
by a self-reported questionnaire directly relates to observed “suboptimal” help-seeking behaviors.
We further demonstrate that a robot tutoring system responding intelligently to the occurrence of
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Fig. 1. We designed an interactive robot tutoring system to provide help to children practicing math prob-

lems. Children interacted with the robot through a tutoring application on a tablet device and could ask

the robot for help through buttons on the tablet screen. The robot system was designed to intervene in-

telligently based on the help-seeking behavior of the children. The students engaged in autonomous robot

tutoring interactions, in which the experimenter did not intervene at any point during the sessions.

these particular suboptimal behaviors can improve behavior and positively affect learning gains
[57]. Our results inform future design of robot tutoring systems aiming to deliver effective inter-
vention that supports a broader learning process that includes the role of motivation in learning.

This article provides the following contributions: We describe the unified linkage of motivation
in learning, observable behavior, and learning outcomes, which can be used as a tool to design
robot intervention behavior. We also empirically evaluate this tool within the context of a user
study involving a robot–child tutoring scenario, demonstrating the potential for this tool to be used
in building an effective tutoring system that can impact learning. We present empirical findings
from our user study showing that a robot that employed shaping strategies to counter suboptimal
help-seeking behaviors (requesting too much or too little help) relating to motivation improved the
help-seeking behavior and learning gains of students over four tutoring sessions. These findings
add to the broader knowledge of how motivation plays a role in robot–child tutoring interactions
and informs how robots can leverage the relationship between motivation and behavior to improve
behavior and enhance learning as effective tutors for children.

2 BACKGROUND

In this section, we first present related literature that discusses the role of motivation and behavior
in a learning context, including examples of suboptimal behaviors in learning environments. We
then review existing work on using intelligent tutoring systems (ITSs) to provide personalized
learning and summarize the contributions of robots as effective tutoring agents.

2.1 Motivation, Behavior, and Learning Outcomes

Motivation in learning is a particularly complex construct that includes both internal (e.g., to
achieve personal satisfaction or to act in accordance with one’s values) and external (e.g., to avoid
punishment) factors that dictate why children engage in certain academic behaviors. Different
motivational profiles of students can affect reactions to successes and failures and can impact a
child’s cognitive performance [25]. Research in educational psychology has established a positive
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relationship between motivation and success in learning [21, 77, 80]. In particular, intrinsic moti-
vation contributes crucially to a child’s success in an academic environment [21]. Students who
were motivated by learning goals, which reflects a more internal orientation toward learning,
displayed cognitive achievement, particularly during challenging tasks [26]. Moreover, measures
of children’s internally oriented motivation have also been positively correlated with traditional
achievement measures, such as standardized test scores and grades [29, 63]. Learning outcomes
refer generally to measures of performance related to an educational task or program. These can
refer to academic measures such as improvements in grades or test scores and are typically used
to reliably demonstrate what a learner knows and does not know. To foster motivation in learn-
ing, prior work has explored the use of stimulating learning environments, open classrooms, and
constructive feedback [21, 32, 44, 68]. These foundational efforts establish the impact of internal
motivation on academic performance within the classroom and beyond.

Students who are intrinsically motivated tend to engage in self-regulated learning (SRL) by ap-
plying strategies to monitor their own learning processes and drive them forward [52, 53]. These
strategies often involve employing metacognitive skills, such as goal-setting, adaptive help seek-
ing, and persistence through difficulty [53, 78]. Prior research has explored the employment of
these skills through the use of questionnaires and interviews with students and teachers and the
association of them to academic achievement [53, 60, 80]. In addition to questionnaire and inter-
view probing, more current efforts have made progress on automatically assessing user behavior
through user computer traces and observation [5, 31, 79]. One prominent effort to capture SRL
was by using a computer-based study environment that provided the learner with opportunities
to make notes, search for information, receive help, and chat with fellow students and analyz-
ing when and how frequently students engaged in these behaviors [76]. Other attempts to assess
student use of SRL have relied on learning environments that record students thinking aloud or
allow them to write down their thoughts during learning and then coding and categorizing these
responses based on whether they demonstrate SRL processes [30, 66]. Another method of automat-
ically evaluating student use of a specific SRL strategy—that is, help seeking—involved developing
a model of appropriate help-seeking behavior and assessing student actions based on whether they
were in line with the model [2]. This body of work has primarily focused on identifying productive
behaviors and showing that using them positively impacts learning outcomes.

Identifying students who do not use these SRL strategies is critical, as they may require more
tailored support from an interactive learning environment to be able to meet their learning goals.
To this end, other work has focused on the complementary problem of identifying behavior
productive to learning, which is identifying unproductive strategies that do not lead to more
effective learning. This is particularly useful, as the successful identification of these unproductive
behaviors provides an interactive tutoring system the opportunity to monitor suboptimal be-
havior, meaning behaviors that do not make effective use of the tutoring system, and potentially
intervene accordingly. For example, ITS systems have explored this specifically in the context
of help-seeking behavior, as productive help-seeking is a critical skill positively associated with
SRL [27, 47, 59]. The existing ITS literature has shown that the use of exploitative help-seeking
behavior (“gaming the system”) and help-averse behavior (sometimes called “help avoidance”) in
students who interact with learning environments can negatively impact learning outcomes [1,
10]. We describe each of these behaviors and provide examples in the context of ITS.

Gaming the System. In the context of tutoring systems, gaming the system has been defined
as “attempting to succeed in a learning environment by exploiting properties of the system rather
than by learning the material and trying to use that knowledge to answer correctly” [8]. There
are many examples of this behavior observed within intelligent tutoring systems. Two notable
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examples include inputting answers quickly and systematically and rapid hint requests [10].
Specifically related to help-seeking behavior, rapid hint requests typically involve the learner
trying to acquire the answer or information about the answer without expending considerable
effort thinking through each hint and the problem. In many of the intelligent tutoring systems
in which gaming behavior has been detected, each problem will contain a series of hints; the
last hint is often called a “bottom-out hint” because it contains very specific information that is
necessary to solve the problem [58].

Help-aversion. Another noteworthy suboptimal behavior identified in tutoring environments
that impacts learning is help aversion [1]. Help-averse behavior typically involves the lack of use of
help features in a learning environment when it is likely to benefit the learner. In most interactive
learning environments, there are help features built into the system, for example, in the form of
a button on the screen, where the user can request help when needed. Help aversion is typically
observed when the student makes many incorrect attempts but ignores the help button altogether,
ultimately failing to use the help available from the tutoring system.

Because these suboptimal help-seeking behaviors demonstrate lack of use of SRL behavior, we
believe that the use of unproductive help-seeking behavior has a relationship to a child’s moti-
vation in learning. In this work, we explore this relationship between motivation in learning and
suboptimal help-seeking behavior and evaluate how these behaviors can impact learning outcomes
through an empirical user study involving a robot tutoring system.

2.2 Personalization within Intelligent Tutoring Systems

The ITS community has made large contributions to the development of effective one-on-one tu-
toring environments. Successful work in ITS initially focused on building robust systems designed
to capture the knowledge state or estimate skill level of students interacting with the system [7,
18, 23, 50]. Many systems could also successfully use this information to personalize a variety of
aspects of the tutoring platform, including the types of exercises, feedback, and hints provided to
the student [14, 23, 71]. Many of these learning systems have been shown to be effective in pro-
moting learning and have largely influenced the broader discussion on the promise of personalized
learning within educational settings [49, 72].

Work in ITS has also explored student modeling that goes beyond student skill estimation. More
complex student models have been built that capture a broad variety of user characteristics, in-
cluding meta-cognitive behaviors and affective states [23]. Many studies have explored the use of
sensors to track affect and attention during learning [4, 17, 24]. There has also been a significant
number of systems that have highlighted the importance of learner motivation and engagement
during learning [9, 11, 12, 16, 20]. For example, Clement et al. demonstrate the importance of
personalizing tutoring activity selection in a way that maintains learner motivation by providing
a student with activities of the appropriate difficulty or challenge [16]. Additionally, ITSs have
modeled students’ usage of meta-cognitive strategies, such as help-seeking behaviors, effective
use of the learning system, and problem-solving strategies [15, 40, 58, 73]. The inclusion of these
user-centric attributes and internal states allows tutoring systems to model the broader learning
process to better promote effective learning across a diverse population of learners. Our work ex-
plores the role of robots as physically embodied tutoring agents and seeks to understand whether
robot tutors can be used to shape behaviors and promote learning gains over time.

2.3 Robot Tutoring Systems

Building on the promising results of ITS research, the field of human–robot interaction has focused
on further advancing personalized learning by highlighting the efficacy of physically present social
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robots in various educational settings [37, 39, 67]. Social robots are physically embodied to afford
effective human–robot interactions, leading to increased compliance and enjoyment as well as
greater social and emotional support [6, 41, 51, 54, 55, 64, 74]. Kanda et al. show the establishment of
a stronger relationship between the child and a robot that exhibits social behavior while also citing
the positive effects of having a physically present entity [38]. Howley et al. describe the potential
advantages of a robot tutor over a human tutor in some situations due to distinctions in social role
and evaluation apprehension regarding seeking help within a learning interaction [33]. Moreover,
Mohseni-Kabir et al. reinforce the idea that a robot dialogue can promote learning gains within the
context of a bidirectional coaching model between an adult and a robot [46]. Ramachandran et al.
also demonstrate that children show increased engagement and compliance with meta-cognitive
strategy support during learning when the assistance is delivered by a physically present robot
[55]. These studies show the promise of the use of physically present robots as effective tutoring
agents specifically designed to interact with children and shape behavior over time.

There has also been substantial work establishing the benefits of personalized robot behavior
or intervention on learning performance [28, 56]. Leite et al. modeled the affective reactions of
children and then used a robot to adapt its social support based on the observed affective states [41].
Szafir and Mutlu monitored the attentional state of the user interacting with a robot and adaptively
used this information to reengage the user when needed, which improved the information recall
ability of the users [70]. Leyzberg et al. showed that providing personalized lesson support for a
cognitive puzzle task significantly impacts learning gains [43]. More recent work in robot tutoring
systems has directly investigated using robot tutors to foster SRL behaviors in children during
learning owing to their positive impact on academic performance. Jones et al. have demonstrated
the value of using open-learner models and scaffolding to specifically encourage students to build
SRL skills while completing an educational task [35, 36]. After investigating the effectiveness of this
robot system on student behavior over several weeks, students who interacted with the adaptive
scaffolding robot tutor built more SRL skills than those who interacted with a robot tutor that did
not use scaffolding [36]. These studies demonstrate how personalized robot systems that are being
used for behavioral intervention can positively impact the learning interaction. While behavioral
interventions presented by tutoring systems have shown success in shaping learning outcomes,
how they are linked to measures of motivation in the context of a tutoring interaction is unclear.
In this work, we seek to empirically explore the linkage of motivation in learning, observable
behavior, and learning outcomes. Our results provide a holistic understanding of learning process
and shed light on designing tutoring systems for effective behavioral intervention that leverages
the influence of motivation in learning.

3 USER STUDY: SHAPING PRODUCTIVE HELP-SEEKING BEHAVIOR

To illustrate the linkage of motivation in learning, observable behavior within a learning environ-
ment, and learning gains (Figure 2), we here present empirical evidence from a user study involving
children interacting with a robot tutoring system over multiple sessions [57]. We first introduce
the context for and the robot tutoring system used in this user study. We then describe our exper-
imental design, conditions, and procedure, as well as measures for evaluation and participants.

3.1 Study Context

We contextualized our study in a robot–child tutoring interaction involving four one-on-one ses-
sions spanning approximately two weeks (Figure 3). The study was conducted in local elementary
schools in Connecticut. Given the recent body of work discussed in Section 2.3 indicating that
physical robots make promising tutoring agents owing to the increased engagement and compli-
ance that they foster [6, 51, 54, 74], we chose a physically embodied robot to act as the tutor in
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Fig. 2. Linkage between internal motivation, observable behavior, and learning outcomes. We use empirical

evidence from a user study to establish a relationship between measures of internal motivation (as measured

by a self-report questionnaire) and observable behaviors during a tutoring interaction with a robot. We

further show that a robot tutoring system that provides behavioral intervention based on this observable

behavior leads to learning gains.

our user study. Throughout the tutoring sessions, a robot acted as a tutoring agent that helped
participating children solve math problems (Figure 1). In particular, the robot tutoring system was
designed to provide hints as requested by the student on how to solve the math problems. It was
not our goal in this work to isolate the benefits of using a physical robot. In this study, we sought
to (1) understand how children’s motivation in learning was related to their help-seeking behav-
iors and (2) evaluate how the robot’s help-seeking intervention strategies may shape children’s
suboptimal help-seeking behaviors and subsequently influence their learning outcomes.

3.2 Robot Tutoring System

We built an interactive robot tutoring system consisting of a NAO robot to act as the tutoring agent
and a tablet to display the tutoring application containing math problems (Figure 1). The math
problems were displayed and completed on the tablet positioned in front of the students. Each
of the four sessions contained eight math problems on fractions concepts. All problems followed
state curriculum standards and were designed for students in fifth or sixth grade.

The robot provided verbal feedback on a child’s answer to a math problem. For example, it used
phrases such as “great job!” for a correct answer and “give it another shot!” for an incorrect answer.
Additionally, the robot verbally provided hints at the child’s request via the tutoring application on
the tablet. Each problem had exactly three hints associated with it and the hints had to be requested
in order although they could be repeated. Each successive hint provided more information; the
third hint contained the most information relevant to the given problem.

The robot operated autonomously in real time with each child, requiring no input or interven-
tion from the experimenter throughout the duration of each interaction. It reacted exclusively to
tablet input from the child throughout the course of the tutoring sessions. The robot’s behaviors
were designed to be consistent across all participants over all sessions.

3.3 Experimental Design and Conditions

As described in Section 2.1, suboptimal help-seeking behaviors have been identified to impede
effective learning with ITSs [1]. In this work, we aimed to understand how these behaviors are
related to a student’s motivation in learning and how a robot tutoring system can effectively
intervene in response to these behaviors to improve learning outcomes. To this end, we em-
ployed the Academic Self-Regulation questionnaire (SRQ-A), detailed in Section 3.4.1, to measure a
student’s motivation in learning prior to the beginning of the first tutoring session. We designed

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 1, Article 2. Publication date: February 2019.



2:8 A. Ramachandran et al.

Fig. 3. Experimental design for the four-session robot–child tutoring interaction study that we conducted.

Baseline help-seeking behavior for both groups was assessed during Session 1, in which neither group re-

ceived intervention behaviors from the robot. The intervention group received intervention strategies from

the robot during Sessions 2 through 4. Children in both groups completed the four tutoring sessions over

the course of two weeks.

a between-subjects experiment in which participating students were randomized into one of two
conditions: control (participants use on-demand help with the robot) and intervention (participants
received intervention strategies from the robot). We chose to use a repeated measures design to
examine behavior change and learning gains of the participants over time. We established each
child’s baseline behavior during the first session without introducing the confound of the robot’s
shaping strategies. Figure 3 illustrates the study design.

One established way of providing help in a learning environment is to allow the student to use
on-demand help. On-demand help refers to help provided by the learning environment that must
be actively solicited by the learner [3]. Participants in the control condition relied on the buttons
on the tablet interface (pictured in Figure 1) to make up to three help requests per question to the
robot whenever they wanted to during each session, thereby using on-demand help features of the
application.

Participants in the intervention condition followed this same method of requesting help;
however, the robot also employed two strategies informed by the literature aimed at countering
suboptimal help-seeking behavior: help aversion and help overuse [1, 10]. Below, we describe the
implementation of these two strategies for our robot tutoring system.

• S1: If the participant makes two consecutive incorrect attempts on a problem without asking
for any hints, the robot will automatically provide the participant with the next hint that
the participant has not yet requested.

• S2: If the participant makes three consecutive hint requests on a problem without an at-
tempt in between, the robot will deny the participant the third hint, and request that the
participant attempt the problem before asking for more help.

While triggering S1 may not indicate that the participant was completely help averse, the be-
havior involved was still considered suboptimal in our tutoring context. This trigger indicated
that the participant was not using the help features of the tutoring system in the most productive
way. S2 is a strategy used to counter the suboptimal behavior of making successive hint requests
to receive the most information before attempting the problem. This trigger indicated that the
participant was not trying to use the information presented in previous hints. Asking the student
to make an attempt before requesting more help can encourage the participant to make a bigger
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effort to understand and use the presented hints. These are not the only suboptimal help-seeking
behaviors that can be defined in this tutoring context and the absence of these two suboptimal
behaviors does not represent optimal help-seeking behavior across all students. Other suboptimal
help-seeking behaviors can be measured by how help requests are distributed through time within
and across sessions. However, we did not attempt to quantify these or design intervention strate-
gies to counter these types of behaviors in this study. We chose two suboptimal help-seeking be-
haviors that were based on frequencies of behaviors representing help aversion and help overuse
within our tutoring context that could be easily detected during each question. This led to the
design of the simple shaping strategies that can directly counter these behaviors to shape more
productive help use over time.

Because these two suboptimal behaviors specifically related to help use during a tutoring session
have been shown to impact learning, we hypothesized that building simple robot-shaping strate-
gies to directly counter each of these behaviors would lead to improved behavior and learning
regardless of “why” students engaged in these behaviors. These particular strategies were derived
from countering using “too much” or “too little” help in the context of the robot tutoring interac-
tion that we designed. Though we planned to analyze whether suboptimal help-seeking behaviors
relate to a child’s self-reported academic motivation, we did not measure this relationship be-
fore conducting the multi-session user study. Rather than trying to classify a child’s motivational
state based on the child’s use of suboptimal help-seeking behavior, we investigate whether a robot
can effectively shape suboptimal use of the help features in our tutoring system. We then further
attempt to elucidate whether a child’s motivation in learning is related to the child’s use of subop-
timal help-seeking behaviors in order to provide a broader understanding for why shaping these
behaviors may lead to more effective learning within tutoring.

3.4 Measures

In this section, we describe the SRQ-A and the measures that we used to assess the relationship
between students’ motivation in learning and their suboptimal help-seeking behavior observed in
Session 1 (baseline). We then report the metrics that we use to evaluate the effectiveness of the
robot employing help-seeking intervention strategies from Session 2 to Session 4.

3.4.1 The Academic Self-Regulation Questionnaire (SRQ-A). The SRQ-A explores why children
complete their schoolwork and is designed for children in late elementary school and middle school
[61]. The questionnaire asks children to explicitly consider reasons for completing academic tasks
that they are familiar with, such as homework. There are four main questions on the SRQ-A, each
requiring responses to eight individual items, making 32 items in total. Each response required is
on a four-point scale: “very true” is scored as four, “sort of true” is scored as three, “not very true” is
scored as two, and “not true at all” is scored as one. Each of the 32 responses is associated with one
of four subscales, which are categories of reasons for academic achievement: external, introjected,
identified, and intrinsic. Ryan and Connell define the four categories of reasons as follows: “Ex-

ternal reasons were those where behavior is explained by reference to external authority, fear of
punishment, or rule compliance. Introjected reasons were framed in terms of internal, esteem-based
pressures to act, such as avoidance of guilt and shame or concerns about self- and other-approval.
Identifications were captured by reasons involving acting from one’s own values or goals, and typ-
ically took the form of ‘I want.’ Finally, and where applicable, we included intrinsic reasons for
action where the behavior is done simply for its inherent enjoyment or for fun.” [61]. An exam-
ple of one of the four main questions on the questionnaire is: Why do I do my homework? This
question is followed by eight reasons, each for which the student would circle one of the four op-
tions on the scale indicating the extent of their agreement with that particular reason. The external
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category is associated with reasons like “because I’ll get in trouble if I don’t.” A reason representing
the introjected category is “because I want the teacher to think I’m a good student.” An example
of a reason that fits identification is “because it’s important to me to do my homework.” Last, “be-
cause it’s fun” is an example that corresponds with intrinsic reasons for action. The four subscales
are organized in order from external to internal orientation toward why they complete school-
related activities. Of these four subscales, the external category measures externally oriented mo-
tivation, while the other three categories—introjection, identification, and intrinsic motivation—can
be grouped under the broader category of internal motivation. The ordering of the subscales indi-
cates that identification is more internal than introjection, and the intrinsic category is considered
to be the most internal category of motivation on this scale. The introjected category of motivation
includes reasons for behavior involving the approval of others, which appears to be an example
of external motivation. However, it also includes reasons such as “because I will feel really proud
of myself if I do well” and focuses on behaving according to internal pressures, allowing the in-
trojected category to be considered somewhat internally oriented. Identified reasons for academic
behavior reflect a strong internal value on learning, which is considered to be a positive source of
motivation and also allows for identification to be considered internal. Scores for each subscale are
calculated by averaging the values of the responses that correspond with each category of reasons.

While there are multiple ways of using the SRQ-A (e.g., combining the four subscales into one
score), we chose to treat the subscales separately, because the subscales are not mutually exclusive.
For example, a student can score highly on both external and intrinsic subscales. The high internal
consistency for the external (9 items, Cronbach’s α = .813), introjected (9 items, Cronbach’s α =
.885), identified (7 items, Cronbach’s α = .792), intrinsic (7 items, Cronbach’s α = .874) subscales
confirmed their reliability. The average scores across all participants for each of the four subscales
are as follows: mean (M) = 3.07, standard deviation (SD) = .57 (external); M = 3.08, SD = .59
(introjected); M = 3.51, SD = .45 (identified); M = 2.68, SD = .62 (intrinsic).

3.4.2.2 Help-Seeking Behavior Change. To evaluate the effectiveness of the robot intervention
of suboptimal help-seeking behavior, we counted the number of times strategies S1 and S2 would
have been triggered for each participant i for a given session S :

num_triggers(i, S ) = num_auto_hints (i, S ) + num_denied_hints (i, S ).

This count involves num_auto_hints , representing the number of times a hint would be automat-
ically given, and num_denied_hints , representing the number of hints that would be denied. We
calculate num_triggers(i, S ) for each participant. where S = 1 and S = 4. This metric represents
the number of suboptimal help-seeking behaviors observed for a participant in Session 1 (baseline
help-seeking behavior) and in Session 4. We further define Δtriggers as a metric that captures the
difference between number of triggers from Session 1 to Session 4 for participant i:

Δtriggers (i ) = num_triggers(i, 4) − num_triggers(i, 1).

We employ this metric to understand the change in a participant’s use of help-seeking behavior.

3.4.3 Learning Gains. In this user study, we investigated a specific learning outcome, learn-
ing gains, to measure each student’s improvement in knowledge from before to after the tutoring
interactions. To assess how the robot intervention may influence a student’s learning outcomes,
particularly learning gains, we asked participants to complete a pretest before Session 1 and a
posttest after Session 4. Participants completed the pretest on the same day as Session 1 and the
posttest on the same day as Session 4. Both the pretest and posttest consisted of eight questions,
containing the same types of problems that were presented during the four tutoring sessions. The
questions on both pretest and posttest were almost identical, with differing numbers within each
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Table 1. Participant Demographic Information for the Two Experimental Conditions in Our User Study

problem. We scored both tests by awarding one point for each correct answer and dividing the
number of correct answers by the total number of questions, resulting in scores ranging from zero
to one (accuracy). The difference in test scores between the pretest and the posttest, Δscor e , is a
within-subjects measure of learning gains over the course of the entire experiment. All measures
of learning gains are calculated relative to each participant’s individual pretest score. In our as-
sessment, we employ normalized learning gain as defined below for each participant i , allowing us
to control for individuals starting at different levels of expertise:

Δscor e (i ) =
scorepost (i ) − scorepre (i )

1 − scorepre (i )
.

3.5 Procedure

Both parent and child consent forms were obtained for each student prior to the student’s partici-
pation in this study. Participants were escorted from their classrooms by the experimenter. Before
Session 1, each child was introduced to the robot. The robot greeted the participant, saying “Hello!
My name is Nao, your personal robot tutor. I’m really excited to meet you and work on some
problems together.” After this introduction, the participants completed a pretest and the SRQ-A
addressing why they do certain school-related activities. They then completed four distinct tutor-
ing sessions with the robot, spaced over approximately two weeks. Upon finishing Session 4 of
the tutoring interaction, participants completed a posttest. Each child was then given stickers and
pencils for participating in the study and was escorted back to the classroom by the experimenter.

3.6 Participants

The participants in this study were fifth and sixth grade students from local public schools in
Connecticut. A total of 33 students were recruited; however, four participants were excluded
from our data analysis (three for not completing the study owing to school absences, and one
for non-compliance). Table 1 displays the demographic information for both the control and
intervention groups. Of the 29 students included in our data analysis, 15 and 14 participants
were in the control and intervention conditions, respectively. In the control group, there were
eight males and seven females with a mean age of 10.9 years (SD = .80). The ethnicity of each
participant was reported by parents: 13.3% Asian, 60.0% Caucasian, 13.3% Hispanic, 6.7% reported
more than one ethnicity, and 6.7% did not report. The average pretest score of the control group
was .51 (SD = .27). In the intervention group, there were eight males and six females with a
mean age of 10.68 years (SD = .54). The ethnicities of the participants as reported by parents
were as follows: 7.1% Asian, 78.6% Caucasian, 7.1% reported more than one ethnicity, and 7.1%
did not report. The average pretest score of the intervention group was .31 (SD = .29). As we
did not screen children based on their pretest scores, the randomized distribution of students in
each group resulted in a lower average pretest score for the intervention group as compared to
the control group. Pretest scores were not statistically significantly different between the two
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experimental groups: t (27) = 1.904, p = .068. Furthermore, all measures of learning improvement
for participants were calculated relative to each individual participant’s pretest score, accounting
for differing levels of incoming knowledge. Our two experimental groups were gender balanced
and there were no significant gender differences in pretest score between males (M = .39, SD =
.32) and females (M = .44, SD = .25); t (27) = .471, p = .641.

Almost all students used the system’s help features to some extent in the initial tutoring session.
Of the participants, 93.1% requested at least one hint during the first session. Only two students
(6.9%) did not request help during this session. During Session 1, students requested 9.07 hints
(SD = 6.82), on average. The average number of hints requested during Session 1 did not signifi-
cantly differ between the control (M = 7.20, SD = 5.51) and intervention (M = 11.07, SD = 7.70)
groups; t (27) = −1.566, p = .129. In addition, we did not find any significant gender differences in
the average number of hints requested during Session 1 between males (M = 10.44, SD = 6.99) and
females (M = 7.38, SD = 6.49); t (27) = 1.208, p = .238.

4 RESULTS

In this section, we provide empirical findings that demonstrate how motivation closely relates to
behavior during learning, which, in turn, can be effectively shaped by a robot tutoring system
to improve learning outcomes. We first present results on the relationship between a student’s
motivation in learning as assessed by the SRQ-A and the occurrence of the student’s suboptimal
help-seeking behaviors during the tutoring interaction with the robot. We then show how the
robot’s intervention strategies impact changes in the number of suboptimal help-seeking behav-
iors (Δtr iддers ) and test scores (Δscor e ) for each participant. Additionally, we identified another
suboptimal behavior that relates to a student’s motivation in learning, further demonstrating the
opportunity for robot tutoring systems to leverage observable behavior to drive tutoring interven-
tion behavior. All statistical tests reported below employed an α of .05 for significance. We used
non-parametric statistical tests when needed based on the distribution of our empirical data.

4.1 Relationship Between Motivation and Suboptimal Help-Seeking Behaviors

In exploring the relationship between students’ motivation in learning and their suboptimal help-
seeking behavior, we focused on correlations between the SRQ-A subscales and the baseline help-
seeking behavior assessed in Session 1 of the user study (see Table 2). The baseline help-seeking
behavior was represented asnum_triддers defined in Section 3.4.2. We consider these two subopti-
mal behaviors together as they both relate specifically to suboptimal use of the hints in the tutoring
system and were the two behaviors that we designed strategies for our robot tutor to counter in
our user study prior to this analysis. The average number of triggers of suboptimal help-seeking
behavior (num_triддers) for students in Session 1 was 2.90 (SD = 2.51). There were no significant
gender differences in the average number of triggers between males (M = 3.44, SD = 2.45) and
females (M = 2.23, SD = 2.52) in Session 1; t (27) = 1.302, p = .204. There were also no signifi-
cant differences in the baseline number of triggers from Session 1 between the control (M = 2.07,
SD = 2.66) and intervention (M = 3.78, SD = 2.08) groups; t (27) = −1.929, p = .064.

Across 29 participants, we found that the frequency of suboptimal help-seeking behavior in Ses-
sion 1 is negatively correlated with the identification subscale of the SRQ-A,; r (27) = –.37, p = .048
(Pearson correlation). This negative correlation indicates that higher scores on the identification
subscale of the SRQ-A correlate with a lower number of suboptimal help-seeking behaviors. The
identification subscale captures motivation driven by one’s own values and goals and corresponds
to reasons on the questionnaire such as “because it’s important to me” and “because I want to
understand the subject.” This finding suggests that children who feel motivated to complete work
due to internally viewing it as important are less likely to engage in suboptimal help-seeking
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Table 2. Results of Correlation Analyses Linking Suboptimal Behaviors Occurring

in Session 1 to Subscales of the SRQ-A

Cronbach’s α values for each subscale indicate the reliability of the questionnaire subscales. Participants’ number of

triggers of suboptimal help-seeking behavior from Session 1 had a negative relationship with the identied category of

motivation (Section 4.1). Additional results showed that number of fast attempts from Session 1 was negatively correlated

to the intrinsic category of motivation (Section 4.4).

behaviors, such as asking for all available hints consecutively or not requesting available help.
One potential explanation for this finding is that those who score highly on the identification sub-
scale of the SRQ-A are motivated to expend effort throughout the learning interaction and tend
not to avoid help or rely too heavily on help features in the tutoring environment.

This finding shows how motivational factors can be linked to observable behaviors in a learn-
ing environment. It provides evidence showing that internal values regarding a learning task can
substantially influence a person’s suboptimal behaviors during a learning interaction. Next, we
demonstrate that creating shaping strategies that directly counter these suboptimal behaviors over
multiple tutoring interactions led to fewer occurrences of these undesirable behaviors and greater
learning gains.

4.2 Help-Seeking Behavior Change

Figure 4 summarizes the results of behavior change from Session 1 to Session 4 for the partici-
pants in the two experimental conditions. A Wilcoxon signed-rank test showed that participants
in the intervention group exhibited significantly fewer suboptimal behaviors in Session 4 (median
[Mdn] = 2.0, interquartile range [IQR] = 1) than they did in Session 1 (Mdn = 4.0, IQR = 2); Z =
−2.605, p = .009. Conversely, we did not see such improvement in the control group; there was no
significant difference in the number of suboptimal behaviors that participants in the control group
(using on-demand help) exhibited in Session 1 (Mdn = 1.0, IQR = 4) and Session 4 (Mdn = 1.0, IQR
= 3); Z = –.213, p = .832 (Wilcoxon signed-rank test). Moreover, the decrease in number of trig-
gers, Δtr iддers , was significantly greater for the intervention group (Mdn = –1.5, IQR = 2.0) than
for the control group (Mdn= 0.0, IQR = 0), indicated by a Mann-Whitney test;U = 45.000,p = .008.

Together, these results demonstrate that the robot’s intervention strategies aimed at shaping
productive help-seeking behavior were successful in mitigating the occurrences of suboptimal
help-seeking behaviors over time. Participants in the intervention condition significantly de-
creased their number of suboptimal help-seeking behaviors over time while participants in the
control condition did not. Though the behavior change that we observed may be a short-term
effect, we did observe more productive help-seeking behavior over the course of the two weeks,
indicating the effectiveness of the intervention strategies in the duration of time that students
interacted with the robot.
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Fig. 4. Results for behavior change indicate that participants in the intervention group significantly de-

creased their suboptimal help-seeking behaviors from Session 1 (S1) to Session 4 (S4) and decreased these

behaviors significantly more than the control group. (a) Number of suboptimal behaviors, as captured by

num_triддers , from Session 1 and Session 4 for each participant in the two experimental conditions. Thicker

lines represent multiple participants with the same values. (b) Change in num_triддers for participants in

each group. In the boxplot, the darker line inside the box represents the median, and the extents of the box

represent the first and third quartiles. Because of the large number of participants with no difference in

suboptimal behavior from S1 to S4 in the control group, the first and third quartiles and the median for the

control group are all zero, resulting in the flat box. Remaining data points are shown as points (outliers)

owing to control-group data having IQR = 0.

4.3 Learning Gains

Figure 5 summarizes the results for learning gains for the participants in the two experimental
conditions. For participants who received the help-seeking intervention strategies, posttest scores
(Mdn = .62, IQR = .63) were significantly higher than pretest scores (Mdn = .25, IQR = .63); Z =
3.089,p = .002 (Wilcoxon signed-rank test). On the other hand, for participants in the control group
that did not receive intervention strategies, there was no significant change in score from pretest
(Mdn= .50, IQR = .38) to posttest (Mdn= .75, IQR = .38);Z = 1.615,p = .106 (Wilcoxon signed-rank
test). We further sought to understand differences in normalized learning gains between groups.
An independent sample t-test revealed that participants in the intervention group (M = .45, SD =
.34) improved their score from pretest to posttest significantly more than those in the control group
(M = .06, SD = .59); t (27) = −2.169, p = .039.

These results show that participants receiving intervention strategies from the robot were able
to improve their test scores effectively, while the group that relied on using on-demand help were
not. These results, together with the results of behavior change from the previous section, indicate
that the shaping strategies employed by the robot improved help-seeking behaviors, which thereby
positively impacted learning outcomes for participants.

4.4 Additional Findings: Relationship Between Motivation and Fast Attempts

Thus far, we have provided empirical findings illustrating the linkage of motivation, behaviors,
and outcomes in a learning scenario in which children practiced math problems with a tutoring
robot. In particular, we have shown that internal motivations, especially identification, were
negatively correlated to suboptimal help-seeking behaviors during learning and that the robot
tutoring system effectively intervened in response to the undesirable help-seeking behaviors to
improve behavioral and learning outcomes. Our findings of the linkage of motivation, behaviors,
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Fig. 5. Results for learning gains demonstrate that participants in the intervention group significantly im-

proved their scores from pretest to posttest and improved their score significantly more than the control

group, as measured by normalized learning gain. (a) Pretest and posttest scores for each participant in the

two experimental conditions. Thicker lines represent multiple participants with the same scores. (b) Normal-

ized learning gain for participants in each group. In the boxplot, the darker line inside the box represents the

median, and the extents of the box represent the first and third quartiles.

and outcomes in learning encouraged us to explore different dimensions of suboptimal learning
behaviors that robot tutoring systems hold potential to address through effective intervention
strategies. Below, we report on a further analysis of our present data revealing the relationship
between another internal factor of motivation, instrinsic motivation, and the suboptimal behavior
of fast attempts (consecutive incorrect attempts within a small time frame). These results are also
displayed in Table 2.

Another undesirable behavior that we observed in the tutoring interactions was children making
successive attempts in a small window of time as if they did not make enough effort to work out
the problems presented, indicating the likelihood of guessing. We considered such behavior as
fast attempts and defined num_f ast_attempts as the number of attempts made within a small
threshold of seconds (empirically determined to be 20 seconds) from the previous attempt. This
behavior is considered to be suboptimal in this learning interaction, as the questions given to the
students were on fractions and contained multiple steps to complete, meaning that a successive
attempt within a few seconds of an incorrect attempt does not give the student adequate time to
rework the problem. The average number of fast attempts (num_f ast_attempts) for the 29 students
in Session 1 was 2.79 (SD = 4.77). We did not consider fast attempts in advance when designing
our robot shaping strategies for the user study that we conducted, in which we designed shaping
strategies for suboptimal behavior specifically relating to hint use in the system. Because the robot
did not actively track and counter this behavior, we consider it separately from our measure of
suboptimal help-seeking behavior.

In exploring the relationship between motivation and the behavior of fast attempts, we found
that num_f ast_attempts is negatively correlated with the intrinsic motivation subscale on the
SRQ-A; r (27) = –.38, p = .045 (Pearson correlation). The intrinsic motivation subscale on the
SRQ-A corresponds to reasons for doing various types of schoolwork for implicit enjoyment
in learning and completing work. Scoring highly on this subscale may indicate a tendency to
put effort into each attempt, even after an incorrect attempt, thereby making less “guessing”
attempts. We further found that num_f ast_attempts is negatively correlated with posttest score;
r (27) = –.47, p = .011 (Pearson correlation), although we did not include shaping behaviors
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aimed at countering fast attempts in our user study. This negative correlation dictates that higher
posttest scores correspond with a lower incidence of fast attempts in Session 1 (baseline). This
finding suggests an opportunity for designing robot intervention aiming to shape the suboptimal
behavior of fast attempts to improve learning outcomes.

4.5 Discussion

The results of our user study demonstrate the linkage of motivation, behaviors, and learning
outcomes that underlies learning processes (Figure 2). We employed the SRQ-A, involving four
motivational factors, including external, introjected, identified, and intrinsic, to assess children’s
motivation in engaging in learning tasks. We found a negative correlation between the identified

factor of motivation and the suboptimal behavior of help-seeking (e.g., help-averse and help-
overuse behaviors) as well as a negative correlation between the intrinsic factor of motivation and
the suboptimal behavior of fast attempts. Moreover, we demonstrated that a robot tutoring system
can employ help-seeking intervention strategies effectively to reduce the suboptimal behavior
of help-seeking and to improve learning gains. We also note that the correlations between the
introjected factor of motivation and suboptimal help-seeking behaviors were marginally signifi-
cant (Table 2). The identified category of motivation showed a marginally significant correlation
to the suboptimal behavior of fast attempts as well. This aligns with our results, as each of these
three categories of motivation are grouped together as internally oriented, indicating that these
more positive sources of motivation all correspond to a lower incidence of suboptimal behaviors.
However, not all categories of motivation with an internal orientation were correlated to the be-
haviors measured during the tutoring sessions. For example, we did not see a correlation between
intrinsic motivation and the suboptimal help-seeking behaviors despite intrinsic motivation being
the most internally oriented subscale of motivation. While we cannot be sure about why this is,
this may be a limitation of our smaller sample size. Alternatively, it may be the case that certain
behaviors, such as help-seeking behaviors, correlate more strongly with specific measures of
internal motivation. Additional research is required to understand which subcategories of internal
motivation may prove most informative in the context of our motivation-behavior-learning
outcomes pipeline. Similarly, the external category of motivation, which is considered to be a
less positive source of motivation in learning, did not significantly correlate to our measures of
suboptimal help-seeking behaviors or fast attempts. Though a student’s external motivation may
still be useful to understand within a learning context, our empirical results indicate the value of
understanding suboptimal behavior in relation to categories of internally oriented motivation.

Participants who reported a lower level of identified regulation were the ones who had higher
levels of baseline suboptimal help usage. As higher identified regulation indicates agreement with
reasons involving an internal sense of importance for completing academic work, this suggests
that motivation in learning can influence how a student uses resources in a learning environment,
such as the help features of the system. Our results on behavior change and learning gains lead us
to believe that shaping these unproductive help-seeking behaviors during a learning interaction
can cause students to engage more effectively with a robot tutoring system, thereby impacting
their learning outcomes over time. Together, these findings add a broader lens on why a robot
shaping suboptimal help-seeking behavior was effective in promoting learning.

Through this process, we introduced a basic approach for designing robot intervention, which
involves finding observable behaviors that correspond to motivational factors and employing
a robot to respond to these behaviors to create more effective tutoring interactions. In further
exploring this approach, we identified an additional observable behavior that had a relationship
to a measure of intrinsic motivation. Similarly to suboptimal help-seeking behavior, students who
had lower intrinsic motivation as measured by the SRQ-A made more fast attempts, indicating that
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lower intrinsic motivation manifests itself during learning through suboptimal behaviors that can
be monitored by a robot tutoring system. Because students’ use of these fast attempts correlates
negatively with posttest score, this suggests that a robot tutoring system specifically designed to
intervene based on this behavior that signals suboptimal use of the system might lead to improved
learning.

Prior work in tutoring systems has attempted to take into account a student’s motivation in sev-
eral different ways. Some systems automatically provide exercises or lessons that fit a student’s
ability, assuming that a student will stay motivated if experiencing the right level of challenge [16,
43]. Other work has sought to increase motivation in learning through game-based environments
or has focused on building tutoring environments that enhance student motivation through vari-
ous strategies, such as providing choices or using social support [19, 34, 64]. Our results highlight a
simple way to incorporate types of motivation into a learning environment by demonstrating the
usefulness of linking measures of motivation with observable behavior within a learning environ-
ment, which further lends itself to designing robot intervention behavior that has the potential to
foster learning gains. We evaluated our approach in the context of an autonomous robot tutoring
system for children; however, we believe this process can also be useful in designing behaviors for
a variety of agent-based tutoring systems as well.

The influence of motivation on behavior is certainly not limited to learning outcomes within
a tutoring setting. Extensive research has demonstrated how motivation impacts a variety of im-
portant health-related outcomes, such as physical fitness, smoking cessation, and weight loss [69].
Using an intelligent system to understand how motivation relates to observable behaviors can be
leveraged to provide support that will be useful in promoting these types of impactful health out-
comes. The design approach that we describe in this article is not limited to the domain of educa-
tion but rather has potential to be applied to improving health-related outcomes as well. Providing
empirical support for this design tool demonstrates the feasibility of leveraging the relationship
between internal motivation and behaviors to inform the design of intervention behaviors for a
supportive robot. Applying a similar process outside a tutoring setting in other application do-
mains in which motivation plays a crucial role should be further explored.

5 IMPLICATIONS AND DIRECTIONS FOR FURTHER RESEARCH

5.1 The Promise and Challenge of Autonomous Robot–Child Tutoring

Robot tutoring systems have demonstrated great potential to provide effective, personalized learn-
ing for children, as they can leverage their embodied nature, social presence, and situated aware-
ness to engage users and thereby enhance learning. These systems have been successfully used to
promote learning in a variety of educational domains including math concepts, reading skills, and
language learning tasks [28, 45, 56]. However, challenges still exist in building successful robot
tutoring systems that can support the diverse needs of children. Though we explore these chal-
lenges in the context of robot tutoring systems, many of these challenges apply to a wider range
of autonomous tutoring systems as well. One of the main challenges is understanding the internal
state of the student during a learning interaction. Within a learning interaction, an effective tutor-
ing agent should be able to provide support for the learner. Ideally, a robot tutor would be able to
take into account a learner’s motivation and tailor the interaction based on this user state. Though
there are psychological theories that support taking into account student motivation in human
tutoring, this is a much greater challenge for autonomous robot–child tutoring. The vast number
of latent features and traits of a student during learning, including motivation, cannot be directly
observed, making it computationally challenging for a robot to respond intelligently to these user
states. Robot tutoring systems, therefore, must rely on observable approximations of behavior that
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convey information about a user’s internal state. Research has shown the value of using sensor-
based systems to better understand the internal state of a student involving gaze cues, valence,
and attention level [41, 42, 70]. However, for high-level aspects of the user, such as motivation, it
is still unclear what the relationship is between certain observable cues and high-level user states.

As we begin to build robot tutoring systems that respond to and support users based on their
internal states, robots still face additional challenges owing to the particularly complex nature
of these internal states. A child’s motivation in learning is a manipulable construct that can be
affected by a variety of external factors, such as a child’s family, culture, and school. These dy-
namic influences make it challenging for a robot tutoring system to address a user’s motivation
in learning directly. Understanding how autonomous robot tutoring systems will fit into learning
contexts in schools, afterschool care, and homes will help to inform what types of internal states
and external influences these systems must account for when interacting with children.

Another challenge in autonomous robot–child tutoring deals with differences between children
in a learning domain. Even if latent user internal states can be sensed through observable behavior,
these behaviors can vary greatly between individual children. In our study, many behaviors within
the tutoring application differed between children, including features such as average time to com-
plete problems and number of hints requested. Even observable behavior within a robot tutoring
system must be interpreted in relation to an individual user’s baseline performance. The diverse
learning abilities within children indicate that not all students express their internal states through
the same behaviors, making it even more challenging for robot tutoring systems to autonomously
intervene. Additionally, students may even have varied preferences in what types of interventions
should be employed during learning interactions, including teaching styles and level of autonomy
desired within the system. Children also have widely differing personality traits, such as extraver-
sion level, which may influence their acceptance of or willingness to engage with a robot tutoring
system over time. Robot tutoring systems have a rich space to explore in order to provide truly
personalized tutoring interactions for children with a wide variety of behaviors and preferences.

5.2 Toward Effective Robot–Child Tutoring

Prior work in robot tutoring has often focused on providing content-based personalization for
students interacting with the system by providing personalized behavior directly involving the
learning task at hand [43, 65, 75]. The learning process is complex and also involves a variety
of different dimensions that are complementary to the cognitive task at hand, such as attitudes
toward learning, affective and emotional support, and help-seeking behavior. The user study that
we conducted goes beyond providing content-based personalization to students and explores an
aspect of learning that has not been widely studied within robot tutoring systems, namely, help-
seeking behavior. We showed the effectiveness of a robot tutoring system that targeted suboptimal
help-seeking behaviors that relate to self-regulated learning. Demonstrating that shaping these
types of behaviors had an impact on the learning outcomes of the students receiving the robot
intervention strategies shows the promise of robot tutoring systems to handle these crucial aspects
of a user during learning. Given that our results showed that the intervention group improved their
test scores significantly more than the control group, it is critical for these systems to monitor
the help-seeking behaviors of children. Furthermore, our ability to demonstrate the relationship
between motivation in learning and these suboptimal help-seeking behaviors helps to elucidate
possible reasons for why these behaviors may occur. This new perspective may broaden the types
of robot intervention that should be considered in the future, as strategies that seek to bolster the
use of self-regulated learning may also be beneficial for children.

This work provides empirical evidence demonstrating how the link between motivation in learn-
ing and observable behavior can be leveraged to design robot intervention behavior to impact
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learning. Though it is not possible to directly understand a child’s motivation in learning through
computing technology, we have outlined a method to identify behaviors that occur within a given
learning context that relate to a child’s motivation in learning. We then demonstrated that a robot
tutoring system that intelligently intervenes when these specific suboptimal behaviors occur can
effectively reduce the occurrence of the undesired behavior over time. We outlined our method
of identifying specific behaviors that relate to a child’s self-reported measure of the child’s mo-
tivation in learning and then employing a robot tutoring system to respond to these behaviors
to enhance learning as a process that can be used to design effective robot intervention strate-
gies. We also showed how the process of designing robot intervention strategies can be applied
by identifying an additional suboptimal behavioral feature collected from our empirical data and
demonstrating its relation to motivation in learning. This is one plausible method for designing
robot intervention that can be used to explore the different dimensions of learning and their re-
lationship to learning outcomes. Our results demonstrate the usefulness of this process and add
to the existing work demonstrating the potential for robot tutoring systems to provide effective
personalized instruction to children.

5.3 Limitations and Future Work

Though this work demonstrates the promise of linking motivation in learning, behavioral
intervention, and learning outcomes to inform the design of effective robot tutoring systems
for children, there are limitations that should be acknowledged and addressed by future work
in robot–child tutoring. Our user study was conducted with a limited number of participants.
Furthermore, the correlations that we observed between certain subscales of motivation and
suboptimal behaviors during tutoring were not strong, which may have been a consequence of
trying to relate measures capturing intricate constructs such as motivation types to more simple
actions within a learning environment, such as requesting three hints in a row. We did not use
these correlations to classify a child’s internal motivational state but rather presented empirical
evidence supporting the presence of a relationship between measures of complex categories of
motivation to reliable, observable behaviors within an automated learning environment. Nonethe-
less, future work should investigate linking measures of motivation to observable behavior and
designing robot behavior accordingly with a much larger population to more thoroughly evaluate
the validity of this approach.

We focused on identifying observable behaviors that could be detected reliably during the learn-
ing interaction and relied on features that could be collected from the child’s input using the tablet
device. However, given other related work investigating the use of sensor-based approaches to un-
derstand information about the user (such as attention through EEG [70], or engagement through
facial-feature detection [28, 41]), future work should leverage these channels of information to
understand how these richer features relate to a student’s motivation in learning as well. Our
work also relied on self-reported questionnaire data (SRQ-A) to measure a child’s motivation for
completing academic work. Though this was a validated questionnaire designed to be used by
children, not all children excel at accurately assessing themselves, especially at a meta-cognitive
level. It would also be beneficial to consider other measures of a child’s motivation in learning from
adults who have interacted with them for a longer period of time, such as parents or teachers.

The user study that we conducted monitored observable suboptimal behavior within a learn-
ing environment and then leveraged a robot tutor to intervene specifically when these behaviors
occurred to shape more productive help-seeking behavior. While designing robot intervention to
counter these behaviors directly was effective in this context, robot tutoring intervention could
be expanded to more broadly address the underlying ties to internal motivation. Robot interven-
tion strategies designed based on an elaborated user model of a student’s motivation in learning
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should be explored. For example, a robot tutor might employ different teaching tactics depending
on whether a student’s subscale scores on the SRQ-A demonstrate that they are more motivated by
external factors than internal factors. Furthermore, robot intervention strategies that specifically
try to foster an increase in internal motivation itself should also be explored.

Additional work must also explore longer-term studies in the domain of robot–child tutoring.
Robot tutoring systems must be built to interact with children in real-world settings, such as class-
rooms and homes, for long periods of time and should be designed robustly to successfully engage
their users during these extended deployments. Furthermore, it is of particular importance in the
application of tutoring to understand whether learning gains and behavior change as a result of
robot intervention during tutoring lasts over time and yields robust learning. From the perspec-
tives of both large-scale system deployments and student learning outcomes, it is crucial that we
understand whether robot tutoring systems can be designed to handle long-term interactions that
can have lasting impact.

6 CONCLUSION

In this article, we presented empirical findings to illustrate the linkage between motivation in
learning, behavioral intervention, and learning outcomes within the domain of robot–child tutor-
ing. We conducted a user study involving 29 fifth and sixth grade children doing math problems
with a robot over four tutoring sessions. Our empirical analysis revealed the relationship between
self-reported measures of children’s motivation in learning and their use of certain suboptimal
help-seeking behaviors. We also demonstrated the effectiveness of a robot tutor that employed
intervention strategies to shape participants’ suboptimal behaviors over a control group that did
not receive the intervention strategies. We found that participants in the intervention group im-
proved their suboptimal help-seeking behavior and learning significantly more than the control
group over the four sessions, indicating that productive help-seeking behavior can be shaped by a
robot tutor and does impact learning outcomes. Together, these results demonstrate a process for
how to design robot intervention during robot–child tutoring that supports broader aspects of the
learner, including the student’s motivation in learning, and should be used in service of the goal
of providing effective robot–child tutoring for all learners.
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