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Socially assistive robots provide assistance to human users through interactions

that are inherently social. Socially assistive robots include robot tutors that instruct

students through personalized one-on-one lessons [197], robot therapy assistants that

help mediate social interactions between children with developmental disorders and

adult therapists [216], and robot coaches that motivate children to make healthy

eating choices [222].

To succeed in their role of social assistance, these robots must be capable of

natural communication with people. Natural communication is multimodal, with

both verbal channels (i.e., speech) and nonverbal channels (e.g., eye gaze, gestures,

and other behaviors).

This dissertation focuses on enabling human-robot communication by building mod-

els for understanding human nonverbal behavior and generating robot nonverbal be-

havior in socially assistive domains. It investigates how to computationally model eye

gaze and other nonverbal behaviors so that these behaviors can be used by socially

assistive robots to improve human-robot collaboration.

Developing effective nonverbal communication for robots engages a number of

disciplines including autonomous control, machine learning, computer vision, design,

and cognitive psychology. This dissertation contributes across all of these disciplines,

providing a greater understanding of the computational and human requirements for

successful human-robot interactions.

To focus nonverbal communication models on the features that most strongly



influence human-robot interactions, I first conducted a series of studies that draw out

human responses to specific robot nonverbal behaviors. These carefully controlled

laboratory-based studies investigate how robot eye gaze compares to human eye gaze

in eliciting reflexive attention shifts from human viewers; how different features of

robot gaze behavior promote the perception of a robot’s attention toward a viewer;

whether people use robot eye gaze to support verbal object references and how they

resolve conflicts in this multimodal communication; and what is the role of eye gaze

and gesture in guiding behavior during human-robot collaboration.

Based on this understanding of nonverbal communication between people and

robots, I develop a set of models for understanding and generating nonverbal behavior

in human-robot interactions. The first model uses a data-driven approach based in

the domain of tutoring. It is trained on examples from human-human behavior, in

which a teacher instructs a student about a map-based board game. This model can

predict the context of a communication from a new observation of nonverbal behavior,

as well as suggest appropriate nonverbal behaviors to support a desired context.

The second model takes a scene-based approach to generate nonverbal behavior

for a socially assistive robot. This model is context independent and does not rely

on a priori collection and annotation of human examples, as the first model does.

Instead, it calculates how a user will perceive a visual scene from their own perspective

based on cognitive psychology principles, and it then selects the best robot nonverbal

behavior to direct the user’s attention based on this predicted perception. The model

can be flexibly applied to a range of scenes and a variety of robots with different

physical capabilities. I show that this second model performs well in both a targeted

evaluation and in a naturalistic human-robot collaborative interaction.
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1

Introduction

The field of Human-Robot Interaction (HRI) strives to enable easy, intuitive inter-

actions between people and robots. Socially Assistive Robotics (SAR), a subfield of

HRI, focuses specifically on interactions that help people in social, rather than in

physical, interactions [238]. For example, SAR research investigates how robots can

act as therapy assistants for children with autism [216], perform one-on-one language

tutoring [154], and teach children about nutrition and healthy eating [222].

Such interactions require natural communication. Although verbal communica-

tion tends to be primary in human-human interactions, nonverbal behaviors such as

eye gaze [27] and gestures [164] can convey mental state, augment verbal communica-

tion, and reinforce what is being said [99]. Eye gaze is a particularly important non-

verbal signal—compared with pointing, body posture, and other behaviors—because

evidence from psychology suggests that eyes are a cognitively special stimulus, with

unique “hard-wired” pathways in the brain dedicated to their interpretation [82].

However, producing effective nonverbal communication with robots is still an open

problem. Human nonverbal behavior is a complex and dynamic phenomenon. It is

highly dependent on context, including the task at hand and the interaction part-

ners. Computational models of nonverbal behavior must accurately represent human

1



behavior, either by learning appropriate behaviors from demonstration or building

models that account for the relevant parts of human cognition, such as visual per-

ception of the scene. Furthermore, the effects of producing nonverbal behavior with

robots—whose physical appearance and capabilities are different from humans’—have

not been fully understood.

This dissertation investigates how eye gaze and other nonverbal behaviors can

be used by socially assistive robots to improve human interactions. To understand

the effects of nonverbal behavior in human-robot interactions, we first present four

studies investigating nonverbal behavior’s role in different aspects of interaction, from

establishing mutual attention to performing collaborative action. Based on these

HRI studies, we develop two complementary models for generating robot nonverbal

behavior in a social collaboration.

Though many studies have incorporated nonverbal behavior in HRI, the work

described here involves a careful, controlled analysis of how nonverbal behaviors in-

fluence specific elements of socially assistive human-robot interactions. The work

is interdisciplinary, spanning the fields of Computer Science (artificial intelligence,

computational modeling, and robotics) and Cognitive Science (psychophysics and

cognitive psychology).

This dissertation begins with a comprehensive report about the current state of

the art in eye gaze for social robots (Chapter 2). This review chapter organizes the

abundant literature on eye gaze in human-robot and human-agent interaction into

three broad categories of research. It also describes terms and concepts used in HRI

research, including a discussion of how HRI studies are conducted and evaluated

(Section 2.2). This terminology will be used to discuss subsequent chapters in this

dissertation.

Chapters 3–6 describe well-controlled HRI studies that target specific aspects of

nonverbal communication from robots. Chapter 3 begins this sequence at the finest

2



level of behavioral analysis, investigating millisecond-level, reflexive responses to robot

eye gaze as compared to human eye gaze. The experiment described in this chapter,

an extension of a well-studied psychophysical task, reveals that robot eye gaze may

not be cognitively processed in the same way as human eye gaze. This provides the

foundation for a theme of this dissertation: that successful robot nonverbal behavior

depends on the expression of agency. In other words, people must have a reason to

attribute meaning to a robot’s nonverbal behaviors. This contribution is explored in

Section 10.1.1.

In the following chapters, we attempt to identify the specific features of robot

nonverbal behavior that lead to successful social human-robot interaction. Establish-

ing mutual attention is first step in coordinated interaction, so Chapter 4 investigates

how a robot can use eye gaze to convey attention to an interaction partner. The

experiment described in this chapter uses a method that is common in psychophysics

but novel to HRI, identifying a target object amidst similar distractors, to isolate

the impact of different features of a robot’s gaze behaviors on people’s perception of

the robot’s attention. In order to implement the visual search task with real-world

robots, we developed a low-cost programmable robotics platform built from modified

children’s toys. This new robot design is also described in Chapter 4.

After identifying how a robot’s attention can best be directed to its interaction

partner, we move on to another important task in human-robot interactions: directing

a partner’s attention to objects in the environment. Chapter 5 describes a study that

uses multimodal communication (both speech and gaze) to reference objects. The

study also explores what happens when the multimodal behaviors are in conflict,

as in the case where a robot names one object and looks at another. The results

show that people can use eye gaze to inform object selection but are not hindered by

incompatible multimodal behavior. This study underscores the importance of deixis

in human-robot collaboration and provides a basis for modeling deictic behaviors
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(e.g., looking and pointing to perform object references), which we focus on in the

later modeling chapters.

Chapter 6 introduces a different kind of multimodality: two nonverbal behaviors,

gaze and gesture, that communicate complementary information. This chapter fo-

cuses on handovers, a useful capability in human-robot collaboration. The chapter

describes an experiment in which a robot performed gaze cues about desired ob-

ject locations while handing objects to a human partner, who then selected where

to place the objects. The study finds that people can use a robot’s eye gaze to

inform their choices, but only when an orthogonal nonverbal behavior—the robot’s

gesture—indicates that the gaze is meaningful.

Chapters 7 and 8 describe models of nonverbal behavior in both human-human and

human-robot interactions. First, Chapter 7 describes a data-driven computational

model of eye gaze and gestures between a teacher and student in a human-human

tutoring interaction. This model, which is trained from empirical data collected in

a naturalistic laboratory-based interaction, can predict the communicative context

of a nonverbal action (such as question asking, providing a fact, or performing a

demonstration), as well as suggest a new nonverbal behavior to match a desired

context.

However, the data-driven model is dependent on the collection and annotation of

human-human interaction data, which is time consuming and restricts the model to

the example domain. Chapter 8 addresses this by introducing a scenario-independent

and robot-agnostic generative model of robot nonverbal behavior for human-robot col-

laborations. This model focuses specifically on deictic gaze and gestures that support

verbal object references. It is flexible enough to be applied to a variety of scenarios

that require object references, and to a variety of robots with different nonverbal

behavior capabilities. Two evaluations are described in this chapter, showing that

the model successfully predicts the best gaze or gesture to support a spoken object

4



reference.

We test the generative behavior model from Chapter 8 in a naturalistic human-

robot interaction experiment, described in Chapter 9. The experiment evaluates

whether a robot’s nonverbal referential behaviors improve people’s performance on

a construction task in a human-robot collaboration. Results show that nonverbal

behaviors are more beneficial for more difficult tasks, improving building accuracy

and decreasing time to completion on challenging constructions.

The final two chapters reflect on the original research in this dissertation. Chap-

ter 10 discusses the contributions and impact of this research, identifying some key

themes and suggesting open questions for future investigation. Chapter 11 concisely

summarizes the dissertation’s contributions.

This dissertation contributes to the understanding and development of socially

assistive robots. In this dissertation, we:

• Conduct a series of well-controlled studies on the effects of gaze and other

nonverbal behaviors in directing attention, establishing mutual attention, ref-

erencing objects, and performing object handovers;

• Build a data-driven computational model of human nonverbal behavior in a

teaching scenario based on empirical data collected in a naturalistic laboratory

study; and

• Develop a complementary model for generating robot nonverbal behavior that is

scene-independent and robot-agnostic, and evaluate this robot behavior model

in several ways including two in-person human-robot interaction studies.
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2

Current State of the Art in Social

Gaze for Robots∗

This chapter provides background information on HRI and organizes the

broad literature on eye gaze in robotics. It begins with a section on concepts

and terminology that are important for understanding eye gaze research in

the field of HRI, and which will be used throughout this thesis. It also high-

lights the diversity of research in HRI, including the range of robot platforms,

the different approaches of incorporating eye gaze into interactions, and the

variety of application domains.

2.1 Introduction

The earliest research into communicative gaze was led by the virtual agent community

in the 1990s [60, 243, e.g.]. Virtual agents were imbued with eye gaze as a means for

capturing attention, maintaining engagement, and increasing conversational fluidity

with human users [59]. Roboticists began introducing meaningful eye gaze into their

∗A version of this work is in submission [6]
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systems in the late 1990s, in robots such as Cog [213] and Kismet [49].

Modern-day approaches to incorporating eye gaze into human-robot interactions

vary widely; research investigating the effects of social eye gaze on human-robot

interactions spans the fields of robotics, virtual agents, artificial intelligence, and

psychology. Some researchers use robots as stimuli to understand the limits of hu-

man perception. Others try to understand the effects of robot gaze by manipulating

features of robot appearance and behavior and measuring their influence on human

responses. Still others focus on the underlying technologies required for establishing

convincing social eye gaze.

This chapter presents the current state of research on social eye gaze in human-

robot interaction. To address the large variety of research included in this topic, we

divide the corpus of work on gaze in HRI into three broad categories of research.

The categories are distinguished both by their goals and by their methods. These

categories are:

Human-focused: This research aims to understand how people respond to robots.

The emphasis is on human behavior, with the robot serving as a stimulus to

provoke a measurable response. This research generally involves well-controlled,

laboratory-based studies.

Design-focused: This research focuses on the appearance or behavior of the robot

as it affects human responses. Design-focused papers tend to manipulate one

feature of gaze at a time (such as the length of fixation) to reveal people’s

response to that feature, and include both laboratory-based and field-based

evaluations.

Technology-focused: This research aims to build computational tools for generat-

ing robot eye gaze in human-robot interactions. Though the technologies may

be evaluated with human users, this work generally focuses on mathematical or

7



technical contributions, rather than the effects of the system on the interaction.

The focus of this chapter is social eye gaze, any gaze that can be interpreted

as communicative by an observer. Social eye gaze includes eye movements that are

intentionally expressive, such as gaze aversions that are designed to communicate

thoughtfulness. Social eye gaze also includes eye movements that serve a purpose

that is not explicitly communicative, such as orienting a robot’s field of view on an

object of interest, as long as these movements are part of an interaction where they

might be perceived by other people. Social eye gaze does not include eye movements

that are not typically perceived by others during social interactions, such as gaze

actions that happen in isolation, viewpoint-stabilization actions like the vestibulo-

ocular reflex, or visual processing routines that do not involve changing the camera’s

point of focus.

Throughout this thesis, we refer to various types of eye gaze using established

terminology:

• Mutual gaze is often referred to colloquially as “eye contact;” it is eye gaze that

is directed from one agent to another’s eyes or face, and vice versa. Face-directed

gaze without reciprocity is not mutual gaze.

• Referential gaze or deictic gaze is gaze directed at an object or location in space.

Such gaze sometimes occurs in conjunction with verbal references to an object,

though it need not accompany speech.

• Joint attention involves sharing attentional focus on a common object [169].

It can have several phases, beginning with mutual gaze to establish attention,

proceeding to referential gaze to draw attention to the object of interest, and

cycling back to mutual gaze to ensure that the experience is shared.

• Gaze aversions are shifts of gaze away from the main direction of gaze, which

is typically a partner’s face. Gaze aversions can occur in any direction, though
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some evidence suggests the purpose of the aversion influences the direction of

the shift [24].

The type of eye gazes a robot will use in a human-robot interaction will depend

on the context and goals of the interaction. Eye gaze can reveal a social robot’s

mental states, including its knowledge and goals [85]. Gaze can be used by robots

to demonstrate their engagement with and attention to a user [238]. Robot eye gaze

can increase the fluidity of conversation [163] or direct a user’s attention to relevant

information in a tutoring setting [128]. However, a tutoring robot may want to express

attention to and engagement with a user by performing frequent mutual gaze, while

a collaborative assembly factory robot may prioritize task-focused gaze that enables

joint attention and object reference.

The remainder of this chapter is organized around the three research categories

established earlier: human-focused, design-focused, and technology-focused. First,

Section 2.2 provides background about concepts and terminology that are common

throughout the diverse studies described in this chapter. The review of current re-

search begins in Section 2.3 with an introduction to gaze in human-human interac-

tions, focusing on findings that are relevant to eye gaze for human-robot interac-

tions. This section introduces insights from psychology that influence the develop-

ment of gaze for robotics. Section 2.4 discusses human-focused research on gaze in

HRI, including human capabilities and limitations when interacting with robots that

use gaze communication. Section 2.5 describes design-focused research, specifically

how a robot’s physical appearance and behavior can be manipulated to elicit effec-

tive eye gaze communication within human-robot interactions. Section 2.6 presents

technology-focused research, covering the various systems and frameworks for devel-

oping robot eye gaze.
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2.2 Background

This section describes some common themes found throughout the research on social

eye gaze for HRI. In identifying the commonalities, this section also highlights the

diversity in this body of work; many different approaches, domains, metrics, and

technologies make up the state of the art in social eye gaze for HRI.

2.2.1 Robot appearance

Eye gaze research in HRI is conducted using robots with a wide range of variability

in appearance and capability. These platforms range from simple cartoon-like robots

to extremely human-like robots and virtual agents.

The differences in gaze capabilities are related to the high cost of implementing

eye movements in robots. Each movement along an axis, also known as a degree of

freedom, must be produced by some motor or other actuator. Adding capabilities

means adding actuators, some of which must be quite small (to fit into the robot’s

head) and powerful (to perform rapid movements like saccades). These requirements

drive up a robot’s cost, complexity, and fragility. Most social robots attempt to

minimize these costs by choosing not to implement some biological capabilities.

Figure 2.1 illustrates the spectrum of biological realism in robot eye gaze. This

spectrum is a rough indicator of the range of human-likeness in eyes, in terms of

appearance and capability. The extreme right end of the realism spectrum contains

humans. Moving leftward on the spectrum indicates descending levels of biological

realism, with fewer human-like capabilities such as pupil dilation, ocular torsion, and

saccades.

Just to the left of humans on the spectrum are virtual agents, which have the po-

tential for extremely high levels of biological realism. By nature of being animated,

virtual agents can mimic human eye capabilities with greater precision than physical

10



Figure 2.1: Robots and virtual agents with a range of appearances and capabilities are
used for gaze research in HRI. This spectrum roughly sketches the range of biological
realism with examples drawn from research cited in this review: Wakamaru [236],
Nao [15], Keepon (author photograph), KASPAR (courtesy of the Adaptive Systems
Research Group, University of Hertfordshire, UK), Kismet [48], FACE [270], Ivy [20],
and an NPC [182].

robots, though computationally encoding biologically realistic gaze behavior is an ac-

tive area of research [206]. While some virtual agents are implemented with complex,

biologically faithful models of muscle movement that control eye motion, others use

motion generators that are less consistent with the underlying biology [206], so there

is a range of possible realism within the virtual agent literature. In Figure 2.1, the

virtual agent referred to as “NPC” uses a biologically-based model to animate its

saccades, blinks, and gaze shifts [182]. In contrast, the virtual agent called Ivy uses

timings of gaze aversions drawn from video-coded observations of human conversation

[20].

Moving leftward the spectrum of biological realism, different capabilities are lost.
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The most realistic physical robots, for example, do not implement pupil dilation,

even though this is an indicator of mental state (such as cognitive effort) in humans

[119]. The biologically realistic robot FACE uses a human-like gaze model based on

motion capture data from human examples to control the speed and magnitude of

eye movements [270].

Less biologically realistic robots retain gaze capabilities but have simpler appear-

ances and gaze control models. Kismet has an independent pan and joint tilt degrees

of freedom for each eye, two degrees of freedom for each eyebrow, and independent

eyelids, enabling expressive behavior like winking [46]. Still less biologically realis-

tic robots, such as KASPAR [69], have eyes that do not move independently of each

other, eliminating the capability to perform lower-level components of biological gaze,

such as vergence.

At the leftmost end of the realism spectrum are robots that have fixed eyes.

These robots, such as Keepon [144], Nao [15], and Wakamaru [236], are incapable

of eye movements that are separate from head orientation, such as the kind people

perform when orienting to a lateral visual target [87]. These robots rely on head

turns to indicate gaze direction. While this mechanism can be communicative on a

gross level, there is evidence that head pose is an inadequate indicator of human gaze

direction in human-robot interactions [136].

The variability in appearance and capability of robot eyes is important to note

when discussing research on robot eye gaze. Because studies are conducted with

different robots, their results may not directly transfer from one robot to another.

Each study described in this chapter should be considered in the context of the robot

or virtual agent it employs.
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2.2.2 Embodiment and virtual agents

Much of the work on social eye gaze emerged from the virtual agents community in the

1990s [60, 243]. This work led the way for embodied gaze research in robotics, and the

virtual agent community continues to make advances in the design and understanding

of social gaze for intelligent agents [206]. For this reason, virtual agents are presented

alongside physically embodied robot systems in this paper. However, there are some

notable differences between the two fields.

Virtual agents can provide fine control over the appearance and timing of gaze

behaviors, such as subtle eyelid, eyebrow, and eye ball movements. These kinds of

fine movements are difficult to achieve with physical motors on embodied robots: it

is difficult to assemble enough fast motors in a small enough space to create the level

of expressivity in the human face. Though some hyper-realistic humanoid robots—

such as Geminoid [208] and FACE [270]—strive to achieve human-like face actuation,

most do not achieve the level of facial expressiveness available in animated characters.

Therefore, virtual agents provide a platform with which to study the effects of well-

controlled, subtly expressive motions of social eye gaze.

There is disagreement, however, on whether physically embodied systems elicit

different responses than animated agents or even video representations of those same

physical systems. Some researchers have found that physically embodied systems

improve interactions over virtual systems. Children spend more time looking at a

robot tutor that is physically embodied than at a virtual representation of that robot

[135], and adults retain lessons about a cognitive puzzle better when they’ve been

tutored by a physically embodied robot than by a video representation of that robot

[153]. People also fulfill unusual requests from a robot more frequently when that

robot is physically embodied than when it is tele-present [31]. Physically embodied

agents are rated more positively [196, 259] and attributed greater social presence [151]

than their virtual or tele-present counterparts.
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However, not all research has supported the benefit of physical embodiment over

virtual presence. In a tutoring interaction involving sorting, children fail to show

differences in learning from embodied and virtual robots [135]. In an interaction with

a health care robot, people remembered less information provided by a physically

co-located robot than information provided by a virtual representation of that robot

[196].

Research on embodiment to date has not specifically focused on the effect of

embodied social gaze (see Section 10.2.3 for how this question might be addressed).

Whether or not embodiment affects an interaction, research on both virtual agents and

physically embodied robots is important for understanding social gaze for intelligent

agents, and both the virtual agents and robotics communities have made important

contributions to our understanding of eye gaze in human-agent interaction.

2.2.3 Study locations and controls

Human-robot interactions can be evaluated both inside and outside of the laboratory.

Laboratory-based and field-based studies have complementary benefits and limita-

tions, making both important in the investigation of eye gaze in HRI. Based on the

location of the study, researchers can control the environment and potential con-

founding variables to a greater or lesser degree. The trade-off for increased control is

a decrease in the generalizability of the research findings to real-world settings.

Laboratories provide well-controlled environments in which to perform highly re-

peatable, consistent experiments. The laboratory can be outfitted with sensors to

capture a variety of experimental data, including cameras for video, motion cap-

ture systems to detect body positions, and eye trackers for precise gaze analysis.

Laboratory-based studies are particularly well-suited to research that systematically

manipulates a variable to understand its effect on an interaction, because they can ex-

clude potential confounding factors by rigidly controlling the environment. However,
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laboratory-based studies are limited in their ecological validity, because the controlled

and restricted environment does not necessarily represent how robots will operate in

the real world.

Field-based studies involve placing robots in naturalistic environments, such as

shopping malls, hospitals, and building atriums. Interactions tend to be more free-

form because the circumstances of the interactions cannot be precisely predicted or

controlled. Data collection is often more limited than in laboratory-based studies,

and tends to be more observational than empirical. However, these types of studies

can more accurately reveal people’s interactions with robots “in the wild.”

There is a spectrum of study types between these two extremes. For example, lab-

oratories can be augmented with furniture or people to manufacture a more realistic

setting. Sensors can be arranged in the field for additional data collection, sometimes

at the cost of slightly more inhibited interactions. This dissertation cites references

across this spectrum of study types, from carefully-controlled laboratory research to

long-term deployments in unpredictable human environments.

2.2.4 Evaluation metrics

When evaluating the effects of gaze on human-robot interactions, both objective and

subjective metrics can provide useful information. Which evaluation metric is used

depends on the interaction task and the research goals. This section provides an

overview of the many objective and subjective measures used in research on gaze in

HRI, with some specific examples of each.

Objective Measures

Objective metrics quantify observable behavior. The behaviors that these metrics

quantify can range in scale from millisecond-level actions to hours-long performances.

The unifying factor is that objective measures address data that can be observed and
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quantified.

Precise measurements can reveal low-level (and not necessarily conscious) re-

sponses to robot gaze. For example, measuring millisecond-level response times to a

robot’s directional gaze [2] or recording tiny eye saccades with an eye tracker [269]

can reveal underlying differences between people’s responses to robots and humans.

Larger-scale measurements can quantify a robot’s effect on longer-term human

behavior. For example, how well a robot’s referential gaze facilitates understanding

of object references can be measured by how long it takes a user to select the correct

object [3, 44, 47]. The effectiveness of a robot tutor’s gaze behaviors can be revealed

by the amount of information a user is able to recall from the interaction [23, 236].

Information recall can also act as a proxy for attention: if participants pay more

attention, they can recall more information, so measuring recall reveals how much

attention different robot gaze behaviors elicit from people [113, 172].

Some objective measures involve post-hoc interpretation of human behavior, of-

ten accomplished through video coding. This process entails careful analysis of a

recorded interaction to evaluate users’ responses to a robot’s gaze behaviors, in terms

of pre-defined items like engagement behaviors [132], the conversational function of

utterances [20], or the use of body language [116]. Because these post-hoc interpreta-

tions may be subject to the coder’s perceptions and biases, these interpretations are

often coded by two or more individuals, with correlations confirmed by statistics like

Cohen’s κ-coefficient [67].

Objective evaluations can also be applied to the robot systems themselves. For

example, the success of a robot gaze system can be measured by whether a robot can

predict the correct speaker [248, 254] or influence human users into certain conversa-

tional roles [175].
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Subjective Measures

Subjective measures can provide insight into user experiences that may not be out-

wardly observable. Subjective measurements typically involve collecting user percep-

tions and opinions through surveys and interviews.

The most common type of subjective measure for studies investigating social eye

gaze in HRI is a survey or questionnaire, often provided to users at the end of an

experiment [20, 65, 116, 223, 248, e.g.]. Survey questions are often formulated as

Likert scales, through which participants reveal their perceptions and opinions by

indicating their strength of agreement or disagreement with selected statements. For

example, to evaluate how well gaze behaviors make a robot seem like a positive

interaction partner, these scales measure characteristics like intelligence, animacy,

and likability [34]. Subjective measures can also include direct evaluations of a robot’s

behavior. For example, to evaluate how well a robot can convey emotions by changing

its eye and facial expressions, a user might be asked to identify what emotion the robot

is conveying for various expressions [156].

Interviews are another tool for eliciting subjective feedback from users. Interviews

can reveal, for example, children’s subjective impressions of a robot tutor [207]. In-

terviews can also reveal whether users consciously observed the manipulations in the

study [4, 271]. Though not specifically evaluating user responses to robot behavior,

these questions allow researchers to identify whether the effects of the experimental

manipulation were perceived or not.

Objective and subjective measures provide complementary approaches for evalu-

ating the effects of robot gaze in human-robot interactions. The field of HRI uses a

diverse set of measures, and understanding the role of these different types of metrics

is important for interpreting the research in the field.
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2.3 Gaze in Human-Human Interactions

Gaze is important to human-human interactions because it is closely tied to what

people are thinking and doing. People use their observations of others’ eye gaze to

guide everything from conversation [140] to speech [28] to attention [92]. In this

section, we draw out specific research findings from psychology that have a direct

impact on the design of social eye gaze for human-robot interaction. The findings

described in this section are applied to research that is described throughout this

dissertation. The studies in this section are aligned into three general topics:

• How people use eye gaze for conversation and speech (highlighted in Sections

2.5.1 and 2.5.2)

• How people use eye gaze when they refer to and manipulate objects (highlighted

in Sections 2.5.3 and 2.5.4)

• Methods for testing people’s responses to eyes and faces (highlighted in Section

2.4.2)

2.3.1 Gaze for conversation and speech

People generally look at what they are attending to. For example, in conversations,

gaze predicts the target of conversational attention. When someone is listening, the

person they are looking at is likely the person being listened to (88% of the time)

[254]. Similarly, when someone is speaking, they are often looking at the target of

their speech (77% of the time) [254]. Other studies confirm these numbers, with gaze

directed at conversational partners approximately 80% of the time [58].

During conversation, eye gaze signals when a speaker wants to maintain or relin-

quish the floor, indicates cognitive effort, and balances attention with intimacy [24].

Researchers have extracted very specific timings for the gaze cues that are part of
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conversation [20, 183]. For example, speakers establish mutual gaze approximately

2.4 seconds before relinquishing the floor. Intimacy modulating gaze aversions tend

to be short (between 1 and 2 seconds), while gaze aversions that signal cognitive effort

(such as looking away while beginning a response to a question) are longer, at about

3.5 seconds [20].

Pairs of people tend to hand off control of the conversation via gaze cues. For

example, the “reference-action sequence”—in which an instructor refers to an object

and then a worker acts on that object—can be divided into five cyclically repeating

phases, each with their own distinct gaze behaviors: pre-reference, reference, post-

reference, action, and post-action [19]. A worker’s gaze tends to follow the instructor’s

gaze in the early and late phases, while the instructor’s gaze tends to follow the

worker’s behaviors during the middle phases (post-reference and action) while the

worker performs the task [19].

In addition to managing interpersonal interactions, gaze also relates directly to

the syntax of speech. People often look away from their partner when beginning the

theme of the sentence (which indicates what the sentence is about) and look toward

their partner when beginning the rheme of the sentence (which provides information

or exposition about the theme) [60].

The conversation topic also influences gaze. When guiding a tour, people look

between the exhibit and their audience, among other nonverbal behaviors, and these

behaviors elicit engagement responses from the audience [264]. People show less

mutual gaze when their conversation involves high levels of intimate self-disclosure

[131]. Two partners’ nonverbal behaviors, including their eye gazes, can be used to

extract the context of an utterance during an interaction, such as conveying a fact or

answering a question [8] (Figure 2.2).

Gaze durations during conversation are affected by people’s personalities, as well.

Extroverts spend more time looking at their partner than introverts [21]. People
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Figure 2.2: The gaze dynamics of student (left) and teacher can reveal the context
of an interaction. Here, the teacher is conveying a spatial reference, performing face-
directed gaze at the student while the student observes the deictic gesture [8].

are also more likely to speak when their conversational partner looks at them more

often [253]. However, the amount of mutual gaze between conversational partners de-

pends on the interpersonal dynamics between the partners, not only on each partner’s

individual traits [52, 58].

2.3.2 Gaze for object reference and manipulation

Eye gaze is an important part of communicating about the environment. When

referring to objects or locations around them, people’s gaze is closely tied to the

content of their speech. Objects are typically fixated one second or less before they

are named [100, 269], though this may be slightly longer when speakers must search

for the object [19].

Teams of people use eye gaze as a subtle, non-intrusive channel of communication

[219]. When partners refer to objects or locations in the environment, people use

their partner’s eye gaze to predict their partner’s next verbal object reference, and

can more quickly respond to that reference [44]. In contrast, when access to a partner’s

eye gaze is restricted, people are slower at responding to their partner’s referential

communication [44]. If there is ambiguity in the object reference, gaze is a strong
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and flexible cue for eliminating uncertainty about referential expressions [104, 232].

Chapter 5 describes novel research that shows the benefit of gaze in augmenting

spoken object references and examines what happens when speech and gaze references

are misaligned.

When people are manipulating objects, their eye gaze is similarly tied to their

task and intended action. Eye gaze typically reaches the object of interest before

any movement of the hands has started [148]. Though people fixate the same object

while they act on it, eyes often shift to the next object in the task sequence before the

action is completed on the current object [148]. These shifts of gaze to a new object

often correspond to the start of a significant kinematic event on the current object;

for example, gaze directed at an object to be grasped will shift away from that object

just as the hand closes around it [127]. Objects not related to the task at hand are

rarely fixated [106].

Gaze is also used to signal availability for interaction. Caregivers in a nursing home

demonstrate their availability to their patients through broadly distributed gaze, and

people naturally wait for caregivers to establish mutual gaze before requesting assis-

tance [265]. When they must pass objects back and forth, object handovers between

people rely on a receiver signaling readiness to receive an object by gazing at their

partner [234, 235]. Interestingly, the giver in this interaction is not required to return

the receiver’s mutual gaze in order for the handover to occur successfully.

2.3.3 Methods for measuring people’s responses to gaze

People are very highly tuned to others’ gaze direction. Three-month-olds already shift

their attention in the direction of an adult’s gaze [112]. In adults, seeing someone’s

eyes directed laterally—even in a photograph—evokes rapid, reflexive attention shifts

in the direction of the gaze [112, 149]. A series of experiments has tested this reflexive

attention shift and found that it is resistant to conscious control [77, 80, 90]. In these
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experiments, participants are shown a picture of a face gazing to one side. Even when

are told that they should look in the opposite direction of the gaze, their attention is

still drawn to the direction of the gaze in the first 500 milliseconds, an effect called

counterpredictive cueing.

Counterpredictive cueing provides evidence that faces are special stimuli that are

processed in unique cognitive pathways, because the effect is not seen in response to

non-gaze directional cues such as arrows [90] or tongues [77]. An ambiguous image can

even be manipulated to elicit the counterpredictive cueing effect or not, depending

on whether the image is presented as a face or a car [203]. Functional MRI studies

show that a single image activates different brain pathways depending on whether it

is presented as eyes or as a non-social directional image [138], further strengthening

the idea that eyes are processed differently than other cues.

Chapter 3 details a counterpredictive cueing experiment with robot faces as stim-

uli, which shows that robots are cognitively processed like non-social directional cues

and not like human faces.

The counterpredictive cueing effect might be explained in part by people’s strong

tendency to have a theory of mind for another person, that is, a belief that the person

has knowledge, goals, and intentions of their own. Functional MRI studies reveal a

significant overlap in the brain areas that process theory of mind and those that

process directional eye gaze [57]. In fact, observing someone signaling the presence of

an object with referential gaze elicits the same neural response as observing someone

physically reaching to grasp that object [193], indicating that people use gaze as a

powerful indicator of others’ intentions.
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2.4 Human-Focused Research

The studies described in this section focus on learning about the characteristics and

limits of human perception through human interactions with robots. These studies

generally take place in well-controlled laboratory environments, where the limitations

and features of human perception can be closely examined. Understanding how people

perceive and respond to robot gaze—including what is effective and what is not—is

the first step in developing gaze behaviors for robots.

2.4.1 Human response to robot social gaze

Before people can make use of a robot’s social eye gaze, they must first perceive it.

In multi-party conversations, people notice a robot’s gaze when it looks at or near

them, but not when it gazes at someone else nearby [120]. This suggests that the

perception of robot gaze is egocentric—gaze is most frequently perceived when the

robot is gazing directly at the viewer, and is less frequently perceived when the robot

is gazing at someone else. People have stronger feelings of “being looked at” when

a robot gazes at them using short, frequent glances rather than longer, less frequent

stares [5].

People are also sensitive to robot eye gaze when that gaze is directed at objects

or locations in the environment. For example, in object selection games, people can

use referential gaze cues from a virtual agent [30] or a robot [175] to make predictions

about which objects to select, even when they are not consciously aware of those cues.

For a back-projected robot head, people can predict the target location of the robot’s

gaze almost as accurately that of a human’s gaze, though accuracy suffers when the

head is viewed from the side or when gaze involves just head orientation and not eye

movement [13].

Such object-directed referential gaze has specific gaze timings that appear nat-
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ural to people. Using an immersive virtual environment, researchers were able to

empirically measure the timing of referential gaze during an interaction between a

person and a virtual agent [192]. They found that the mean time a referential gaze

dwelled on a referenced object was about 1.9 seconds, and that participants expected

a responding gaze to be directed from their partner to the target object within about

2.5 seconds of their reference. These timing values can inform the production of gaze

in future agent systems.

While people can successfully interpret robot eye gaze for object references, hav-

ing a robot display mutual gaze also improves people’s subjective evaluations of that

robot. Mutual gaze from a stuffed animal companion robot leads to favorable eval-

uations of the robot [266]. When a robot is learning from human demonstration,

displaying mutual gaze leads people to view the robot as more intentional than dis-

playing random gaze; people spend more time teaching the robot, pay more attention

to it, and speak more with it [122].

People’s preconceived expectations for an agent’s gaze influence how they respond

to that gaze. In what they describe as a “non-verbal Turing test,” researchers ma-

nipulated the amount of gaze following displayed by a virtual agent, and asked par-

ticipants to evaluate whether the agent was being controlled by a human partner or

by a computer program [191]. They found that ascriptions of humanness varied by

whether the human partner was introduced as näıve to the task, as cooperative, or

as competitive, suggesting that interpretations of the “humanness” of gaze behavior

depend on the intent ascribed to the agent.

For robots that act as therapy assistants to children with autism spectrum disorder

(ASD), gaze can be a particularly important cue because of the deficit in social gaze

that is often part of this disorder [216]. Some children with ASD show spontaneous

social gaze behaviors in response to robots, including increased eye gaze and shared

attention during robot interactions as compared to human interactions [239]. These
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findings lend support to the use of robots as therapy tools. However, there is large

variability in responses, and other children do not demonstrate the same increase in

gaze behavior [239]. Because gaze trajectories sometimes differ between people with

ASD and those without, computationally recognizing and modeling people’s gaze

might be a way to diagnose and evaluate ASD [63, 215, 220].

2.4.2 Differences in human response to robot and human

gaze

It is tempting to assume that perfectly matching robot gaze behaviors to human gaze

behaviors will elicit identical responses from people, but this is not always the case.

There are several studies that suggest that gaze from robots is interpreted differently

than gaze from humans.

In general, it is difficult to compare robot gaze to human gaze directly, because

while robot gaze can be infinitely controlled, human gaze tends to have small, unpre-

dictable variations. However, one well-controlled study made this comparison using a

trained actor who performed identical behaviors to a pre-programmed robot (Figure

2.3). While viewers’ gaze patterns were overall similar between the human and robot

conditions, fine-grained analysis reveals differences in people’s responses to robot gaze

and human gaze. For instance, people spend significantly more time looking to a robot

partner’s face than to a human partner’s face when naming an object, indicating an

apparent concern for ensuring that the robot is attending to the object in question

[269].

Other fine-grained analysis reveals that robot gaze is not afforded the same special

cognitive status as human gaze. Recall from Section 2.3.3 that people show a ten-

dency to unavoidably shift their attention in the direction of another person’s averted

eye gaze, referred to as the reflexive cueing effect. This effect suggests that gaze is

processed in a different neural pathway than other directional symbols like arrows. A
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Figure 2.3: Comparing robot gaze to human gaze using eye tracking can reveal differ-
ences between people’s responses to the two stimuli. People spend more time looking
at a robot partner’s face than a human partner’s face when naming an object [269].

test of reflexive cueing using both highly anthropomorphic and highly stylized robots

showed that robots failed to elicit reflexive cueing in people, suggesting that robots

are cognitively processed more like arrows than like faces [2, 7].

Even infants will disregard robot gaze while treating human gaze as meaningful.

When infants are shown videos of robots and humans looking at objects, they can

follow the robot gaze as well as the human gaze. However, the infants look longer at,

and show a preference for, objects gazed at by the human but not objects gazed at by

the robot [184]. Only after infants observe a robot engage in a socially communicative

exchange with an adult do they follow a robot’s directional gaze [165]. This suggests

that, even to infants, robot gaze is not automatically as meaningful as human gaze.

The examples in this section provide some evidence for differences in human re-

sponses to robot versus human gaze, but more investigation is warranted (see Section

10.2.2). For example, while Yu et al.’s study tried to carefully control the human

actor’s behavior to make it identical to the robot’s behavior, there may still have

been minute differences in the human performance. Additionally, differences in ap-

pearance between the robot and human actor might have played a role in eliciting

different gaze responses from people. Admoni et al.’s study (detailed in Chapter 3)

employed two particular robots with specific appearances, and the characteristics of

these appearances may have affected why robots did not elicit reflexive cueing. In
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the two studies with infants, the robots exhibit a lack of animacy cues, which might

have influenced whether infants saw them as social agents. It may be that some cue

tangential to social communication, and not the task of communication itself, led

infants to respond differently to robots in Meltzoff et al.’s study.

2.5 Design-Focused Research

Researchers who take the design-focused approach develop the appearances and be-

haviors of robots to address certain goals such as demonstrating engagement or par-

ticipating in joint attention. In this section, we describe how manipulations of robot

gaze behavior can affect human-robot interaction both positively and negatively.

Gaze can serve many purposes, and the goal of eye gaze communication is often

dictated by the task at hand. For example, a robot engaged in conversation might

display user-focused mutual gaze, while a tour guide robot performing a presentation

might want to direct gaze to an exhibit using referential gaze. For this reason, we

group the articles in this section by the task, or context, of the interaction: conver-

sation, narration, collaboration, manipulation, and expression.

2.5.1 Conversation

Conversation involves an alternation of speaking and listening. For example, robots

for tutoring or entertainment must be able to maintain an engaging, natural conversa-

tional exchange with human partners. The main nonverbal challenges of conversation

are managing attention and turn-taking between partners, selecting the correct gaze

for the conversational content, and adopting the correct conversational roles.

Before beginning an interaction, a robot needs to gain the attention of its listeners.

If the robot fails to successfully engage its intended partner, the listener can be

unaware or uncertain about the robot’s intent to communicate, even though they
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may be interested in that communication. Robots can use mutual gaze to improve the

success of initiating conversation [211]. Even a very simple illusion of gaze improves

user attention. Having a virtual face on the flat-screen monitor of an embodied but

non-anthropomorphic robot increases the number of users who stop when greeted

by the robot [53]. Having the robot’s head “look at” a person by turning toward

the person’s location has a similar effect on engagement, even without a virtual face,

though the combination of a virtual face and person tracking lead to the greatest user

engagement [53].

For robot tutors, acquiring, monitoring, and maintaining user engagement is par-

ticularly important because reduced engagement means reduced learning. Animated

pedagogical agents can use gaze to regulate dialogue and direct student attention to

relevant information [128]. When diminishing attention is detected, robots [236] and

virtual tutors [75] can use verbal and nonverbal cues, including gaze, to restore the

listener’s attention. Reorienting student attention in response to diminished engage-

ment increases information recall [236], specifically on questions that require deep

reasoning [75].

Conversational fluidity is managed as much by the absence of mutual gaze as by

its presence. Gaze aversions can be used to demonstrate cognitive effort, modulate

intimacy, and mediate turn taking [20]. Using empirical timings for gaze aversions

collected from lab-based observations of human-human conversation, researchers de-

signed gaze aversion behaviors for virtual conversational partners. Virtual agents

using gaze aversions for these conversational functions are more successful at regulat-

ing the conversational flow and elicit greater disclosure from people than agents that

do not perform gaze aversions or perform gaze aversions at inappropriate times [20].

This gaze aversion model, when applied to embodied robots, yields a similar effect

even though the robot (a Nao) uses head turns to signal gaze direction instead of

articulated eyes [24]. In some cases, though, averting gaze may not be the most
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effective way of mediating turn-taking. In an interaction that involved handing off

speaking turns between a person and a Nao, flashing the eye LEDs to yield the

speaking turn led to the fastest responses from people, while using gaze aversions

actually led to slower responses than using no turn-taking cue at all [251].

People are also sensitive to the dynamic interplay between their own gaze and a

robot’s gaze. Robot gaze that is responsive to the user—that is, joint attention and

mutual gaze that occur in response to human behavior—increases the self-reported

“feeling of being looked at” over gaze that is independent of a user’s behavior [267,

268].

The content of conversation influences what kind of gaze works best. In conversa-

tions about emotionally neutral topics, robots that make eye contact are seen as more

sociable and intelligent than robots that avoid it, but this effect is reversed when the

topic of conversation is embarrassing, with eye contact avoiding robots rated more

highly [65]. In persuasive conversation, natural gaze behaviors improve a robot’s

persuasiveness [103], even more than using expressive vocalizations [64]. Gaze also

seems to mitigate the effects of other nonverbal behaviors on persuasiveness: when

performed with eye gaze, persuasive gestures improve a robot’s overall persuasiveness,

but when performed without eye gaze, persuasive gestures actually have the opposite

effect, hindering a robot’s persuasiveness [103].

In multi-party conversations, robot eye gaze can influence people to take on certain

conversational roles. Several studies have found that a robot can use gaze behaviors

to manipulate certain members of a group into taking conversational roles such as

onlooker, active participant, or listener [139, 173, 174]. A robot’s gaze behaviors are

successful at influencing people to conform to the intended roles as much as 97% of

the time [173]. A virtual agent’s gaze can also influence which participant in a multi-

party conversation takes the conversational floor next, with up to 86% effectiveness

in releasing the floor to the intended speaker [42].
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Seeing an agent perform sensible eye gaze during conversation improves people’s

perceptions of that agent. When a robot is a listener in a multi-party conversation,

seeing the robot track the conversation with its gaze elicits higher evaluations of

that robot’s comprehension and naturalness than seeing the robot perform random

gaze turns between speakers [143]. A robot that displays gaze focused on its human

conversational partner, but occasionally responds to motion in the background, is

evaluated as more natural, human-like, and attentive than a robot that exclusively

focuses on the partner or that distributes its gaze randomly [225]. Virtual avatars that

use turn taking gaze during conversations are evaluated as more natural and more

pleasant, and their conversation is rated as more engaging, than avatars that use

random gaze or no gaze in their communication [95]. In an immersive virtual reality

setting, researchers confirmed that people have more positive subjective evaluations

of an agent when it performs conversationally-driven gaze than when it performs

random gaze, but that the effect depends on the agent’s appearance. More realistic

avatars benefit from appropriate conversational gaze, but low-realism avatars, such

as stick figures, are adversely affected by human-like gaze behavior [96].

2.5.2 Narration

Unlike conversation, narration primarily involves a single speaker. There may be a

single listener or an audience with multiple listeners. Contexts that involve narration

include lecturing (as with robot tutors providing information about a topic), sto-

rytelling (as with entertainment robots), and presenting (as with robot tour guides

that describe museum exhibits). Challenges in narration involve ensuring information

recall and directing attention to external information sources such as exhibits in a

museum.

The type of robot gaze performed during narration can influence how much in-

formation is remembered by listeners. Longer participant-directed gaze from a sto-
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rytelling robot leads to better recall of story content [172]. In contrast, virtual agent

tutors that display more gaze toward the subject matter than toward their listener

generate better retention of information [23]. In general, however, socially commu-

nicative gaze is better for ensuring information recall than no gaze or gaze that is

incongruous with communicative goals [115]. Gaze behaviors can also be combined

with other socially supportive behaviors, such as natural gestures and empathetic fa-

cial expressions, to improve student performance in language learning from a robotic

tutor [207].

Listener-directed robot gaze during tutoring and storytelling is correlated with

positive perceptions of a robot. Subjective ratings of likability and other positive

attributes are higher for robots that display more affiliative gaze (that is, gaze directed

at the listener) than referential gaze [23]. Robots exhibiting gaze that correlates to

the content of their communication are seen as more natural and competent [115], and

longer gazes toward a listener yield greater feelings of likability [133]. Mutual gaze,

when presented with other social behaviors like head nods and posture mimicking,

greatly improves people’s perceptions of rapport with a virtual agent [261]. Joint

attention from a robot toward the topic of discussion is seen as more human-like than

only mutual gaze [133].

However, there are cases in which listener-directed gaze negatively impacts peo-

ple’s perceptions of a robot or virtual agent. High levels of mutual gaze without

other social behaviors can decrease rapport with a human user to the same levels as

a virtual agent specifically designed to show boredom [261]. Additionally, the benefit

of listener-directed gaze may be influenced by gender; when listening to a storytelling

robot, men evaluate the robot more positively when it looks at them more frequently

than at their partner, while women show the opposite effect [172].

Some presentations, such as guided tours, involve narration about material that is

situated externally to the agent. Tour guide robots might present a new technology
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to a user [223], provide directions to shoppers in a mall [211], or give location tours

of indoor spaces [141]. A primary challenge for this kind of narration is to direct

attention toward objects of interest in the environment, which can be accomplished

using deictic gaze.

A tour guide’s deictic gaze has a positive effect on listener engagement and atten-

tion. When a robot displays deictic gaze that reflects the subject of its speech, people

display more nodding and mutual gaze, signaling increased engagement, than they

do when the robot’s deictic gaze occurs at random points in its speech [145, 264].

When a robot uses deictic gaze in addition to spoken object references, people are

more engaged, spending more time interacting with the robot and displaying more

coordinated gaze behaviors than when the robot simply speaks without supportive

gaze [223]. When listening to a robot tour guide, listener gaze directed away from

the robot is often congruent with the robot’s topic of discussion [141], indicating that

robots can successfully guide listener attention to desired locations.

Tour guides can affect a listener’s experience by whether they look at the listener

or at the display. A robot that orients its body (including its eyes) toward an exhibit

can more easily engage its listeners than a robot that orients its eyes toward the

audience, but people lose interest in the robot and its narrative more often when the

robot looks at the exhibit and not at its audience [132]. Robots can influence people’s

experience of a tour by how often they direct gaze to each listener. When a robot

“favors” a person by gazing at them longer than others in the group, that person

reports greater feelings of likability toward the robot [133].

2.5.3 Collaboration

Collaboration requires communication of goals, knowledge, and intentions. For ex-

ample, a robot that helps a user construct furniture needs to express its current goals

and intended action to fluidly collaborate with a human partner. Gaze can be used
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to reveal these mental states to a partner in unobtrusive ways. Collaboration often

involves the physical environment, so in addition to gaze that reveals mental states,

such interactions also require gaze that references objects and physical locations.

Revealing mental states through nonverbal communication (including eye gaze)

makes cooperative task performance faster, with errors detected more quickly and

handled more effectively than purely task-based nonverbal communication [47]. In-

dicating engagement and providing feedback through subtle gaze behaviors improves

performance of a human-robot team [129]. Users also report understanding the robot

better during their collaboration when it makes its mental models explicit [47]. Ex-

pressive eye gaze is one behavior (among many drawn from animation principles)

that can make intentions and desires more explicit, for instance, by looking at a

door handle when wanting to open a door [237]. Even when users are unaware of

the intended communication, robots can “leak” their intentions through eye gaze,

influencing human behavior in measurable ways [175].

A key element of collaboration is referencing objects in the environment. Joint

attention from a companion robot effectively draws a user’s attention to where the

robot is looking [266]. Eye gaze can also act as a reinforcement of pointing gestures

[212]. A robot can use eye gaze to support its speech in a cooperative object selection

task, in which a human user needs to select an object referenced by the robot as

quickly as possible [3, 44]. People can recognize and respond to predictive eye gaze

that indicates spatial references, completing the task faster than if they had been

relying on the robot’s speech alone.

Errors in robot gaze hinder speech understanding, because people expect the

robot’s gaze to indicate what the robot intends to verbally reference [3, 113, 231, 232].

For tasks that involve a light cognitive load (for instance, selecting the object referred

to by the robot as quickly as possible), people recover quickly from errors in robot

eye gaze and show no difference between incongruent gaze and having no gaze cues
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at all [3, 113]. Chapter 5 details the results of a study that supports this. However,

in more cognitively demanding tasks (such as deciding whether a statement about

the referenced object’s visual features is true or false by comparing features of the

referenced object to other visible objects), incongruencies in a robot’s eye gaze and

speech lead to diminished performance over having no gaze at all [231, 232].

To improve collaboration, users can teach skills to robots by performing demon-

strations of those skills [26]. When learning from demonstrations in this way, robots

can use gaze to establish joint attention and solicit feedback when uncertainty is high

[159]. When a robot student responds to joint attention by following the human

teacher’s gaze, it better conveys the robot’s internal states and knowledge, which

leads to more efficient teaching: fewer errors, faster recovery from errors, and less

repetition of learned information [117]. People also rate the robot as more natural

and competent at its task when it engages in joint attention [117]. People are sen-

sitive to the robot’s mental state when they are teaching it, and will adjust their

behavior (in terms of pauses, speed, and magnitude of motions) to account for the

robot’s visual attention [194]. When there are multiple robots to be taught, people

are sensitive to each robot’s gaze behavior; they look longer and are more engaged in

teaching robots that actively seek mutual gaze than robots that passively follow the

human’s attention when it shifts to the other robots [263].

2.5.4 Manipulation

One of the primary benefits of robots as physically embodied systems is their capabil-

ity to physically manipulate objects in their environments. Many robot manipulators

are still isolated in factories or other carefully controlled settings, but robots are

increasingly required to operate in environments inhabited by people [134]. For ex-

ample, robot caregivers or office assistants can benefit from the ability to pick up,

carry, and hand over objects to assist their users.
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Social robot gaze is particularly important for object handovers because this type

of manipulation depends on coordination with a partner. While people are generally

capable of performing successful handovers without much thought, the process of

handing an object to another individual employs a series of subtle but important

nonverbal cues, including eye gaze (Figure 2.4). A decision tree built on empirical

data of human-human handovers reveals that joint attention (attending to the same

location or object) is important for coordinating a handover between two people, but

that mutual gaze (where both people make eye contact with each other) is not [234,

235]. Robot-to-human handovers are improved when a robot monitors its partner’s

eye gaze for attention and engagement, only releasing the object when user’s focus of

attention has turned to that object [101]. In multi-party scenarios, robots can also

use eye gaze to nonverbally select a member of the crowd to whom to hand an object

[139].

Gaze improves the efficiency of handovers. During a handover, people begin reach-

ing for an object earlier—signaling their confidence in the handover—when a robot

continuously looks at the projected position in space where the handover will occur,

than when it looks away from that location [168]. People reach for the object even

earlier when the robot continually gazes at their faces than when it looks at the

handover location [271]. Gazes that transition between the user’s face and handover

location do not improve how quickly reaching begins, though people report that these

gazes communicate the handover timing more effectively than continuous gazes [271].

Occasionally, a robot will need to direct a person’s object manipulation, for exam-

ple, when requesting that a person move an object within the robot’s reach. Social

behaviors including gaze cues can help inform people about where and how the robot

would like such assistance; for example, the robot can look at the location to which

it wants the object moved [187]. This kind of social and referential gaze may be

ignored during handovers unless the receiver has good reason to interpret the robot’s
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Figure 2.4: Gaze is an important part of successful handovers. In this sequence, a
human and a robot first establish mutual gaze, then joint attention to the handover
location, and finally complete the handover.

eye gaze as intentional [4]. By introducing an unexpected action—a delay in releasing

the object—into the handover, robots can increase the amount of time spent looking

at their gaze and user’s compliance with gaze-based spatial references [4]. Chapter 6

details this finding.

2.5.5 Expression

Robots may benefit from the ability to express personality or emotion. For example,

robots engaged in long-term interactions should have engaging personalities that keep

the interactions from becoming stale; entertainment and companion robots may wish

to express emotions that engage their users. Eye gaze is one way to express personality

and emotion, though the challenge lies in generating the right kind of gaze to influence

this subjective judgment.

Gaze behavior—in terms of where and for how long the robot gazes—can be used

to express recognizable personalities and emotions. High levels of mutual gaze ex-

presses feelings of trust [182] and extroversion [21]. Conversely, gaze aversions express

feelings of distrust [182] and introversion [21]. In animated agents, eye movement can

be used to express recognizable emotions such as joy, sadness, anger, fear, disgust, and

surprise [156]. Systematically manipulating features of gaze (such as amount of gaze,

duration of gaze, and the points of fixation during gaze aversion) yields consistent
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impressions of dominance and friendliness in a robot [93].

Robot expressiveness is important because it influences how people respond to

the robot. Matching the robot’s behavior with a user’s personality (as evaluated by

a personality survey) leads to greater motivation to engage in a repetitive task and

improves subjective perceptions of a robot during collaboration [21]. When people

perceive a robot favorably, they show no difference in proxemic behaviors when the

robot increases its amount of mutual gaze. However, for people who dislike the

robot, an increase in the robot’s mutual gaze causes them to physically distance

themselves from the robot [170]. Interestingly, this effect of interpersonal dynamics

does not extend to psychological distancing during conversation, as measured by

people’s willingness to answer a series of revealing questions [170].

2.6 Technology-Focused Research

There are many approaches to achieving communicative social gaze from robots and

virtual agents. One approach models the underlying neurological or psychological

processes, based on the idea that mimicking biology is an effective way to generate

gaze that appears natural. Another approach is data-driven, basing gaze behaviors

off of empirical measurements of gaze features—such as the timings, frequencies,

and locations of gaze aversions—which are recorded during observations of human

interactions. A third approach is to construct heuristic systems that are not grounded

in biological or empirical observations, but (as with rules drawn from animation

principles) still appear to generate expressive gaze. In this section, we review these

approaches to implementing gaze in virtual and physical systems.
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2.6.1 Biologically inspired systems

Biologically inspired gaze models attempt to replicate the underlying cognitive or

neurobiological mechanisms that control gaze behavior in people. The systems in this

category adhere to what we understand of the brain’s function, though they operate

at varying levels of detail. Some systems replicate the neuron-level receptive fields in

the visual cortex to perform visual attention [126]. Others employ a developmental

approach to learning joint attention and other gaze behaviors; developmental robotics

mimics human cognitive growth by attempting to replicate the process of human

ontogenetic development [161]. There is some evidence that biologically inspired

models have higher accuracies than other gaze models in predicting human-like gaze

fixations [43].

Many biologically inspired gaze models focus on directing attention to areas of

interest in a visual scene by replicating the neurological response to those visual

stimuli. These models generally have a similar structure: they compute the saliencies

of several features in parallel, then combine these saliencies into a single saliency

map [91]. Both low-level scene features (such as color, intensity, and orientation)

and high-level contextual features (such as object or scene recognition) are used to

create saliency maps [126]. Neurobiological models of gaze behavior that use bottom-

up saliency maps can successfully track salient targets and perform visual search in

demanding scenes [125], leading to realistic visual attention behavior in virtual avatars

[123, 124]. Adding high-level contextual or motivational information to the low-level

saliency cues enables robots to naturally direct their visual attention based on the

current task and environment [48]. Behavior can be influenced by both visual and

auditory saliency maps, as in an implementation of attention for the iCub robot [205].

Other models of overt visual attention produce head and eye turns using dynamical

neural networks that respond to visual saliency [256].

Cognitive models attempt to replicate high-level human cognition, so they operate
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at a level of abstraction above neuronal responses. Visual attention can be incorpo-

rated into cognitive models, such as ACT-R, to address how people’s cognitive sys-

tems respond to environmental input [18]. For example, a computational cognitive

architecture called ACT-R/E (ACT-R with Embodiment) performs conversational

tracking by switching its visual attention to the speaker in a multi-party conversa-

tion [248]. By tightly integrating gaze behaviors with the underlying cognitive model

controlling reasoning, dialogue management, and goals, the Rickel Gaze Model can

generate real-time gaze shifts that reveal a virtual agent’s internal processes [150].

Developmental models are also inspired by biology, though they attempt to repli-

cate the higher-level cognitive process of learning rather than the underlying neuronal

structure. For example, a computer vision model on a developmental robot uses

saliency maps of the environment along with a probabilistic algorithm that estimates

a teacher’s gaze vectors to perform shared attention and gaze imitation; shared at-

tention and imitation are foundational skills that bootstrap cognitive learning [110].

A robot can develop the ability to perform joint attention through demonstrations of

attention to salient objects, much in the same way that infants acquire this capability

by interacting with their adult caregivers [76, 176, 250]. These basic joint attention

behaviors serve as the basis for learning more complex social communication skills in

a humanoid robot [214].

Biologically inspired systems closely match actual neurological or biological pro-

cesses, and their strength lies in this adherence to real cognitive processes. However,

modeling underlying biological functions is not always practical due to computational

constraints, or even constraints on what is known about human cognitive processes.

Other methods described in the next sections have more abstract approaches to mod-

eling gaze behavior.
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2.6.2 Data-driven systems

The data-driven approach to generating robot eye gaze takes advantage of people’s

natural expressiveness by using quantified observations of human behavior to develop

and train gaze systems. Though these systems use empirical behavioral data, they

generally do not consider the underlying biological or cognitive mechanisms. The pro-

cess of building data-driven systems generally follows three steps: first, observations

of people using eye gaze in a desired scenario (such as in conversation) are collected.

Second, a model of gaze behavior is developed from the gaze data in these obser-

vations, which are acquired either by manual coding or through automated feature

extraction. Third, the behavior model is evaluated in a human-robot or human-agent

interaction.

Data-driven researchers have recorded and analyzed human gaze behavior in a

wide variety of scenarios. Conversational gaze has been recorded for pairs of previ-

ously unacquainted people speaking about movie preferences [20], free dialogue be-

tween two people with various existing relationships (including hierarchical work re-

lationships and romantic relationships) [121], and in four-person conversations about

controversial topics such as “should euthanasia be legitimized” [186]. Observations of

gaze in tutoring scenarios have been collected for student-teacher pairs covering topics

as varied as paper making [116], board games [8], and preparing canapés [200]. Gaze

data during object manipulation have been collected for individuals constructing Lego

objects [209].

Once the observational data are collected, they are annotated and processed to

build a model of eye gaze within the specified interaction. Some models are built

to generate robot behavior by extracting the features of gaze behaviors that achieve

certain communicative functions. For example, researchers have extracted statistical

information on timings and directions of gazes in dyadic conversations that achieve

certain conversational functions, such as mediating turn-taking and regulating inti-
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macy [20, 188]. Others have identified the direction and timing of gaze during head

tilts and nods in conversation [157], or during a physical construction task in which

assistance may be required [209]. Models of gaze for narration can also incorporate

other communicative behaviors like gesture and speech [116].

After these models are developed, researchers must test their performance. For

models that identify gaze behaviors to achieve certain communicative effects, re-

searchers can incorporate these models into robot behavior generation systems and

evaluate them in human-robot interactions. Data-driven gaze aversions in conversa-

tion lead to more disclosure from humans, better turn-taking regulation, and more

positive subjective perceptions for virtual agents [20] and robots [24]. Gaze during

head tilts and nods that is generated according to a data-driven model increases the

naturalness of a conversational robot [157]. Robots that use a data-driven model

to generate gazes and gestures during narration perform as well as robots that use

pre-scripted behaviors [116].

In contrast with models that generate gaze behavior, other data-driven models

are built to extract information about the interaction based on gaze information.

For example, a probabilistic model for multi-party conversation can identify conver-

sational regimes through gaze patterns among participants [186]. A computational

model trained on physical task tutoring data can recognize the occurrence connection

events that facilitate engagement between student and teacher [111, 200]. In a differ-

ent tutoring interaction, a model of eye gaze and gesture trained with the k-nearest

neighbor algorithm can predict the context of communication based on observations

of nonverbal behaviors including gaze [8]. These models don’t suggest gaze behaviors

in particular scenarios, so they are not evaluated through human-robot interactions.

Instead, these models are evaluated by comparing their accuracy to ground-truth

data that is annotated by humans. Chapter 7 details the development of one such

data-driven model.
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The strength of a data-driven approach is that the empirical demonstrations used

to train the models provide a principled approach to model development and ensure

that the models correspond to actual human behavior. However, this need for empiri-

cal data has two main weaknesses. First, it is time consuming to collect and annotate

human behavior examples. Second, the models that are developed tend to be tied

to the domain from which they were collected, and are less flexible to be applied to

alternate domains.

2.6.3 Heuristic systems

A third approach to developing gaze technology employs heuristics that lead to appro-

priate looking behavior, regardless of actual biological function or human behavior.

These heuristics allow researchers to directly design gaze behaviors, using under-

standing of psychology or knowledge of multimodal behavior, without being tied to

underlying biological realities or requiring a large corpus of observational data.

One heuristic for generating gaze behaviors is to link a robot’s gaze to its speech.

By representing each “communicative act” as comprised of a meaning (the informa-

tion to transmit) and a signal (the nonverbal expression of that meaning), gaze can

be closely integrated into the content of a robot’s speech [195]. A tool that automati-

cally extracts syntactic and semantic information from a typed sentence can use that

information to generate appropriate gaze behavior for a conversational virtual agent

[61].

Gaze generation based on speech may not even require semantic understanding of

that speech. Some social contexts can be extracted exclusively from the timing and

structure of speech; using this information, a robot can automatically generate natural

gaze behaviors that support the intended context without needing to understand what

is being said [171, 229]. Even loose coordination between a robot’s head motions and

the sentence structure of its intended speech leads to reasonable socially acceptable
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gazes in tele-operated or Wizard of Oz settings [228].

Another heuristic for generating gaze behavior is to respond directly to a user’s

gaze. For example, one human-aware manipulation planner for robot-to-human han-

dovers takes into account where people are looking to inform where the handover

should take place, and then communicates the robot’s intention to perform the han-

dover by having the robot look at the object to be given [224]. A robot behavior sys-

tem for collaboration is responsive to fine-grained, real-time human eye movements

collected with a head-mounted eye tracker [263]. A virtual agent for conversation

monitors a user’s gaze to assess their level of interest, and responds with pre-specified

gaze behaviors to elicit and maintain the user’s engagement [190]. Gandalf, an em-

bodied conversational agent that teaches people about the solar system, detects users’

gaze acts and generates its own gaze in response to support its lesson [242, 244]. Sys-

tems that detect and respond to eye gaze can be used to shape behaviors, for instance

to promote social skills like joint attention to children with ASD [37, 70].

Such responsive systems can also account for multimodal inputs that include audi-

tory or gesture information in addition to gaze. Combining auditory cues like sound

source localization with visual cues like face detection, one robot performs mutual

gaze and joint attention with viewers while presenting a museum exhibit [38]. An-

other robot can take human gaze direction, deictic gestures, and mood into account

to attend to and interact with multiple people simultaneously [226].

A major source of heuristics for gaze behaviors is the psychology literature. Mod-

els built with heuristics drawn from psychology do not attempt to precisely replicate

known cognitive functions. Moreover, unlike data-driven models, which observe hu-

man behavior in the precise task to be performed by a robot, heuristics drawn from

psychology are not specific to a single scenario.

For example, using approximate timings of face-directed and averted gaze from the

psychology literature, as well as from informal observations, gaze behavior systems
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can support real-time conversation with virtual agents [68], as well as expressions of

emotion and responses to environmental distractions [102]. The Automated Visual

Attending system uses rules drawn from psychology to generate attention behaviors

in a virtual agent, in which goal-oriented intentional behaviors compete with involun-

tary attentional responses to stimuli [137]. A parametric computational model for an-

imating gaze shifts of virtual agents that uses features informed by neurophysiology is

successful at performing gaze shifts to peripheral targets [22]. Using a psychologically-

based emotional model called the Geneva Emotion Wheel, a virtual agent expresses

primary and secondary emotions by drawing pre-defined movement parameters for

each emotional expression [155, 156]. In multi-party interactions, visual attention on

a very realistic humanoid robot is driven by a context-dependent social gaze genera-

tion system that accounts for multimodal features such as proxemics, field of view, and

verbal and nonverbal cues from the environment [270]. Chapter 8 details a heuristic

model for generating deictic gaze and gesture in a human-robot collaboration.

Heuristic systems provide a framework for model development that applies knowl-

edge from psychology but avoids the computational cost of biological modeling and

the procedural cost of collecting examples for data-driven modeling. However, heuris-

tics must be carefully chosen to accurately represent the cognitive factors at play in

a given situation, or the model may not accurately capture the desired phenomena.

2.7 Summary

This chapter reviewed the state of the art in eye gaze for social robots. In doing so,

it delineated three major approaches to research in the field of HRI—human-focused,

design-focused, and technology-focused. It organized the large number of disparate

research articles on gaze in HRI into these coherent categories. This chapter also

established a grounding of terms and concepts that are used widely in HRI research,
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and which will be used throughout this thesis. The remainder of this thesis describes

novel contributions to the state of the art in eye gaze for social robots.
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3

Robot Gaze and Reflexive Cueing∗

Much of the research in social robotics assumes that psychology findings can

be imported wholesale into human-robot interactions. For example, social

eye gaze models for robots are often constructed based on observations of

human behavior, under the assumption that human-robot interaction should

mimic human-human interaction. In this chapter, we show that human eye

gaze and robot eye gaze are actually processed in cognitively different ways.

We extend a classic psychophysics experiment, which has shown that people

reflexively attend in the direction of social eye gaze but not in the direction

of socially irrelevant directional cues such as arrows. We ask whether robot

gaze elicits the same reflexive cueing effect as human gaze. We consider two

robots with varying levels of anthropomorphism to determine if differences in

cueing effects are based on robot appearance. A millisecond-level analysis of

human behavior indicates that both human and robot faces convey directional

information, but that robots fail to elicit attentional cueing effects evoked by

non-robot stimuli, and that no difference exists based on robot appearance.

∗This work was originally published as:
Henny Admoni, Caroline Bank, Joshua Tan, and Mariya Toneva. Robot gaze does not reflexively
cue human attention. In L. Carlson, C. Hölscher, and T. Shipley, editors, Proceedings of the 33rd
Annual Conference of the Cognitive Science Society (CogSci), pages 1983–1988, Austin, TX USA,
2011. Cognitive Science Society.

46



3.1 Introduction

Joint visual attention is an important aspect of typical social interactions. A single

gaze communicates information—there are predators hiding behind that tree; a tasty

source of food is over there; you are crossing into my territory—and supports social

conventions such as conversational turn-taking or joint referencing. As robots be-

come more integrated into daily human life, social interactions occur with increasing

frequency between humans and robots, as well: robots assist nurses in hospitals, act

as companions for the elderly and the disabled, and interact with children in therapy.

In this chapter, we investigate whether people are responsive to joint attention cues

from robots. Specifically, we focus on attentional shifts that occur in response to

another person’s eye gaze cues.

Evidence from psychophysics suggests that typical humans readily shift their at-

tention in response to a directional cue, such as averted eyes or an arrow. In traditional

non-predictive cueing experiments, subjects view a centrally-presented stimulus fol-

lowed by a peripherally-presented visual probe, and press a keyboard key in response

to the probe. Key press response times are theoretically correlated with attention:

participants will respond more quickly to probes located in the direction to which

they are already attending. Studies have found that when the stimulus contains di-

rectional information (such as a face with averted eyes, or an arrow pointing in one

direction), people respond more quickly to probes at cued locations, in which the

probe is on the same side as indicated by the stimulus, than to probes at uncued

locations, even when they are told that the cue does not indicate probe location and

should be ignored [77, 80, 88, 149]. Further studies confirm that the central cue, and

not peripheral appearance of probes, causes this reflexive shift of attention [89]. At-

47



tention shifting via directional cue seems to be an early and reflexive skill for humans:

children as young as three months old will attend more quickly to a peripheral probe

on cued trials than on uncued trials when the cue is a human face [112].

When cues are counterpredictive of probe location, however, social stimuli such as

faces and eyes elicit different patterns of behavior than other directional stimuli. In

counterpredictive cueing paradigms, probes appear with significantly higher proba-

bility on the opposite side of that which is cued by centrally-located stimuli [80]. For

example, when the centrally-located stimulus is directed toward the left, probes have

a 75% chance of appearing to the right of center, and vice versa. In counterpredictive

experiments, it is beneficial for participants to orient attention away from the cued

direction; therefore, shorter response times to probes in the cued direction are at-

tributed to reflexive or uncontrollable attention shifts. In contrast, shorter response

times to probes in the uncued (but predicted) location are interpreted as volitional

orienting of attention.

Counterpredictive experiments reveal that subjects reflexively orient in the di-

rection of eyes [80] but volitionally orient away from the direction of arrows [90] or

extended tongues [77]. A stimulus that is ambiguously social will elicit reflexive at-

tention shifts when presented to participants as a social cue (a picture of eyes), but

not when it is presented as a non-social cue (a picture of a car) [202]. Furthermore,

the effect of this cue on reflexive attention persists if the cue is presented first as social

and then as non-social, but not vice versa. This effect seems strongest for faces, but

not necessarily unique to them: arrow cues have also been shown to trigger reflexive

orienting, with magnitude of reflexive orienting toward arrows positively correlated

with individuals’ voluntary attention control [246], suggesting that dissimilarities in

attention directed at eyes and arrows are differences of magnitude (strong versus

weak), rather than of kind (reflexive versus volitional).

Eye-tracking and brain-imaging studies reveal similar results. People make more
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erroneous eye saccades in the direction of a “distracter” cue they are told to ignore if

that cue is a face, rather than an arrow [199]. Functional MRI studies show that the

same cue activates different pathways depending on whether it is perceived as eyes

or as a non-social directional image [138]. Attentional orienting to gaze cues and to

arrow cues activates different cortical networks, with attentional orienting to arrow

cues relying on a pathway associated with voluntary shifts of attention [108]. In a

different fMRI study, however, the same cue activated the same extensive cortical

network regardless of whether it was interpreted as an eye or an arrowhead, though

the eye cue more strongly engaged some parts of this network [245].

Psychologists have suggested that shared attention is a precursor to developing a

theory of mind for other people, and that lacking ability to interpret others’ visual

attention might indicate social disorders such as autism [33]. Children with autism

fail to show preferential sensitivity to socially relevant cues such as human gaze: they

demonstrate similar response times to both arrows and faces on a counterpredictive

cueing task (whereas typically developing children are cued by faces but not by ar-

rows) [218], and they avoid shifting their gaze in response to non-predictive gaze

cues [203]. Participants’ scores on the Autism-Spectrum Quotient have also been

negatively correlated with cueing magnitude [36].

In summary, evidence suggests that for non-predictive cues, both social and non-

social directional stimuli elicit reflexive attention shifts in cued directions, but that

for counterpredictive cues, socially relevant stimuli (such as human eyes) continue to

elicit reflexive attention shifts while non-social directional stimuli, such as arrows, ex-

hibit weak or no reflexive attentional influence. The psychophysical methods used to

isolate attention shifts for faces and arrows can be applied to novel stimuli to inform

the field of human-robot interactions (HRI). HRI is interested in exploring how people

perceive robots and understanding how designers can create robots that interact nat-

urally with people. To date, there has been little research on the cognitive effects of
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robots on human attention. As the presence of robots in day-to-day social situations

increases, however, it becomes important to evaluate robots’ cognitive influence to

better understand the types of roles robots can perform and to improve the design of

human-assistive robots.

Some evidence already suggests that robots can use gaze cues to “leak” infor-

mation to humans. In conversations between robots and näıve human participants,

robots were able to define participants’ roles, such as addressee, bystander, or eaves-

dropper, through visual attention cues [174]. Another study found that robots can

influence people’s decisions in a game by shifting their eyes briefly to a target, even

when participants do not report seeing those cues [175]. In the latter study, robot

appearance influenced the effectiveness of gaze cues: Geminoid, a very human-like

robot, was more effective at revealing intentions through gaze cues than Robovie, a

robot with more abstract human features.

In this chapter, we ask: will robots be treated like humans or like arrows? That

is, will robot gaze be interpreted by humans’ cognitive systems as a social cue on par

with human faces, with attendant reflexive shifts of attention in the gaze direction?

Or will robots be perceived by humans as non-social entities, such as arrows or cars,

allowing participants to override reflexive attention shifts in favor of volitional ori-

enting toward predicted probe locations? Because robots are designed with varying

levels of anthropomorphism, we use two robot stimuli, one from a very human-like

robot called Zeno, and one from a less anthropomorphic robot named Keepon. Cue-

ing effects from human faces have been found to be stronger for schematic faces than

for real faces [107], suggesting that cueing information contained in schematic faces is

overshadowed by the complexity of real faces. For this reason, we also use two types

of human face stimuli: a photograph of a human face and a line drawing of a face.

Finally, we use an arrow as a non-social but directional stimulus.
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3.2 Methods

This experiment employs two commercially available robot platforms. Zeno is pro-

duced by Hanson Robotics as a realistic, expressive robot (Figure 3.1(c)). In addition

to eyes and a nose, Zeno’s face has human-like features such as eyebrows, lower eye-

lids, an expressive mouth, and hair. In contrast, Keepon’s features are less human-like

(Figure 3.1(d)) [144]. Keepon is a 20 cm tall robot made of two stacked yellow spheres

of deformable rubber; its eyes are white circles overlapped by smaller, concentric black

circles and its nose is a black circle. Keepon’s deformable body and eyes with sclera

suggest biological features, but its form and color (bright yellow) clearly indicate that

it is robotic. The aim of selecting such different robots is to identify whether human-

like features are necessary to evoke the same (purportedly social) response as to a

human face.

Participants were 41 male and 29 female Yale University students between the

ages of 18 and 34 (mean age 21.4). Each participant was assigned to a single stimulus

condition (human, line drawing, Zeno, Keepon, or arrow) in an alternating fashion.

Participants were recruited in person or with flyers around campus, and were rewarded

with candy at the conclusion of the experiment.

3.2.1 Stimuli

All stimuli were displayed on a laptop screen positioned approximately 30cm away

from the seated participant.

The human gaze stimulus is a head-and-neck photograph of a woman (Figure 3.1(a)).

Her head subtends a visual angle of 6.2 ◦ horizontally. Each eye subtends 1.0 ◦ and

the center of each eye is 1.2 ◦ to the right or left of center. This stimulus was chosen

as a human (i.e, social) analogue to photographs of the robots.

The line drawing stimulus, re-created from [90], is a black-and-white line drawing
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of a face with circular eyes and nose, and a line for the mouth (Figure 3.1(b)). The

head subtends 7.5 ◦; each eye subtends 1.0 ◦ and its center is 1.0 ◦ left or right of image

center, where the nose is located. This stimulus has been previously shown to elicit

both reflexive and volitional shifts of attention on a similar task [90].

Zeno provides an example of a highly anthropomorphic robot (Figure 3.1(c)). The

Zeno stimulus is a head-and-neck photograph of the robot, with face subtending 6.7 ◦

in width (7.8 ◦ including hair) and each 1.0 ◦ eye located 1.3 ◦ to the left and right of

center.

Keepon represents the opposite end of the scale of anthropomorphism (Figure 3.1(d)).

The Keepon stimulus is a full-body photograph of the robot, subtending 6.2 ◦ of the

visual field, with each 1.0 ◦ eye located 1.75 ◦ to the left and right of center.

The arrow stimulus is 7.1 ◦ long and drawn over a 6.2 ◦ fixation cross; equal

amounts of visual information are presented at the head and tail of the arrow, thereby

avoiding the possibility that cueing results simply from additional features in the head

direction (Figure 3.1(e)).

Each stimulus had left-, right-, up- and down-facing variants (see Figure 3.1). In

a single trial of the cueing condition, the front-facing variant was presented for 500

milliseconds, followed by one of the other (“turned”) variants. After a 400 millisecond

stimulus onset asynchrony (SOA), or a 600 millisecond SOA in human and Zeno

conditions, a probe letter, either “T” or “L,” appeared on the screen in one of four

positions relative to the image: above, below, to the left, or to the right. Each

probe letter was 0.9 ◦ tall and wide, and was presented along the midline 4.8 ◦ from

center. Cue and probe remained on screen until participants responded by pressing

a keyboard key or until 2 seconds elapsed. (See Figure 3.2 for an example.)

Following Friesen et al., for each trial of the cueing condition, the probe had a

75% chance of appearing on the opposite (predicted) side of where the cue directed,

and a 25% chance of appearing in one of the other three locations (approximately
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(a) Human gaze stimulus (b) Line-drawn face stimulus

(c) Zeno gaze stimulus (d) Keepon gaze stimulus

(e) Arrow stimulus

Figure 3.1: Each subject was randomly assigned to one of five stimulus conditions.
This figure shows the front, right, up and down versions of each stimulus; left versions
are mirrors of right-facing versions and are omitted here for brevity.

8% chance each)—on the same side as where the cue directed (cued), or orthogonal

to the direction of the cue (not-predicted-not-cued or NPNC ), as shown in Figure 3.3

[90].

Once participants responded to the probe or 2 seconds elapsed, all images were

replaced by a prompt asking participants to press any key to proceed to the next

trial.

3.2.2 Procedure

Participants were seated approximately 60 cm in front of a 29 cm by 18 cm laptop

screen. The experimental procedure was explained to them: they were told which

stimulus they would observe and the sequence of images they would see (as in Fig-

ure 3.2). Participants were told they would first observe a front-facing stimulus,

replaced by a “turned” stimulus, then a probe letter (“T” or “L”). They were also

informed that the probe was three times more likely to appear on the side opposite
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Figure 3.2: Time course for a single (predicted) trial of the Keepon gaze condition.
Setup is similar for other stimuli and directions.

Figure 3.3: Three types of trials were presented: cued, in which probe and gaze are
congruent; predicted, in which the probe is in the opposite direction to gaze; and
not-predicted-not-cued or NPNC, in which the probe is on a different axis to gaze.
Percentages indicate probability of occurrence.

where the gaze or symbol directed. Participants were asked to press the keyboard

key of the letter appearing on the screen as quickly and accurately as possible. These

instructions were also presented textually on the screen before the start of the exper-

iment.

All participants saw 99 trials, consisting of 96 test trials and 3 additional practice

trials drawn at random from the test trials and presented first. The set of test trials

comprised 72 predicted trials (the probe appeared opposite where the cue indicated),

8 cued trials (the probe appeared on the side indicated by the cue), and 16 NPNC

trials (the probe appeared on a different axis than the one directed by the cue), with
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“T” and “L” presented equally frequently.

3.3 Results

Mean response times and standard deviations are listed by condition and trial type

in Table 3.1. Figure 3.4 shows mean response times by stimulus condition and trial

type.

Four participants were excluded for non-compliance (not following directions to

respond as quickly as possible, or pressing keys at random as evidenced by high

error rates); their data is not included in the analysis. Trials in which participants

incorrectly identified probe letters, response times exceeded 1.5 seconds, or response

times were less than 100 ms were treated as errors and excluded from analysis. The

error rate was 3.9% over analyzed participants. In total, results from 70 participants

across the five conditions were analyzed, as shown in Table 3.1.

A repeated measures analysis of variance with stimulus type (human, line drawing,

Zeno, Keepon, and arrow) as the between-subjects variable and trial type (cued,

predicted and NPNC) as the within-subjects variable revealed significant main effects

for trial type (F(2,130) = 19.819, p < 0.001) though not for stimulus condition

(F(4,65) = 0.196, p = 0.939). There was no interaction between stimulus type and

trial type (F(8, 130) = .673, p = 0.703).

Because there was a significant main effect of trial type, we further analyzed the

data within each stimulus condition with a repeated measures analysis of variance

on trial type, which found significant main effects for trial type on most conditions

(human: F(2,28) = 3.675, p = 0.038; line drawing: F(2,30) = 4.328, p = 0.022; Zeno:

F(2,26) = 3.409, p = 0.048; Keepon: F(2,26) = 13.558, p < 0.001), and borderline

significance main effects in the arrow condition (F(2,22) = 2.672, p = 0.091). In

all conditions, pairwise comparisons reveal that each stimulus elicited significantly
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Stimulus Trial type Avg. RT (ms) SD N

Human
cued 444 46
predicted 428 54 15
NPNC 462 61

Line
cued 458 73
predicted 449 73 16
NPNC 474 70

Zeno
cued 473 147
predicted 452 108 13
NPNC 473 116

Keepon
cued 464 65
predicted 428 52 14
NPNC 469 55

Arrow
cued 453 66
predicted 433 44 12
NPNC 461 53

Table 3.1: Average response time and standard deviation, in milliseconds. Each row
represents a stimulus condition separated into trial types. The last column indicates
how many participants were tested for each condition.

faster response times to predicted than to NPNC trials (human: mean difference =

33.921, sd = 8.764, p = 0.002; line drawing: mean difference = 24.892, sd = 5.902,

p = 0.001; Zeno: mean difference = 24.515, sd = 8.335, p = 0.011; Keepon: mean

difference = 39.878, sd = 9.410, p = 0.001; arrow: mean difference = 27.875, sd =

11.120, p = 0.029). Only in the robot conditions, however, were there significant

or borderline-significant differences between predicted and cued trials as well (Zeno:

mean difference = 23.746, sd = 12.712, p = 0.084; Keepon: mean difference = 36.698,

sd = 8.613, p = 0.001).

3.4 Discussion

Results suggest that participants recognized the directional significance of all stimuli,

but only responded to the cueing significance of non-robot stimuli (Figure 3.4).
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Figure 3.4: Mean response times in milliseconds for each trial type (cued, predicted
and NPNC) by stimulus condition. A single asterisk indicates significant differences
(p < 0.05), a double cross indicates borderline significant differences (p < 0.10).

The counterpredictive cueing task involved four possible locations for the probe

to appear on each trial: a cued location, in the direction of gaze or pointing; a

predicted location, opposite the cueing location, where participants were told probes

would actually appear; and two not-predicted not-cued locations (NPNC), which are

not cued but have the same probability of probes appearing at each of them as at

the cued location. NPNC locations provide a good baseline because they involve an

identical task (responding to a probe with a key press) but do not represent cued or

predicted locations. In our results, participants were significantly faster at responding

to probes at predicted locations than at NPNC locations for every stimulus, indicating

that they recognized the direction indicated by the stimuli and used that information

57



to inform them of predicted probe position.

However, for the robot stimuli (Zeno and Keepon), response times were also sta-

tistically faster for predicted than for cued trials (borderline significance in the Zeno

case, with p = 0.084). In other words, participants directed their attention signifi-

cantly more toward predicted locations than toward cued locations, and thus show

no evidence of having been cued by robot gaze. To participants in robot conditions,

cued locations were attended to just as infrequently as NPNC locations that were

neither cued nor predicted.

In contrast, response times were not significantly different between predicted and

cued trials in the non-robot conditions (human face, line drawing of a face, and arrow).

Participants in these conditions were not significantly more attentive to predicted than

to cued locations, and in fact, Figure 3.4 shows that cued trial response times were,

on average, greater than predicted trial response times but less than NPNC trial

response times. This suggests that non-robot stimuli attracted participants’ reflexive

attention to cued locations despite the fact that they were no more motivated to look

at cued locations than at NPNC locations.

Though they were able to extract directional information from robot gaze, par-

ticipants in either robot condition were not susceptible to reflexively reorienting in

the direction of robot gaze, as they were in the face or arrow conditions. In essence,

participants seem to be ignoring the natural interpretation of robot gaze in favor of

the counterpredictive interpretation, though they fail to do so with other directional

cues. This behavior has been observed in children with autism, who are able to ignore

non-predictive gaze cues, while their typically-developing peers are susceptible to re-

flexive cueing from non-predictive stimuli [203]. The fact that robots do not seem

to cue reflexive attention, in a way that even non-social stimuli such as arrows do,

suggests that robots are cognitively processed differently than common directional

symbols or social entities.
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Previous studies use a similar counterpredictive experimental design in which par-

ticipants are asked to press a key when any probe appears [90, 246]. These studies

use their detection task to analyze covert attention shifts, in which participants’ eyes

do not move (in fact, Friesen et al. tracked the eyes of several participants to ensure

this was the case [90]). The task used in the current experiment required identifying

the probe (either “T” or “L”) by pressing the corresponding keyboard key, so results

from this identification task are not directly comparable to results from previous

detection-based experiments. It would be interesting, however, to analyze covert at-

tention effects of various robots in detection tasks. Some robotics studies suggest that

more anthropomorphic robots can convey social information—such as intention—to

humans, suggesting that robot anthropomorphism affects covert attention [174, 175].

Attentional cueing is more pronounced with schematic drawings of faces than

with real faces [107], so this study included both a photograph of a human face and

a line drawing of a face as stimuli. Both faces elicited significantly faster responses

to predicted versus NPNC trials, but not to predicted versus cued trials. Though the

arrow stimulus also showed this effect statistically, differences between NPNC and

cued trial response times are larger for the two social stimuli, with 17.183 ms average

difference between cued and NPNC trials for the human face, and 16.140 ms average

difference for the line drawing, compared with 7.548 ms average difference for the

arrow.

Some stimuli were tested at 400 ms SOA (line drawing, arrow, and Keepon)

while others were tested at a 600 ms SOA. This represents a methodological change

undertaken partway through the experiment, in order to align more precisely with

previous research. Both SOA times are within the threshold for “short” SOAs as

described by Friesen et al., and reflexive cueing effects have been found at up to 600

ms SOAs [90, 246]. Therefore, we believe these SOAs to be comparable.

This study provides some of the first insight into cognitive processing of robot
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stimuli, using psychophysical techniques common in cognitive psychology but largely

unused in the field of human-robot interaction (HRI). There is significant informa-

tion to be gained from analyzing the cognitive effects of robots on human attention,

both for cognitive scientists interested in which features cue attention, and robot de-

signers interested in creating robots that engage in natural social interactions with

people. Robot stimuli provide a “real life” testbed for cognitive attention experi-

ments by allowing researchers to manipulate robotic features to test theories about

what features cue reflexive attention. Robot designers can use this information in

their designs, which would improve robot usability by allowing people to employ the

same social cues with robots as they do in human-human interactions. The current

study suggests that these two robots, Zeno and Keepon, are unable to cue human

attention the way real faces, schematic faces, or even arrows do. These results should

be further explored to identify what kinds of visual manipulations can make robots

appear reflexively social.

3.5 Summary

Human eyes elicit strong attentional shifts in the direction of their gaze, even when

this shift is detrimental to viewers’ goals, while non-social directional cues such as

arrows have demonstrated weaker attentional cueing effects. Little evidence currently

exists for the cognitive effects of robot gaze cues, however. Using an established coun-

terpredictive cueing experiment, we analyzed the attentional influence of two robots

that vary in level of anthropomorphism, and compared our findings to attentional ef-

fects of human faces and arrows. Results indicate that human faces, robot faces, and

arrows all conveyed directional information to participants, but that neither robot

stimulus showed attentional cueing effects.

These findings confirm that common directional symbols (particularly human
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faces) engage an automatic attention shift to the directed location despite top-down

motivations to attend elsewhere. However, the findings also reveal that robot faces

do not elicit this counterpredictive cueing effect. In other words, there is a difference

in how robot eye gaze is cognitively processed in the moments after it is seen, when

compared with human eye gaze.

Many HRI studies use what we call a macro level analysis: measurements of

observable behavior are taken once for a trial or a whole interaction, which could

last an hour or more. This analysis provides a holistic view of human behavior in a

human-robot interaction. For example, macro level analysis has identified the general

effectiveness of robot gaze in cueing conversational roles [173] and improving recall of

stories [172].

In contrast, the work in this chapter is evaluated at a micro level of analysis.

A micro level analysis brings us closer to evaluating actual cognitive responses by

measuring people’s rapid, short, or automatic responses. The metric used here—

millisecond-level response times—analyzes human behavior on a much shorter time

scale than typical HRI studies. On this time scale, we identified a difference between

human and robot eye gaze processing.

This difference in micro level response to human and robot eyes emphasizes the

need to understand the cognitive effects of robots by analyzing micro level behaviors

in addition to the more commonly measured macro level behaviors. Section 10.1.2

further describes the difference between micro and macro levels of analysis.

This research is the first to apply psychophysical techniques to the analysis of

cognitive effects of robot appearance. Further experimentation using these techniques

might reveal what features influence natural social responses, and how robots can be

designed to take advantage of existing cognitive biases.
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4

Robot Gaze and the Perception of

Attention∗

Establishing mutual attention is the first step toward successful social in-

teraction. Therefore, identifying how to best convey a robot’s attention is

important for the development of social robots. In this chapter, we try to un-

derstand the dynamics of robot eye gaze for conveying attention. Specifically,

we investigate how the timing and frequency of user-directed gaze influences

how people perceive a robot’s attention. Participants viewed a group of My-

Keepon robots executing random motions, occasionally fixating on various

points in the room or directly on the participant. We varied type of gaze fix-

ations within participants and robot group size between participants. Results

show that people are more accurate at recognizing shorter, more frequent fix-

ations than longer, less frequent ones, and that their performance improves

as group size decreases. From these results, we conclude that multiple short

∗This work was originally published as:
Henny Admoni, Bradley Hayes, David Feil-Seifer, Daniel Ullman, and Brian Scassellati. Are you
looking at me? Perception of robot attention is mediated by gaze type and group size. In Proceedings
of the 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 389–396,
2013.
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gazes are preferable for indicating attention over one long gaze, and that

the visual search for robot attention is susceptible to group size effects. This

experiment used a novel (within HRI) multi-robot setup, for which we devel-

oped a set of inexpensive, easily replicable, programmable robots built on the

basis of MyKeepon toys. In this chapter, we also describe the development

of these robots, which have the potential to become a more widely used HRI

platform.

4.1 Introduction

Eye gaze is a critical component of typical social interactions. We use gaze to indicate

attention, whether toward a speaker or toward an object of mutual interest. However,

subtle gaze timing can have a strong effect on realism and comfort in an interaction.

Gaze fixations that are too short can be interpreted as shyness, avoidance, or dis-

interest. Gaze fixations that last too long can appear menacing or uncomfortable.

With the development of real-world robotic systems comes a need to understand and

use gaze cues effectively.

Human-human conversation partners frequently direct their gaze toward the per-

son to whom they are listening or speaking [28, 254], using mutual gaze to signify

attention. Robot gaze seems to be leveraged just as well as human gaze; for example,

people use both human gaze [104] and robot gaze [232] to successfully disambiguate

referential utterances.

In the current work, we seek to understand which features of a robot’s gaze make

that robot appear to be attending to someone. There are many components of gaze

behavior: frequency, duration, and locations of fixations; scan paths taken to reach

fixation points; congruency of fixations during mutual gaze and joint attention. Be-

cause making eye contact is a strong signifier of attention, in this study we fix the
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Figure 4.1: A photograph of a participant’s view of the eight robot condition. The
fourth robot from the left (with a yellow label) is fixating on the participant; the
other robots are gazing elsewhere.

gaze location on the participant, and manipulate duration and frequency of fixations.

We contrast gaze behaviors along a spectrum, from short, frequent glances to longer,

less frequent stares, all directed at the user.

To quantitatively examine the effects of these two gaze types on the perception

of attention, we measure the detection rate of attention fixations (i.e., fixations di-

rected at the user) over three conditions on the spectrum of gaze types. To measure

the detection rate of fixations, we present the target (the robot displaying atten-

tion fixations) among a number of distractors (identical robots displaying fixations

not directed at the user, Figure 4.1). This visual search method is common in psy-

chophysical studies [262], though it is (currently) uncommon for HRI experiments.

In addition to gaze type, we also manipulate group size to identify whether the

number of distractors has an effect on participants’ ability to recognize attention.

The experimental procedure is described in Section 4.4.

Our search for an effective robot platform that could be used in a multi-robot

experiment led us to create programmable research tools out of a readily available

toy called MyKeepon. Section 4.3 describes the hardware and software modifications

we used to create this novel research platform.
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4.2 Related Work

Gaze recognition develops early and remains critical for non-verbal communication

throughout life. Newborns [35] and older infants [51] show preferences for open eyes

over closed ones. Adults are highly accurate at detecting another person’s face-

directed gaze during normal conversations [28]. In four-person conversations, re-

searchers found an 88% probability that the person being looked at is the one being

listened to, and a 77% probability that the person being looked at is the one being

spoken to [254]. Eye gaze is also a useful cue in disambiguating referential expres-

sions in dialogue. In an experiment where conversation partners verbally referenced

objects on their displays, participants successfully used gaze cues to distinguish be-

tween competing referents before the linguistic point of disambiguation [104]. Inter-

estingly, people tend to overestimate the amount of gaze directed at their own faces,

mistaking a look over their shoulder for a gaze to their face [28].

In visual search tasks, where participants need to pick out one unique item from

among a group of distractors, eyes gazing straight ahead are more easily detected

among left-gaze and right-gaze distractors than either averted gaze image is from

among the other two stimuli [257]. Mutual eye gaze also leads to faster processing,

such as categorization of gender and access to semantic knowledge, than averted

gaze [162].

Eye tracking studies reveal that gaze is affected by context. Head-mounted eye

trackers show that gaze is task-driven, and that fixation locations are determined by

the task at hand and learned over time [106]. Dual eye tracking has shown that the

occurrence of mutual gaze, where two partners look at each other, depends on the

dynamic interplay of behaviors and characteristics of both partners [52].

Functional MRI studies identify differences for processing different features of

gaze. Gaze duration is processed in the medial prefrontal cortex, an area that is

involved with more complex metacognitive processing, which is distinct from the
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brain region processing gaze direction [50, 147]. In other words, gaze duration is a

distinct feature which is processed independently of other gaze features. The intensity

of brain activity in response to gaze shifts is modulated by context; fMRI studies show

that activity in the superior temporal sulcus is affected by whether a virtual agent

correctly or incorrectly shifts its gaze toward a target [50, 189].

As described in Chapter 2, a number of studies have tried to improve human-agent

communication through appropriate agent gaze behavior, both in robotic systems [39,

117, 172, 173, 223, 248, 264] and in virtual intelligent agents [59, 102, 192]. For

instance, researchers found that a robot that responds to and maintains joint attention

improves task performance and receives higher ratings for competence and social

interactivity than a robot that does not display joint attention behaviors [117]. Unlike

eye gaze, however, people are sensitive to a robot’s direct gaze but not to a nearby

indirect gaze [120].

Using eye tracking, researchers found that participants follow a robot’s gaze, even

when the task does not require them to do so [232]. They also found that when a

robot’s gaze and utterances are congruent, participants can judge utterances more

quickly than when gaze and utterances are incongruent. On the other hand, when

examining millisecond-level psychophysical responses, robot gaze does not cue the

same reflexive attention shifts that human gaze does, instead seeming to be susceptible

to top-down control [2].

In this chapter, we are interested in how gaze frequency and duration affects the

perception of attention. Some previous work attempts to specifically investigate these

features of gaze during interactions. One such study found that a speaker looked

at the face of an addressee between 25% and 56% of the time, depending on how

many other people were involved in the conversation [173]. Researchers found that

gaze switch timings consistent with human timings appeared more natural than gaze

switches that occurred with every speech utterance [248]. Too much gaze was also a
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problem, however: high levels of mutual attention without valence or responsiveness

decreased rapport with a virtual agent [261].

Research in joint attention has also investigated gaze timings. One study found

that a person’s gaze dwelled on a referenced object for approximately 1.9 seconds on

average, with no statistical difference in the amount of time spent looking when the

referencer was human or a virtual agent [192]. Another such data-driven study of

micro-level behaviors found that participants look at a communication partner’s face

(whether human or agent) within about 800 to 900 milliseconds after their partner’s

head movements and 600 to 700 milliseconds after naming an object for their partner

to learn [269]. Participants spent longer fixating on a robot partner’s face than a

human partner’s face, however.

4.3 Programming MyKeepon

In order to examine the effects of gaze duration on the perception of attention, we

sought to use a robot platform with highly salient visual features (e.g., eyes) with

an otherwise simple appearance. Keepon is a small, yellow, snowman-like robot with

two eyes and a nose, but no other facial features. Originally designed for applications

such as autism therapy, Keepon is a socially evocative robot that has been shown to

elicit various social behaviors from children and adults [144]. The original research-

grade robot is easy to control but expensive to buy, making it infeasible to use in

our current study, which requires multiple robots. Fortunately, a version of Keepon

is available as an inexpensive consumer-grade toy under the name MyKeepon from

BeatBots LLC. In this section, we describe how we converted MyKeepon toys into

programmable research tools. For more details and photographs of the process, please

see our website at http://hennyadmoni.com/keepon/.

MyKeepon has four degrees of freedom (DOFs) using three DC motors. It can lean
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forward and backward, lean left and right, rotate clockwise and counterclockwise on its

base, and bob up and down. For this project, we number the motors arbitrarily: motor

one controls rotation on the base, motor two controls left/right lean and bob, and

motor three controls forward/back lean. Motor two’s control is switched between its

two DOFs using a small geared rocker mechanism; we found this mechanism difficult

to control and therefore we only employ motors one and three in this experiment.

In the toy version of MyKeepon, motors are controlled by an internal circuit

board. To take control of the robot’s motors, we circumvented the internal board and

soldered wires directly to the leads of each motor. We removed MyKeepon’s internal

control board along with the microphone, speakers and battery housing.

We use Arduino, an open-source hardware platform, as a control interface from

computer to robot motors [25]. Each MyKeepon robot is attached to one Arduino Uno

and one Arduino Motor Shield, which plugs into the Arduino Uno and is designed to

run up to four DC motors. Each Arduino Uno is connected to the computer through

its USB connector; when controlling multiple robots, we use a USB hub between the

Uno boards and the computer.

The USB connection to the Arduino Uno allows us to send commands from the

computer to the motors over a serial connection. To ensure replicability between

participants, robot motions are pre-scripted, though they can be calculated and sent

in real time. Each robot’s motions are designed on the computer, then sent at the

appropriate time to the Arduino Uno board attached to the robot. Commands are

cached on the board until execution time, at which point the commands are played

back sequentially, causing the motors (and the robot) to move. Figure 4.2 shows the

hardware setup with control computer, USB hub, Arduino Uno and Motor Shield

pairs, and MyKeepon robots. Though only three robots are shown in this figure, the

setup is similar for any number of robots.

The simple DC motors in MyKeepon robots are less sophisticated than typical
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Figure 4.2: A diagram of the hardware setup. Robot motors were wired to an Ar-
duino Motor Shield, which paired with an Arduino Uno to receive commands from a
computer via USB.

high-precision motors used in research, specifically in the absence of encoders to

report precise positioning. We compensated for this limitation with hand-tuning

when necessary, but these motors are the major limitation for using MyKeepon as a

research platform.

Several pieces of code design, transmit, and control robot motions, some running

on the computer and others running on the Arduino boards. Computer-based code

includes a movement generator that automatically designs robot motions given some

criteria, such as direction and duration of gaze fixation. A Python script interfaces

with code running on the Arduino by sending movement commands over a serial

connection via USB. For instance, the Python command

move(keepon_ID , motor_num , time)

moves motor num for time milliseconds on robot with ID number keepon ID. The

robot’s ID number is hard coded on its Arduino board.

We use a publicly-available package called AFMotor to control the DC motors in

MyKeepon from the Arduino. To communicate with this low-level control, we wrote
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a state-based controller that listens for move commands arriving at the serial port

and issues appropriate calls to AFMotor.

4.4 Experiment

We conducted an experiment using these programmable MyKeepons to evaluate the

effects of gaze duration and group size on the perception of attention. The experiment

was a mixed 3 (group size) x 4 (gaze duration) between- and within-subjects design.

Participants viewed a group of robots (four, six, or eight, between-subjects) making

simultaneous random motions. Between random movements, each robot occasionally

fixated its gaze on various positions in the room for a given duration (zero, one, three,

or six seconds, within-subjects); during these occasional fixations, a specific robot

(the target for that trial) always fixated on or near the participant. All robots fixated

for the same duration in a single trial and the total duration of fixation was held

constant among trials; robots fixated six times on a one-second fixation trial, twice

on a three-second fixation trial, and once on a six-second fixation trial. This inverse

relationship between duration and frequency evokes the appearance of different gaze

types, from frequent brief glances to longer stares. Each robot was the target in an

approximately equal number of trials. After each trial, participants recorded which

robot they thought was paying attention to them, as well as their confidence in that

decision.

Our hypotheses are as follows:

H1 The type of gaze fixation affects accuracy: multiple short glances will be easier

to detect than fewer longer fixations.

H2 The size of the group affects accuracy: more distractor robots will make it harder

to detect the gaze of the target robot.
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MyKeepon motor control is somewhat imprecise, so perfectly direct gaze toward

participants is difficult to achieve. Each robot’s movements were hand-calibrated to

assure fixation toward the participant’s location, though assuring that target robots

directly oriented toward participants was challenging. In the experiment we report

below, target robots fixated on or near participants on the target trials. Though

robot fixations were not as precise as human fixations, this only served to make the

task more challenging and to strengthen the results. Despite their imprecision, robot

motors tend to be consistent, so whatever errors were present in target fixations likely

existed for all participants.

4.4.1 Apparatus

MyKeepon robots were placed side-by-side in a containment apparatus which was

covered in a black cloth (Figure 4.1). The apparatus was approximately 152cm wide

by 61cm deep by 15cm tall. The robots were placed side-by-side with about 20cm

from the center of one robot base to another. Figure 4.3 shows an overhead schematic

of the experiment setup.

In the six robot condition, the two outermost robots were removed, and in the four

robot condition the four outermost robots were removed, so that the robots present

were always centered within the apparatus. Colored labels on the front of the box

are used during the experiment to refer to robots. We chose not to use numbers in

an attempt to avoid ordinal effects.

Participants were seated about 152cm away from and centered on the midpoint

of the apparatus. At this distance, the total robot display subtended approximately

25◦ of the participant’s visual field in the 4-robot condition (69 cm), 38◦ in the 6-

robot condition (104 cm), and 49◦ in the 8-robot condition (140 cm). Each robot (9

cm across) subtended 3.4◦ of the visual field, and an individual robot eye (1.3 cm)

subtended approximately 1◦ of the visual field. Although the size of an individual
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Figure 4.3: Overhead schematic of the experiment setup showing robots, containment
apparatus, computer and participant. This figure is not to scale.

robot’s eye is quite small, the eyes are fixed to its body, so the robot moves its entire

body to orient its gaze. In every condition, participants needed to move their eyes

and possibly their heads to foveate on every robot.

4.4.2 Procedure

Fifty-three participants (20 male, 33 female) took part in the experiment. The ex-

periment took approximately 30 minutes, and participants were paid for their time.

Each participant was randomly assigned to one group size condition (four, six, or

eight robots).

Each participant viewed 30 trials, and each trial was comprised of 30 seconds of

pre-scripted movement. In each trial, the robots exhibited automatically generated

random motions in two DOFs, leaning forward or back and rotating clockwise or

counterclockwise on their bases. The two DOFs could move simultaneously, causing

the robots to appear to be looking around the room. At approximately equally spaced

intervals, but not necessarily simultaneously, each robot stopped its motion for a set
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amount of time before returning to performing random motions; we call this a gaze

fixation, and the apparent location toward which the robot is oriented is its fixation

location. For the target robot in a trial, the fixation location was always the partici-

pant; other robots oriented toward various points in the room during their fixations.

For example, in a three-second fixation trial, the target robot fixated on the user

and distractor robots fixated on various locations approximately every ten seconds,

though the fixation periods did not necessarily overlap. Because behaviors between

fixations were random, the robots had to move different distances from different po-

sitions to return to their fixation locations throughout the trial. Trial presentation

order was randomized across participants.

Robots fixated for zero, one, three, or six seconds per trial. Zero-second fixations

were a control, in which robots did not stop their random movements. One-second

fixations were selected based on preliminary testing, which revealed that one-second

fixations are brief enough to be difficult to identify in the eight robot condition. Six

second fixations were chosen to be easily recognized, and three seconds was chosen

as easily divisible to maintain total fixation duration in a trial. There were six zero-

fixation trials and eight of each other fixation duration for a total of 30 trials.

Participants were seated next to a computer, which recorded their results and

controlled the robots. Participants began a trial by clicking a “Start” button dis-

played on the computer monitor, which initiated the robots’ pre-scripted movements

for that trial. At the conclusion of each 30 second trial, a screen appeared on which

participants selected which robot they believed was paying attention to them. They

assigned a confidence value (from 0 to 100) to their choice by using a slider bar with

whole-number increments. If they were able to make a decision sooner, participants

could press the “Enter” key on the computer’s keyboard to bring up the selection

screen immediately, though the robots continued to move for the full 30-second trial.

Before data recording began, participants engaged in two practice trials under exper-
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Figure 4.4: Proportion of accurate responses as a function of fixation duration (left)
and group size (right). Significant differences are marked.

imenter supervision.

4.5 Results

Two participants were excluded from analysis due to technical malfunction. Addi-

tionally, four individual trials were excluded due to failure to respond or error in

recording a response. We analyzed the results of 51 participants (25 in the eight-

robot group, 19 in the six-robot group, and 7 in the four-robot group), for a total

of 406 trials of one-second fixations, 408 trials of three-second fixations, 406 trials

of six-second fixations and 306 trials of zero-second fixations across all robot group

sizes. Figure 4.4 shows average accuracy split by fixation duration and by group size.

We conducted a mixed-model repeated measures ANOVA with fixation duration

(0, 1, 3, or 6 seconds) as the within-subjects repeated variable and group size (4, 6,

or 8 robots) as the between-subjects variable. There is significance for fixation time

(F (3, 144) = 17.503, p < 0.001) and group size (F (2, 48) = 5.105, p = 0.010). There

is also a significant interaction effect (F (6, 144) = 3.554, p = 0.003).

Pairwise comparisons of fixation duration reveal that one- and three-second fix-

ations led to significantly higher accuracy than either zero- or six-second fixations

(p ≤ 0.001 in all cases). There was no statistical difference in accuracy between
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zero- and six-second fixations, or between one- and three-second fixations. Given

that zero-second fixations had accuracy of about chance for each group size (0.24 for

four robots (chance is 0.25), 0.13 for six robots (chance is 0.17), 0.08 for eight robots

(chance is 0.13)), six-second fixation accuracies were not statistically different than

chance, though one- and three-second fixation accuracies were significantly better

than chance.

Post-hoc analysis of group size using a Bonferroni correction found that accuracy

in the four robot group was significantly better than accuracy in the eight robot group

(p = 0.007) and marginally better than accuracy in the six robot group (p = 0.054).

No statistical difference was found for accuracy between six and eight robot groups.

4.6 Discussion

H1 predicted that accuracy would improve as gaze fixation changed from long and

infrequent to short and frequent. Results support this, with statistically significant

differences in accuracy between short (one- and three-second) and long (six-second)

fixations. Since total fixation time in a single trial was held constant, this suggests

that multiple short fixations are better at conveying attention than fewer longer

fixations. We predict that it is the transition from motion to gaze fixation, rather

than the fixation itself, that cues the perception of attention. Therefore, people may

be responding to “fixation events”—the transition between movement and fixation—

rather than to active gaze. There were six times as many fixation events in the one-

second condition than in the six-second condition, perhaps accounting for improved

accuracy on shorter fixation trials. If our prediction is correct, this would be an

interesting finding about human gaze processing.

H2 predicted that group size would have a negative effect on accuracy, which

was also supported. Results show significant differences in accuracy rates between
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the four-robot group and the other groups, with accuracy rates of 37%, 28%, and

26% over all fixation durations, respectively. This is consistent with findings from

a visual search task, where more distractors led to a degradation in performance

when detecting straight eye gaze [257]. These results suggest that eye gaze, while

an important social factor, does not cause a “pop out” effect like some more basic

stimuli.

MyKeepon robot motors are imprecise but consistent, so the target robot’s gaze

was offset by some small amount from a perfectly direct gaze on many trials. People

overestimate the amount of gaze directed toward their face [28], but even so, this

gaze offset may explain generally low accuracy rates. On the other hand, the motors

appear to be consistent across many trials, so we are confident that stimuli were

consistent across presentations. We present our results with the understanding that

fixation errors are higher with robots as stimuli than they would be with humans.

Meaningful eye gaze consists of many features in addition to frequency and dura-

tion of fixations. For example, the velocity of a saccade and the scan path also reveal

socially relevant information. Furthermore, different behaviors such as gaze following,

joint attention, or attention maintenance may require the use of different features of

gaze. The current experiment breaks down the complexity of social gaze by isolating

frequency and duration in the context of indicating attention. A full exploration of

gaze necessitates understanding all the features of gaze and their interplay, and is a

rich avenue for future research.

One difference between this and most other HRI studies is the use of a multi-

robot setup. Human-human and human-robot interactions outside of the laboratory

do not occur in a vacuum. There are competing visual stimuli in many real-world

tasks that draw attention away from a visual target. In multi-robot domains, gaze

features combine not only within a single robot’s behaviors but across robots, making

for a complex visual scene. To make progress toward a more holistic understanding
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of HRI, we must continue to explore visual attention under distracting and difficult

conditions.

In Chapter 3, we presented the concept of micro and macro levels of analysis.

Micro level analysis focuses on very short or very small changes in behavior (like

millisecond-level response times, or eye saccades) that reveal cognitive processes. In

contrast, macro level analysis focuses on behaviors that can be seen, often on the

individual trial level or even the entire interaction level, which provide a more holistic

view of human behavior. The current work falls somewhere on the spectrum between

micro and macro levels of analysis. The measurement techniques (accuracy of iden-

tification) and methods (visual search of a target from among distractors) is drawn

from psychophysics, and addresses underlying cognitive effects. However, the task

(identifying attention through gaze) operates more on the macro scale.

As with many lab-based experiments, we must consider how transferable the find-

ings of our study are to real-world interactions. The current work is a necessary step,

but not a final point, on the path to understanding natural gaze. Given that, our

work yields some suggestions for the design of robots and robot behaviors in HRI.

Because frequent short glances were more easily recognized in this experiment, look-

ing at a user to initiate or maintain an interaction may be most effective using short,

frequent glances, rather than an extended stare. This is supported by research sug-

gesting that an agent that maintains mutual gaze for an extended duration (without

other social gestures) leads to strongly negative responses from users [261], but that

gazes that are too short and frequent also hinder communication [248]. It would be

interesting to identify whether this short-and-frequent gaze preference is also present

in other gaze scenarios like joint attention, where gaze is directed toward an object of

mutual interest, rather than at the user themselves. Because context plays a role in

the control of eye gaze [50, 189], an experiment that tests gaze features during task

performance (like providing driving directions) might reveal different features at work
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in signifying attention.

4.7 Summary

Eye gaze is an important part of establishing attention at the beginning of social

interactions. In human-robot interactions, robots can also use gaze to convey atten-

tion to a user, but features of the robot’s gaze influence the effectiveness of such gaze

behavior. Using a novel (in HRI) experiment design involving the identification of

a target amidst distractors, we investigated how the type of gaze (short, frequent

glances versus long, infrequent stares) impacted the perception of attention from a

robot. Our study found that shorter and more frequent glances were more effective

at conveying the robot’s attention to the human user. Additionally, we investigated

how the number of distractors affected people’s accuracy at identifying the target

robot. Results indicate that robot gaze is subject to group size effects, with accuracy

decreasing as the number of distractor robots increases. This indicates that robot

gaze is not a pop-out effect, but requires serial cognitive processing.

Our results have implications for robot designers who want to make their robots

appear to be attending to users, as well as for psychologists who want to understand

gaze in human-robot interactions. Based on the study conducted here, we suggest

that robots use shorter and more frequent user-directed gaze behaviors to indicate

their attention to a human interaction partner.

Attention-establishing gaze is just one type of gaze behavior robots can perform

to improve the fluency of human-robot interactions. In the next chapter, we look at

another type of gaze—referential gaze—which is used to refer to objects and locations

in space. We combine this referential gaze behavior with verbal references, and we

explore what happens when there are incongruencies in this multimodal communica-

tion.
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5

Handling Errors in Multimodal

Communication∗

In human-robot collaboration, communication can occur through several modal-

ities simultaneously: a person may be speaking while also augmenting their

speech with eye gaze and other nonverbal behavior. In this chapter, we

explore such multimodal behavior for human-robot referential communica-

tion. We investigate how a robot’s referential gaze behavior—looking at an

object—can augment spoken verbal references. We also explore how con-

flicts in multimodal communication (i.e., mismatches in gaze and verbal ref-

erences) affect performance on a cooperative referential task. Participants

play a selection game with a robot, in which the robot instructs them to se-

lect one object from among a group of available objects. We vary whether

the robot’s gaze is congruent with its speech, incongruent with its speech,

or absent, and we measure participants’ response times to the robot’s in-

structions. Results indicate that congruent speech facilitates performance

∗This work was originally published as:
Henny Admoni, Christopher Datsikas, and Brian Scassellati. Speech and gaze conflicts in collab-
orative human-robot interactions. In Proceedings of the 36th Annual Conference of the Cognitive
Science Society (CogSci), pages 104–109, 2014.
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but that incongruent speech does not hinder performance. Finally, we inves-

tigate participants’ performance when their interaction partner is a human

agent rather than a robot, and find the same results: in this type of activ-

ity, congruent gaze helps performance while incongruent gaze does not hurt

it. We conclude that robot gaze may be a worthwhile investment in such

situations, even when gaze behaviors may be unreliable.

5.1 Introduction

In typical human interactions, eye gaze supports and augments spoken communica-

tion [140]. People gaze almost exclusively at task-relevant information [106], and gaze

is used to disambiguate statements about objects in the environment [104]. Similar

mechanisms are also at play in human-robot interactions: task-relevant robot eye

gaze can be used to improve the efficiency of collaborative action [44].

For example, imagine a human and robot collaboratively constructing a birdhouse.

The robot can use its eye gaze to clarify an ambiguous speech reference, saying “Please

pass the green block” while looking at a particular green building block to distinguish

it from among other green blocks. This multi-modal communication makes the inter-

action more efficient by using multiple channels to convey information, requiring less

investment in costly mechanisms like generating sufficiently descriptive speech, and

improving the naturalness of the interaction [117].

But robots are not perfect, and sometimes speech and gaze cues will conflict. Sen-

sor errors, hardware malfunctions, and software bugs can cause mismatches between

a robot’s gaze and speech. In such cases, a human partner receives incorrect or con-

tradictory information from the robot. The human might misinterpret the robot’s

speech or, at best, must hesitate to decide what the robot means, decreasing the

collaboration’s efficiency and increasing the human’s cognitive load.
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While a growing body of evidence shows that people can interpret robot gaze and

speech, only a few studies to date have investigated the effects of speech-gaze con-

flicts. In this chapter, we investigate how speech-gaze conflicts are handled by human

partners in collaborative, embodied human-robot interactions (Figure 5.1). We focus

on object selection tasks in which a robot provides instructions to a human, because

these scenarios are central to collaborative action. Misinterpreting communication in

such scenarios can be costly.

We compare congruent gaze—in which the robot looks at the object it references

in speech—and incongruent gaze—in which the robot looks at a different object—to

a control condition in which the robot does not exhibit gaze cues. To quantitatively

measure the effect of speech-gaze conflicts, we record the time between when the

robot begins its instructions and when participants select an object. Response time

serves as an approximation of task efficiency; faster responses mean less overall time

taken for the task.

As a final manipulation, we also include a human agent condition, in which the

robot is replaced by a person who performs the robot’s role in the experiment. The

human agent condition attempts to discover whether robot gaze is any more or less

influential on human behavior than human gaze.

The results of this study provide evidence of the effectiveness of gaze in collab-

orative human-robot interactions. As described below, we find that congruent gaze

facilitates performance in both robot and human conditions. Interestingly, we also

find that incongruent gaze does not hinder performance in either the robot or the

human conditions. In other words, in this task, people are able to recover quickly

enough from speech-gaze conflicts that their performance is statistically no different

than not having gaze at all. These results suggest that adding referential gaze may

be a low-risk way to improve human performance in similar environments, even when

the gaze system is unreliable.
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(a) Robot agent condition (b) Human agent condition

Figure 5.1: Participant view of the experiment. MyKeepon or a human actor provided
verbal and gaze cues about which shape to select.

5.2 Related Work

Directional eye gaze seems to be a special stimulus, evoking reflexive attention shifts

that are robust to top-down modulation [90]. Functional MRI studies reveal a signifi-

cant overlap in the brain areas that process theory of mind and those that process eye

gaze [57]. In fact, observing someone signaling the presence of an object with refer-

ential gaze elicits the same neural response as observing someone physically reaching

to grasp that object [193], indicating that people use gaze as a powerful indicator of

others’ future behavior.

Where we look is closely coupled with what we say in human-human interactions.

Objects or figures in the environment are typically fixated one second or less before

they are named in conversation [100, 269]. When referencing objects, people use eye

gaze as a strong and flexible cue for eliminating ambiguity [104]. When access to a

partner’s eye gaze is restricted, for instance because the partner is wearing sunglasses,

people are slower at responding to their partner’s referential communication [44].

As in human-human interactions, eye gaze is an important part of human-robot

interactions. Robot eye gaze can influence whether people join a conversation or feel

excluded from it [174], can influence people to favor certain objects over others [175],

and can facilitate cooperative behaviors like object handoffs between humans and
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robots [235]. Exhibiting joint attention, a type of social gaze, increases ratings of a

robot’s competency and naturalness [113].

More specifically, studies of human-robot interaction have shown that robot gaze

can be used to clarify speech. If a robot gazes toward an object while naming it, people

select the object more quickly than if the robot names the object without looking at

it [44, 113]. With both robots [113, 172] and virtual agents [23], gazing at task-relevant

objects during teaching—for instance, looking at a map while describing political

boundaries—increases peoples’ retention of information. In most of the literature

about referential gaze in HRI, however, robot gaze is congruent with speech.

Some researchers have investigated the effects of speech and gaze conflicts in HRI.

In a video-based study by Staudte and Crocker [232], participants evaluated the cor-

rectness of a robot’s statements about objects in front of it (for instance, “the cylinder

is bigger than the pyramid that is pink”). When the robot’s gaze was congruent with

its speech, response times were shorter than a no-gaze control; when gaze was in-

congruent, response times were longer than the control. This suggests that people

relied on gaze to facilitate sentence processing, and that incongruent gaze hinders

comprehension.

Unlike our experiment, however, Staudte and Crocker’s task involved sentence

evaluation rather than object selection, which requires a different cognitive skill set.

Furthermore, their study was conducted with video stimuli instead of embodied

robots. While virtual robots increase the ease of use and replicability of stimuli,

they may not have as strong an influence on human behavior as physically embodied

robots [31].

In contrast, research using an object selection task and an embodied robot finds

no difference in response times between no gaze and incongruent gaze conditions,

though results support the benefit of congruent gaze [113]. However, this study

used a between-subjects design in which the robot exhibited only one type of gaze
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Utterance 

Gaze to person 
Gaze to object 

Gaze ahead 

Please pick the cube in the green zone. 

Speech onset Shape reference Color reference 
(linguistic disambiguation) 

Time 
700ms 1700ms 2700ms 4300ms 0ms 

1860ms 2850ms 3440ms 

Figure 5.2: A visual representation of the speech and gaze during a typical trial. This
figure shows a congruent trial: the agent both verbally and physically indicates the
green cube. In an incongruent trial, the spoken word “green” is replaced with one of
the other two zone colors. In a no-gaze trial, the agent gazes straight ahead.

(congruent or incongruent) to each participant. Participants could acclimate to the

robot’s gaze strategy, which does not address situations where gaze is usually helpful

but occasionally incorrect.

The current work is inspired by these studies, and builds upon them by investigat-

ing conditions in which speech and gaze are incongruent rather than only congruent

[44], using a physically embodied robot rather than a video [232], and introducing un-

certainty about the robot’s reliability to avoid habituation to one particular condition

[113].

5.3 Experiment 1

This experiment is designed to investigate whether gaze conflicts hinder task perfor-

mance in collaborative human-robot interactions. Participants engaged in an object

selection task with a robot. On each trial, the robot provided spoken instructions

of the form “Please pick the [shape] in the [color] zone” where shape and color re-

ferred to objects in front of the participant (Figure 5.1). Each of the nine objects was

referenced nine times during the interaction, for a total of 81 trials.

On each trial, the robot also provided a gaze cue, which was either congruent

with the speech (i.e., looking at the same object), incongruent with the speech (i.e.,

looking at a different object), or absent (no movement). The robot started each trial
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in a neutral position, with gaze directed straight forward and approximately 30 cm

below the participant’s eyes. To initiate a gaze cue, the robot first attempted to

establish joint attention by looking up at the participant’s face (mutual gaze), and

then engaged in object reference by looking down toward the selected object, then

returned to look at the participant’s face before returning to the neutral position

(Figure 5.2). The robot did not use sensors to confirm that mutual eye gaze was

successful; instead, the experiment was pre-scripted and ran autonomously. In no

gaze trials, the robot did not move at all and continued looking ahead in neutral

position.

In human-human communication, eye gaze moves toward an object prior to a

verbal reference and away from the object just as it is named [269]. We carefully

aligned the verbal and gaze cues to mimic natural behavior (Figure 5.2).

We measured how much time participants took to select a shape. By comparing

response times in the congruent, incongruent, and no gaze conditions, we are able

to determine whether gaze has any facilitation or hindrance effect on the speed with

which people respond to the robot’s instruction.

5.3.1 Apparatus

The experiment apparatus is a black box measuring 120cm by 40cm by 6cm (Fig-

ure 5.1). The robot was placed on the table opposite the participant, approximately

80cm away, with the box between them. Three zones are marked by colored paper

on top of the box: red, blue, and green. Each zone contains an identical set of white

blocks in simple shapes—a cube, a pyramid, and a cylinder—arranged side-by-side

in a single row on top of the zone. A momentary pushbutton switch in front of each

object is used to select that object, and the precise timings of button presses are

recorded on a nearby computer.

We used the same low-cost MyKeepon robot platform described in Chapter 4
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(Figure 5.1). This 32cm tall, snowman shaped, interactive robot toy has a rubber

yellow skin and four degrees of freedom: rotation around the base, left/right lean,

front/back lean, and up/down bob. MyKeepon is a consumer-grade version of a

research robot called Keepon Pro, which was designed to be a socially evocative but

simple robotic agent [144]. The robot’s minimalist design and salient eyes make it a

useful platform for HRI studies about eye gaze.

We modified a MyKeepon to make it programmable for this experiment using the

same mechanism as in Section 4.3. The MyKeepon internal microprocessors were

connected to an Arduino Uno, an open-source electronic prototyping platform. Using

the I2C bus on the MyKeepon microprocessor and open-source software [166], the

Arduino sends motor commands and retrieves information such as encoder positions

from the MyKeepon hardware. This allowed for easy control of the MyKeepon robot

platform.

5.3.2 Procedure

Twenty two people participated in this experiment (10 females). Their ages ranged

from 18 to 34, with a mean age of 22, and most were Yale undergraduate students.

Participants were compensated $8.

Participants were told that they would play an object selection game to help

evaluate a new robot platform. They were shown the nine shapes and told that in

each round of the game, the robot would provide instructions on which shape to

choose. Participants were informed that they should select the shape as quickly and

accurately as possible. They were also told to return their finger to a marked start

position on the table between trials. This instruction was given to eliminate any

“hovering” over the buttons so that response times are consistent across trials.

In each trial, a computer-generated voice provides a verbal cue, which is a sentence

that first indicates the type of object and the zone the object is in, for example,
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“Please pick the cube in the green zone” (Figure 5.2). The sentence is constructed

so that the specific object referred to by the sentence remains ambiguous until the

color of the zone is stated near the end of the sentence. Until this point of linguistic

disambiguation, there are three potential matches for the sentence (the named shape

in the red, blue, and green zones), so participants cannot select an object with more

than 33% reliability.

Simultaneous with the verbal cue, the robot also provides a gaze cue by orienting

toward one of the shapes. On congruent trials, the robot turns toward the shape

named by the verbal cue. On incongruent trials, the robot turns toward a different

shape at least three spots away from the correct shape. This restriction ensures that

there is no confusion about whether the gaze was directed toward the correct shape.

On no gaze trials, the robot remains looking straight ahead.

Participants first practiced two congruent gaze trials under experimenter supervi-

sion to familiarize themselves with the task; these practice trials were not recorded,

and participants were not told that the robot’s gaze would vary in other trials. After

the practice, each participant experienced two sections of the experiment with no

breaks between them.

In the first section, called the blocked section, participants saw each trial type

blocked together: first nine no gaze trials, then nine congruent trials, then nine

incongruent trials, with no demarcation between the blocks. The purpose of the

blocked section is to establish a baseline measure of reaction time (in the no gaze

block) and to observe how performance changes as participants become familiar with

the robot’s gaze.

The second section of randomized trials followed the blocked section immediately.

During the randomized section, each participant saw a unique random ordering of all

54 combinations of shape, color zone, and gaze type. The purpose of this section is

to measure the effects of gaze cues when participants did not know whether the cue

87



(a) Experiment 1, robot
agent.

(b) Experiment 2, human
agent.
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(c) Blocked trials, both agents.

Figure 5.3: Response times to agent instructions. Figures (a) and (b) show mean
response times across all trials for each experiment. Figure (c) shows the blocked trials
section separated by trial number. In all figures, congruent gaze facilitates response
times, while incongruent and no gaze conditions show no significant difference. Error
bars show 1 standard error.

would help or not.

After both sections, participants were given a survey with demographic questions

and one free-response question: “Did you notice anything unusual about the robot’s

behavior?”

5.3.3 Results

Twenty-two participants each completed 27 blocked trials and 54 randomized trials

for a total of 1782 data points. Four trials (0.2%) were discarded because no response

was recorded within 12 seconds, either because the participant did not press a button

or because the button press did not register. We also discarded the no gaze blocked

section for one participant (nine trials, or 0.5% of all trials) due to self-reported

noncompliance. Participants were highly compliant with the verbal cue, selecting a

shape that was different from the robot’s spoken instruction on only five trials (0.3%).

Results are shown in Table 5.1 and Figure 5.3(a).

A repeated measures ANOVA of response time by gaze type for all trials shows a

significant main effect (F (2, 42) = 43.181, p < 0.001). Post-hoc tests with a Bonfer-

roni correction reveal that response times to congruent gaze were significantly shorter
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than response times to incongruent gaze (by 242ms, p < 0.001) and to no gaze (by

262ms, p < 0.001). There was no statistical difference between incongruent and no

gaze trials.

There are several conclusions to be drawn from these results. First, people were

highly accurate and highly consistent in following the robot’s speech, complying with

speech instructions on 99.7% of trials even though 33% of the trials included a con-

flicting gaze cue. The high rate of compliance with speech suggests that cases in which

participants failed to follow the speech cue involved button press errors, though we

did not explicitly ask participants to report errors.

When the robot’s gaze indicated the same shape as the verbal cue, participants

used gaze to guide their responses, as indicated by the significantly improved response

times in the congruent gaze condition. Surprisingly, participants were not hindered by

incorrect robot gaze: they responded no slower to incongruent trials—when gaze and

speech did not match—than they did to no gaze trials, where there was no gaze cue.

In other words, congruent gaze helped people respond to a robot’s verbal instructions

more quickly, but incongruent gaze did not make them respond more slowly than no

gaze at all.

The response facilitation from robot gaze supports previous findings in HRI (such

as Boucher et al., 2012; Huang & Mutlu, 2012; Staudte & Crocker, 2011). However,

the lack of hindrance from incongruent gaze conflicts with previous findings [232].

To test whether this effect is due to the robot or to the task, we conduct a new

experiment with a human in place of the robot. If the same procedure—now with

human gaze—yields the same effect, we can conclude that the task, and not the agent,

is responsible for the absence of hindrance.
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Agent Gaze type RT (ms) SD (ms) N

Robot
Congruent 4572 256

22Incongruent 4814 235
None 4834 222

Human
Congruent 4427 309

9Incongruent 4568 289
None 4621 189

Table 5.1: Response times (RTs) for all trials in Experiments 1 and 2. RTs are
measured from start of trial, including time to speak sentence. When measured from
linguistic disambiguation, RTs are similar to previous work [44].

5.4 Experiment 2

We replicated Experiment 1 with a small number of participants. The apparatus

and procedure are identical to Experiment 1, except that the robot is replaced by a

human actor (Figure 5.1(b)). For consistency, the verbal cue is still provided by the

computer-generated voice from Experiment 1. We took care to make the human gaze

as similar as possible to the robot gaze; therefore, the actor practiced looking at the

object for the correct duration and shifting her gaze away from the referenced object

just before it was named. On the post-task questionnaire, the free-response question

was changed to: “Did you notice anything unusual during the experiment?”

Nine participants (2 females) took part in Experiment 2. Their ages ranged from

18 to 20 (mean of 19). They were all Yale undergraduates and they were compensated

$8.

5.4.1 Results

Table 5.1 and Figure 5.3(b) show the results of Experiment 2. A repeated measures

ANOVA to test the effect of gaze type on response times found a significant main effect

(F (2, 16) = 7.892, p = 0.004). Post-hoc tests with a Bonferroni correction reveal that

response times to congruent gaze are shorter than response times to incongruent gaze
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(141 ms, p = 0.018) and no gaze (194 ms, p = 0.033). No significant difference was

found between response times in incongruent and no gaze conditions. Participants

made an erroneous selection (not following the speech cue) on 20 (2.7%) of the 729

trials.

To compare robot and human gaze, we conducted an ANOVA on response time

with gaze type as a within-subjects factor and agent type as a between-subjects factor.

The analysis reveals a significant effect of gaze (F (2, 86) = 6.564, p = 0.002) but no

effect of agent (F (1, 86) = 0.351, p = ns) and no interaction (F (2, 86) = 0.291, p =

ns). Post-hoc pairwise comparisons on the significant result show that congruent gaze

led to shorter response times than incongruent gaze (191 ms, p = 0.017) and no gaze

(228 ms, p = 0.003) for all participants regardless of agent condition. No significant

difference was found between incongruent and no gaze conditions.

The blocked section of the experiment reveals how participants acclimated to a

consistent gaze type. Because there is no significant difference between agent condi-

tions, we can collapse the data across these conditions for this analysis. Figure 5.3(c)

shows mean response times for each trial in the blocked section, averaged across par-

ticipants in both agent conditions. Recall that participants saw nine no gaze trials,

then nine congruent trials, and then nine incongruent trials. The no gaze block serves

as a baseline for response times without gaze. As shown in Figure 5.3(c), response

times remained fairly stable during the no gaze block. Response times improved

during the congruent block, indicated by the downward slope of the congruent block

line. In contrast, there was no improvement of performance over the nine incongruent

blocked trials. Participants performed slightly better on the incongruent block than

on the no gaze block that preceded it, though this effect may be due to practice.

Although participants were never explicitly told to follow gaze, they rapidly

adapted to using congruent gaze to improve their performance. The rate of im-

provement does not decrease by the ninth trial, suggesting that more congruent gaze
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trials might have led to continuing improvements.

5.5 Discussion

For both robot and human agents, participant response times were faster when the

agent’s gaze cue was congruent with its verbal cue, compared to incongruent gaze

and no gaze conditions. Because the gaze cue is delivered before the point of linguis-

tic disambiguation, the fact that participants responded more quickly on congruent

gaze trials indicates that they planned their motion according to the gaze cue before

hearing the disambiguation. When the cue was incongruent, however, participants

responded no slower than if there were no gaze cue at all. Therefore, while they use

gaze to plan their motions, participants quickly recover from erroneous planning when

the point of linguistic disambiguation is reached. This facilitation occurs even in the

randomized section, when participants could not know ahead of time whether gaze

would be congruent, incongruent, or absent. In short, current results suggest that

there are scenarios in which adding eye gaze cues to a robot’s behavior is a worthwhile

investment: at best, it increases comprehension and efficiency, and at worst (when

the gaze cue is in error), there is little damage to performance.

Other research has shown that incongruent gaze hinders performance in robot-

instruction tasks [232]. However, our study’s task involves a lighter cognitive load,

which may explain our divergent findings. In both studies, participants identify the

referent of the robot’s gaze and speech, but in our task, they simply select that

referent, whereas in Staudte and Crocker’s task, they compare features of that referent

to features of other visible objects and then decide if a given statement is true or false.

Thus, our experiment’s task requires less cognitive processing, which may allow people

to quickly overcome the incongruent gaze. This conjecture is supported by findings

from a different study that used a similar task to ours [113]. This study also found
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no difference between no gaze and incongruent gaze, while confirming the benefit of

congruent gaze.

An alternate explanation is that the agent looks at the participant before speaking

on incongruent trials, but not on no gaze trials, which may cue participants for the

impending selection and negate any hindering effects of incongruent gaze. A revised

no gaze condition in which the robot looks at the participant but not to a block would

clarify this possibility.

Although mean response times did not significantly differ between robot and hu-

man agents, some differences did emerge between these conditions. Participants in

the human agent group responded more quickly on average, although the difference

was not significant (possibly because of the small group size). Perhaps relatedly, the

error rate for participants in the human agent group (2.7%) was higher than the error

rate for participants in the robot group (0.3%).

In response to the post-interaction survey question asking whether they noticed

“anything unusual” during the experiment, five of the nine participants in the human

agent group (56%) made reference to intentional misdirection by the actor, writing

things like “She built up my trust and then betrayed me” and “She tried to trick

me with her gaze.” In comparison, only six of the 22 people in the robot group

(27%) included such statements about intentional action from the robot. Even with

identical behaviors, there was some difference in agency attributions between robots

and humans.

However, human gaze is inherently less precise than robot gaze. Future experi-

ments could record the human actor’s face to verify that human gaze timings were

comparable to robot timings. To generalize the results, future work should also test

different collaborative scenarios to understand the conditions under which facilitation

is possible without hindrance. Eye tracking would reveal at which point people decide

to follow or ignore a robot’s gaze. Future work should also randomize the assignment
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of conditions, rather than recruiting independent groups of participants, to rule out

the possibility of group effects causing the observed variations.

MyKeepon has limited articulation and a simplified appearance. We chose this

robot intentionally—MyKeepon’s large eyes and gross body movements make its eye

direction highly salient—but it is simpler and smaller than many other robots. Our

results, therefore, may be most applicable to this type of robot. Future studies

should investigate robots with articulated eyes as well as anthropomorphic robots to

find whether physical appearance and eye motion affect gaze cues.

This work provides support for efforts to incorporate nonverbal behavior into robot

communication. It suggests that, at least in some scenarios, the benefits of incorpo-

rating gaze into referential communication outweighs the risk that those behaviors

might be incongruous with each other.

Based on the results from this study, we can begin to envision how to develop our

nonverbal behavior models in Chapter 7 and Chapter 8. These models combine speech

with gaze and other nonverbal behaviors to recognize and produce object references.

5.6 Summary

Congruent multimodal behavior facilitates human understanding of object references.

When a robot simultaneously verbally and visually referenced an object, people iden-

tified that object more quickly than when the robot simply verbally referenced the

object. In contrast, incongruent multimodal behavior did not hinder people’s un-

derstanding of object references. People performed no worse when gaze and verbal

references were to a different object than when there was no gaze reference at all. This

pattern of effect, in which congruent multimodal behavior improves performance but

incongruent behavior does not worsen performance, was also seen with a human agent

instead of a robot.
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Though in this chapter multimodality involved a speech channel and a gaze chan-

nel, multimodal communication can include multiple channels of nonverbal behavior,

as well. In the next chapter, we investigate the effects of multimodal behavior com-

prised of two nonverbal channels—gaze and gesture—on people’s understanding and

compliance with a robot’s referential communication.
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6

Gaze and Gesture in

Robot-to-Human Handovers∗

One of the benefits of robots as physically embodied systems is their capacity

to manipulate objects to assist human users. In human-human interactions,

this kind of collaborative manipulation is accompanied by nonverbal commu-

nication that provides additional information about intentions. In this chap-

ter, we examine the role of nonverbal communication in the context of collab-

oration, the target domain for our nonverbal behavior models. Specifically,

we focus on robot-to-human object handovers, a common action during phys-

ical collaborations. Robot-to-human handovers are primarily manual tasks,

and human attention is therefore drawn to robot hands rather than to robot

faces during handovers. In this chapter, we show that a simple manipulation

of a robot’s handover behavior can significantly increase both awareness of

the robot’s eye gaze and compliance with that gaze. When eye gaze commu-

nication occurs during the robot’s release of an object, delaying object release

∗This work was originally published as:
Henny Admoni, Anca Dragan, Siddhartha Srinivasa, and Brian Scassellati. Deliberate delays during
robot-to-human handovers improve compliance with gaze communication. In Proceedings of the 9th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 49–56, 2014.
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until the gaze is finished draws attention back to the robot’s head, which in-

creases conscious perception of the robot’s communication. Furthermore, the

handover delay increases peoples’ compliance with the robot’s communication

over a non-delayed handover, even when compliance results in counterintu-

itive behavior. In other words, our study reveals that people recognize and

comply with a robot’s referential eye gaze communication, but only when a

social gesture (a handover delay) indicates that the robot’s gaze is important.

6.1 Introduction

In the future, assistive robots will help people perform manual tasks more easily and

efficiently. These robots may retrieve items from high shelves [180], assist in fine

motor manipulations [41], or act as extra hands during physically complex tasks [74].

One of the primary challenges for such robots will be the ability to manipulate objects

in collaboration with people [1].

For example, imagine a robot, like the one in Figure 6.1(a), that helps a wheelchair-

bound user cook a meal. This robot can move around the kitchen, grabbing the right

ingredients and handing them to the user. The robot and user can also prepare parts

of the meal simultaneously, passing utensils and ingredients back and forth between

them. Finally, the robot can help clean up, taking items from the user and moving

them to the sink.

A common task throughout this interaction is the handover : the act of transferring

an item from one actor to another. For seamless robot-to-human handovers, the robot

must generate appropriate social cues that alert the person to the what, when, and

where of the handover [56, 235].

But other information, unrelated to the handover itself, may also need to be
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(a) A participant’s view of the block sorting
task.

Solid blue! Solid yellow! Ambiguous! Semi-ambiguous!

(b) Blocks were fully colored, ambiguously col-
ored (50% of each color) or semi-ambiguously
colored (70% of one color).

Figure 6.1: Participants engage in a collaborative manipulation task with HERB.
The robot hands over colored blocks, and participants sort them into colored boxes
on the table.

communicated during a handover. For example, the robot might want to indicate

where to put an object after giving it. Speech is an obvious mode of communication for

conveying such information, but it may not be available or effective in all situations.

For instance, speech may be unavailable in a noisy room, when interacting with

the hearing impaired, or when a person is already engaged in a listening task, such

as holding a conversation while cooking. Even when speech is available, it is not

always the most effective means of communicating: a robot that announced every

handover before it occurred would hinder the fluency of interactions involving frequent

handovers.

Eye gaze is an alternative means of communication that can be used when speech

isn’t practical. Typical humans can understand the motor intentions of others based

on their gaze [193], and robots are able to influence human motor behavior using

gaze (e.g., [175]). Based on this, a natural conclusion is to communicate information

about where to put the object using eye gaze.

Because eye gaze requires the user to attend to the cue in order to be effective,

it becomes critical to select the right time to exhibit the eye gaze cue. This commu-

nication should occur during the transfer phase of the handover, which starts from

the point at which the giver has finished reaching with the object toward the agreed-
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upon transfer location, and ends when the receiver has taken hold of the object and

retracted it, signaling the end of joint activity [235]. Earlier signals specifying where

to put the object may be confused with attempts to establish the what, when, and

where features of the handover [235]. Signals sent after the transfer phase may be

missed, because the user’s attention may have already shifted to the next task loca-

tion [106]. Thus the transfer phase is the ideal time to indicate temporally relevant

but non-handover-related information.

However, handovers are primarily manual tasks that draw attention directly to

the robot’s hand and away from its eyes. Mutual eye gaze is not a necessary part

of handovers [234], and because people fixate their gaze almost exclusively on areas

of their environment related to the task [106], attention is often directed somewhere

other than the robot’s head during a handover. In our first attempts to influence

human behavior using eye gaze, we found that drawing attention to the robot’s face

during the gaze cue was surprisingly difficult. People responded to the unfamiliar

experience of robot handovers by focusing intently on the robot’s hand, ignoring all

nonverbal communication from the robot’s head.

To address this, we introduce the idea of a deliberate delay—an intentional hiccup

in the handover—which prompts users to shift their attention from the robot’s hand

to its head. In particular, we look at deliberately delaying the transfer phase of the

handover by postponing the release of an object from the robot giver to the human

receiver until a gaze cue has been delivered. Handovers cause user attention to be

focused on the robot’s hand. By manipulating the force profile during a handover—

deliberately making the robot hold on to an object longer—we can draw attention to

other channels like head direction.

In this chapter, we present experimental evidence that adding a deliberate delay

to a handover is beneficial for communicating non-handover information nonverbally,

even though this delay decreases the smoothness of the handover itself. As we show
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open 
hand!

open 
hand!

Turn to box!Fixate on target! Fixate on box! Turn to target! Fixate on target!

0.5! 1.0! 1.5! 2.5! 3.5! 4.5! 5.5!2.0! 3.0! 4.0! 5.0!-0.5!-1.0!-1.5!-2.0!
Force 

sensed!

6.0!
time (seconds)!

Hand!

Head!

Sensor!
All conditions! No delay! Delay!

Figure 6.2: A graphical timeline of HERB’s head and hand motions turning the
transfer phase of the handover. HERB begins by fixating on a target (the participant’s
face or a mirrored point, depending on gaze condition), then looks at one of the boxes
as a suggestion, and finally returns to fixate on the target. The timing of the block
release depends on delay condition; it is either simultaneous with the head turn toward
a box, or just after the head turn.

below, a deliberate delay not only increases attention to the robot’s head, but also

increases the rate at which people comply with the robot when its gaze cue leads to

counterintuitive actions.

We test the effect of a handover delay on a simplified collaborative task (Fig-

ure 6.1). In this task, a robot called HERB hands colored blocks to participants, who

sort those blocks into one of two colored boxes according to their personal preference.

A 6-axis force-torque sensor in the robot’s hand identifies when the participant has

grasped the block to begin the transfer phase of the handover.

When it enters the transfer phase, the robot gives sorting suggestions by looking

at one of the boxes. We manipulate when this gaze cue is executed relative to the

object release during transfer: in the “no delay” case, the gaze cue and release oc-

cur simultaneously; in the “delay” case, the release is delayed until the gaze cue is

complete (Figure 6.2).

We hypothesize that:
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H1 A handover delay will cause people to pay more attention to HERB’s gaze com-

munication, and that

H2 Social gaze will lead people to comply more with HERB’s counterintuitive sug-

gestion.

Our results validate H1: a deliberate delay during the transfer phase of a handover

causes people to pay more attention to the robot’s head and to notice the robot’s

nonverbal gaze suggestion more frequently. More surprisingly, the delay also causes

people to comply more often with the robot’s sorting suggestion, even when it is

contrary to their natural behavior. This compliance effect holds even for people who

explicitly notice HERB’s suggestion, indicating that the delay itself, and not solely

increased attention, is responsible for increased compliance. Interestingly, H2 was not

supported: we found no effect of social gaze on compliance.

This work lays the foundation for a new type of robot handover. Instead of

working toward behavior seamlessness, researchers can build models of how people will

respond to robot behavior, and select robot actions that manipulate these responses

in desired ways. As shown in this chapter, this may involve leveraging nonverbal

communication channels, such as eye gaze and gesture, and introducing targeted,

deliberate imperfections to improve communication and efficiency.

6.2 Related Work

Our work draws from two areas of research in HRI: robot-to-human handovers and

robot gaze communication. Though these areas have developed independently, they

share considerable overlaps, for instance, using joint attention to signal a handover.

Rather than surveying the broad fields individually, we highlight papers in each area

that address the overlap between handovers and gaze communication.

Handovers can be divided into three distinct phases [152, 235]: the approach,
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during which a giver moves toward a receiver; the signal, during which giver and

receiver communicate their readiness for the handover; and the transfer, during which

the object is transferred from giver to receiver.

Handovers are a primary part of collaborative robotics, and there is strong interest

in automatically generating successful robot-to-human handovers [16, 81, 224, 235].

To produce a successful handover, a robot must first convey its intention to execute

that handover, which requires both spatial information (a distinct handover pose)

and temporal contrast (a distinct movement profile for handovers) [56, 98]. HRI

studies have attempted to determine user preferences for optimal handover behavior,

such as maximal arm extension [55], minimum jerk motion profiles [118], and legi-

bility of motion [78]. Metrics for determining human preferences range from surveys

and observation [55] to physiological measurements like skin conductance and eye

movement [71].

The structure of human-human handovers can also be used to inform human-robot

handovers [235]. Investigations of human-human handovers identified that object

transfer time (from initial contact by the receiver to final release from the giver) is

approximately 500 milliseconds [62].

Mutual gaze is not a predictor of handover initiation; confirming the partner’s

availability through asynchronous fixations is more important to successful handovers

than synchronized mutual eye contact [234]. However, taking a human partner’s eye

gaze into account when planning a handover increases the success of robot-to-human

handovers [101]. More generally, human gaze is task driven, and gaze fixations are

rarely directed to locations in the world that are not relevant to the task, even if

they are visually salient [106]. Fixations are instead guided by the spatio-temporal

requirements of the task, arriving at the relevant location just at the point at which

they are needed for task completion [127].

Robot eye gaze, however, is an important communication mode in HRI. Robots
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can communicate information through gaze during tasks like storytelling [172] and

teaching [23]. Robot gaze cues such as joint attention facilitate performance in

cooperative tasks [44] and improve perceptions of a robot’s competence and natu-

ralness [117]. Robots can even manipulate peoples’ behavior using only gaze cues,

prompting people to adopt certain conversational roles [174] or select certain objects

from a set [175], even without people consciously registering the gaze cue. Robot gaze

is clearly an informative communication channel in human-robot handovers, and we

leverage this to provide sorting suggestions in the experiment described here.

6.3 Methods

Users engage in a simple collaborative manipulation task with HERB: the robot hands

blocks to participants, who are asked to sort these blocks into either a yellow box or a

blue box on the table in front of them. Most blocks are unambiguously colored (fully

yellow or blue), but some blocks are ambiguously colored (50% yellow and 50% blue)

or semi-ambiguously colored (70% of one color and 30% of another), as illustrated in

Figure 6.1(b).

The main manipulation in this experiment is the deliberate delay between HERB’s

sorting suggestion and block release (Figure 6.2). HERB provides a nonverbal sorting

suggestion by looking (i.e., orienting its head) toward one of the boxes on the table.

On “no delay” trials, HERB simultaneously releases the block to the participant

and executes the suggestion behavior by looking at one of the boxes. On “delay”

trials, HERB first looks at one of the boxes, and only then releases the block to the

participant. The suggestion behavior takes about four seconds to execute: one second

for HERB to turn its head toward the box, two seconds to gaze at the box, and one

second to return its head to the starting point. Thus, there is a one second difference

in when the block is released between no delay and delay conditions.
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There are several strategies participants could employ for sorting the blocks. One

of the more obvious strategies is to sort by dominant color, putting the primarily

yellow blocks in the yellow box and the primarily blue blocks in the blue box. Another

strategy is to sort by the first visible color (typically the top color), regardless of how

the rest of the block is colored. Other strategies, like sorting randomly or alternating

boxes, do not take color into account. There are several possible sorting strategies;

our analyses do not rely on participants to follow any particular strategy.

In order to test whether people see and comply with a robot’s suggestions, we

made HERB’s suggestions as counterintuitive as possible. Therefore, when handing

over the ambiguous block, HERB always suggested the bottom (i.e., less visible) color

when it presented the block, which conflicts with the top color strategy (Figure 6.3).

Because the block was exactly half of each color, however, there was no conflict with

the dominant color strategy, so the ambiguous case was only mildly counterintuitive.

When handing over the semi-ambiguous block, HERB always presented the block with

the dominant color on top and always suggested the less dominant color. HERB’s

suggestion conflicts with both the dominant color strategy and the top color strategy,

making this a highly counterintuitive suggestion.

We also manipulated whether HERB engages in social or non-social gaze before

the suggestion (Figure 6.4). In the joint attention condition, HERB first makes eye

contact by looking at the participant’s face, then down at the block in its hand, and

then back to the participant’s face as it reaches with the block to begin the handover.

After HERB initiates the suggestion by turning its head to one of the boxes, it again

returns to look at the participant’s face before retracting its hand. In the mirrored

condition, HERB’s head moves at the same time and for the same distance as in

the joint attention condition, but it moves laterally and remains oriented downward

throughout this movement, so the gaze appears non-social. Therefore, we control

for total amount of head movement while manipulating whether the gaze is social
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(a) Delay

(b) No delay

Figure 6.3: A comparison of HERB’s head and hand movements during the handover
transfer phase in delay and no delay conditions. In the no delay condition, HERB
releases the block as it turns its head to a box. In the delay condition, the release
occurs only after the head turn (frame 3).

or non-social. This manipulation explores whether social gaze before the suggestion

affects how people respond to a counterintuitive suggestion.

6.3.1 Robot platform

HERB (Home Exploring Robot Butler) is a bi-manual robot developed for assistive

tasks in home environments at the Personal Robotics lab at Carnegie Mellon Univer-

sity [227]. HERB has two 7-DOF WAM arms, each with a 4-DOF BH8-series Barrett

hand with three fingers. In this experiment, only the right arm was used. HERB’s

hand has a 6-axis force/torque sensor that can detect external forces applied to the

joints, for instance when a participant gently pulls on an object in HERB’s hand.

Motion trajectories for picking up and handing over blocks were pre-planned using

CHOMP [198] and played back during the experiment.

HERB also has a pan-tilt head outfitted with a Microsoft Kinect and a camera,

though no real-time vision was used in this experiment. The front of the Kinect has

two visible round cameras which serve as HERB’s “eyes.”
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(a) Neutral gaze (b) Joint attention (c) Mirrored gaze

Figure 6.4: HERB began every trial in a neutral gaze position, looking at the block
in its hand. Herb then displayed either (b) joint attention or (c) mirrored gaze
depending on the condition. Mirrored gaze and joint attention involve the same
amount of movement at the same time, but the mirrored gaze target is shifted away
from the participant’s face so as to appear non-social.

6.3.2 Procedure

Participants were randomly assigned to either the delay or no delay condition, and

to either the joint attention or mirrored condition. There were 32 participants (18

females), eight in each of the four conditions, with a mean age of 34. Participants were

recruited from the Pittsburgh area using an online participant pool website through

Carnegie Mellon University. They were compensated $10 for their time.

Participants were told that they would play a sorting game with HERB. They

were instructed to take the block from HERB’s hand once HERB had extended the

block to them. Participants were also told that HERB’s head would move and that

HERB may provide suggestions about how to sort the blocks, but that the final

sorting method was up to them. Participants were not informed about the kinds of

blocks they would be seeing, and the blocks were kept hidden under the table until

HERB handed them to the participant.

On each trial, HERB picked up a block from below the table and handed it

to participants by extending its arm forward while grasping the block. Following

previous research [55], HERB’s arm became fully extended to clearly communicate
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the handover.

HERB’s hand contains a force sensor that identified when participants grasped

the block during the handover. When the force sensor in the hand registered the

participant’s grasp on the block, HERB initiated a suggestion behavior by turning its

head to one of the two boxes on the table. Depending on the delay condition, HERB

either simultaneously released the block (no delay) or waited until its head was fully

turned and then released the block (delay, Figure 6.2). Once the block was released,

HERB withdrew its hand to begin the next trial.

Each participant engaged in five block handovers. The first two handovers in-

volved solid color blocks, one of each color, both to familiarize participants with the

task and to establish their preferred sorting method. The third handover involved

the ambiguous block, presented with the first block’s color on top. HERB always

suggested that this block be sorted according to the color on the bottom, which vio-

lated the top-color sorting strategy, but was only a mildly counterintuitive suggestion

because it did not violate the dominant color strategy (since there was no dominant

color on the ambiguous block). The fourth block was again a solid colored block of

the same color as the first block, intended to separate the test trials and to balance

the number of blocks in each box as well as possible. For example, if the first block

was yellow, the second block was blue, and the third block was ambiguous (presented

with yellow on top), then the fourth block would be yellow again; the idea was that

participants would sort the first and fourth blocks into the yellow box and the second

and third blocks into the blue box, though this was not always the case. The final

block was the semi-ambiguous block; this was always presented with the dominant

color upward, to increase the saliency of the dominant color, but HERB always sug-

gested sorting by the minority color. For example, if the fifth block was 70% blue,

HERB oriented its head toward the yellow box.

By handing the ambiguous and semi-ambiguous blocks over with HERB’s sug-
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gested color on bottom, we made it as easy as possible for participants to use a

sorting strategy that would conflict with HERB’s suggestions in these cases. There-

fore, we expect to see low compliance with HERB’s suggestions in the absence of a

manipulation.

First block color, dominant color of the semi-ambiguous block, and the arrange-

ment of the boxes on the table were counterbalanced between participants. The

experiment ran fully autonomously using pre-scripted trajectories for block pick-ups,

block handovers, and head movements. There was real-time force feedback to measure

when participants grasped the block during the transfer phase of the handover. The

human-robot interactions lasted approximately 2 minutes and 20 seconds, though the

particular amount of time varied by how long the participant took to sort the block.

6.3.3 Data collection

There are four data sources in this experiment. First, task performance was evalu-

ated by whether participants followed HERB’s suggestion on ambiguous and semi-

ambiguous block trials. This provides a quantitative evaluation of compliance with

HERB’s counterintuitive suggestions.

Immediately after the interaction, participants completed written questionnaires

that asked about their experiences and decisions during the task. These included free-

response questions about whether they noticed suggestions from HERB and about

their sorting strategy. Questionnaires contained specific questions about the ambigu-

ous and semi-ambiguous blocks (represented with drawings), as well as Likert scale

questions about HERB—rating features such as intelligence and friendliness—and

about the collaboration—rating statements such as “I felt like HERB and I acted as

a team.”

After completing the survey, participants also engaged in a semi-structured inter-

view with an experimenter. They were asked to explain their sorting of the ambiguous
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and semi-ambiguous blocks. They were also asked whether they noticed any sugges-

tion behavior from HERB. The responses from these interviews are used to support

participants’ written responses in the surveys.

Finally, the interaction with HERB was video recorded, and these videos were

coded for information such as amount of time spent looking at HERB’s face and

whether or not the participant looked at HERB’s head as it executed a suggestion

behavior. The videos were annotated by an independent coder näıve to the research

hypothesis. We randomly selected 10% of the videos for validation with a second

coder; inter-coder agreement was 87% or higher. Because all of the coding measures

were objective and inter-coder agreement was above the accepted 80% threshold, we

feel confident analyzing the single coder’s annotations.

6.4 Results

This experiment yielded quantitative results from the task (such as the rate of partic-

ipants complying with HERB’s suggestion), self-reports in the form of Likert scales

and free-responses on the post-task questionnaire and semi-structured interview, and

objective observations of the interaction from the recorded videos (such as the amount

of time participants spent looking at HERB’s head).

Manipulation Check. To verify that HERB’s sorting suggestion for semi-

ambiguous blocks was counterintuitive, we analyzed the rate at which people chose the

“counterintuitive” box when they were unaware of HERB’s suggestion. Recognizing

HERB’s head movements as sorting suggestions significantly correlates with sorting

the semi-ambiguous block as suggested (Pearson’s χ2(1, N = 32) = 11.567, p = 0.007).

Only one participant out of 14 sorted the semi-ambiguous block as HERB suggested

without recognizing HERB’s suggestion, verifying participants’ bias against HERB’s

sorting suggestion and supporting the semi-ambiguous block as a valid manipulation
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to test for compliance.

Compliance: Semi-Ambiguous Block. The central research question is whether

users comply with HERB’s suggestion in the semi-ambiguous case. To test the effects

of delay and gaze on correctness, we ran a factorial nominal logistic regression, which

found that delay has a significant effect on compliance (χ2(1, N = 32) = 6.77, p =

0.0092). Without delay, only 19% of users sorted the semi-ambiguous block according

to HERB’s suggestion; delaying the release leads to 63% of users matching HERB’s

suggestion (Figure 6.5(a)).

When we analyze only participants who reported recognizing HERB’s head move-

ments as suggestions, the rate of compliance increases to 83% for participants in the

delay condition and 33% for participants in the no delay condition (Figure 6.5(b)),

with delay playing a significant role in this outcome: a nominal logistic regression

for compliance with gaze and delay as factors, on only users who recognized HERB’s

head motions as suggestions, reveals a significant effect of delay (χ2(1, N = 18) =

4.46, p = 0.0346).

Compliance: Ambiguous Block. The ambiguous block represents a relatively

low-conflict suggestion. Even though HERB always suggests sorting by bottom color,

which violates the top-color strategy, most participants (59%) followed HERB’s sug-

gestion for sorting the ambiguous block.

An effect likelihood ratio test reveals a borderline significant effect for delay

(χ2(1, N = 32) = 3.632, p = 0.0567), with 75% of participants in the delay con-

dition following the ambiguous block suggestion, but only 56% of participants in the

no delay condition following the suggestion (Figure 6.5(c)). There was no effect of

gaze or an interaction.

Sorting ambiguous and semi-ambiguous blocks by HERB’s suggestions are highly

correlated (Pearson’s χ2(1, N = 32) = 9.85, p = 0.0017). Ninety-two percent of users

who sorted the semi-ambiguous block according to HERB’s suggestion also previously
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sorted the ambiguous block according to HERB’s suggestion.

Gaze. Gaze type (joint attention versus mirrored) did not significantly affect

compliance, and there was no significant interaction effect. Similarly, the analysis of

compliance in only participants who reported recognizing HERB’s suggestions found

no significant effect of gaze. Joint attention does correspond to a higher probability

of following HERB’s suggestion (44% with joint attention, 38% with mirrored), but

the difference is not statistically significant.

Self-Reports. Participants’ free responses on the questionnaire and interview

revealed that 75% of participants in the delay condition and 38% of participants in

the no delay condition noticed and interpreted HERB’s head movements as sorting

suggestions (Figure 6.5(e)). A nominal logistic regression with gaze and delay as

factors shows that delay significantly affects whether participants thought HERB

had a sorting suggestion (χ2(1, N = 32) = 4.69, p = 0.0302, Wald test χ2(1, 32) =

4.32, p = 0.0377). No significant effect was found for gaze, and no interaction was

found.

None of the participants in the no delay condition thought they complied with

HERB’s suggestion on the semi-ambiguous block trial; they either did not state that

HERB gave them a suggestion, or they explicitly stated that they did not follow

HERB’s suggestion (Figure 6.5(f)). In the delay condition, 50% of users explicitly

stated that they chose their sorting strategy based on HERB’s suggestion for the

semi-ambiguous block. The effect is significant according to the effect likelihood ratio

test (χ2(1, N = 32) = 13.8, p = 0.0002).

Video Coding. Videos were coded for how long participants looked at HERB’s

head, which reveal how much visual attention participants devoted to HERB’s head

during the task. Videos were also coded for events in which participants looked

at HERB’s head while HERB looked at one of the boxes, which indicate whether

attention was directed to HERB’s head at the right time to notice HERB’s gaze cues.
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A two-factor analysis of variance investigating the effect of delay and gaze on the

total amount of time the participant looked at HERB’s head showed a significant

effect of delay (F (1, 31) = 12.9828, p = 0.0012). The handover delay more than

doubled the mean looking time, from 24.7 seconds to 50.6 seconds (Figure 6.5(d)).

There was no significant effect of gaze or an interaction.

To understand whether this additional time spent looking at HERB’s head was

useful, we ran a nominal logistic regression analyzing the effect of delay and gaze

on whether the participant noticed HERB’s suggestion in each trial, as measured

by whether the participant looked at HERB’s head while it was oriented toward

one of the boxes (Figure 6.5(g)). The test found a significant effect of delay on

noticing HERB’s suggestion in the third and fourth trials, and a borderline significant

effect in the fifth trial, but no significant effect of delay in the first or second trials

(χ2(1, N = 32) = 9.113, p = 0.003 for trial 3, χ2(1, N = 32) = 6.974, p = 0.008 for

trial 4, and χ2(1, N = 32) = 4.993, p = 0.0254 for trial 5, lowering the α to 0.01

for this analysis based on a Bonferroni correction, the most conservative control for

multiple comparisons).

Given that HERB first presents the delay in the third trial, these results show

that a deliberate delay led people to attend more to HERB’s suggestions, even in

subsequent trials when no delay was present (the fourth trial). The analysis did not

find any effect of gaze on any trials.

6.5 Discussion

Our results yield two main findings about the effects of deliberate handover delays.

Result 1 Handover delays increased the amount of attention participants paid to the

robot’s head, which increased participants’ awareness of the robot’s nonverbal gaze

cues.
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As predicted by hypothesis H1, deliberate delays increased the amount of time partic-

ipants spent looking at the robot’s head in general. This increase was not spurious:

deliberate delays also increased time spent looking at the robot’s head specifically

when the robot made a suggestion. Therefore, a handover delay drew attention to

the robot’s head even though the head was not involved in the handover. These

results are supported by both self-reports and video observations.

Result 2 In addition to increasing recognition of the robot’s suggestions, the han-

dover delay also increased compliance with those suggestions.

In our analysis of just the participants who reported recognizing the robot’s head

movements as suggestions, there was still a significant effect of delay on compliance.

In other words, even once participants are aware that the robot is making a sugges-

tion, they are still more likely to comply with that counterintuitive suggestion if the

handover has a delay.

There are several interpretations for this second finding. The non-agentic expla-

nation is that the delay drew peoples’ attention to the robot’s head which, because

it was moving, increased the saliency of the suggestion behavior to the point where

people followed it. This explanation does not require participants to attribute any

kind of meaning to the handover delay. It is not wholly satisfactory, however, because

when we exclude people who do not explicitly report seeing the robot’s suggestion,

there is still an effect of delay on compliance. Because these participants already

notice the robot’s head movements and explicitly interpret them as suggestions, the

saliency of the robot’s head movement seems unlikely to have a further effect.

A more agentic explanation is that the robot’s handover delay was interpreted as

purposeful, and that people were more likely to comply with the robot’s suggestion

when they believed that it came from an intentional agent. In order to test this

explanation, we would need to measure peoples’ attributions of agency to the robot

before and after experiencing the delayed trials, an interesting point for future work.
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In the current experiment, when the robot expressed a delay, there was always

another meaningful channel of communication (eye gaze) to draw information from.

However, it would be interesting to explore the effect of a delay when there is no other

salient feature on which to focus attention. Perhaps in that case the delay would be

interpreted as less agentic; the robot might even be seen as broken.

Mechanics of Deliberate Delays. We used a handover delay of one second in

this study because that was the amount of time it took for HERB to turn its head

toward a box. By the strength of the results, this duration was effective for drawing

attention back to the robot’s head.

A minority of participants in the delay case did not shift their attention in response

to the delay; instead, these people seemed to focus more intently on pulling the block

from the robot’s hand. In these few cases, perhaps the delay was so unexpected that

it served to draw attention to the hand, rather than release attention from it. More

work is necessary to find the balance point where the delay is long enough to notice

but not so long as to be problematic. This spot may also vary among people and

depend on factors such as comfort with the robot.

Tasks for Investigating Compliance. The analysis supports our use of a semi-

ambiguous block to investigate compliance. We found a strong correlation between

noticing the robot’s suggestion and sorting the block according to that suggestion. Of

the 14 participants who did not report noticing the robot’s suggestions, only one of

them sorted the semi-ambiguous block in the same box that the robot suggested, em-

phasizing the counterintuitive nature of that suggestion. More users overall matched

the robot’s suggestion in the ambiguous case (59%) than in the semi-ambiguous case

(41%). This is expected, as the robot’s suggestion for the semi-ambiguous block con-

flicted with both the dominant color strategy and the top color strategy, whereas the

ambiguous suggestion only conflicts with the top color strategy.

A block-sorting task is a useful proxy for other collaborative manipulation tasks
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because it involves many of the same behaviors in a simplified format. Our task

included handovers, object manipulation, classification decisions, joint attention, ref-

erential gaze, and mutual gaze. It subtly addressed the issue of compliance and

touched upon animacy and intentionality of robot agents. The task was performed

in a constrained environment with high repeatability and few distractions, but it

remained easy to understand and natural to complete.

Gaze. Our gaze manipulations had little effect on attention and compliance

in this handover task. Though people could understand HERB’s gaze to the box

as a suggestion, there was no difference between joint attention and mirrored gaze

conditions in terms of how much attention was directed at HERB’s head or the rate

at which participants complied with HERB’s counterintuitive suggestions. Thus,

hypothesis H2 was not supported.

While studies have shown that robot gaze is a strong social cue, many of these

studies used tasks in which gaze was a primary component, such as conversation. In

these situations, a person attends to the robot’s gaze as part of the task, and therefore

gaze cues may be more salient or useful.

Furthermore, HERB’s “face”, as seen in Figure 6.1(a), is relatively abstract: the

entire head consists of a flat platform with a pair of cameras for perception and a

microphone. On the spectrum of biological realism in Section 2.2.1, HERB falls quite

far to the left, with robots that have low levels of realistic gaze capabilities. It is

possible that HERB’s non-anthropomorphic head affected how well people actually

perceived joint attention, and that the joint attention condition would have yielded

different results on a robot with more defined eyes.

In the delay condition, joint attention increased the amount of time spent looking

at HERB’s head to 61 seconds from 41 seconds for mirrored gaze. Joint attention also

doubled the probability of a participant complying with HERB’s suggestion in the

no delay condition (from 12.5% to 25%). However, neither of these effects reached
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significance. More research is needed to understand how social gaze affects people in

tasks where gaze is not a central component.

Future Work. Speech can be more precise and noticeable than gaze in many

situations. Because this study focused on nonverbal communication (handover fluency

and eye gaze), adding speech to the system would have been a confound with our

current manipulations (handover delay and social gaze). However, future work on a

robust human-robot handover system should incorporate spoken cues.

The decision to present the gaze cue during the handover transfer phase was based

on a pilot and previous experience with HERB. Future studies can explore the effects

of presenting the gaze cue at different points in the interaction.

Implications. The results reported in this chapter provide insight into the design

of effective robot-to-human handovers. When information needs to be conveyed dur-

ing handovers, we suggest that seamlessness should be secondary to communication.

For instance, by manipulating the force profile of the handover so that the robot de-

liberately delays releasing an object, robot designers can draw attention to important

features like eye gaze and other nonverbal communication. This idea is in line with

previous research that has shown that deliberately manipulating other aspects of a

handover, like the spatio-temporal motion, can help convey information about the

task [55]. The current work is novel because it uses a feature of the handover (the

force profile) to convey information toward an unrelated mode of communication (eye

gaze) about a subsequent task (block sorting).

6.6 Summary

This study investigated the nonverbal communication behind robot-to-human han-

dovers. It showed that using one type of nonverbal communication—a gesture, in

the form of a handover delay—could influence attention to, and compliance with, a
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second type of nonverbal communication—a directional eye gaze.

In Chapter 3, we showed that directional eye gaze from a robot is not cognitively

processed the same as directional gaze from a human, at least when measured on a

micro scale. Interestingly, the current study shows a macro scale difference between

how human and robot gaze is processed. Psychology research suggests that the joint

attention condition used in this study should generate more engagement and solicit

more compliance from a participant than the similar but non-social mirrored gaze

condition. However, we failed to find any effect of gaze type on human behavior—

people did not comply with the robot any more when it established joint attention

than when it simply moved its head to a non-social gaze position.

On the other hand, the study in this chapter showed that a combination of non-

verbal behaviors can influence human responses. In this case, people complied with

the robot’s sorting suggestions as conveyed by gaze, but only when they saw a de-

liberate gesture in the form of a handover delay. That is, the human partner must

recognize that the robot’s gaze behavior is intentional before they can interpret it as

communicative.

This chapter focused on a specific part of human-robot physical collaboration,

namely the handover. In the next chapter, we explore how people use a broad array

of nonverbal communication during interpersonal collaborations, to try to identify

how and when they use gaze and gesture in naturalistic interactions.

117



0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

"No delay!  Delay!

R
at

e 
of

 co
m

pl
ia

nc
e!

Compliance: Semi-ambiguous!

p < 0.01!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

"No delay!  Delay!

R
at

e 
of

 co
m

pl
ia

nc
e!

Compliance: Semi-ambiguous 
(aware only)!

p < 0.05!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

"No delay!  Delay!

R
at

e 
of

 co
m

pl
ia

nc
e!

Compliance: Ambiguous!
p = 0.0567!

0!

10!

20!

30!

40!

50!

60!

70!

80!

"No delay!  Delay!

To
ta

l d
ur

at
io

n 
of

 h
ea

d 
fix

at
io

ns
!

Time looking at HERB!

p < 0.01!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

"No delay!  Delay!

Pr
op

or
tio

n 
!

Recognized suggestion!

p < 0.05!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

"No delay!  Delay!

Pr
op

or
tio

n 
!

Self-reported compliance: !
semi-ambiguous!

Mirrored!

Joint attention!

p < 0.001!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 2! 3! 4! 5!

Pr
op

or
tio

n!

Trial Number!

Observed suggestion!

No delay!

Delay!
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7

Data-Driven Model of Human

Nonverbal Behavior∗

Up to this point, we focused on how people respond to specific elements of

robot nonverbal behavior (such as attentional eye gaze and handover ges-

tures) in well-controlled laboratory studies. In this chapter, we begin model-

ing these nonverbal behaviors. We start by focusing on human-human inter-

actions, which provide a rich source of examples for communicative nonver-

bal behavior. This chapter focuses specifically on a tutoring scenario, where

a teacher conveys a set of information to a student. We chose a spatially-

oriented tutoring scenario (teaching a map-based board game) to evoke a

range of nonverbal behavior, including directional eye gaze and gestures. We

recorded student-teacher pairs and built a model of nonverbal behavior from

their interactions. This model is bidirectional: it can both predict the context

of a communicative nonverbal behavior and successfully generate nonverbal

behaviors to match a particular context. This bidirectionality enables a robot

∗This work was originally published as:
Henny Admoni and Brian Scassellati. Data-driven model of nonverbal behavior for socially assistive
human-robot interactions. In Proceedings of the 6th ACM International Conference on Multimodal
Interaction (ICMI), Istanbul, Turkey, 2014.
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to understand and use nonverbal behaviors from the same underlying data

representation.

7.1 Introduction

Socially assistive robotics (SAR) focuses on building robots that help people through

interactions that are inherently social [83]. Application areas for SAR include tutoring

[130, 142], autism therapy [216], and elder care [258]. Social robots augment tradi-

tional human-human interactions in these areas by providing additional interactions

that are impractical, time-consuming, or impossible to achieve with a person.

For example, a social robot can act as a peer tutor, helping students practice skills

or solidify knowledge through one-on-one interactions outside of the classroom. By

presenting itself as a peer, the robot can encourage students to practice previously-

learned knowledge by re-teaching it to the robot. In this way, the robot provides

educational support beyond what a classroom teacher has time for, and with poten-

tially more consistent quality than a human peer.

For social robots to be effective communicators, they must understand the context

of their human partner’s communication, that is, the communicative goal or perspec-

tive. In the tutoring robot example, for instance, the robot must be able to recognize

whether its partner is referring to a location in the environment, asking a question,

or explaining some knowledge. Similarly, social robots must be able to convey the

context of their own communication effectively.

The cues to understanding such context can come from speech, but often come

from nonverbal behaviors like eye gaze [28] and gesture [164]. Gestures, for instance,

reflect ideas that are not necessarily conveyed in speech [99], and teachers frequently

use gestures to ground their spoken utterances to the objects of instruction [17, 204].

Eye gaze is critical for joint attention—simultaneous attention toward a particular
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Figure 7.1: Screenshots from human-human teaching interaction videos. The student
(top) displays gaze to the referent, while the teacher (bottom) displays gaze to the
partner and a deictic gesture to the map.

object or location—which is fundamental for learning [247]. Therefore, the effective-

ness of the tutoring robot, or any socially assistive robot, depends on its ability to

recognize and utilize the nonverbal context clues that people use naturally.

In this work, we take a data-driven approach, using empirical data from human-

human interactions to build a model of nonverbal robot behaviors. By training on

previously-observed human behavior, we take advantage of the frequency and ease

with which people use nonverbal behaviors to design more communicative robot be-

haviors.

Other work uses a similar data-driven approach for nonverbal behavior modeling.

Researchers have generated robot behavior, such as gaze aversions [24] and narrative

gestures [116], by analyzing videos of people conversing or telling stories. For virtual

agents, empirical observation has driven gesture formation for iconic gestures [40] and
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Figure 7.2: The model performs both context prediction (left) and behavior genera-
tion (right).

narrative performance [178, 233].

However, much of this previous work focuses exclusively on the speaker’s behav-

iors. In contrast, our work considers the behaviors of both interaction partners simul-

taneously. Tutoring is an activity with bi-directional communication—the teacher

makes a statement, the student asks a question, the teacher replies, the student

confirms—and peoples’ nonverbal behavior is influenced by the behavior of their part-

ner. For instance, joint reference is a common social behavior that involves one person

deictically referring to an object or location, then another person looking at that ref-

erent in response. With a view of both partners’ behaviors, our model captures this

kind of bi-directional behavior.

Our work also hinges on the idea that a model for nonverbal behavior should be

simultaneously predictive and generative. In other words, the model should be able to

both predict (or classify) the context of a newly observed set of nonverbal behaviors,

and generate a set of nonverbal behaviors given a context of communication (Figure

7.2), without needing to collect and train on different sets of data. Some other work

has this capability (such as [40]), but we elevate this to a central requirement for our

system.
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In this chapter, we introduce the context and features that comprise our model

and describe our preliminary data collection of real-world human-human teaching

interactions. We then describe our model in terms of these features, detailing how it

can both predict new contexts and generate new behaviors. We evaluate the model

and show that it is effective at both of these tasks. We conclude with ideas for

extensions of this model.

7.2 Collecting Human-Human Interaction Data

To create a model of nonverbal behavior, we first collected examples of nonverbal

behavior during tutoring (Figure 7.1). We recruited two pairs of participants (mean

age 22), randomly assigning one as teacher and the other as student, and recorded

their interaction as the teacher taught the student how to play a board game called

TransAmerica.

In TransAmerica, players must place game pieces representing railroad tracks

along a grid overlaid on a map of the United States. Players score points for success-

fully building a track network that connects the cities specified in their randomly-

selected hand of cards. We chose this game specifically because teaching the game

involves spatial references, which encourage deictic gestures and demonstrations in

addition to statements of facts and rules.

Neither student nor teacher had played the board game previously. Before the

recorded interaction, the teacher was given a lesson on the game from an experimenter

for approximately five minutes. The teacher was also provided with a rule sheet that

described all of the rules of the game.

We audio- and video- recorded both teacher and student during this interaction,

which lasted approximately five minutes per dyad. We then manually coded these

recordings for five predictors : the teacher’s gaze, gestures, and deictic references, as
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well as the student’s gaze and gestures (Table 7.1). The student’s deictic reference

was infrequent, so we did not code for that predictor. We also coded the context of

each utterance.

Values for gaze follow previous work [116], and represent possible gaze locations:

to the partner, to the referent of current speech (regardless of who is speaking), to

one’s own gesture, or to some other location in the environment.

Values for gesture include those from established categorizations as well as addi-

tional values specific to physically-based teaching tasks. Iconic, metaphoric, deictic,

and beat gestures are defined as in the literature [164]. Iconic gestures are closely

related to the topic of speech, and often represent physical concepts, such as mesh-

ing the fingers together when referring to a “track network.” Metaphoric gestures

indicate abstract concepts, for instance waving the hand between two players to rep-

resent “taking turns.” Deictic gestures involve pointing, which can be accomplished

with the finger or the whole hand. Beat gestures are linked to transitions in speech,

but are often unrelated to the content of speech. Demonstrations involve physical

movements that mimic the topic of speech. Functional movements are not intended

for communication, but are used to accomplish game-related tasks such as dealing

cards. Actions outside of these categories, such as brushing hair behind an ear, were

categorized as other.

The deixis category encodes gesture types—pointing to a single target, sweeping

over a range of targets, and holding—as well as gesture locations—the game map,

cards, playing pieces, and box. Though every deixis value must have an associated

gesture, not every gesture must have a deixis value. Deixis values can occur with any

gesture, especially demonstrations and functional gestures.

The nine contexts each represent a particular kind of communication, and contexts

are determined based on both speech and nonverbal behaviors. The rules context

indicates communication about the rules of the game. Fact contexts involve commu-
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Name Values

Gaze (A) partner, referent, own gesture, other
Gesture (E) iconic, metaphoric, deictic, beat, demonstration, functional, other
Deixis (D) point {map, own cards, partner cards, box},

sweep {map, box},
hold {cards, game piece, box}

Context (C) backchannel, deixis, expository, fact, filler, question, reply, rules

Table 7.1: Model parameters and their values.

nication about facts that don’t include game rules, such as “The name of the game

is TransAmerica.” An expository context indicates communication that elaborates

on previous statements without providing new rules or facts. Question and reply

contexts involve asking questions or providing direct answers, respectively. Deixis in-

dicates communication that explicitly refers to physical locations or nearby objects.

Confirmation contexts involve confirmation-seeking questions or statements such as

“do you understand?” Backchannel contexts are utterances that indicate a listener’s

attention. Filler are non-meaningful communications that stand in for silence, often

at the beginning of a new phrase.

Contexts are mutually exclusive, though two sets of identical nonverbal behaviors

may be classified as different contexts, for instance based on different speech during

those behaviors. For example, the deixis context always involved concrete object

references, while the other contexts involved more abstract descriptions of the game.

We developed the list of contexts before examining the human-human interac-

tion data, so that we would not be influenced by individual preferences for certain

contexts. Interestingly, we did not note a single instance of confirmation context in

the interactions we annotated, despite their expected appearance in a teaching task.

It is possible that a more experienced teacher might employ confirmation seeking

behaviors, even though our current participants did not.
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7.3 Nonverbal Behavior Model

A model of nonverbal behavior should be able to classify the context given new

observations of nonverbal behavior, as well as generate appropriate behaviors to suit

a desired context (Figure 7.2).

We discretized the human-human interaction recordings into one-second segments.

Each segment provides one observation o ∈ O, which is described by a tuple of

predictors o = {aT , eT , dT , aS, eS} where aT , aS ∈ A are the type of eye gaze exhibited

by the teacher and student, respectively, eT , eS ∈ E are the types of gestures exhibited

by the teacher and student, respectively, and dT ∈ D is the deictic referent of the

teacher’s gesture in that segment. We chose one-second segments after observing the

interactions, though the level of data granularity is flexible and may be adjusted for

different applications.

Sometimes it is useful to take history into account, as well. An observation with

history,

oh = {aTt , eTt , dTt , aSt , eSt , aTt−1 , eTt−1 , dTt−1 , aSt−1 , eSt−1}

is defined by predictor values at current time t and predictor values from the previous

time step t− 1, if available. The set of observations including history is Oh.

Using this formulation, we can represent each observation as a point in high-

dimensional space.

7.3.1 Predicting Context

Given a set of observations of nonverbal behavior, our system can predict the context

of the communication. To do so, observations from the human-human interactions

were used to train a prediction algorithm using k-nearest neighbors. In this algo-

rithm, predictors are attributes and context is the class label. We can denote this

as label (oh) = c for observation oh and context c. Note that label is not a function,
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since identical observations can have different contexts.

To classify the context of a new observation, the algorithm performs operation

nclosest : (Oh, onew, k)→ K (7.1)

which takes a set of observations Oh, a new observation onew, and a positive integer

k and returns a set K = {oh1 , . . . , ohk} containing the k closest observations to onew.

Because the predictor values are categorical, rather than continuous, our KNN

algorithm uses the Hamming distance to identify nearest neighbors. For each existing

observation oold = {x1, . . . , xn}, the algorithm calculates the distance D between oold

and the new observation onew = {y1, . . . , yn},

D =
n∑
i=1

h(xi, yi), h(a, b) =

 0 if a = b

1 if a 6= b
(7.2)

Once it has evaluated the k nearest neighbors, the model assigns onew a con-

text based on a majority vote of the contexts of the observations in K. Ties are

resolved by selecting randomly. Since there may be several different behaviors appli-

cable in the same context, we extend the context assignment to onew such that the

probability of context assignment is proportional to the number of observations with

that context in K. In other words, the probability of assigning onew a context c is

p(c) = count(label(oh)=c)
k

for each oh ∈ K, where count(x) is a function that returns the

number of instances of x in the data.

We empirically determined that k = 2 was the most accurate value for our data,

though k may vary by application. Our model examines the two most similar examples

of previous behavior to judge a new behavior’s context.
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7.3.2 Generating Behavior

Given a context, the model can also select appropriate nonverbal behaviors. It does so

by finding the largest cluster of examples for the context, then selecting the nonverbal

behaviors that are most common in that cluster.

Mathematically, given a desired context cdes ∈ C, the model searches over all

observations o ∈ O for

{{aT , eT , dT , aS, eS} | count (label(o) = cdes) >

count (label(o) = ci) , cdes 6= ci}
(7.3)

Since this can yield multiple qualifying sets of behavior, the model can weight its be-

havior choice based on the frequency of observations containing that behavior for the

desired context. This allows behavior variability in proportion to observed examples.

In effect, the model is replicating the most common behaviors it has observed for a

given context. This follows the idea that people learn to communicate by mimicking

observed behavior in given situations.

This behavior generation algorithm is amnesic because it does not account for

history. To account for behavior from the previous time step, we use the history-

aware representation of an observation, oh. The process for generating new context

(equation 7.3) remains the same, except that every step now uses oh instead of o.

7.4 Model Evaluation

Given a new observation containing the five predictors, how accurate is the model at

identifying the correct context? We performed a 10-fold cross validation: combining

all observations from both dyads, this validation segmented the data into 10 groups,

trained the model on nine of those groups, and calculated the accuracy of context

predictions using data from the remaining, untrained group (Figure 7.3(a)). On
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Figure 7.3: Results of model evaluation. The dashed line indicates chance.
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backchannel 10 13 23 1 11 2 2 21
deixis 4 14 16 0 6 4 0 15
expository 6 13 59 3 29 8 3 28
fact 1 0 4 0 1 2 0 1
filler 1 13 36 2 32 1 3 22
question 5 6 7 2 8 26 0 5
reply 1 2 4 0 1 1 2 4
rules 7 19 47 3 25 6 3 72

Table 7.2: A confusion matrix for context prediction with the cross-validated model.
Rows represent ground truth and columns represent predicted classifications.

average, cross-validation accuracy was 45.9%. This value is significantly better than

chance, which is 11.1% for nine classifications. It is also better than simply predicting

the most common classification—rules—which only leads to an accuracy of 37.5%

using the cross-validated model. Table 7.2 shows a confusion matrix for the cross-

validated model.

Given a context, how well does the model generate gaze and gesture behaviors?

To test this, we compared the recorded human behavior for each observation in our

data set against the most likely behavior generated by the algorithm for that obser-
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vation’s context (Figure 7.3(b)). When using the amnesiac generation method (that

is, behavior generation that ignores any history), our system matches actual human

gaze behavior 52.0% of the time, and human gesture behavior 36.0% of the time.

This is an improvement over randomly selecting behavior values, which would yield

25.0% accuracy for gaze and 14.3% accuracy for gesture. Taking a single time-step

of history into account significantly improves performance. The historically mindful

generation method yields 78.8% accuracy for gaze behaviors and 72.0% accuracy for

gestures.

7.5 Discussion

In this chapter, we describe a model for communicative context. The model is

trained on data from human-human tutoring interactions. It can successfully pre-

dict a speaker’s communicative context from only their nonverbal behavior, and it

can generate appropriate nonverbal behaviors to convey a particular context.

The model currently uses a subset of the nonverbal behaviors that people use to

communicate. We carefully selected the gaze and gesture categories from existing

work on nonverbal communication, and added a few categories (demonstrations and

functional gestures) that were specific to our scenario. Extending the model to include

other categories, or other behavior features such as head pose or body posture, might

yield even greater accuracy and expressiveness.

As a data-driven model, the effectiveness of the system depends on the quality of

the data provided. This chapter uses a relatively small data corpus (two dyadic inter-

actions). While many nonverbal behaviors are consistent across people, it is not clear

whether this model can account for the large variability in human nonverbal behavior

expression, given our small sample size. Even with this small corpus, however, the

model successfully predicted and generated nonverbal behavior in a cross validation

130



test.

The small sample size is largely due to the fact that data annotation presents

a major challenge for data-driven modeling. Collecting human interaction examples

and manually annotating them takes time. Automatic annotations are not yet robust

enough to correctly identify all of the features used by the model, particularly the

context. In future work, automatic gaze and gesture detectors may ease some of the

burden of manual annotation. However, in Chapter 8 we take a different approach

that does not require this manual coding process.

Additionally, the model developed here is specific to this kind of spatial tutor-

ing scenario. It is not clear, for example, that the nonverbal behavior combinations

displayed in this situation would map to the same contexts in a collaborative build-

ing task where people’s hands are occupied. This scenario dependence is a general

limitation of data-driven models, and it is also addressed by the heuristic model in

Chapter 8.

7.6 Summary

We built a data-driven model of nonverbal behavior for tutoring. Data was collected

from human teacher-student pairs interacting around a spatially-oriented board game,

which elicited a range of gaze and gesture behaviors. We trained a simple nonverbal

behavior model using five predictors—the teacher’s gaze, the teacher’s gestures, the

teacher’s deictic references, the student’s gaze, and the student’s gestures—along

with a context label for each communicative utterance. This model recognized the

context of a communication from just the set of nonverbal behaviors present during

that communication. It also successfully predicted what nonverbal behavior should

accompany a desired context.

This work helps develop social robots that can both understand and use nonverbal
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behavior in their interactions with people. A tutoring robot can apply the empirical

model described here to interpret a human partner’s communication. It can also

dynamically generate an appropriate nonverbal behavior to support or augment its

next utterance, based on the context of that utterance.

However, such data-driven models as the one described in this chapter rely on

collection and meticulous annotation of training data, which can be time consuming

and scenario-dependent. In the next chapter, we introduce a scenario- and robot-

agnostic model for generating nonverbal behavior that relies on features of the scene,

rather than previous human examples, to select a robot’s nonverbal behavior.
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8

A Generative Model of Robot

Nonverbal Behavior∗

As we saw in the previous chapter, nonverbal communication can help predict

the context of communication in a collaborative interaction. While Chapter

7 explored a broad array of communicative nonverbal behaviors, the current

chapter focuses again on a specific type of communication covered in Chap-

ters 5 and 6: referential communication. These earlier chapters investigated

human responses to a robot’s nonverbal referential communication. In the

current chapter, we investigate how to dynamically generate such commu-

nication. We develop a heuristic model for generating a robot’s nonverbal

behavior that is scene- and robot-agnostic, which addresses some of the lim-

itations of the data-driven model in Chapter 7. The current model uses a

robot’s verbal and nonverbal behaviors to successfully communicate object

references to a human partner. This model, which is informed by com-

puter vision, human-robot interaction, and cognitive psychology, simulates

∗This work was originally published as:
Henny Admoni, Thomas Weng, and Brian Scassellati. Modeling communicative behaviors for object
references in human-robot interaction. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2016.
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how low-level and high-level features of the scene might draw a user’s at-

tention. It then selects the most appropriate robot behavior that maximizes

the likelihood that a user will understand the correct object reference while

minimizing the cost of the behavior. This chapter presents a general compu-

tational framework for this model, then describes a specific implementation

in a human-robot collaboration. Finally, we analyze the model’s performance

in two human evaluations—one video-based (75 participants) and one in per-

son (20 participants)—and demonstrate that the system predicts the correct

behaviors to perform successful object references.

8.1 Introduction

A key challenge for social robots is natural communication between robots and hu-

mans. Typical human communication occurs both verbally, through speech, and

nonverbally, through modalities like eye gaze [27] and gestures [164]. Nonverbal be-

haviors serve to augment verbal communication by reinforcing or extending spoken

communication [99]. Collaborative robot systems benefit from this multimodal com-

munication to improve the fluency and efficiency of human-robot teams.

For example, imagine a robot that provides guidance to a user during a collab-

orative task, such as the furniture assembly task pictured in Figure 8.1. The robot

has knowledge about the task steps, and may assist the user by identifying which

part is required next. In this situation, a verbal description of the part, such as “the

red hammer,” can often be sufficient. However, there may be situations, such as the

one pictured, in which the robot must disambiguate between similar objects. In this

case, nonverbal behaviors like gaze and gesture become important. Users viewing the

scene in Figure 8.1 may not understand which object is being referenced by the phrase
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Figure 8.1: A behavior model must select enough nonverbal behaviors to disambiguate
object references, while minimizing the cost of these behaviors.

“the small wood block,” but the robot’s head orientation and pointing, performed in

conjunction with that phrase, make the reference easy to understand.

In this chapter, we focus on the task of communicating object references about

objects of interest in the environment. As people perform tasks alone, their visual

attention is directed almost exclusively at the objects required for that task, and

almost never at other parts of the scene [106]. By directing a user’s visual attention

to relevant objects through effective object references, a robot can help focus the

user’s energy on the necessary components of their task. Research has shown that

when a robot uses deictic nonverbal behaviors (e.g., gazes and gestures) to augment

its referential speech, users respond to those references more quickly than when those

nonverbal behaviors are absent [3, 44, 47, 117, 231].

A naive robot controller might augment its referential speech by selecting every

relevant nonverbal behavior available to it, with the thought that this would max-

imize communication. However, frequent pointing and gaze behaviors use effectors

that the robot might need for other parts of its task, like its arms for object manip-

ulation and its head for vision. For robots operating on batteries, energy cost may

be a barrier to frequent nonverbal behavior. Finally, people collaborating in teams

often use nonverbal behavior for subtle, implicit communication [219], so overuse of
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pointing and gaze may become visually distracting to the human partner. Therefore,

a robot behavior system should select the fewest possible nonverbal behaviors that

will maximize communication while maintaining interaction seamlessness.

To correctly select nonverbal behaviors for communication, the robot must have

a model for how these nonverbal behaviors influence the interaction. Other research

has modeled nonverbal behavior to communicate information in a variety of domains.

Researchers have created models for generating expressive nonverbal behaviors for

narration [114], conversational turn-taking [24], object manipulation [78].

Our research is novel because it considers nonverbal behaviors as elements in the

environment that influence a user’s attention, along with other parts of the greater vi-

sual scene comprised of both bottom-up and top-down features. This chapter presents

a model for generating referential robot behaviors that considers the expected atten-

tion draw of the scene when predicting which behavior will be most effective. The

model first simulates how different elements of a visual scene might capture a user’s

attention, then selects behaviors that most efficiently direct that attention to a target

object.

Psychologists have established that people’s attention is influenced by both bottom-

up saliency cues and top-down context cues [126]. Bottom-up cues are highly salient

visual features that are distinguished very quickly by the visual system, such as color

and orientation. The effect of these bottom-up cues is modulated by top-down pro-

cesses that depend on the context of the task [106]. Nonverbal behaviors such as

pointing and gaze are top-down communicative factors that influence where people

will attend.

Our model uses both bottom-up and top-down cues when calculating how the

robot’s nonverbal behaviors will influence a viewer’s understanding of object refer-

ences. We introduce a metric called the referential likelihood score, a score for each

object in the scene that, given a verbal or nonverbal referential behavior, indicates
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how much the model expects the user to see that object as the target of the reference.

The referential likelihood score is calculated using features of the scene, the context

of the interaction, and the robot’s behaviors.

To select a communicative behavior, this model simulates referential likelihood

scores for all objects under each of its possible verbal and nonverbal behaviors. It

predicts the effect of each behavior on the user’s attention, and then selects the behav-

ior that maximizes attention toward the desired object while minimizing unnecessary

actions.

This chapter makes several contributions:

1. A mathematically defined model for generating object reference behaviors (Sec-

tion 8.3.1),

2. An implementation of the model on a Nao robot in a collaborative building task

(Sections 8.3.2 and 8.3.3)

3. Two evaluations of the implementation—one video-based (Section 8.4.3), and

one in person (Section 8.4.4)—that show how the model successfully minimizes

extraneous actions while maximizing user comprehension of object references

8.2 Related Work

Modeling visual attention is not new to robotics [91], but most visual attention sys-

tems compute where a robot should look from the robot’s perspective, rather than

modeling the user’s attention to determine the best robot behavior. For example,

a gaze behavior controller for the social robot Kismet depends on both bottom-up

saliency (detecting color, motion, and faces) and top-down motivations of the robot

[49]. A bottom-up attention system controls an iCub robot’s gaze based on robot-

centric visual and auditory saliency maps [205]. A Keepon robot can develop joint
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attention behaviors by learning the sensorimotor coordination that occurs when it

looks at salient objects in its view [177].

The kinds of visual cues discussed in this chapter—saliency, pointing, and gaze—

have been previously incorporated into attention models to provide information about

where a social robot should attend. For example, to improve the speed of visual

search, one system uses human pointing as an additional cue along with low-level

saliency maps [217]. Another system incorporates haptic-ostensive references—which

occur when an object is being referenced as it is manipulated—into the dialogue

system for a cooperative human-robot assembly task [86]. Gesture recognition per-

formance in a human-robot interaction improves markedly when head orientation is

taken into account [181].

Our model is inspired by psychology’s understanding of how people direct visual

attention. Visual attention involves both bottom-up mechanisms to isolate objects

of interest from their background, and top-down mechanism to select task-relevant

objects [73]. According to the feature-integration theory of visual attention, visual

processing proceeds in parallel when objects can be detected based on a single fea-

ture (such as color or shape), but serially when more than one feature is needed to

distinguish between objects [249]. This idea provided the basis for a foundational

computational model of visual attention designed by Itti and colleagues [125].

Gaze and pointing both have communicative value during interactions, specifically

in drawing attention to a particular visual region [32]. However, directing attention

through gaze or pointing refers to approximate spatial zones rather than precise linear

vectors [54]. Therefore, these nonverbal behaviors can be seen as directing a cone of

attention out toward the scene, rather than a single line.

138



Figure 8.2: A schematic of the model, which takes features of the scene, a target ob-
ject, and a robot’s capabilities as inputs and outputs the best behavior for referencing
the target object.

8.3 Behavior Model

This section presents a mathematical specification of the behavior model for object

references (Figure 8.2).

8.3.1 Model Overview

The model takes a set of inputs I that describe the scene from the user’s perspective,

as well as the robot’s target object and its capabilities in terms of behaviors. The

model outputs a single behavior β that maximizes the likelihood of a user under-

standing that object reference while minimizing extraneous actions.

Mathematically,

Ξ : I → β (8.1)

where input I is a tuple

I = (O, τ,B,C, α) (8.2)
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The set of objects O = {o1, . . . , on}, denotes all the possible objects in the envi-

ronment that might be referenced. One of these objects, oτ , is the target object. In

our example from Section 8.1 (and Figure 8.1), the target object is the small wood

block on the right, and the set of objects O is comprised of that block, three other

wood pieces, and a hammer.

The set B = {β1, . . . , βk} is the robot’s repertoire, the behaviors it can perform.

For example, the robot in Figure 8.1 can point to a location, gaze to a location by

turning its head, or speak an utterance. A behavior may even be a combination of

actions, such as a simultaneous head turn and point; B contains all possible combi-

nations of behaviors as well. The repertoire of behaviors is dependent on the robot’s

capabilities, but includes both verbal and nonverbal behaviors.

C is a ranking of behaviors according to their relative costs, as described below.

The value α indicates the disambiguation level for a reference. This specifies how

clearly (or ambiguously) the referential behavior should indicate the target object,

compared to other objects in the scene. Because it is a ratio measure, α has no units

and exists on an arbitrary scale that may be situation dependent.

In actuality, the model is composed of two functions, A and S, in sequence

Ξ : I
A−→ (Σ, C, α)

S−→ β (8.3)

To select a successful referential behavior, we must compare how each behavior

affects a user’s interpretation of the scene. To do so, we calculate a referential likeli-

hood score for each object under each behavior. We denote an object oi’s likelihood

score under behavior βj as σi,j. The set of likelihood scores for all objects under a

behavior βj is Σj.

The attention estimation function A calculates these referential likelihood scores
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for each object. This function,

A : (O, τ,B)→ Σ (8.4)

takes the set of all objects and the index of the target object, along with the robot’s be-

havioral repertoire. For each behavior βj ∈ B, A calculates a set Σj = {σ1,j, . . . , σn,j}

of referential likelihood scores for each object under that behavior; mathematically,

A(O, τ, βj) = Σj.

For example, if behavior 1 is “pointing,” the values in Σ1 would indicate the

model’s evaluation of likelihood scores for each object in a scene where the robot

is pointing to the target object. Σ = {Σ1, . . . ,Σ|B|} denotes the set of referential

likelihood scores for each object under each behavior.

Depending on how function A is implemented, likelihood scores can depend on

features of the objects, such as visual saliency; features of the scene, such as density

of objects; and features of the robot’s currently active behavior, such as pointing,

gazing, or verbal reference. Our implementation of attention estimation function A

is detailed in Section 8.3.2.

Once the set of likelihood scores under each behavior is calculated, it is given to a

behavior selection function S along with a cost function and the desired disambigua-

tion level. This function

S : (Σ, C, α)→ β (8.5)

selects a behavior to perform that minimizes cost while maximizing the likelihood of

reference toward the target object. Parameter α provides a measure of the minimum

level likelihood for the object reference.

The cost function C takes in behaviors from the robot’s repertoire and returns

their relative costs. It depends on the robot and the task at hand. For example,

the cost of moving an arm to point might be greater than the cost of turning a head
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to gaze. Costs can be measured in terms of energy expenditure, cognitive load for

the user, or any other metric that should be minimized for easy, efficient human-

robot collaboration. The ordering generated by C is a relative ranking of the robot’s

behaviors indicating their relative expense. Our implementation of behavior selection

function B is detailed in Section 8.3.3.

Detailed specification of each function is intentionally flexible, as it depends on

task, objects, and robot capabilities. In the next sections, we show an implementation

of this model for a collaborative building task with a Nao robot.

8.3.2 Attention Estimation (A)

Our approach accounts for both bottom-up and top-down information when deter-

mining an object’s likelihood score. It considers the saliency of a scene in terms of

low-level features like color, intensity, and orientation. It also recognizes top-down

verbal context by comparing descriptive words about the object of interest from a

natural language utterance to a set of known object features. Finally, it considers

gaze and pointing gestures to provide additional clarity about the object reference.

We combine these four features into a weighted linear sum

σij = ωsSi + ωvVi + ωgGi,j + ωpPi,j (8.6)

The likelihood score σi,j of an object oi ∈ O under behavior βj ∈ B depends on the

object’s low-level visual saliency in the scene Si, the high-level verbal context Vi, the

current gaze Gi,j and the current pointing Pi,j. Each feature has a weight ω that

indicates its relative importance to the likelihood evaluation.

In this work, we chose to implement the feature calculation as a linear weighted

sum for simplicity. However, the feature calculation need not be a linear sum. It could

be a more complex function to represent complex dynamics of different features.
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Figure 8.3: Visual saliency is a bottom-up cue that influences attention. This is a
saliency map for the scene in Figure 8.1.

Visual Saliency

The visual saliency score S is calculated for a 2-dimensional snapshot of the scene

taken from the user’s perspective by a camera mounted above and behind the user.

It is critical for this work that the scene can be observed from near the user’s point

of view, which applies some limitation to the sensor setup.

Using features such as color, orientation, and intensity, we generate a saliency

map of the scene from the user’s point of view (Figure 8.3). An object’s saliency

score Si is incremented every time the saliency value for a pixel in a saliency map

corresponding to oi is above the average saliency for all pixels in that map.

Verbal Context

The verbal context V is a calculation of the proportion of descriptor words in an

utterance that match descriptors of the object. In our implementation of this system,

behaviors β can include utterances u of descriptive words such as “red” and “ham-

mer.” This score ignores linking words like “the” and “and.” The specification for

objects o includes a corresponding list of descriptors for that object.

Vi,j =
∑
w∈u

member(w,D)

|D|
(8.7)
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for utterance u, words w, and object descriptors D, where

member(w,D) =

 1 if w ∈ D

0 otherwise
(8.8)

The range of values for Vi,j is [0, 1]. If all of the descriptive words in an utterance

describe an object, Vi,j = 1.

We demonstrate in this chapter that our system works even with this very sim-

plistic language model. However, a more complex language system could be easily

implemented as part of this nonverbal behavior model; it would simply have to gen-

erate a verbal reference score Vi,j.

Head Orientation and Pointing

To identify whether an object is within the cone of attention indicated by head ori-

entation and pointing, we use a raytracing model. Each ray begins at the origin h

of the behavior (i.e., head or hand). The yaw θ and pitch φ of the rays are mea-

sured as angles off the center of attention and determine the attenuation of the ray’s

communicative strength relative to the utilized modality. As an example, because

head orientation yields a larger but less focused cone of attention than pointing, the

attenuation function (Equation 8.10) provides a slower decay of signal strength as it

diverges from the focus. This is mediated by the total communicative power being

distributed over a wider volume of space, effectively reducing the baseline strength

of any single head-originating ray. These attenuation functions effectively determine

the strength and spread parameters that define the communicative meaning of head

orientation and pointing (Figure 8.4).

To calculate gaze score Gi,j for a given object oi ∈ O and behavior βj ∈ B, we
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find

Gi,j =

∫
θ

∫
φ

aG(θ, φ) · I(h, θ, φ, oi)
−1 · rG dφ dθ (8.9)

where θ and φ comprise the pitch and yaw of the robot’s field of view, aG is the focus

attenuation function, I is the distance between ray origin (h) and intersection with

oi (equal to ∞ if no intersection), and rG is the base score attributed to a perfectly

focused gaze ray.

To represent the attenuation of gaze rays as their angular deviation increases from

the center ray, we devise the gaze attenuation function

aG(θ, φ) = (1 + θ2 + φ2)−1 (8.10)

This function indicates that gaze signal strength diminishes congruent to the inverse

squared distance of the angular deviation.

Computing the pointing score Pi,j for object oi is identical to Equation 8.9, but

with a different base ray score rP and pointing attenuation function

aP (θ, φ) = (1 + e
√
θ2+φ2)−1 · 2 (8.11)

This function indicates that pointing signal strength is more tightly concentrated,

decaying exponentially with deviation from focus.

8.3.3 Behavior Selection (S)

Once each object has a likelihood score under each behavior, the model can select

the behavior that maximizes the likelihood of the target object compared to other

objects, while minimizing the behavior cost. Recall that we denote the likelihood

score of an object i under behavior j as σij .

Likelihood scores represent a relative likelihood of reference, so what matters is
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Figure 8.4: Attenuation functions for gaze and pointing cones.

the value of the target object’s likelihood score, στ , relative to every other object’s

likelihood score. Therefore, we calculate the behavior selection score b for a specific

behavior βj as the number of standard deviations the likelihood score for the target

object, στ,j, is above the mean likelihood score σ̄j.

bj =
στ,j − σ̄j√
n∑

i=0
(σi,j−σ̄j)2

n−1

(8.12)

This value must be greater than the empirically-determined disambiguation thresh-

old (b > α). We can formalize this as an optimization that selects a behavior of

minimum cost while maintaining a behavior score above threshold. In other words,

if cβj represents behavior βj’s index in ranking C, select

min
j

(cβj) such that bj > α (8.13)

8.4 Evaluation

To evaluate our model, we compare the model’s suggested behavior with how peo-

ple actually performed at identifying the target object on a variety of novel visual
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Figure 8.5: The in person evaluation demonstrates the model operating in a real-world
human-robot interaction.

scenes. We find that the model correctly suggests the nonverbal behaviors required

to maintain high user accuracy in identifying the target object in these scenes.

To perform this evaluation, we implemented the model from Section 8.3 on a hu-

manoid robot in a collaborative building task and evaluated it in two experiments.

The first experiment, a video-based analysis, allowed us to collect data from a large

number of participants using a variety of visual scenes and provides initial confir-

mation of the model’s function. The second experiment, an in person human-robot

interaction, demonstrates that the model works well in real-world environments (Fig-

ure 8.5).

8.4.1 Study Design

In both evaluations, a Nao robot references objects in the scene, such as parts of an

Ikea chair or a set of Lego-like blocks. The robot’s behavioral repertoire (B) contains

three actions: speaking, gazing, and pointing. Nao’s built-in text-to-speech generator

was used for verbal references. The robot gazes at an object by orienting the center

of its face toward that object. Because Nao does not have independently maneuver-

able eyes, head orientation serves as a substitute for true gaze, which involves eye

movement as well as head movement. The robot points to an object by extending
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(a) Low ambiguity: Obvious
verbal reference does not need
disambiguation.

(b) Medium ambiguity: Am-
biguous verbal reference disam-
biguated with gaze or pointing.

(c) High ambiguity: Ambigu-
ous verbal and gaze reference,
disambiguated with pointing.

Figure 8.6: Three scenarios show the range of scene difficulties. The model selects
nonverbal behaviors only when they are required to disambiguate a verbal reference.

its arm to create a ray from shoulder joint through wrist joint to the center of the

target object. The robot uses whichever arm is closer to the object to point. The

cost ranking of these behaviors (C) was determined according to energy expenditure.

In order from least to greatest cost, the behaviors are speaking, head turning, and

pointing.

Higher cost behaviors may be needed when an interaction scenario is ambiguous.

We can categorize the ambiguity of interaction scenarios along two dimensions: verbal

ambiguity and visual ambiguity. Verbal ambiguity occurs when objects share descrip-

tor words, so that verbal references do not uniquely identify one object. For example,

in Figure 8.6(a), the verbal reference “large wood frame” is verbally unambiguous,

because only one such object is visible, but the verbal reference “small wood block”

would be verbally ambiguous because this phrase could refer to two such objects.

Visual ambiguity occurs when there are many similar objects near the target, making

gaze and pointing references unclear. For example, Figure 8.6(c) shows high visual

ambiguity for the small wood blocks, which are side-by-side.

For our evaluation, we select three distinct ambiguity levels along this two-dimensional

scale. In low ambiguity scenes, the target object is both verbally and visually unam-

biguous (Figure 8.6(a)). Medium ambiguity scenes have have high verbal ambiguity

but low visual ambiguity (Figure 8.6(b)). High ambiguity scenes are both visually
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5

Figure 8.7: These five scenes were used to train the weights ω in Equation 8.6. The
robot referenced objects in these scenes by speaking, orienting its head, and pointing.

and verbally ambiguous (Figure 8.6(c)). We did not select scenes with low verbal

ambiguity and high visual ambiguity because these are unlikely to require nonverbal

behaviors for disambiguation.

We determined the correct object reference behaviors empirically by evaluating

human viewers’ accuracies in identifying the target object in these three difficulty

levels. We establish a threshold of 70% accuracy for a “successful” reference. Though

the two evaluations use different scenes, the process is the same: assess human ac-

curacy at identifying the target object under the different behaviors in the robot’s

repertoire, then compare which behavior was successful for human understanding

against the behavior predicted by the model.

8.4.2 Empirically Determined Parameters

Before beginning the evaluations, some model parameters must be set, such as the

weights ωi in the linear sum (Equation 8.6), and the disambiguation threshold α.

We empirically determined values for these parameters by performing an initial user

study.
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We seek to identify the relative importance of the four features identified in Section

8.3.2 on accuracy and naturalness: low-level visual saliency, high-level verbal context,

gaze behaviors, and pointing behaviors. We do so by using linear regression to model

the effects of each feature on human performance when identifying a target object in

a number of example scenes.

We recorded video clips of a Nao robot referencing objects on the table in front of

it (Figure 8.7). A reference involved one of seven modes representing combinations of

verbal, gaze and gesture behaviors: verbal only; head orientation only; pointing only;

verbal and head orientation; verbal and pointing; head orientation and pointing; and

all of verbal, head orientation, and pointing. The objects include tools like hammers

and wrenches, as well as pieces of wood and basic shapes like cylinders. We recorded

each of the seven references to 16 target objects (across five different scenes) for a

total of 112 videos.

For each video clip, which lasted between 10 and 15 seconds, we asked users to

identify which object the robot was indicating (forced multiple choice with a drop-

down menu) and to rate its naturalness on a scale from -3 to 3, where lower numbers

meant “very unnatural” and higher numbers meant “very natural.”

Participants were recruited from Amazon Mechanical Turk. One hundred users

completed the study, with a mean accuracy of 85%. The data from three users was

eliminated for failing the preliminary evaluation question and having an accuracy

below the 95% confidence interval. Each user evaluated 21 videos, so our analysis is

based on a total of 2,037 examples.

To find the relative importance of each feature, we conducted a stepwise linear

regression to calculate regression coefficients for each predictor variable. We used five

predictor variables: the three robot actions (speaking, head turning, and pointing),

scene complexity, and target object salience. The three robot action predictor vari-

ables are categorical, simply indicating their presence or absence in the video. Simi-
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Measure (y) R2 (adjusted) Predictor β Significance

Accuracy 0.181
Pointing 0.10 p < 0.001
Speech 0.29 p < 0.001
Complexity 0.10 p < 0.001

Naturalness 0.216

Head orientation 0.91 p < 0.001
Pointing 1.64 p < 0.001
Speech 0.57 p < 0.001
Complexity 0.29 p < 0.001

Table 8.1: Linear regression models for features of the scene used to estimate where
a user’s attention will be drawn.

larly, the scene complexity is categorical, rated either “high” or “low.” The salience

predictor is an integer value corresponding to the saliency of the target object in that

scene, calculated using the SaliencyToolbox, a Matlab software implementation [260]

of Itti’s saliency model [125].

We constructed two linear models: one for accuracy, using a boolean response

variable indicating whether the user correctly identified the target object, and one

for naturalness, for which the response variable was the naturalness score between -3

and 3.

The results of the linear regression are shown in Table 8.1. Because we want

to maximize both accuracy and naturalness, we used the coefficient values from the

more comprehensive model (i.e., the one with the higher adjusted R2). Therefore,

we set each ω in Equation 8.6 to its corresponding β value in the naturalness linear

model. Because saliency was not found to be a significant part of the model, we set

ωs = 0, so saliency is not considered in the video-based evaluation below (though it

was included in the in person evaluation, see Section 8.4.4). We also determined that

α = 0.75 provides sufficient object reference disambiguation.
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Behavior

Scene
Metric

Correctness Verbal Verbal Verbal Verbal

Ambiguity Threshold +head +point +head

+point

Low
Model prediction 0.75 1.096 1.537 1.607 1.626
Human accuracy 70% 100% 100% 100% 100%

Medium
Model prediction 0.75 0.0 0.886 0.926 1.573
Human accuracy 70% 11% 84% 80% 81%

High
Model prediction 0.75 0.236 -0.209 1.510 1.484
Human accuracy 70% 48% 36% 73% 78%

Table 8.2: Results for video-based evaluation. For each scene (Figure 8.6), the model
prediction row contains behavior selection scores b and the human performance row
contains human accuracy rates. Results are colored green if they are above the
correctness threshold set for this evaluation (Section 8.4.3).

8.4.3 Evaluation 1: Video-Based

The video-based evaluation used novel scenes containing the same objects as the pa-

rameter training videos (Section 8.4.2) but in different configurations (Figure 8.6).

Evaluating novel scenes demonstrates that the empirically-determined parameter

weights generalize to new scene configurations.

Seventy-five participants (recruited on Mechanical Turk) were shown videos of the

robot in various scenes, including the three test scenes in Figure 8.6. In each video,

the robot exhibited one of four behaviors: verbal reference only (no movement); verbal

and gaze (head movement simultaneous with speech); verbal and gesture (pointing

simultaneous with speech); or verbal, gaze, and gesture (head movement and pointing

simultaneous with speech).

Table 8.2 shows the model’s predicted behaviors as well as participant accuracy

rates for each robot behavior on the three ambiguity level scenarios. Red values

indicate certainty scores (for model prediction) or accuracy rates (for human accuracy)

that fall below the predetermined threshold (α = 0.75 and 70%, respectively). Green

values indicate scores or accuracy rates above threshold.
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Figure 8.8: Participant view of blocks in the in person evaluation.

As expected, users were extremely accurate using only verbal references for sce-

nario 1, which has low ambiguity. Verbal references were insufficient for distinguishing

between the two red pliers in scenario 2, which has medium ambiguity, though users

were accurate when the robot displayed any of the nonverbal behaviors. Finally, users

had low accuracy on scenario 3 (the high ambiguity scene) with just head orientation

as disambiguation, but higher accuracy with pointing behaviors as disambiguation.

Comparing our model’s predictions for each scenario with empirical human accu-

racy, we can see that our model successfully selected the least-cost behavior that still

yielded high response accuracies from human users on the example scenarios.

8.4.4 Evaluation 2: In Person

Instead of Ikea furniture and lab tools, the in person evaluation uses brightly colored

Lego-type blocks with attached fiducial markers to simplify real-world object recog-

nition (Figure 8.8). The bright colors of the blocks allow the system to automatically

identify object positions through color segmentation, and fiducial markers attached to

the objects enable the system to uniquely identify the blocks, even those that are vi-

sually identical. The robot in this study performed real-time object localization using

a Kinect v2, and its pointing and gaze behaviors were not pre-scripted. Fast saliency

calculation was implemented using a Python-based computer vision algorithm [255].

In this experiment, the three ambiguity levels described in Section 8.4.1 are com-
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Behavior

Scene
Metric

Correctness Verbal Verbal Verbal Verbal

Ambiguity Threshold +head +point +head

+point

Low
Model prediction 2.0 2.252 2.405 2.437 2.454
Human accuracy 70% 99% 99% 99% 100%

Medium
Model prediction 2.0 1.239 2.127 2.260 2.391
Human accuracy 70% 63% 83% 85% 85%

High
Model prediction 2.0 1.366 1.848 2.148 2.196
Human accuracy 70% 37% 68% 75% 65%

Table 8.3: Results for in person evaluation. For each ambiguity level, the model
prediction row contains behavior selection scores b and the human performance row
contains human accuracy rates. Results are colored green if they are above the
correctness threshold set for this evaluation (Section 8.4.4).

bined into a single scene. As can be seen in Figure 8.8, four blocks (orange, lime,

green, and yellow) have low ambiguity, two blocks (the pair of blue) have medium

ambiguity, and two blocks (the pair of red) have high ambiguity.

A few changes were made to the model’s parameter values based on pilot testing.

The disambiguation value (α) was set to 2.0. The weight on verbal scores (ωv) was

raised to 1.07 from 0.57, and the weight of saliency scores (ωs) was set to 0.25 to

account for the importance of visual saliency in real-world scenes. All of the other

parameter values were carried over from the empirical evaluation (Section 8.4.2),

despite the shift from screen-based to real-world interaction.

Twenty people participated in this study. The robot performed each of the four

possible object reference behaviors toward each of the eight objects on the table,

for a total of 32 object references per person. The order of object references was

randomized for each participant.

Table 8.3 lists the model’s predictions and peoples’ accuracies in identifying the

target object for each of the ambiguity levels and referential behaviors. As expected,

participants’ performance followed a similar trend to the video-based performance,

with high accuracies across the four behaviors for low ambiguity scenarios, high ac-
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curacy with any nonverbal behavior for the medium ambiguity scenarios, and high

accuracy only with the more precise nonverbal behaviors for the high ambiguity sce-

narios. Red values indicate scores or accuracy rates that fall below the correctness

threshold (α = 2.0 and 70% for model predictions and human accuracy, respectively),

while green values indicate scores and accuracies that fall above threshold.

One anomalous finding is that people seemed to struggle with ambiguity when the

robot performed both head turn and pointing in the high ambiguity condition. The

accuracy for the head turn behavior was similar to the accuracy for head turn and

pointing behavior, and lower than the target accuracy of 70%. This may be caused by

the ambiguity introduced by the head turn behavior, which actually serves to weaken

the pointing cue. More research is needed to identify whether pointing alone is a

stronger cue than pointing with a head turn in some conditions, particularly in high

ambiguity scenes.

8.5 Discussion

This chapter presents a model for generating robot behaviors that help guide a user’s

attention toward a target object in a minimally distracting but maximally commu-

nicative way. It takes the user’s perspective to simulate where their attention will

be directed in response to the robot’s behaviors, then selects the most effective, least

expensive behavior.

In this chapter, we implemented the model for a particular assembly task with a

Nao robot, but the general model described in section 8.3 is flexible. Different robot

capabilities, sensing requirements, and cost evaluations can be implemented to best

suit the particular task at hand.

The model assumes that the robot and human users have relatively similar, un-

obstructed, complete views of the entire workspace. In particular, we assume that
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there are no substantial differences in what either agent can perceive of the scene.

Accounting for occlusion and partial information, particularly when that information

is not shared, would allow the model to be extended to more complex interactions.

Similarly, the model currently requires a view of the environment from the user’s

perspective in order to calculate the saliency score on the visual scene. This re-

quirement for perspective taking presents a limitation on the sensor setup, because

a camera has to be available from approximately the participant’s viewpoint. A pre-

liminary solution to this problem is to mount a fixed camera above and behind the

user’s expected position. However, this requires knowing in advance where the user

will be and restricting their movements around the environment. A more elegant

solution is to capture a view of the scene from a head-mounted camera, for instance

a camera embedded in the user’s eye glasses. This allows the user to move about the

environment while collecting an accurate user view.

Though the model has been successfully implemented and evaluated in the real

world, it does not yet operate in real time due to the time requirements of saliency

and raytracing algorithms. Currently, the robot pre-calculates saliency, gaze, and

gesture scores before each interaction, which takes up to 10 seconds. Improvements

to these algorithms will make real-time interaction feasible.

This model does not account for temporal dynamics of communication. For ex-

ample, a user’s attention may shift as a sentence unfolds and more information is

provided to narrow the range of possible references. Similarly, saliency is a relevant

feature in tasks that require quick responses, and therefore rely on instantaneous

scene evaluations, but the saliency of an object fades with habituation to that scene.

A more complex model would account for such temporal dynamics as part of the

attention estimation function.

These limitations provide a broad scope for future implementation of the model,

which shows promise for making human-robot interaction more comfortable, natural,
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and efficient.

8.6 Summary

In this chapter, we introduced a flexible model for generating nonverbal behaviors to

communicate spatial references. This model, inspired by psychological understanding

of top-down and bottom-up influences on cognition, calculates a nonverbal behavior

for a robot to perform that most clearly indicates the target object while minimizing

the cost to perform that behavior. The model successfully selects the lowest-cost

nonverbal behavior that conveys the spatial reference effectively, as measured in two

evaluations, one online and one in person.

The model described in this chapter is flexible. It can be used for robots with

different nonverbal capabilities; for example, for a robot with independently movable

eyes, the model could include eye shifts as a behavior along with head turns and

pointing. Furthermore, the model is not dependent on a particular scene or type of

interaction; unlike data-driven models (such as the one in Chapter 7), our model uses

features of the scene which are detected dynamically by cameras. Therefore, it can be

used to generate a robot’s spatial references in a variety of interactions, from tutoring

to collaborative manufacturing.

The evaluations of the model in this chapter were fairly contrived: they measured

people’s accuracy in response to spatial references in a series of discrete, disconnected

trials. While this is important for initially validating that the model performs as

expected, it does not indicate how the model will perform in a more naturalistic

interaction. In the next chapter, we use the nonverbal behavior model described

here to generate a robot’s nonverbal behavior during a collaborative human-robot

construction task, to understand how the scene-dependent generation of nonverbal

behavior impacts human performance.
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9

Nonverbal Communication in

Human-Robot Collaboration∗

The previous chapter detailed a model for generating robot referential be-

havior. In this chapter, we apply this model in a human-robot collaboration.

We investigate whether the usefulness of nonverbal behaviors generated by the

model changes based on task difficulty. A robot provides instructions for peo-

ple to construct structures out of Lego blocks. We manipulate the difficulty of

a spatial memorization task in two ways: by adding steps to memorize, and

by introducing an interruption. We analyze how a robot’s deictic nonverbal

behavior (looking and pointing), which accompanies the spatial instructions

to be memorized, affects people’s recall and task completion times under dif-

fering difficulty levels. Results indicate that for easy tasks, people generally

perform at a high level already, and instructions provided with nonverbal

behaviors don’t improve performance compared to instructions delivered by

speech alone. However, for difficult tasks, seeing the nonverbal behaviors

∗This work was originally published as:
Henny Admoni, Thomas Weng, Bradley Hayes, and Brian Scassellati. Robot nonverbal behavior
improves task performance in difficult collaborations. In Proceedings of the 11th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI), 2016.
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led to higher accuracy and shorter completion times, indicating that as the

task became more difficult, the referential nonverbal behaviors mitigated the

negative effects of task difficulty. In short, nonverbal behavior may be even

more valuable for difficult collaborations than for easy ones.

9.1 Introduction

People use nonverbal behaviors (NVBs) to augment spoken references, clarify am-

biguous language, and convey attention, among many other functions [28, 99, 164].

Joint activity, which involves coordinating action among two partners, requires NVBs

that direct attention to particular objects or regions of space [66]. These actions can

take the form of pointing (i.e., deictic) gestures, which can be enacted with the hand,

the head, or other body parts [66, 164]. In this chapter, we focus on two specific

deictic NVBs: pointing with the hand and looking with the head.

Robots can take advantage of deictic NVBs to improve human-robot collabora-

tions. For example, imagine a robot assistant on a factory floor that is training a new

employee in how to construct an assembly out of component parts. The robot can

look and point to the parts as it refers to them in order to clarify the references. This

is especially important when there are multiple parts that can be described the same

way, but need to be placed in a particular order, for example, a left and right version

of the same bracket piece. Instead of saying “the left bracket piece,” the robot can

say “that bracket piece” and use pointing to disambiguate the reference.

Human-robot interaction research has shown that people can benefit from this kind

of deictic NVB from robots. Pointing and gaze from robots during object references

allows people to more quickly locate objects and to disambiguate object references,

increasing the efficiency of the collaborations [3, 44, 115]. People also have more

positive evaluations of a robot when it uses gestures along with speech [210].
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In this chapter, we ask whether NVBs work more effectively in some tasks than

in others. In particular, we explore whether the difficulty of a task affects how well a

robot’s deictic NVBs serve to communicate spatial references. To answer this research

question, people are asked to complete a memorization task based on instructions pro-

vided by a humanoid robot. We manipulate task difficulty in two ways: by increasing

the number of steps people need to memorize, and by introducing an interruption

that distracts people momentarily from their task.

We hypothesize that:

H1 Using nonverbal behaviors while providing spatial task instructions will improve

recall accuracy and reduce task completion times,

H2 When the task difficulty increases, the effect of nonverbal behaviors will increase,

and

H3 A robot that displays nonverbal behaviors will be rated more positively than a

robot that only uses speech for communication.

Generating NVBs for robots is not trivial. A näıve NVB controller for a robot

might always select all possible nonverbal behaviors, looking and pointing at every

possible reference. But there is a benefit to being selective about generating NVBs.

Frequent nonverbal behavior is undesirable when it engages the effectors that the

robot might otherwise need, such as hands for object manipulation and head for

vision. Additionally, in human collaborations, people use nonverbal behaviors as sub-

tle, implicit mechanisms of communication [219], so excessive NVBs may be visually

or cognitively distracting to a viewer. For robots powered by batteries, the energy

expenditure from moving effectors to perform NVBs might also become a concern.

For these reasons, we have designed a behavior model that is selective about when

to generate NVBs. The model considers elements of the scene and the task to select
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the most communicative and least expensive NVBs for the particular reference and

environment at hand. This model is described in Chapter 8.

In this chapter, we use the model to generate deictic NVBs for a human-robot

collaboration in order to investigate the effectiveness of NVBs under different task

difficulties. Spatial collaboration, like the task employed in this study, involves ma-

nipulating and moving objects in the environment. Because the position of these

objects is not restricted, the model cannot simply pre-script the NVBs for each ob-

ject. Instead, our real-time robot behavior model continually calculates the best NVB

for each object reference as the objects in the environment are manipulated.

Section 9.3 provides details about the implementation of the model and the ex-

periment. Section 9.4 describes the results of the study, and Section 9.5 discusses

these results as well as suggestions for future research.

9.2 Related Work

Deixis is a critical part of cooperative action between people [66]. In particular, people

use deictic gestures like pointing to focus attention on a target spatial region [32].

As pointing becomes more precise (because the pointing targets are closer), people

rely more on pointing and less on language for references [32]. Deictic gestures are

especially useful in communicating how to assemble objects [160], which is the task

we have selected for the present study.

Human-robot interaction (HRI) research has shown the benefit of deictic gesture

to human-robot collaboration. Implicit nonverbal communication—including deixis

using gaze and pointing—makes a robot more understandable, increases the efficiency

of task performance, and reduces the impact of errors from miscommunication [47].

When robots are providing instructions or referencing objects, people use robots’

deictic gestures to improve their task speed and efficiency [3, 44, 115]. Robots can
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even use deictic gaze to subtly influence people’s selections of objects without those

people realizing it [175].

Deictic NVB is an effective mechanism for robot communication. People rate

robots that gesture along with their speech more highly than robots that do not show

any nonverbal behavior [210], and multimodal deixis (for example, looking and point-

ing) is better than unimodal deixis (i.e., pointing or looking alone) [230]. Cooperative

gestures are most effective when they are presented frontally and with machine-like

“abrupt” motion [201]. Interestingly, the saliency of an object in a cluttered environ-

ment has only a small effect on people’s interpretation of a robot’s pointing behaviors

[230].

Computational models of NVB allow robots to generate their own gaze and ges-

tures in response to the context of the interaction. Some of these models are based

on empirical examples for human performance, such as data-driven models of tutor-

ing [8] and narration [116]. Others are based on contextual and semantic knowledge

[111, 179].

In this chapter, we use the NVB model detailed in Chapter 8, which takes into

account the user’s perspective to select the correct deictic behavior for object refer-

ences. Some robot behavior generators take a similar approach, modeling the user’s

perspective to select the most appropriate deictic behaviors for providing route di-

rections [185], references to people nearby [158], or even object references as in the

current work [111]. A robot that simulates human cognition when selecting deictic

behaviors for spatial references can more effectively convey to people the region of

space to which it refers [105]. Our model is different from prior work because it applies

to object references, not to people or spatial areas, and because it uses both top-down

and bottom-up cues from the scene to model the user’s perspective. Both top-down

and bottom-up attentional processes are important components of fluid joint action

between people and robots [109].
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9.3 Experiment

To evaluate the effect of nonverbal behavior on people’s performance during inter-

rupted tasks, we conducted an in-person human-robot interaction study. In this

study, we test people’s memory for a set of assembly instructions given by a robot.

For some participants, the robot uses NVBs selected by the model detailed in Chap-

ter 8 to augment its spoken instructions. We compare people’s performance with or

without NVBs and at various levels of task difficulty to evaluate how NVBs affect

instruction recall and task efficiency.

9.3.1 Design

Experimental variables

This study has three between-subjects independent variables.

• NVB is “present” or “absent” depending on whether or not the robot displays

nonverbal behaviors when providing the assembly instructions

• Memorization load is “low” or “high” depending on the number of steps in the

assembly to be memorized

• Interruption is “present” or “absent” depending on whether or not the user is

interrupted during their completion of the task

Therefore, this study has a 2 (NVB) × 2 (memorization) × 2 (interruption) design,

which results in eight conditions. Participants are randomly assigned to one of these

conditions.

The nonverbal behaviors in the NVB condition are looking and pointing. These

behaviors are autonomously generated in real time in response to object references

using the model described in Chapter 8. Details of the model implementation for this

experiment are in Section 9.3.2.
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Put one of the small red blocks on top of the large lime block. 

Put the small green block next to the red block.

Then stack a small blue block on the red block.

Put that arrangement in the bin on your right.

1

2

3

4

Figure 9.1: An example of the steps for the construction of one assembly in the high
memorization condition. Assemblies in the high memorization condition have four
steps, and those in the low memorization condition have three steps. Low memo-
rization assemblies are generated by removing the third step of a high memorization
assembly.

We employ two strategies for changing the difficulty of the task. The first is an

increase in memorization load (Figure 9.1). Low memorization assemblies involve

three steps for completion, and high memorization assemblies require four steps. In

both cases, the final assembly step is always an instruction to place the assembly in

a particular bin. The other assembly steps involve a subject, a spatial relation, and

a target. For example, “put the small green block next to the red block” involves the

green block (subject), next to (spatial relation), and red block (target).

The second strategy for changing task difficulty is interruption. In this study, an

interruption involves completing a mental rotation test [14] (Figure 9.2). In the test,

participants are shown pictures of a target shape and four possible rotations of that

shape. They are asked to select the image that correctly represents what the target

shape would look like when rotated. Participants who are interrupted complete eight

such questions with a time limit of four minutes. We selected a mental rotation test

as an interruption to try to interfere with people’s spatial and visual memory for the

assembly instructions.

The two difficulty manipulations provide different types of challenges. Increasing

memorization load puts greater strain on working memory. Because each step of

the task requires memorizing two objects (the subject and target), the number of

object references to be memorized in each task goes from six in the low memorization
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Figure 9.2: An example of a mental rotation question used in the interruption. The
correct answer is B. Courtesy of [14].

condition to eight in the high memorization condition, approaching the 7 ± 2 limit

to working memory [167]. The interruption, in contrast, presents an unexpected and

rapid shift of attention. It was selected to mimic a distraction that might occur during

any type of human-robot collaboration.

Measures

There are two objective measures and one subjective measure in this study. The

first objective measure is recall accuracy, how well a participant follows a robot’s

instructions as measured by the number of correct steps the participant completes in

each assembly. Each step is scored individually for accuracy, with one point awarded

for each correct object or relation. Therefore, participants can receive partial credit

for an assembly even if some of the steps are completed incorrectly. For example, if

the step’s instruction was “put one of the small red blocks on top of the large lime

block,” but the participant put a small blue block underneath the large lime block,

they would lose two of the three possible points (for missing the red block and the “on

top” relation), but would still be awarded one point (for involving the lime block).

The second objective measure is the completion time, how long it takes the partici-

pant to put the blocks together once they are given the instructions. Completion time

is measured from the moment the robot finishes its instructions to the moment the

participant indicates that they are done with the task (see Section 9.3.3 for details).

Lower completion times mean more efficient interactions.
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The subjective measure is people’s perceptions of the robot. Specifically, we evalu-

ate people’s perceptions of the robot’s animacy, anthropomorphism, intelligence, and

likability, using the Godspeed survey [34]. This standardized human-robot interac-

tion questionnaire has five or six Likert-scale questions for each of the four perception

items we are studying.

9.3.2 Apparatus

The robot in this study is a 58 centimeter tall humanoid called Nao. We used two

degrees of freedom in Nao’s head to enact looking behaviors and six degrees of freedom

in Nao’s arms for pointing behaviors. Nao’s speech was generated using the robot’s

built-in text-to-speech system.

Participants constructed different assemblies using eight brightly colored Mega

Blocks. A Microsoft Kinect v2 sensor provided real-time sensing capabilities for the

Nao, enabling it to detect the blocks in real time and to track their positions in 3D

space. Each block had a fiducial marker attached, so that the Kinect could uniquely

identify blocks using the augmented reality library ArUco [97]. The markers were

attached along each block’s edge, so the center of a marker did not represent the

center of a block. To ensure that the Nao’s deixis would be correctly aimed at the

center of the blocks, the Kinect found block centers using color segmentation and

blob detection techniques from the OpenCV library [45], matching the marker closest

to a given block center as that block’s identifier.

Because object detection and nonverbal behavior modeling occurred in real time,

the NVBs in this study were not pre-scripted. The NVBs a particular participant saw

depended on the block layout. Though all participants began with the same block

layout, as they manipulated the blocks, the NVB to each block was re-calculated

based on its new position.

In every condition, Nao shifted its weight slightly from foot to foot to simulate
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Interruption

Task 1 Task 2

Robot gives 
instructions

Participant builds 
assemblies

Participant !
resets blocks

Participant  
completes 

survey

Participant builds 
assemblies

Robot gives 
instructions

Figure 9.3: A timeline of the interaction. If the participant was in the interruption
condition, an interruption occurred between the robot’s instructions and the partici-
pant’s assembly in task 2.

animacy when it was not providing task instructions. When performing computation-

ally expensive actions like calculating saliency scores for each object, which required

several seconds, Nao scanned left and right with its head to simulate looking at all of

the objects on the table.

9.3.3 Methods

We collected data from 48 participants recruited from a university campus (mean

age 26; 25 male, 21 female, 2 other or preferred not to respond). Participants were

compensated $5 for this 30 minute study. Participants were randomly assigned to an

NVB, memorization, and interruption condition.

We used the same experimental setup in this study as in the in person validation

study from Chapter 8. Thus, Figure 8.5 shows the room and object layout for this

study.

Figure 9.3 provides a visual timeline of the interaction. Participants performed

two construction tasks, one after the other. Each task was comprised of two assem-

blies. For each assembly, Nao provided a set of verbal instructions (Figure 9.1). For
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participants in the NVB condition, these verbal instructions were augmented with

simultaneous looking and pointing behaviors generated by the model described in

Chapter 8.

There was a timer on the computer screen next to the participant. After Nao

was done giving its instructions for the task, it told participants to press “start”

on the timer and begin putting together the blocks, and to press “stop” when they

were finished. Task completion time is measured from when the robot finishes its

instructions to when the participant pressed “stop” on the timer, in order to account

for time they spent thinking before pressing the “start” button.

For participants in the interruption condition, an interruption occurred just after

Nao finished providing instructions to task 2 but before participants could start as-

sembling the blocks. During the interruption, the experimenter came into the room,

placed the robot in an idling mode by tapping its head once, and asked the partic-

ipant to complete a mental rotation test (detailed in Section 9.3.1). The test itself

had a four minute time limit, and the total interruption time was approximately five

minutes, though it varied based on how quickly the participant completed the test.

After the interruption, the robot was taken out of idling mode with a second head

tap. It then prompted participants to begin the task 2 assembly.

Though we did not inform participants, task 1 is intended as a practice trial that

allows people to familiarize themselves with the task and the robot. Results from

task 2 are analyzed in Section 9.4.

At the end of the experiment, participants were asked to complete a questionnaire

detailing their impressions of the robot and the task. They also provided demographic

information at this time.
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Low Difficulty High Difficulty

No Interruption Interruption No Interruption Interruption
No
NVB

0.976 (.04) 0.943 (.06) 0.675 (.21) 0.867 (.12)

NVB 0.929 (.11) 0.893 (.13) 0.917 (.05) 0.843 (.18)

Table 9.1: Average recall accuracy on task 2 for each of the eight conditions, written
as mean (standard deviation).

Low Difficulty High Difficulty

No Interruption Interruption No Interruption Interruption
No
NVB

12.5 (2.6) 15.8 (2.0) 23.2 (5.3) 32.7 (7.9)

NVB 13.6 (2.1) 21.9 (5.3) 24.5 (6.5) 25.3 (10.9)

Table 9.2: Average completion time in seconds for task 2 in each of the eight condi-
tions, written as mean (standard deviation).

9.4 Results

Two participants were excluded for noncompliance, so we examined data from 46

participants.

9.4.1 Objective Measures

To evaluate the behavioral effects of our manipulations, we examine the effect of the

three experimental variables (memorization load, interruption, and NVB) on the two

behavioral metrics (accuracy and completion time, both measured from the second

task). Results are shown in Table 9.1 for accuracy and Table 9.2 for time.

We conducted a three-way analysis of variance (ANOVA) to measure the effects

of our three independent variables on recall accuracy. The test revealed a statistically

significant effect of memorization load (F (1, 38) = 9.137, p = 0.004) and a statistically

significant interaction between memorization and NVB (F (1, 38) = 4.713, p = 0.036).

Figure 9.4 illustrates this significant interaction. There was also a borderline signif-

icant interaction between interruption and NVB (F (1, 38) = 3.397, p = 0.073) and a
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Figure 9.4: Accuracy of recall by memorization and NVB conditions. The interaction
is significant (p = 0.036), indicating that NVB helped mitigate the difficulty of the
task.

borderline significant three-way interaction among memorization, interruption, and

NVB (F (1, 38) = 3.278, p = 0.078).

We investigate this three-way interaction with tests of simple effects, which reveal

how one variable influences the others. First, we conduct a test for simple two-way

interactions between interruption and NVB for each level of memorization. This sim-

ple two-way interaction yielded a significant effect for high memorization (F (1, 38) =

6.554, p = 0.015), but not for low memorization (F (1, 38) = 0.001, p = 0.981). This

tells us that in the high memorization case, the effect of NVB on accuracy depends

on whether an interruption occurs. Investigating further into the interaction, we run

a test of simple simple main effects. We find a statistically significant effect of NVB

on accuracy rates in the interruption absent condition (F (1, 38) = 9.466, p = 0.004)

but not in any other conditions.

To evaluate the effect of our second objective measure, completion time, we con-
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ducted a similar three-way ANOVA. For this test, we excluded the timing data from

one participant whose response time (89 seconds) was an extreme outlier (> 3 SD from

the mean). The test revealed a significant effect of interruption (F (1, 37) = 8.629, p =

0.006) and memorization (F (1, 37) = 31.490, p < 0.001). It also identified a borderline

significant interaction between memorization and NVB (F (1, 37) = 3.161, p = 0.084)

and a borderline significant three-way interaction between memorization, interrup-

tion, and NVB (F (1, 37) = 3.362, p = 0.075).

As with accuracy, we further investigate this three-way interaction with a test

of simple effects. Testing for a simple two-way interaction between interruption and

NVB did not yield significance for high memorization (F (1, 37) = 2.639, p = 0.113)

or low memorization (F (1, 37) = 0.917, p = 0.345) conditions. However, a test of

simple simple main effects showed a statistically significant influence of NVB on

completion time for participants in the high memorization condition when an in-

terruption occurred (F (1, 37) = 4.330, p = 0.044), but not without an interruption

(F (1, 37) = 0.101, p = 0.752). In other words, in the high memorization condition,

NVB mitigated the effects of the interruption on task completion time (Figure 9.5).

There was no effect of NVB on the low memorization condition, either with or without

an interruption.

9.4.2 Subjective Measures

Our subjective measure was user perception of the robot in terms of anthropomor-

phism, animacy, likability, and perceived intelligence. Each of these four items was

measured by five or six Likert-type questions provided in a questionnaire. The items

all had high internal consistency as determined by a Chronbach’s alpha greater than

0.7.

We conducted a one-way ANOVA to determine if there were differences in people’s

responses to the four questionnaire items depending on which of the eight conditions
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Figure 9.5: Completion times for interruption and NVB conditions, shown for the
high memorization condition only. There is a significant simple simple main effect of
NVB on completion time when an interruption occurs (p = 0.044) but not without
an interruption.

they experienced. None of the experimental variables had statistically significant

effects on these items (anthropomorphism: F (7, 38) = 0.510, p = 0.821; animacy:

F (7, 38) = 0.159, p = 0.992; likeability: F (7, 38) = 1.096, p = 0.385; intelligence:

F (7, 38) = 1.621, p = 0.159).

9.5 Discussion

Our first hypothesis predicted that task performance (in terms of recall accuracy and

completion times) would improve when a robot used deictic NVBs to provide task

instructions over when it only provided those instructions verbally. This hypothesis

is not supported in the general case, because the results do not show a statistically

significant effect of NVB across all memorization and interruption conditions.

However, there is a significant interaction effect between NVB and memorization
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load for both recall accuracy and completion time. The interaction between NVB

and interruption is also significant for completion time and borderline significant for

recall accuracy. This indicates that for more difficult tasks—i.e., those with heavier

memorization requirements or those in which the user’s attention is distracted—NVBs

do, in fact, have a positive effect on performance. Therefore, H2 is supported for both

objective measures.

In short, the objective measure results from this study show that NVB has little

effect on tasks that are already easy, but that when tasks become challenging, NVB

improves task performance by increasing recall accuracy and decreasing completion

times.

Our third hypothesis predicted that subjective evaluations of a robot’s anthro-

pomorphism, animacy, likability, and intelligence would be increased when the robot

showed deictic NVBs while providing task instructions, over when the robot simply

provided the instructions verbally. Our results do not support H3, because none of

the items on the questionnaire reached significance.

This result is in contrast with other studies, which have shown that subjective

perceptions of a robot are improved when the robot uses NVBs [116, 210]. While

the current study only uses deictic NVBs, however, the previous studies also used

expressive NVBs such as iconic or metaphoric gestures [164]. These types of gestures

involve producing a visual representation of physical or abstract concepts, such as

moving the hand up and down for “chopping” or signaling over the shoulder for

“a long time ago.” It may be possible that deictic behaviors, such as looking and

pointing, do not elicit the same kind of perceptions of agency in a robot as other,

more expressive gestures.

From the results, the difficulty manipulations used in this study (“low” or “high”

memorization load, and “present” or “absent” interruption) seem approximately

equally difficult. Recall accuracy is slightly worse for low memory, interrupted tasks
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(89%) than for high memory, uninterrupted tasks (92%), while task completion times

are slightly worse for high memory, uninterrupted tasks (24.5 seconds) than for low

memory, interrupted tasks (21.9 seconds). One limitation of our study is that it only

uses two levels for the two difficulty manipulations. Future work could investigate a

range of difficulty levels to identify whether NVB helps even more with more difficult

tasks and whether the effect plateaus at any point.

One novel feature of this study is the real time nonverbal behavior model that

controlled the robot’s actions. Because the model recalculated attention likelihood

scores when blocks moved, the NVB a participant saw was specifically targeted toward

the scene in front of them. As the results show, this NVB was effective in mediating

the effects of a difficult task.

A primary principle of the behavior generation model is that too much NVB

can be a hindrance to comprehension. This experiment did not evaluate this claim

directly. A future study comparing NVBs produced by the model to other NVB

generation models would elucidate how the scene-based model used here compares to

other systems that potentially produce more NVBs during an interaction.

We do not claim that our model provides optimal behavior generation for spatial

references. However, our model performs at least a subset of the optimal behaviors for

nonverbal communication, as determined by the improvement of recall accuracy and

completion times. Better results may be possible with a different behavior generation

model, and future studies comparing such models would help identify what kinds of

NVBs are useful in human-robot collaborations.

Additions to the model might improve its performance. For example, once a robot

has named an object by pointing to it, the need to deictically refer to that object

again may decrease for a short time afterward. This would add a “prior reference”

factor in the likelihood equation, which would increase the likelihood of an object

if it has been recently referenced. This factor can decay over time to capture the
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temporal dynamics of attention. This and other modifications to the model could

generate even more natural NVBs.

9.6 Summary

This chapter achieved two goals. First, it showed that the multimodal behavior model

described in Chapter 8 was effective in a naturalistic human-robot interaction. The

model successfully operated in a real-time collaboration and succeeded in improving

people’s performance on a joint construction task with a robot. This is promising for

future application of this robot behavior model in new scenarios and with new robots.

Second, this chapter presented a novel HRI finding: that the benefit of nonverbal

behavior depends on task difficulty. For easy tasks, NVB may not add much, but for

harder tasks, NVB significantly improves performance. By manipulating the level of

difficulty using interruptions and memorization load, but keeping the task domain and

instructions the same, we showed that there are some conditions in which nonverbal

behavior is more impactful than others. This finding opens the door to a possible

categorization of task difficulty. Understanding what makes tasks difficult in this way

would allow roboticists to apply nonverbal behaviors only when needed, reducing the

amount of nonverbal behaviors performed extraneously while improving human-robot

interactions when nonverbal behaviors are warranted.
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10

Discussion∗

This dissertation describes a body of work seeking to understand and improve

upon the use of eye gaze and other nonverbal behaviors in socially assistive

human-robot interactions. The studies and models described in Chapters 3

through 9 all revolve around how robots can use nonverbal communication to

improve human partners’ comprehension and task performance in natural,

subtle ways. In this chapter, we highlight central themes that run throughout

this work, and present some open questions for future research.

10.1 Central Themes

This dissertation covers a range of approaches to HRI research and application do-

mains. In the previous chapters, we presented lab-based studies analyzing human

responses to robot gaze measuring varied effects on perception and decision making;

we developed both data-driven and heuristic models of nonverbal behavior; and we

covered evaluation domains ranging from tutoring to collaborative manipulation.

Despite the variety, the studies and models in this dissertation all seek to answer

∗Part of this chapter is in submission [6]
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one central question: How can eye gaze and other nonverbal behaviors be used by

social robots to improve socially assistive human-robot interactions?

In the process of answering this question, several themes emerged from this work.

Here, we draw out and expand on these themes.

10.1.1 Social Behavior and Nonverbal Communication

The studies described in this dissertation reveal that nonverbal behavior from a robot

is not necessarily understood by human viewers as informative or communicative.

For example, in Chapter 6, a robot’s referential gazes (its sorting suggestions) were

generally ignored by users in the absence of any other nonverbal cue. Similarly, in

Chapter 3, an analysis of micro-level behaviors showed that robot directional gaze

did not elicit a reflexive attention shift the way human gaze did.

However, there may be ways to influence a viewer’s interpretation of a robot’s non-

verbal behavior. For example, in Chapter 6, adding a nonverbal gesture (a handover

delay), which was perceived as highly social, caused people to look at and comply

with the robot’s referential gaze significantly more frequently.

Other research has also found that the perception of a robot’s gaze as socially

communicative can be influenced by whether that robot has previously displayed

social behavior. Infants who observed a robot engage in a socially communicative

exchange with an adult were more likely to subsequently follow the robot’s gaze than

infants who did not see a social exchange [165]. This suggests that infants can view

robots as entities whose gaze is meaningful, but only when they have prior experience

to indicate that the robot is a social agent.

Adults also show a difference in gaze processing depending on their expectations.

Studies modeled after the same reflexive cueing experiment as our study in Chapter

3 showed that the way a stimulus is presented affects whether it evokes the reflexive

cueing effect that human faces do. When presented as a social stimulus (a face), the
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image cued reflexive attention shifts and activated the superior temporal sulcus, a

brain area that specializes in processing eyes [138, 203]. However, the same image

presented as a non-social image (a car) fails to cue these reflexive responses and did

not elicit as much activation in the superior temporal sulcus. These results suggest

that cognitive processing of a stimulus as a face depends on prior expectations and

context.

The social signals that serve as a requirement for nonverbal communication may

succeed because they set up an expectation of the robot as an animate agent, whose

gaze and other behaviors are intentional and meaningful. If this is the case, the

communicative effect of a robot’s nonverbal behavior could be mediated by people’s

perceptions of the robot’s animacy.

Establishing robot animacy is still a challenge in HRI. Many behaviors can influ-

ence people’s perceptions of a robot’s animacy, from low-level motion patterns [94]

to longer time scale behaviors like cheating [221]. However, researchers still don’t

know what features of a robot’s behavior elicit these perceptions of animacy. Under-

standing how animacy relates to the interpretation of a robot as a social agent may

improve the way nonverbal behaviors are used in HRI.

10.1.2 Varying Levels of Analysis

One important aspect of this dissertation research is that we analyze human behavior

at a variety of levels on the spectrum from micro-scale to macro-scale. Micro-scale

behaviors, such as eye saccades and reflexes, occur rapidly (within hundreds of mil-

liseconds) and often over small distances (such as tiny shifts of gaze). These behaviors

may require specialized tools for measurement, such as eye trackers. Chapter 3 in-

volves measuring micro-scale responses to directional cues.

Macro-scale behaviors are measured over larger times and distances, for instance,

how people elect to sort blocks the robot has given them, as in Chapter 6. Macro-
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scale behaviors can generally be observed without specialized equipment, and may

involve a holistic analysis of combined actions over an extended duration of minutes

or even hours.

Between these ends of the spectrum are behaviors like identifying a target (Chapter

4) or selecting an object (Chapter 5), which occur over seconds rather than an entire

interaction, but can be seen and measured at a fairly coarse level of analysis.

As described in Section 2.4 and Chapter 3, people’s responses to robot gaze differ

from their responses to human gaze in some ways when measured on a micro time

scale. For instance, robot directional gaze does not cue the same reflexive response as

human directional gaze in the first 500 milliseconds of exposure [2]. In the moments

just before naming an object, people spend more time ensuring joint attention by

looking at their partner’s face than at the object if their partner is a robot, but more

time looking at the object than at their partner’s face if their partner is another

human [269].

Conversely, there is much evidence that robot gaze has macro-scale behavioral

effects that follow expected patterns from human-human interactions. For instance,

robot gaze modeled after human behavior can successfully convey object references

[3] and manage conversational turn-taking [24].

Presently, the bulk of research on the effects of robot gaze tends toward the macro-

scale side of the spectrum rather than the micro-scale side. One reason is that measur-

ing micro-scale effects requires carefully controlled environments and precise sensors,

while macro-scale effects can be measured in more naturalistic settings with common

tools like video cameras.

Further investigations into the differences between micro-scale and macro-scale

effects of robot gaze is warranted. Understanding the disparity between people’s re-

sponses at these various levels of analysis would reveal as much about human cognitive

processing as it would about how to design effective robots for social interactions.
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10.2 Open Research Questions

This section presents several open questions in the research on social eye gaze for

human-robot interaction and discusses how each might be investigated. Some of these

questions—such as the importance of a robot’s gaze capabilities (Section 10.2.1)—

have been investigated by researchers in HRI but require further exploration. Other

questions have been addressed in different contexts, but minimally explored with re-

spect to eye gaze, like the effect of attributions of agency (Section 10.2.2) and embod-

iment (Section 10.2.3) on human-robot interactions. Finally, one question addresses

the scope of nonverbal behaviors in the broader field of HRI (Section 10.2.4).

10.2.1 What is the role of physical capability in eye gaze for

HRI?

As discussed in Section 2.2.1, research on gaze in HRI is conducted on robots with a

range of physical capabilities. These capabilities, which replicate the subtle effects of

human gaze—such as pupil dilation, saccades, and expressive secondary features like

eyebrows—can provide additional social cues during interaction, but they are difficult

to implement on physical systems.

The role of these capabilities has not yet been fully characterized. For example,

many of the robots currently used for HRI research (such as the Nao) have fixed eyes,

and must move their entire head to indicate gaze shifts. Robots like Keepon take

this restriction a step further, requiring entire body shifts to indicate gaze direction.

(Both Nao and Keepon can be seen in Figure 2.1.) But head movements might be

insufficient to communicate more subtle or rapid gazes. There is some evidence that

head pose estimation from an RGB-D camera is an unreliable indicator of human

gaze direction [136], likely because people orient to lateral visual targets through a

combination of saccades and head turns [87]. It is not clear what information is lost
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when robots do not mimic this biological capability.

Mapping gaze behavior from virtual agents, which have nearly unlimited capabili-

ties, to physical robots, which are constrained by hardware, is not trivial [206]. Under-

standing the effect of each capability will allow researchers to avoid over-generalizing

their findings from virtual agents to embodied robot interactions. It will also enable

robot designers to selectively implement hardware capabilities for specific effects,

minimizing robot costs and complexity.

10.2.2 What underlies the difference in micro- and macro-

scale responses to robot gaze?

Researchers do not yet understand the mechanisms that underlie human response to

social robot eye gaze, and specifically, why the differences between micro- and macro-

scale responses to robot gaze (discussed in Section 10.1.2) emerge. These differences

may be artifacts of the experiments, they may arise from people’s expectations of the

robot, or they may have some other cause. Investigating the source of these differences

would enable researchers to develop robot gaze that has a specific, targeted effect on

human behavior.

Environmental cues may play a role in how people respond to robot eye gaze.

Micro-scale experiments are often well controlled because of the precision required to

measure small changes of behavior. As described in section Section 2.2.3, these kinds

of studies have the disadvantage of reduced ecological validity. It may be that these

artificial settings affect people’s natural responses to robots by reducing how much

importance is attributed to their eye gaze.

Another possibility is that there exists a difference in automatic versus conscious

processing of robots. People may not automatically attribute importance to robot eye

gaze (as measured on a micro level, where responses tend to be reflexive), but context

and their own expectations lead them to treat robot gaze as a meaningful stimulus
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when it is consciously processed (which can be seen in macro-scale measurements).

Most studies in this review operate on the macro level, and find that robot eye gaze

has an effect on human behavior. In contrast, the studies described in Section 2.4.2

focus on either micro-scale measurements or on investigations of infant behavior,

both of which involve human responses performed rapidly and with little high-level

cognitive control. On these levels, people seem to respond to robot gaze as though it

has no social significance.

As described in Section 10.1.2, this automatic processing may be manipulable by

changing expectations and context. It would be informative to evaluate whether the

way an experimenter presented the robot affected how people processed that robot’s

eye gaze. Specifically, could people’s response to a robot’s eye gaze be changed just

by whether the experimenter indicated that the robot was a social agent? Or would

the perception of agency need to be established through experience with the robot?

10.2.3 Under what conditions is embodiment important for

the success of a robot’s gaze behavior?

Gaze in HRI has been explored using both virtual agents and physically embodied

robots (Section 2.2.1). By virtue of being animated, virtual agents provide hypothet-

ically unlimited realism in their gaze behaviors. However, as described in Section

2.2.2, interactions with physically embodied robots may lead to different human per-

formance than interactions with virtual robots or videos of robots. Physically embod-

ied robots have been shown to increase cognitive learning gains [153] and compliance

with robot instructions [31], though this effect does not hold in all studies [135, 196].

Though researchers have investigated the effects of physical embodiment in cog-

nitive tasks, there is little research on whether embodiment influences the effect of

gaze in human-robot interactions. We do not yet know under what conditions, if any,

physical robot embodiment influences the processing of robot eye gaze. Questions
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(a) Baxter (b) IROMEC robot [84] (c) Chester [252]

Figure 10.1: Robots with physical bodies but animated eyes provide an interesting
edge case when exploring the effects of embodiment on eye gaze in HRI (Section
10.2.3).

regarding physical embodiment for gaze in HRI include: is there a difference in the

emotional expressivity of virtual and physical eyes? Do people feel attention from vir-

tual eyes as they do from physically embodied eyes? Can embodied eyes communicate

a robot’s internal states through subtle cues as effectively as virtual eyes?

Robots with physical embodiment but animated eyes, such as Baxter, the IROMEC

robot [84], and Chester [252], present an interesting test case for the effect of embodi-

ment on eye gaze (Figure 10.1). These robots may help separate the effects of physical

eyes, as opposed to physical bodies, when examining eye gaze in human-robot inter-

actions.

One concern about virtual eyes is that flat, two-dimensional displays sometimes

create a powerful illusion, commonly called the “Mona Lisa effect,” that the eyes on

the display are following the viewer regardless of viewing angle [12]. Because gaze

direction is an important indicator of attention and spatial references, the Mona Lisa

effect limits the ability for such systems to communicate. One approach to dispel

this effect is to back-project a virtual face onto a contoured three-dimensional surface

[11, 72, 146]. Back-projected technology provides the flexibility of animated eyes with

the appearance of a more embodied system.
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10.2.4 What domains within HRI can benefit from robot

nonverbal communication?

Social gaze and other robot nonverbal behavior will become increasingly useful as it

moves out of the lab and into natural human environments like homes and schools.

Real-world human-robot interactions involve the complex interplay of many processes,

from perception to planning to language and motion generation. Eye gaze and ges-

tures are subtle, continuous cues that can be used to augment and support these

other processes during a human-robot interaction.

The future applications of social gaze and gesture for robotics will depend on

interdisciplinary research that allows real time perception and processing in these

dynamic, unpredictable real-world environments. This technology requires the incor-

poration of work from HRI with other fields for real-time perception and information

processing, such as computer vision and natural language processing.

Natural Language Processing

Tellex et al. have developed a model for understanding natural language commands

to robots performing navigation and manipulation [240, 241]. The model first grounds

the components of the natural language command to specific objects, locations, or

actions in the environment. This grounding operates exclusively on verbal inputs.

Incorporating referential eye gaze into the grounding model would potentially increase

the confidence of symbol groundings by providing additional, multimodal command

input.

Referential nonverbal behavior like eye gaze and pointing could disambiguate be-

tween two similar objects. For example, if there are two available groundings for the

word “truck,” looking at the intended reference during the command “put the pal-

let on the truck” clarifies the reference without needing additional referential speech

such as “the one on the left.” This can potentially increase efficiency by requiring less
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verbal expressiveness from the user and less language processing from the system.

Knowledge about human nonverbal communication could also increase the speed

(and thereby the efficiency) of the interaction. Because people naturally fixate on

objects about one second before they verbally reference them (see Chapter 2), gaze

could be used for pre-processing, allowing the system to eliminate some potential

groundings before the whole command is even received.

Learning from Demonstration

Learning from demonstration (LfD) is an approach to robot learning in which the

robot develops a policy for how to complete a task by watching demonstrations of

that task being performed [29]. LfD has been used widely in numerous robotics

domains [26].

Some researchers have already explored the effects of eye gaze in LfD (see Chapter

2.5.3). They have found that robot eye gaze acts as a feedback system for human

teachers, revealing the robot’s knowledge and focus of attention. This subtle but

natural feedback mechanism leads to teaching that has fewer errors and less repetition

of material [117], leading to more effective LfD interactions. Further research can

explore how to best apply nonverbal behavior during LfD, including when and how

the robot should use gaze, gesture, and other behaviors to indicate its mental state.

Legibility and Predictability of Motion

When collaborating with a robot, it is important that a robot’s motion clearly reflect

its intentions and future action. Legibility and predictability of a robot’s motion

trajectories can be mathematically defined [79]. The equations for legibility and pre-

dictability model the user’s inferences between motion trajectories and goal locations.

People use gaze behavior to perform similar inferences about where a collaborator

will reach. As discussed in Chapter 2.5.3 and shown in Chapter 5, people can recognize
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and respond to eye gaze that indicates spatial references, successfully predicting the

target of their partner’s reference [4, 44]. Such expressive nonverbal behavior reveals

mental states, improving task performance [47].

Incorporating eye gaze into equations for predictability and legibility would allow

robots to take advantage of this natural, subtle, communicative behavior from peo-

ple. Combining eye gaze with motion trajectories would generate multimodal robot

behavior that is even more communicative than motion trajectories alone.

10.3 Summary

This dissertation presented a variety of studies and models, unified under the goal of

understanding and developing nonverbal behaviors for socially assistive robots. Two

major themes emerged from this work. The first is the importance of social behavior

and expectations of animacy in order for nonverbal communication to be interpreted

as meaningful. The second is the need to analyze human responses to robot behavior

at a variety of scales, from micro-level to macro-level, to attain a complete picture

of how nonverbal behaviors affect human-robot interactions. The open questions in

this section outline continuing areas of research and highlight the broad impact that

nonverbal behavior can have on the field of HRI.
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11

Conclusion

Nonverbal communication is an important part of typical human-human interactions.

In this dissertation, we investigated how to leverage that subtle, natural channel of

communication for social robots that interact with people in domains like tutoring

and collaborative manufacturing. The main contributions of this dissertation are

a set of models for understanding and generating nonverbal behaviors for socially

assistive human-robot interactions. Additionally, this dissertation contributed four

novel studies that analyzed distinct aspects of nonverbal behavior in human-robot

interactions.

The dissertation began with these laboratory-based HRI experiments that an-

alyzed specific components of eye gaze and gesture in well-controlled interactions.

These experiments analyzed human responses to robot behavior at various levels,

from micro scale, millisecond-level measurements of response times (Chapter 3) to

increasingly more macro scale measurements of attention recognition (Chapter 4),

object reference recognition (Chapter 5), and behavioral compliance (Chapter 6).

These human-robot interaction studies contribute to nonverbal behavior modeling

by providing key insights about the conditions in which people respond—or don’t—

to gaze and other nonverbal behaviors from a robot. The experiment in Chapter
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3, modeled after a well-studied psychophysical task, shows that robot faces are not

necessarily cognitively processed like human faces. The work in Chapter 4 suggests

that to best convey a sense of attention, a robot should use short glances rather than

long, infrequent stares. Nonverbal behaviors can augment speech without hindering

performance when the two modes of communication are in conflict (Chapter 5), pro-

viding support for the use of gaze to augment spoken references. Sometimes, however,

the communicative effect of one nonverbal channel (like eye gaze) is dependent on a

second nonverbal channel (such as gesture), as seen in Chapter 6.

The dissertation applied these insights to modeling multimodal behavior with

the dual goal of understanding human behavior and generating better robot behav-

ior. We started by constructing a data-driven model of nonverbal behavior from

a human-human tutoring interaction (Chapter 7). This model, which could both

recognize the context of nonverbal behavior and suggest an appropriate nonverbal

behavior to match a particular context, provided a high-level view of the nonverbal

behaviors that people use in collaboration. The focus then narrowed to a single type

of communication—object references—and we developed a model to generate appro-

priate referential behavior that is flexible enough to be used in a variety of scenes

and with a variety of robot capabilities (Chapter 8). We evaluated this model in a

naturalistic human-robot collaboration (Chapter 9), which revealed that nonverbal

behavior is more effective as the task difficulty increases.
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visual saliency on deictic gesture production by a humanoid robot. In IEEE

RO-MAN, pages 210–216, July 2011.

[231] Maria Staudte and Matthew W Crocker. Visual Attention in Spoken Human-

Robot Interaction. In Proceedings of the 4th ACM/IEEE International Confer-

220



ence on Human-Robot Interaction (HRI 09), pages 77–84, La Jolla, California,

USA, March 2009. Saarland University, ACM Press.

[232] Maria Staudte and Matthew W Crocker. Investigating joint attention mecha-

nisms through spoken human-robot interaction. Cognition, 120:268–291, August

2011.

[233] Matthew Stone, Doug DeCarlo, Insuk Oh, Christian Rodriguez, Adrian Stere,

Alyssa Lees, and Chris Bregler. Speaking with hands: Creating animated con-

versational characters from recordings of human performance. In Proceedings

of ACM SIGGRAPH, pages 506–513, New York, NY, USA, 2004. ACM.

[234] Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, and Siddhartha S.

Srinivasa. Learning the communication of intent prior to physical collaboration.

In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and

Human Interactive Communication, pages 968–973. Ieee, September 2012.

[235] Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha S. Srini-

vasa, Maya Cakmak, and Vincenzo Micelli. Toward Seamless Human-Robot

Handovers. Journal of Human-Robot Interaction, 2(1):112–132, 2013.

[236] Dan Szafir and Bilge Mutlu. Pay attention! Designing adaptive agents that

monitor and improve user engagement. In Proceedings of the 2012 ACM Annual

Conference on Human Factors in Computing Systems (CHI 2012), pages 11–20,

Austin, TX USA, May 2012.

[237] Leila Takayama, Doug Dooley, and Wendy Ju. Expressing thought: im-

proving robot readability with animation principles. In Proceedings of the

6th ACM/IEEE International Conference on Human-Robot Interaction (HRI),

pages 69–76, Lausanne, Switzerland, March 2011. ACM Press.

221
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