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Abstract— In their expanding role as tutors, home and 

healthcare assistants, robots must effectively interact with 

individuals of varying ability and temperament. Indeed, 

deploying robots in long-term social engagements will almost 

certainly require robots to reliably detect and adapt to changes 

in the demeanor of social partners to promote trust and more 

productive collaboration.  However, the recognition of emotional 

state typically relies on the interpretation of very subtle cues, 

often varying from one person to the next.  In addition, while 

facial expressions, body posture and features of speech have 

been used to detect affective changes, the robustness of these 

measures is often hindered by cultural and age differences.  

Recently, infrared thermography has shown promise in 

detecting guilt, fear and stress, indicating that it may be a viable 

sensing modality for improved human-robot interaction.  In this 

study, we evaluated the efficacy of using a far infrared (FIR) 

camera for detecting robot-elicited affective response compared 

to video-elicited affective response by tracking thermal changes 

in five areas of the face.  Further, we analyzed localized changes 

in the face to assess whether thermal and electrodermal 

responses to emotions elicited by traditional video techniques 

and by robots are similar.  Finally, we performed principal 

component analysis to reduce the dimensionality of data and 

evaluated the performance using machine learning techniques 

for classifying thermal data by emotion state, resulting in a 

thermal classifier with a performance accuracy of 77.5%. 

I. INTRODUCTION 

Collecting physiological information remotely creates 
opportunities for promoting long-term, productive, and safer 
interactive work between humans and the systems with which 
they interact.  However, while FIR sensing provides copious 
amounts of physiological information, it is a sensing modality 
that is still poorly characterized for human-robot interaction.   

The recent profusion of robots working in close proximity 
to humans motivates the development of robots capable of 
detecting less overt signs of changing emotional state in their 
human counterparts.  For robots employed in educational and 
therapeutic settings, thermal feedback indicating increased 
stress level and frustration would enable robots to adjust their 
interactions to challenge students and patients optimally 
without exceeding their ability.   

Further, thermal sensing may offer assistance to 
developmentally disabled populations and other individuals 
who have a limited ability to communicate and those who may 
be averse to wearing biofeedback sensors.  By detecting the 
innate emotional and stress state of the individual without the 
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requirement of self-awareness or speech, thermal sensing may 
be a valuable tool for improving our understanding of the 
affective impact of robot interactions on populations with a 
limited ability to self-describe or express emotional state. 

Thermographic sensing has mostly recently been used to 
identify distinct thermal patterns for performing face 
recognition, facial expression detection and the estimation of 
individual affect [1, 2].  Studies have even demonstrated that 
fear can be distinguishable from a happy affective state and 
that guilt manifests in a thermographically unique way from a 
neutral baseline state in children [7]. 

Infrared thermography offers many advantages over other 

modalities of emotion detection.  First, because thermal 

cameras capture data outside the visible light spectrum, the 

information they deliver is less prone to changes in 

illumination, shadows and partial occlusions.  Further, 

thermographic changes associated with physiological 

response are temperature-based and therefore do not rely on 

the complex detection and interpretation of facial expression, 

body posture or features of speech so it remains impartial to 

variances in age, culture or language.  Moreover, because 

thermography is collected remotely, it may be integrated into 

a wide range of human-robot interaction settings and 

applications.  This work specifically explores the efficacy of 

eliciting emotion with a robot and delivers a trained 2-

emotion state thermal classifier. 

II. RELATED WORK 

A. Applications in robotics. 

Thermal imaging has been employed in a number of 

applications to detect affective change in individuals exposed 

to emotional stimuli [14].  However, while studies exist which 

examine contact-based affect detection in human-robot 

collaboration, there is a paucity of published work in which 

noncontact sensing is employed for this purpose. 

B.  Classifying emotion states. 

Research in infrared thermography has accelerated in the 
last decade, revealing the significant potential of this sensing 
modality for greatly improved sensing and enhanced robot 
adaptivity in human-robot interactions.  For instance, anxiety 
caused by lying has been demonstrated to increase the surface 
temperature of the periorbital area of the face and the tip of the 
nose [1], while increased mental workload has been correlated 
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with nose tip temperature decreases [8].  Fear in adults has 
been associated with rapid decreases in cheek temperature and 
an increased temperature in the periorbital region, while 
infants experiencing the stress caused by maternal separation, 
typically present a decreased overall forehead temperature [3, 
4].  Children who feel guilt after breaking an experimenter’s 
“favorite” toy, exhibit a significant temperature decrease in the 
tip of their nose [7].  These examples not only illustrate the 
significance of skin surface temperature for assessing 
psychological state, but also reveal the inherent value of using 
these fundamental physiological cues to inform and improve 
robots employed to assist individuals in their day-to-day lives. 

C.   Other physiological measures of emotion. 

Physiological signs associated with emotional response 
include increases or decreases in heart rate, changes in skin 
tone from blushing or turning pale and perspiration [5].  
Biofeedback sensing and RGB video-based techniques have 
been applied to detect changes in these autonomic nervous 
system responses and to track affective response.  Research 
has also explored collecting data from wearable electrodermal 
sensors as part of a multimodal approach to detect emotional 
or psychological stress [4, 6, 10].  However, few studies 
explore the elicitation of anger with a robot and fewer describe 
a thermal classifier for use in human-robot interaction. 

III. METHODOLOGY 

This study included two interactive sessions with a robot 

and three sets of video clips to elicit affective response to 

anger and happiness.  We collected thermal data from five 

facial regions, electrodermal activity (EDA) and a Likert scale 

questionnaire to record data pertaining to emotional response.  

We were interested in comparing differences in thermal 

affective response elicited with well-studied stimuli (i.e., 

videos) to emotions elicited via human-robot interaction to 

evaluate if existing classifiers trained using video stimuli can 

be leveraged for use in human-robot studies.  Further, we 

evaluated the performance of classifiers to further describe 

features contributing most significantly to each emotion.   

Each session was divided into four phases.  In phase 1, 

participants interacted with a complimentary robot while 

phase 2 was designed to be anger-inducing.  Phases 3-5 

consisted of a set of clips acting as a “break” between robot 

and video conditions and two sets of video clips designed to 

elicit happiness and anger, respectively.  Approval for this 

study was obtained from the Yale School of Medicine Human 

Investigation Committee (HIC#1403013521). 

A.  Participants. 

    Ten healthy adults participated in the study for a duration 

of approximately 30 minutes.  Participants were asked to sign 

a study consent form, a video release and were asked to wear 

an EDA sensor on their wrist for the duration of the session. 

B. Thermal camera.  

The InfrREC R300SR-S high resolution infrared video 

camera with a thermal sensitivity (NETD) of 0.025°C was 

employed to collect temperatures.  The camera 

simultaneously captured RGB and thermal video at 

approximately 60 frames per second and streamed data in 

real-time to a computer attached via USB. 
 

C.   Robot condition. 
 

   The robot used in this study was a modified version of 

MyKeepon with programmable servos controlled by an 

Arduino board [12].  MyKeepon has a minimalistic design 

that resembles a small, yellow snowman. Four degrees of 

freedom allow the robot to pan, tilt, bop and roll.  Nonverbal 

behaviors such as idling, happy, surprise and confusion were 

combined with Text-To-Speech (TTS) utterances using the 

Thalamus framework [11] to animate the robot. The interface 

implemented for this study was tele-operated to control 

MyKeepon’s higher-level behaviors. 
 

D.    Video condition. 
 

   Two video sets were selected to elicit happiness and anger 

based on criteria defined in [13].  The first set included two 

movie clips to elicit happiness and included scenes from “Elf” 

and “Emperor’s New Groove”.  The second set of film clips 

elicited anger and included scenes from “Enough” and “12 

Years a Slave”.  Each video clip lasted approximately 2.5 

minutes, for a total of 5 minutes for each video set. 
 

E.  EDA. 

The Empatica E3 electrodermal activity (EDA) sensor was 

used to collect EDA during each session.  The sensor was 

placed on the dominant hand of each participant 

approximately 5 minutes before entering the experiment room 

and data was collected throughout the entire study session and 

monitored via Bluetooth connection on a nearby smartphone. 

F.  Likert scale. 
 

    Self-reports were collected with a 6-point Likert scale, 

representing the intensity of emotion experienced (0-5) for a 

range of 6 possible emotions including: happiness, surprise, 

sadness, frustration, anger and disgust.  To avoid bias, the 

identical scale and range of emotions was included in every 

survey after each phase of each study session. 
 

G.   Experiment room. 
 

    The study was conducted in a small experiment room at the 

Yale Child Study Center.  A chair and small table were 

positioned in the center of the experiment room.  The robot 

was placed on the table and two speakers, used to output the 

robot’s sounds, were positioned behind a wall in the room.  

Additionally, a computer monitor and a thermal camera 

mounted on a tripod, were placed opposite the table and chair.  

The room was divided by a heavy black curtain behind which 

two experimenters remained during each session to monitor 

the thermal camera and tele-operate the robot. 
 

H.   Protocol. 
 

    Upon entering the experiment room, each participant was 

asked to sit in a chair located in front of the small table.  The  

 



  

 

 
 

study facilitator explained that the participant was invited to 

engage in a 30-40 minute session featuring two trivia games 

with the robot and three sets of video clips.  It was explained 

that the robot would deliver a trivia question, present four 

possible answers (each denoted as answer “A” through “D”) 

and the participant would be asked to speak their letter answer 

to the robot.  The robot would then repeat the participant’s 

answer and respond as to whether the given answer was 

correct or incorrect.  Participants were asked to remain 

relatively still and were told that the robot’s performance was 

being tested.  A study facilitator also explained that feedback 

would be collected via Likert questionnaire after each phase. 

PHASE I: Robot/Happy.  In phase I the robot introduced 

itself and described the rules of the trivia game.  Trivia 

questions in this first phase were designed to be relatively 

easy, with the correct answer being (mostly) evident to 

participants.  With each correct response, the robot delivered 

positive feedback such as, “Great job!” or “You are really 

smart!”.  If an incorrect response was given, the robot gave 

the participant the opportunity to try new answers until the 

correct answer was received.  A total of 10 trivia questions 

were presented in Phase I, lasting approximately 5 minutes.  

Upon completion of Phase I, participants were asked to 

complete a Likert scale questionnaire to collect emotional 

feedback pertaining to this phase. 

PHASE II: Robot/Angry.  Phase II began with the robot 

delivering positive feedback about the participant’s 

performance in the previous phase and a brief introduction for 

the Phase II set of trivia questions.  In this phase, the robot 

delivered trivia questions of greater difficulty.  This time, 

however, the robot intentionally selected an incorrect answer 

for seven out of the 10 questions presented and repeated that 

answer (as if the participant had actually selected it) before 

informing the participant that they had answered incorrectly.  

Phase II was also approximately 5 minutes long.  At the end 

of this phase, participants were again asked to complete a 

questionnaire describing their evaluation of the interaction. 

    PHASES III-IV: Video/Happy, Video/Angry.  Phases III-

IV featured film clips that were selected to elicit happiness 

and anger, respectively.  At the completion of each set of 

videos, participants were also asked to complete a Likert scale 

to report their evaluation of each video stimuli.  Additionally, 

before the beginning of video sets 1 and 2 a neutral video, 

featuring geometric shapes and soothing music, was played. 

IV. DATA COLLECTION 

A. Thermal video. 

  A thermal camera was positioned approximately 4-5 feet 

from the participant so that the field of view was centered and 

the participant’s entire face was captured throughout all four 

of the study phases.  During each study session, thermal and 

RGB video were simultaneously streamed in real time to a 

nearby computer.  In the event that a participant changed their 

position so much that their face was no longer in the camera’s 

field of view, the participant was either asked to readjust their 

position, or the camera position was adjusted. 

B. EDA. 

  EDA was collected from each participant beginning 

several minutes before beginning the study and throughout 

the duration of the session.  EDA signals were deemed to be 

viable when minimum skin conductance level (SCL) equaled 

or exceeded 0.4 microsiemens (µS) and displayed a variance 

of at least 0.2 µS throughout the course of the study session. 

C. Likert scale. 

  The Likert scale was electronically administered via tablet, 

to provide the opportunity for each participant to easily self-

report their emotional evaluation of each study phase. 

V. DATA ANALYSIS 

  Data from thermal video, EDA, heart rate and Likert 

scales were collected along with the time-stamps for stimuli 

delivered during both robot and video conditions.  We 

evaluated Likert self-reports from both conditions to evaluate 

the efficacy of emotion-elicitation via robot interaction 

compared to emotion-elicitation using a set of video clips.  

Further, based on regions of interest (ROIs) collected in [3, 6, 

7], we examined the thermal trends of five ROIs (Figure 1) 

and EDA within each study phase to examine association to 

detect each emotion, in each condition.  Finally, we reduced 

the dimensionality of the data set and trained and tested a 

thermal classifier with the most significant principal 

components representative of the data set collected.  In order 

to conduct comprehensive analyses, data sets were each 

sampled, cleaned and time-synchronized. 

We were interested in directly comparing robot-elicited and 

video-elicited thermal responses.  Because we did not develop 

a sadness-eliciting interaction with the robot, we did not 

include analyses of video responses to sad stimuli here. 

A. Preparing the data. 

  First, all ROIs including the forehead, periorbital region, 

tip of the nose, cheeks and mouth, were hand annotated from 

the thermal video at 10-second intervals for the entire session  
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duration and for each participant.  Ten frames of thermal data 

were extracted at each ten-second interval for subsequent 

analysis.  Next, we time-aligned extracted thermal readings, 

EDA, heart rate and Likert reports using recorded system time 

stamps in order to perform analyses across all data sets.  

Finally, due to variability in resting skin surface temperatures 

between participants and to more precisely measure 

physiological affect directly resulting from each stimulus, the 

within-phase mean and slope were computed for recorded 

ROI temperatures and EDA during each of the four phases. 

B. Objectives. 

  Two data sets (thermal and EDA) from two conditions 

(robot and video) were analyzed using Pearson’s bivariate 

correlations, ANOVA linear models, principal component 

analysis (PCA), logistic regression and a support vector 

machine (SVM) to further understand four research aims: 

1.  Assess the extent to which it is possible to elicit 

happiness and anger with robot interactions 

2. Evaluate if anger and happiness, when elicited by video 

and a robot, result in thermally similar changes. 

3. Explore the relationship between thermal data and EDA. 

4. Perform principal component analysis to reduce 

dimensionality of data.  Conduct logistic regression, train 

a classifier, to distinguish facial thermal changes 

corresponding to happy and angry emotion states. 
 

Eliciting anger and happiness using video stimuli and 

human-robot interactions.  Scores from self-reports 

collected after each study phase were assessed to evaluate the 

congruence between reported and elicited emotions.  If a 

participant reported anger as the highest score compared to 

other emotions during an angry phase, even if another 

emotion was tied for the highest score, that elicitation was 

considered effective.  Correlations between emotion reports 

and each corresponding study phase were computed and the 

percentage of self-reports consistent with the emotion being 

elicited were derived. 
 

Eliciting anger and happiness, via video and robot 

interactions, to assess thermally similarity.  Physiological 

time-series are often non-stationary such that the system state 

changes in time and taking averages will tend to destroy 

features that we are interested in preserving [9].  Since we 

were particularly interested in preserving and analyzing 

within-slope changes resulting from within-phase stimuli, 

slopes were calculated for each ROI and each participant to 

characterize thermal trends during each condition.  
 

Connection between thermal data and EDA.  We also 

evaluated the connection between collected thermal response 

and EDA within the robot condition, the video condition and 

the combined set.   EDA slope was computed to examine 

changes occurring during happy/angry phases, to compare to 

within-phase thermal changes, and to evaluate disparities 

between conditions for similar emotions.  Finally, we 

performed a correlation analysis of thermal and EDA features 

to further explore the relatedness between these measures. 
 

Principal component analysis, logistic regression, 

classifier training.  Principal component analysis (PCA) was 

performed to reduce the variable set and to identify the most 

significant components contributing to the variability of 

collected data.  PCA was first conducted with thermal data 

and then with EDA data to derive individual components for 

each dataset.  Next, Pearson’s bivariate correlations were 

computed to evaluate the correlation between thermal and 

EDA features.  Binary logistic regression was performed to 

model conditional probabilities of thermal data predictive of 

two emotion states. 

Finally, a support vector machine (SVM) was trained using 

leave-one-out training, where “one” corresponds to an entire 

participant set (two robot and two video conditions).  

Selecting the appropriate kernel type, along with feature 

selection, is known to significantly impact classification 

accuracy in emotional classification of physiological signals 

and there is evidence that a linear kernel may achieve the best 

performance for classifying emotion from nonstationary 

signals [8].  Our analyses evaluated linear, radial and 

polynomial kernels to achieve optimal performance.  

VI. RESULTS 

A. Elicit anger and happiness using video stimuli and 

human-robot interactions. 

As expected, self-reported happy and angry emotions were 

shown to be highly associated with the corresponding 

emotion phase (r=0.860).  Accordingly, approximately 

93.0% of participants’ responses indicated that the intended 

Figure 2.  Thermal slopes (top) and EDA slopes (bottom) for 

each of the four study conditions.  Columns of thermal features 

(top) forehead, periorbital area, nose, cheeks and mouth. 



  

emotion was most significantly elicited emotion during the 

corresponding study phase. 

B. Evaluate if anger and happiness, when elicited by 

video and robot interactions, result in thermally similar 

changes 

Analysis of thermal data yielded several findings.  Facial 

temperatures collected from participants during the robot 

condition and the video condition resulted in similar trends 

for corresponding emotion phases.  In both happy phases, 

declining or flattening of slopes was observed while 

increasing slopes characterized angry phases (Figure 2).  

Thermal responses recorded for each of the five ROIs were 

quite similar between conditions as well, with nose 

temperatures accounting for the greatest thermal shift 

between angry and happy phases.  Other ROIs revealed 

changes of similar magnitude and direction during the 

elicitation of angry and happy emotions. 

These observations are further supported by univariate two-

way ANOVA analyses with a Tukey control for multiple 

comparisons, in which we examined the interaction effects of 

condition (robot/video) and emotion (happy/angry) on 

individual facial ROIs.  Results indicated that although there 

were no interaction effects for most ROI slopes, there was a 

strong, statistically significant effect between within-phase 

nose temperature changes, condition and emotion 

(F(3,36)=3.523, p=0.025). 

C. Connection between IR and EDA. 

Declining nose tip temperatures seemed to be related to 

declining EDA during happy phases as well.  Consistent with 

the connection between lowered nose temperatures in both 

happy robot and happy video conditions, 75% of the dataset 

also revealed a decrease in EDA during happy phases, 

irrespective of condition.  However, mean EDA slopes 

recorded during both robot phases were considerably less 

pronounced than those collected during the video phases 

(Figure 2) and no significant correlation resulted between 

thermal changes in emotion phases and EDA. 

  While contrary to our expectations, the lack of connection 

between EDA and thermal slopes may suggest an underlying 

difference between physiological responses recorded with 

EDA sensing and our thermographic camera.  For example, a 

relatively delayed onset and slower recovery from thermal 

events may have contributed to within-phase differences 

between data sets.  However, given that Likert scales scores 

were consistent with emotion phases and thermal slopes 

increased and recovered as expected across emotion phases, 

and there was no significant correlation of EDA to emotion 

phases, further investigation using additional processing 

techniques will be required to uncover potential connections. 

D. Principal component analysis, logistic regression, 

classifier training. 

Principal component analysis (PCA).  Five thermal 

features, including slopes for each of the five ROIs, were used 

to compute PCA (Figure 3).  Results show that more than 90% 

of the variance was explained by the first three components, 

with 80.7% of that variance explained by the first two 

components.  A summary of PCA findings is included below. 
 

Component Loading.  A Pearson’s bivariate analysis was 

performed to further describe the connection between 

individual ROIs and each principal component (Table 1).  All 

five ROIs loaded positively onto principal component 1 

(PC1).  Conversely, only two features loaded significantly 

onto principal component 2 (PC2), with the forehead 

negatively correlated and the nose positively correlated.  

Finally, three distinct ROIs loaded onto component 3 (PC3), 

including the periorbital region, cheeks and mouth. 
 

Logistic regression and Support Vector Machine (SVM).  
Next, a logistic regression was computed to explore the 

collective value of thermal data, as informed by PCA, for 

predicting membership in emotion phases.  To more 

specifically examine the interaction effects of condition and 

emotion state, individual dependent variables were tested.  

Results from logistic regression analyses are described.  

Thermal slopes from the robot-only phases clearly 

distinguished between happy and angry phases (chi square = 

27.726, p < 0.001 with df = 5) and a prediction success of 

100%.  Thermal data was not as predictive of emotion state in 

video conditions (chi square = 2.353, p=0.798 with df = 5), 

resulting in a prediction success of slightly above chance at 

60%.  When the two ROI slopes most significantly correlated 

with PCA1 and PCA2 in both conditions were applied, 

emotions were more reliably predicted (chi square 7.302, 

p=0.029 with df=2) with a performance accuracy of 77.5%.  

Finally, we employed results observed from logistic 

regression and PCA to train an SVM selecting the ROIs found 

to most significantly discriminate between condition and 

emotion phase.  Subsets of thermal data loading across PCA1, 

PCA2 and PCA3 were evaluated using leave-one-out training  

with the best performance resulting from forehead, nose and 

cheeks slopes training, and an accuracy of 77.5%. 

E. Study limitations. 

The expectation that video-elicited thermal responses would 

be more pronounced than robot-elicited responses (and take 

longer to recover thermally) led to the current study design 

in which robot condition was always presented first and the 

Figure 3. First three components for each feature, PCA. 

 



  

  

video condition, second.  However, it is possible that  emotion 

responses and corresponding thermal responses resulted in a 

cumulative interaction effect.  A follow up study will 

counterbalance stimuli across condition and emotion.  

Further, this study included a small sample size and results 

may not be representative of the larger population.  Future 

work will focus on recruiting a larger participant pool. 

VII. CONCLUSIONS 

In this study, we developed two emotion-eliciting robot 

interactions and two sets of emotion-eliciting videos to 

explore thermal features contributing to the prediction of 

emotion state and to ultimately train a classifier for use in 

human-robot applications.  First, we evaluated the efficacy of 

eliciting happiness and anger with robot interactions and 

video sets developed for this study using Likert-based self-

reports.  Ratings extracted from self-reports indicated that the 

participants’ subjective appraisal of emotional stimuli for the 

corresponding emotion phase were consistent.  

We further examined temperature changes in each facial 

ROI to compare thermal patterns occurring during human-

robot interactions with those elicited with video clips.  

Univariate analyses revealed a strong, interaction effect 

between within-phase nose slopes, robot/video condition and 

emotion.  Next, we explored the relationship between 

electrodermal activity (EDA) and thermal affective changes 

during the elicitation of anger and happiness in two robot and 

two video conditions.  Although a significant connection did 

not result from analyses performed with EDA and thermal 

data in this study, future work will explore using additional 

signal processing techniques to yield additional insights 

describing their connection.  Finally, we used PCA to identify 

which thermal ROIs were most predictive of condition and 

emotion state and guided the training of an SVM classifier 

using those features.  Ultimately, an SVM 2-state emotion 

classifier, with a performance of 77.5% was achieved.   

 With an increasing research interest in exploring infrared 

thermography as a potential sensing modality for human-

robot applications, investigating robust approaches for 

detecting changes in emotion state - especially during the 

course of human-robot interactions - is essential.  This study 

delivers an examination of the elicitation of two emotions 

during interactions with a robot and analysis of thermal 

features contributing most significantly to each emotion. 

    Future work will more carefully explore the underlying 

cause for differences between thermal and EDA data 

collected during robot-induced and video-elicited emotional 

response to identify possible interaction effects.  Additionally, 

a new study protocol will be developed to counterbalance 

condition and emotion to mitigate the potential confound of 

cumulative thermal responses over time. 

 ACKNOWLEDGMENTS 

 Funding was provided by the NSF Expedition in Socially 

Assistive Robotics #1139078, The Nancy Taylor Foundation 

for Chronic Diseases, and NIH award K01 MH104739. 

REFERENCES 

[1] A.M. Guzman, M. Goryawala, Wang Jin, A. Barreto, J. Andrian, N. 

Rishe and M. Adjouadi, “Thermal Imaging as a Biometrics Approach 
to Facial Signature Authentication”, Journal of Biomedical and Health 

Informatics, 17:1, p. 214-222, 2013. 

[2] A.M. Guzman, M. Goryawala and M. Adjouadi, “Generating thermal 

facial signatures using thermal infrared images”, Emerging Signal 

Processing Applications (ESPA), p. 21-24, Jan 2012. 

[3] D.T. Robinson, J. Clay-Warner, C.D. Moore, T.E.AlexanderWatts, 

T.N. Tucker, C. Thai, Biosociology and Neurosociology,“Toward an 
Unobtrusive Measure of Emotion During Interaction: Thermal 

Imaging Techniques”, vol. 12, p. 225-266, 2012. 

[4] Y. Yoshitomi, K. Sung-Ill ,T. Kawano and T. Kilazoe, Workshop on 
Robot and Human Interactive Communication, “Effect of sensor 

fusion for recognition of emotional states using voice, face image and 
thermal image of face”, p. 178-183, 2000. 

[5] D. Purves, GJ Augustine, D. Fitzpatrick, et al. Neuroscience. 2nd 

edition. Sunderland (MA): Sinauer Associates; 2001. Physiological 
Changes Associated with Emotion. 

[6] N. Sharma, A. Dhall, T. Gedeon and R. Goecke, Conf. on Affective 
Comput. & Intell. Interaction, “Modeling Stress Using Thermal Facial 

Patterns: A Spatio-temporal Approach”, p. 387-392, Sept. 2013. 

[7] I. Stephanos, E. Sjoerd, A. Tiziana, Bafunno, D. and Ioannides, H.A. 
et al. “The Autonomic Signature of Guilt in Children: A Thermal 

Infrared Imaging Study”, PLoS ONE, 8(11), Nov 2013. 

[8] Maaoui, C.; Pruski, A., "A comparative study of SVM kernel applied 

to emotion recognition from physiological signals," Multi-Conference 
on Systems, Signals and Devices, vol., no., pp.1-6, 20-22 July 2008 

[9] Takahashi, K., "Remarks on SVM-based emotion recognition from 

multi-modal bio-potential signals," Workshop on Robot and Human 
Interactive Communication. Vol., no., pp.95-100, 2004 

[10] K.H. Kim, S. W. Bang, and S. R. Kim. "Emotion recognition system 
using short-term monitoring of physiological signals." Medical and 

biological engineering and computing 42.3 (2004): 419-427. 

[11] T. Ribeiro, E. Di Tullio, L.J. Corrigan, A. Jones, F. Papadopoulos, et 
al. Developing Interactive Embodied Characters using the Thalamus 

Framework: A Collaborative Approach. In IVA'14, 2014. 

[12] H. Admoni, A. Nawroj, I. Leite, Z. Ye, B. Hayes, A. Rozga, J. Rehg, 

and B. Scassellati. "MyKeepon Project." Accessed Sept. 16, 2015. 

[13] Hewig, J., Hagemann, D., Seifert, J., Gollwitzer, Mario and Naumann, 
Ewald and Bartussek, Dieter.  “A revised film set for the induction of 

basic emotions.”  Cognition and Emotion, Vol 19(7), 2005, 1095-1109 

[14] Latif M. H, Md. Yusof H., Sidek S. N., Rusli N. and S. Fatai.  

“Emotion detection from thermal facial imprint based on GLCM 
features.”  ARPN Jour. of Eng & Applied Sciences.  Vol. 11(1), 2016. 

[15] I. Pavlidis, J. Levine, and P. Baukol, “Thermal imaging for anxiety 
detection,” Proc. IEEE Work. Comput. Vis. Beyond Visible Spectr. 

Methods Appl. Cat NoPR00640, pp. 104–109, 2000. 

[16] I. Pavlidis, N. Eberhardt, and J. Levine, “Seeing through the face of 
deception,” Nature, vol. 415, JANUARY, pp. 5–7, 2002. 

[17] C. Puri, L. Olson, I. Pavlidis, J. Levine, and J. Starren, “StressCam: 
Non-contact Measurement of Users’ Emotional States through 

Thermal Imaging,” CHI05 Ext. Abstr. Hum. factors Comput. Syst., 

pp. 1725–1728, 2005. 

ROI/Component PC1 PC2 PC3 

Forehead 0.832** -0.474** 0.147 

Periorbital 0.837** 0.013 0.496** 

Nose 0.792** 0.574** 0.059 

Cheeks 0.847** -0.117 -0.342* 

Mouth 0.854** 0.032 -0.346* 

 Table 1.  ROI loading on principal components. **denotes p<0.01 


