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Robotic systems deployed in industry today work in isolation from humans, and per-

form precise, repetitive tasks, based on well-defined plans and known task structures. The

field of human-robot collaboration (HRC) [1] focuses on endowing robots with capabil-

ities to work alongside humans and help them achieve various tasks in different settings.

Whether it be in manufacturing settings such as factories, public spaces such as restaurants,

or in our homes, robots should adapt to the task at hand and learn from the user how to best

assist. Although robotics has seen recent successes like quickly learning certain manipu-

lation tasks [2, 3], robots are still far from autonomously carrying out high dexterity tasks.

Furthermore, the level of task knowledge necessary for a robot to fully build a piece of

furniture, for example, is extremely high and not straightforward to acquire.

We are interested in leveraging machine learning techniques to create adaptive robots,

capable of learning useful behaviors in dynamic and collaborative environments. This re-

quires the robot to learn from both the people it interacts with and its environment. Learn-

ing models of the task, understanding a person’s actions throughout the progression of the

task, and learning and predicting user-based preferences for tailored assistance comprise

the basis of adaptive robots in HRC. Applying such techniques to complex state and action

spaces—raw sensor data at the low level, and abstract states at the high level—involves

considerable challenges, especially for human-in-the-loop scenarios. To create a useful

system, we turn our attention to robots that provide supportive behaviors to a person during

a task, rather than robots that complete the full task themselves. Such assistance is meant

to help the person accomplish the task more efficiently, while allowing both the human and



the robot to perform those actions for which they are best suited.

In this thesis, we present novel models and paradigms for HRC that allow a robot to

learn how to provide tailored assistance to a human worker throughout the execution of a

task. We first focus on learning about action primitives (building blocks of motion) that a

human performs during a physical task. We present a framework that discovers whether

a coarser- or a finer-grained level is better suited for a primitive given the task at hand,

coining this concept the granularity level of a primitive.

We then present models for high-level learning, where the robot learns what supportive

behaviors to offer throughout the execution of a task in which both the human and the robot

are involved. We introduce personalized models of user supportive behavior preferences,

which we build atop a single, cross-users model of the task. The personalized models

leverage this task representation, and only require as few as three demonstrations labeled

by the user in order to train, achieving human-level performance when trained with five

such demonstrations.

We further compare this model-based technique with a model-free variant inspired by

multi-agent reinforcement learning. We present two novel HRC paradigms that are multi-

agent based, where we consider both the robot and the human as agents operating in the

environment. These paradigms are multi-agent based since the human is indeed an agent in

the system, but one whose actions we do not control. We introduce the Multi-Agent Based

Reinforcement Learning (MAB-RL) and the Hierarchical Multi-Agent Based Reinforcement

Learning (HMAB-RL) paradigms, and present a total of four algorithms based on these

paradigms. We show that we can learn a supportive behavior preference set for the task on

par with human-level performance from 40 episodes, with varying episode lengths dictated

by whether we employ macro-actions.

Finally, we present work on the social aspect of HRC interactions. Alongside gain-

ing an understanding of how to help accomplish the task as a team, social collaboration

is another important facet of HRC. An adaptive robot needs to facilitate task progression



by keeping the human engaged and motivated. Thus, we present a series of studies that

explore different tools for a robot to engender positive user perceptions and reactions dur-

ing collaborative tasks. We also present a case study focused on the application of social

collaboration in the context of conveying information effectively during robot interactions.

As we move toward an era where we envision robots becoming widely used in a variety

of settings, developing robust techniques for such robots to learn how to usefully interact

and collaborate with people becomes critical. The algorithms and paradigms presented in

this thesis contribute to the aim of developing more intelligent, useful, and adaptive robots,

capable of offering assistance tailored to humans’ needs and preferences.
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Chapter 1

Introduction

One of the visions of robotics research is to integrate robots into everyday life, having

them help humans in a variety of settings. We envision robots functioning smoothly in

settings like public spaces, where we wish robots to act as guides in museums or waiters in

restaurants; our homes, where we wish robots to act as helpers; or manufacturing settings,

where we wish robots to provide assistance to human workers or execute tasks themselves.

In order to achieve the wide array of functionality such robots would necessitate, we need

to push the boundaries of state-of-the-art robotic systems extant today.

The status quo for such systems in industry today is for robots to work in isolation from

people due to their lack of adaptation skills and task knowledge. For a robot to execute a

task, it needs to be pre-programmed with specific knowledge about the task structure, and

the manipulation requirements that go alongside that structure. Such pre-programming is

costly, and necessitates highly trained roboticists, resulting in high overhead for changing

between contexts or tasks to be executed by the robot. Thus, one of the main goals of

robotics research is to develop robots that adapt to novel situations, without the need to

be pre-programmed. Human-Robot Collaboration (HRC) [1] is an area of robotics that

focuses on robots that work alongside humans, in settings such as factories, and that learn

how to be useful in these contexts by learning about the task and the humans’ preferences.
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Figure 1.1: Target application domain for Human-Robot Collaboration (HRC) research.
The human’s goal is to assemble the chair, and the robot learns how to perform supportive
behaviors that are helpful towards achieving this goal.

To create such adaptive robots, we need to develop robust and dependable techniques

for the robot to learn both from its environment and from the people with whom it interacts.

One of the main focuses in HRC is thus how to best learn useful information that will help

the robot adapt in novel situations, as well as flexibly pivot to working with different hu-

mans, each of whom might have individual preferences for executing various tasks. In this

thesis, we focus precisely on this aspect: How do we leverage machine learning techniques

in order to develop robots that are capable of learning about the structure of a task, about

the human preferences for what supportive behaviors the robot should offer throughout

this task, and about how to work alongside the human to accomplish a shared goal? The

typical HRC scenario we consider throughout this thesis is depicted in Figure 4.10.
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1.1 Challenges

When developing adaptive robots for HRC, the goal is to provide assistance to the human,

rather than aiming for the robot to autonomously execute the full task. This goal is moti-

vated by two main reasons. First, the type and level of knowledge, as well as the training

required for the robot to complete the task on its own, is difficult to establish and collect.

Second, despite significant advancements in areas of robotics such as manipulation [2, 4],

robots are still far from having the fine manipulation capabilities required by tasks such as

furniture assembly (e.g., using a screwdriver on a small screw). We thus aim for robots

that provide those types of behaviors well-suited for a robot, while allowing the human

worker to perform actions better suited for a person. For example, a robot might provide

supportive behaviors like stabilizing a component or bringing a heavy part required for

assembly, while the human worker can execute actions such as screwing, which requires

higher dexterity and a particular type of adaptation to the task.

Learning when and what kind of assistance to provide to different users poses non-

trivial challenges. A human worker might prefer the robot to always stabilize a particular

component like the seat of a chair while they are performing a screwing action. Another

worker might instead wish for the robot to utilize that time to bring a screwdriver for the

next step of the assembly. These different options are not the task ordering preferences

referring the sequencing in which task sub-states are executed (e.g., perform assemble leg

1 before assemble leg 2); rather, they represent different supportive behavior preferences on

the part of the users (e.g., provide supportive behavior stabilize component for the assemble

back sub-state but not for the assemble seat sub-state). We can only learn such preferences

when we collect data about the supportive behaviors themselves, and not by simply learning

a model of the task via observing human workers perform the task without assistance. We

thus refer to preferences related to sub-state order as task preferences and to those related

to the type of assistance to be provided as supportive behavior preferences.

Another critical aspect of HRC is the difficulty of modeling human behavior during
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interactions. On one hand, existing decision models for robots either rely on known task

models, and human behaviors and preferences, or are model-free but require many interac-

tions to train. They are hence non-trivial to apply to realistic work environments, in which

humans introduce even more complexity and uncertainty [5]. On the other hand, mod-

els of human motion or activities are designed to be trained on potentially high-frequency

and high-dimensional observations, but employing them as the basis for robot collabora-

tive behaviors has not been extensively studied. HRC thus suffers from both a challenging

modeling problem regarding modeling human behavior, and from a data problem regarding

the expense of obtaining human labels or demonstrations to train different models.

1.2 Contributions and Thesis Outline

In order to address the difficulties surrounding the development of a robot that can complete

a task on its own autonomously, we focus on robots that are meant to provide support

to human workers throughout the execution of a task. This allows both the robot and

the human to perform those types of behaviors and actions they are best suited for, and

allows for the leveraging of the knowledge the human worker has. In a context such as

manufacturing, the human worker is an expert at the task at hand, and so can teach the

robot about the task structure in a multitude of ways.

To address (1) the challenge of learning supportive behavior preferences and (2) the

tension between expensive interactions with users and the high volumes of data needed to

model complex human behavior, we make the following main contributions:

• Learning at the low level—we tackle the difficulty of learning useful information

about what happens throughout the execution of a complex task in HRC by asking

how we can best break down raw motion data into useful, reusable pieces that are

relevant to the considered task: We learn action primitives (building blocks of

motion) that a human worker executes throughout a physical task. We present
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a framework that discovers whether a coarser- or a finer-grained level is better

suited for a primitive given the task at hand, coining this concept the granularity

level of a primitive.

• Learning at the high level via a model-based approach—we tackle the challenge of

learning high-level supportive behaviors by considering scenarios where it is feasi-

ble to obtain a large pool of data consisting only of task trajectories executed by the

human worker, with no information about preferences for robot assistance: We cre-

ate a model of personalized supportive behavior preferences for different users

that can be trained from as few as three task trajectories labeled by a user, built

atop a single, cross-users model of the task. This system achieves results on par

with human-level performance when trained with five user-labeled trajectories.

• Learning at the high level via a model-free approach—we tackle the challenge of

learning high-level supportive behaviors by considering scenarios where it is either

difficult to obtain large amounts of data or where the task is too complex or too

difficult to model: We introduce two novel reinforcement learning paradigms,

namely Multi-Agent Based Reinforcement Learning (MAB-RL) and Hierarchi-

cal Multi-Agent Based Reinforcement Learning (HMAB-RL). The paradigms are

multi-agent based because we consider both the robot and the human worker as

agents in the environment, but we do not control the person’s actions through-

out the task. We then introduce and compare four algorithms based on these

paradigms, which employ different methods of synchronizing the robot and hu-

man’s actions during each time step, including an algorithm that utilizes com-

municative actions. We present results on par with human-level performance

from training sessions composed of 40 episodes, with varying episode lengths.

• Exploring the social dimension of collaboration—we focus on investigating differ-

ent tools we can endow robots with in order to keep users engaged and motivated
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throughout collaborative tasks: We perform a series of user studies that present

results supporting different behaviors with which we can endow collaborative

robots in order to engender users to form positive impressions of the robot. We

also conduct a case study centered on an application of a robot that interacts

effectively with its users in a social collaboration context, presenting evidence

for relationship-building with users.

The rest of this thesis is organized as follows. In Chapter 2, we introduce the relevant

background work for the main contributions of this thesis, including modeling robot deci-

sions, predicting human behavior, and work at the intersection of these areas. We further

introduce the formalisms for different mathematical frameworks used throughout this the-

sis, including Hidden Markov Models (HMMs) and Markov Decision Processes (MDPs).

Chapter 3 presents the framework for discovering the granularity level of action prim-

itives. In this chapter, we focus on learning about appropriate action primitives (building

blocks of motion) that a human worker executes throughout a physical task. We present

a framework that discovers whether a coarser- or a finer-grained level is better suited for

a primitive given the task at hand, coining this concept the granularity level of a primi-

tive. This corresponds to the contribution mentioned as part of the first bullet point above,

learning at the low level. This contribution consists of learning useful, robust, and reusable

components from low-level raw data, which can ultimately form the basis of a library of

primitives relevant to the considered task. We can then pass these primitives along to algo-

rithms or models that operate at the high level and expect well-defined primitives as their

inputs. The subsequent two contributions represent different approaches for paradigms that

operate at this higher level.

Chapter 4 presents our first approach for learning at the high level (i.e., learning high-

level supportive behaviors), focusing on a model-based method for HRC. This method,

together with the associated algorithms, correspond to the contribution mentioned as part

of the second bullet point above, learning at the high level via a model-based approach.
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Here, we present a model-based technique for learning personalized supportive behavior

preferences by extending a single, cross-users model of the task. This separation between

learning a model of the task from learning a model of supportive behavior preferences

allows us to mitigate the need for a large training corpora that would need to include inter-

action data. The model-based method we present here not only helps take the burden off

users with respect to labeling demonstrations, but it focuses on a core challenge in HRC

that does not appear in typical machine learning domains—needing to model interactions

that agents operating in this environment (be it humans or robots) have or wish to have

with the environment and the task. Our model-based method can be trained with as few

as three user-labeled demonstrations, and achieves on par with human level performance

when trained with five user-labeled demonstrations.

Chapter 5 presents our second approach for learning at the high level, centered on

model-free paradigms for HRC. These paradigms, together with the associated algorithms,

correspond to the contribution mentioned as part of the third bullet point above, learning at

the high level via a model-free approach. The model-based method we propose in Chap-

ter 4 is well-suited for HRC since interactions with a person or labels provided by users

are expensive to obtain, but it still assumes access to a large pool of task trajectories of hu-

man workers performing the task themselves. We can imagine building up such a dataset

consisting only of task trajectories by mounting sensors in environments like factories and

observing human workers in their natural environment, without putting extra onus on work-

ers to interact with the robot for an extended time. However, model-free techniques are still

quite appealing for scenarios where such a dataset is not easily acquired (e.g., expensive

sensors, privacy concerns, and so on), or when the task we are faced with is too complex

or too difficult to model. We thus present two novel model-free paradigms based on the

multi-agent setting, where we consider both the robot and the human as agents operating

in the environment.

These paradigms are multi-agent based since it is the joint-action of the robot and the
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human (and not just the robot action) that effects the transition from one state of the system

to the next, as well as the reward received when transitioning. However, since there is no

controlling the human’s actions like in typical multi-agent settings, we term our paradigms

Multi-Agent Based (MAB). This allows maximum flexibility for specifying preferences

with respect to what actions the human would like to themselves perform vs. what ac-

tions they would like the robot to execute at each step. MAB also leverages the knowledge

of the human worker, considered an expert at performing the task at hand, and restricts the

joint-actions explored to include only correct human actions, helping to speed up learning

compared to traditional multi-agent settings. Our paradigms thus mitigate the need for a

large pool of training data, but generally require more interactions with the user or user-

provided labels for demonstrations. This trade-off highlights the suitability of different

approaches depending on the assumptions and restrictions of the task we wish to solve.

The two paradigms we contribute here comprise of Multi-Agent Based Reinforcement

Learning (MAB-RL) and Hierarchical Multi-Agent Based Reinforcement Learning (HMAB-

RL), a hierarchical variant which can speed up learning via the use of options. We introduce

four algorithms stemming from these paradigms, which are based on different ways of

synchronizing the actions of the two agents, the robot and the human, during each time step

(including an algorithm that utilizes communicative actions). We then study the quality and

learning speed of our algorithms. The algorithms introduced in this chapter are on par with

human-level performance from training sessions composed of 40 episodes, with varying

episode lengths.

Chapter 6 and Chapter 7 cover a series of studies that explore endowing robots with be-

haviors that help to keep users engaged and motivated throughout the task, corresponding

to the contribution mentioned as part of the fourth bullet point above, exploring the social

dimension of collaboration. An adaptive robot need not only know the different prefer-

ences of the user in terms of executing physical actions, but it also needs to facilitate task

progression by keeping the human engaged and motivated throughout the task. We thus fo-
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cus on endowing robots with useful behaviors that can engender positive user perceptions

and reactions with respect to the robot. In Chapter 6, we present three user studies that

center on employing verbal communication for improved social presence, using different

embodiments to engender improved perceptions from users, and studying behaviors that

engender effective interactions with robots. In Chapter 7, we present a case study focusing

on the application of a robot that interacts effectively with its users in a social collaboration

context. This case study centers on conveying information effectively during interactions

with robots that aim to teach, presenting evidence for relationship-building with users.

Chapter 8 summarizes and discusses the key points in this thesis, as well as future

directions of research. We also add an analysis representing an incursion into modeling

human behavior in HRC by predicting the amount of time required for different agents to

complete actions during a task, which can be found in Appendix A.
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Chapter 2

Background

Robotics can benefit considerably from machine learning in order to develop autonomous

and adaptive robots that do not need to be pre-programmed for specific tasks. The typical

robotics application, however, fundamentally differs in nature from the standard paradigm

assumed in machine learning due to the effects robot actions have on the state of the world

and the feedback loop this creates. This work is positioned between approaches that focus

on modeling a robot’s decision, and work on modeling and predicting human behaviors.

In section 2.1, we review the most relevant research spanning these areas, starting with

how work on predicting human behavior can be integrated into the type of Human-Robot

Collaboration (HRC) scenarios we are considering is this dissertation (Subsection 2.1.1),

continuing with work on modeling robot decisions relevant to HRC (Subsection 2.1.2), and

concluding with work that is considered to be fully part of HRC and is at the intersection

of these areas (Subsection 2.1.3). Finally, in Section 2.2, we present the formalisms for the

main techniques used throughout this thesis.
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2.1 Related Work

2.1.1 Predicting Human Behavior

We start by giving an overview of work on modeling human motions and activities. Many

techniques within this area employ hidden Markov models (HMMs) [6] or variants thereof,

like we do in our own work. Modeling human motions and activities represents a widely

studied topic, and so we touch upon some of the most relevant work to our own. Ogawara

et al. [7] model manipulation interactions, Bernardin et al. [8] recognize continuous human

grasping sequences, Yang et al. [9] perform gesture recognition, and Fox et al. [10] model

multiple time series with an application to motion capture segmentation, all via employing

HMM-based models.

In robotics, HMMs are also widely utilized. Fox et al. [11] describe the use of an HMM

to acquire behavioral models for robots, Zhu et al. [12] model dynamic obstacle avoidance

for a mobile robot, Vakanski et al. [13] learn robot trajectories acquired from demonstra-

tion, and Calinon et al. [14] have a robot learn and reproduce gestures by imitation.

Work on model learning in robotics spans a wide range of topics. Nicolescu et al.

learn high-level representations of navigation tasks for mobile robots from observations and

then use the learned model for the robot to engage humans for help, when needed, during

parts of the task execution [15]. Nguyen et al. provide a real-time online-learning method

called local Gaussian process regression (LGP) and show they can learn in real time the

inverse dynamics for controlling a robot arm [16]. Kawato et al. outline the application of

a neural network model to control an industrial robotic manipulator, focusing on modeling

the computational tasks of trajectory determination, coordinates transformation, and motor

command generation [17]. Aboaf et al. [18] perform task-level learning that can refine the

task command based on the system’s error metrics, with an application to ball throwing.

Model learning has also been successfully used in inverse kinematics [19,20,21], robot

locomotion [22], and navigation for autonomous robots [23]. Nguyen et al. survey the main
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applications of model learning for control, including representative work for simulation-

based optimization [24, 25, 26], approximation-based inverse dynamics control [27, 28],

and learning operational space control [29, 30, 31].

2.1.2 Modeling Robot Decision

In this thesis, we present both single- and multi-agent methods for tackling the problem

of learning supportive behaviors in HRC. Below, we present relevant work for each of

these two paradigms. Many of these paradigms are based on Markov Decision Processes

(MDPs), which we define in Subsection 2.2.2. MDPs are models used for sequential deci-

sion making when outcomes are uncertain [32], hence their heavy use in robotics.

Single-Agent Paradigms

In this category, we find model-based and model-free techniques. Hester et al. propose a

model-based reinforcement learning algorithm called reinforcement learning with decision

trees (RL-DT) that utilizes decision trees to learn a model in a sample efficient manner,

and test it on a robot scoring goals scenario [33]. Theocharous et al. [34] learn hierarchical

observable Markov decision process models for robot navigation. As an alternative to

assuming access to expert knowledge in the form of demonstrations, Deisenroth et al. [35]

model the observed dynamics by learning a probabilistic, data-efficient, non-parametric

Gaussian process transition model of the system called probabilistic inference for learning

control (PILCO). Doya et al. [36] tackle the issues of non-linearity and non-stationarity in

real-world control problems by proposing a new reinforcement learning architecture that

decomposes a non-linear or non-stationary control task in space and time, using multiple

modules.
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Multi-Agent Paradigms

In order to account for different agents operating within our environment, we need to con-

sider the different types of actions performed by each, the effects their actions have on the

world they operate in, and the goals they are working toward. A relevant paradigm for rep-

resenting such a problem is multi-agent systems (MAS) [37], where several agents attempt

to solve tasks together in order to reach specific goals, either shared or competing. A partic-

ularly useful method that has been widely applied to MAS is that of reinforcement learning

(RL) [38]. In RL, the agent operates in an environment in which it receives rewards when

performing different actions in each state of the world and subsequently aims to behave

such that it maximizes the long-term reward received. The use of RL for MAS has en-

gendered the multi-agent reinforcement learning (MARL) paradigm [39], where multiple

learners can take different actions in the same environment, each trying to maximize long-

term reward (such agents can be collaborative, competitive, or somewhere in between).

The field of MAS is relevant to a wide array of areas, including robotics, telecommu-

nications, distributed control, economics, and so on. A considerable amount of research

studies the use of RL for MAS, the intersection of which is known as multi-agent rein-

forcement learning (MARL). MARL presents important benefits, such as faster learning

through experience sharing (e.g., exchange of local information, skilled agents teaching

less skilled ones, etc.), speed-ups due to parallel computation when exploiting the decen-

tralized structure of the task, robustness to failures of individual agents, and easy insertion

of new agents into the system [39], [37]. However, it is also plagued by a number of chal-

lenges, including the curse of dimensionality (the state action-space grows exponentially

with the number of agents), the difficulty in specifying goals in such multi-agent settings

(the rewards different agents receive are correlated and thus cannot always be maximized

independently), non-stationarity due to concurrent learning (for each agent, the best pol-

icy changes as other agents’ policies change), and an exacerbated exploration-exploitation

tradeoff (agents need to explore not only to reach new regions of the state space, but also
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to gather information about other agents) [39], [37].

Even though there exist considerable challenges in the field of MARL, this framework

is extremely relevant to our human-robot collaboration scenario. This is due to the fact that,

even though it is not part of our goal to find policies for the human worker during the task,

their actions affect the transition model of the world in which our robot needs to operate.

Beyond directly impacting the world dynamics, the actions performed by the human also

play a key role in the type of supportive behavior that is useful for the robot to offer during

different subtasks. In order to address two of the main challenges mentioned above—

the curse of dimensionality, and partial observability with respect to the policies of other

agents—researchers have looked into the use of hierarchical reinforcement learning (HRL).

Work in this area includes the use of options [40], HAMs [41], and MAXQ [42]. Other

work looks at using task-level coordination in HRL settings, where all agents were given

a hierarchical break down of the task at hand that was used as a basis for communication

[43], [44].

One of the most important and widely used ways in which we can generalize MDPs

to the domain of MARL is via stochastic games [45]. There are many different types of

stochastic games, but for the purposes of this thesis, we consider general-sum stochastic

games, where there are no constraints on the sum of the agents’ rewards. This is due to the

cooperative nature of our environment, where the two agents are working together towards

the same goal. However, if we were to simply extend techniques used to solve MDPs for

the single-agent case to the multi-agent case, we would loose optimality guarantees due to

the loss of stationarity in MARL caused by concurrent learning. One of the solutions to

this issue is using the Nash equilibrium (or other equilibria) to describe optimal policies

in multi-agent systems. In this thesis, we build upon a variant of the Nash Q-Learning

algorithm for general-sum stochastic games [46] called Friend-or-Foe Q-learning (FFQ) in

general-sum games [47].

Work that addressed partial observability and the issue of how the actions of other
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agents impact the policy of one agent includes a learning paradigm called team-partitioned,

opaque-transition reinforcement learning (TPOT-RL). TPOT-RL considers opaque transi-

tions to encompass multi-agent environments where each learner cannot rely on having

knowledge of future state transitions after acting in the world [48]. Other relevant work in

this area uses behaviors, defined as goal-driven control laws that achieve and/or maintain

particular goals, to abstract away low level details of robot control and diminish the learning

space, as well as tackling the credit assignment problem via heterogeneous reinforcement

functions and progress estimators [49].

2.1.3 Work at the Intersection

A final and extremely important corpus of related work is composed of research in the

Human-Robot Collaboration (HRC) domain. HRC is an area of robotics that focuses on

endowing robots with the capabilities they need in order to operate efficiently and safely

in natural, populated environments, as well as achieve higher levels of cooperation and

communication with humans [1]. Because of the interdisciplinary nature of this field, we

mention relevant work to this dissertation below, touching upon work that utilizes HMMs,

work that employs interactive learning and model learning, and work that utilizes reinforce-

ment learning-based techniques.

Relevant work in this area that is based on the use of HMMs includes gesture recog-

nition for human-robot interaction [50], skill acquisition from human demonstrations [51],

skill modeling for human-robot coordination [52], and understanding human intentions

within the context of autonomous mobile robots [53]. Reinforcement learning techniques

have been utilized by Kartoun et al. [54] for enabling collaborative learning between a

robot and a human, and by Thomaz et al. [55] for leveraging the way in which people teach

robots. Further important work includes interactive learning in HRC [56], manipulation

planning for HRC [57,58], anticipatory robot control for HRC [59], action-selection mech-

anisms for improving human-robot fluency [60,61,62], learning models of joint actions for
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HRC [63, 64], and improving robot performance as a collaborator in HRC for sequential

manipulation tasks [65].

Further work in HRC centers on how to employ human feedback as a reward signal.

Such work includes enabling a robot to improve its policy for a knot untying task through

user-provided guidance. In this scenario, the robot performs a set of state-action transitions

to shake the contents placed inside of a bag (with the goal of untying the knot and emptying

the contents of the bag), and asks for a reward signal from the human at the end of each

learning episode [54]. Other relevant work in the area of obtaining rewards from a human

user explored the importance of understanding the human-teacher/robot learner system as

a whole, with findings that people use the reward signal not only to provide feedback about

past actions, but also to provide future directed rewards to guide subsequent actions [55].

Yet other work investigated discovering policies for improving collaborator performance

through a task and motion planning approach [66], which differs from our MARL frame-

work.

Another HRC contribution we wish to mention here is that of the hierarchical task

model (HTM), as defined in [67]. Throughout this thesis, we employ HTMs to represent

our tasks as a way of generating consistent and intuitive trajectories for our training sets.

HTMs following the definition herein represent tasks as trees of subtasks of varying com-

plexities and abstraction. Each node represents a subtask and is itself a combination of

subtasks following a sequence or parallel operation. Subtasks composed in sequence have

to be executed in the order in which they appear as children of the node. Parallel combi-

nations of subtasks can be executed in any order. Leaves of the tree are atomic subtasks.

Typically, HTMs are compact representations of a task but they can correspond to complex

constraints on task execution orders. In particular, parallel combinations of n nodes enable

n! execution orders.
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2.2 Formalisms

The main relevant formalisms the techniques presented in this thesis are built upon in-

clude Hidden Markov Models (HMMs) and Markov Decision Processes (MDPs), which

we present below.

2.2.1 Hidden Markov Models (HMMs)

The following description closely follows the explanations from Rabiner et al. [68]. A

Hidden Markov Model (HMM) is a doubly stochastic process with an underlying stochastic

process that is not observable (it is hidden), but can only be observed through another set

of stochastic processes that produce the sequence of observed symbols. An HMM has a

finite number of states, N , with each state being characterized by a signal with measurable,

distinctive properties. At each time step, t, a new state is entered based upon a transition

probability distribution that depends on the previous state only, respecting the Markovian

property. After each transition, an observation output symbol is produced according to a

probability distribution which depends on the current state.

Formally, an HMM can be defined with notation α = (A,B, π), where:

• A = aij, aij = Pr(qjatt+ 1|qjatt), state probability distribution

• B = bj(k), bjk = Pr(vkatt|qjatt), observation symbol probability distribution in

state j

• π = πi, πi = Pr(qiatt = 1).

The HMM has N number of model states, M number of observation symbols, Q =

Q1, Q2, ..., QN states, and V = v1, v2, ..., VM discrete set of possible symbol observations.

Using this model, an observation sequenceO = O1, O2, ..., OT can be generated as follows:

• Choose an initial state, i1, according to the initial state distribution, π
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• Set t = 1

• Choose Ot according to bit(k), the symbol probability distribution in state it

• Choose it+1 according to aitit+1 , it+1 = 1, 2, ..., N , the state transition probability

distribution for state it

• Set t = t+ 1, and return to the third step if t < T or terminate procedure.

The three main problems relevant to HMMs are as follows:

• The evaluation problem: Given the observation sequence O = O1, O2, ..., OT , and

the model α = (A,B, π), how do we compute Pr(O|α), the probability of the ob-

servation sequence?

• The uncovering the hidden part of the model problem: Given the observation se-

quence O = O1, O2, ..., OT , how do we choose a state sequence I = i1, i2, ..., iT that

is optimal in some meaningful sense?

• The optimizing the model parameters problem: How do we adjust the model param-

eters α = (A,B, π) to maximize Pr(O α)?

2.2.2 Markov Decision Processes (MDPs)

An MDP is a tuple 〈S,A,P ,R, I〉, where S represents the state space the agent operates in,

A represents the action space the agent acts within, P : S×A×S → [0, 1] is a probabilistic

transition function (representing the dynamics of the world) such that P (s′|s, a) denotes the

probability of transitioning to state s′ when the agent takes action a in state s,R : S×A →

R represents the reward function with r(s, a) being the reward received by the agent when

it takes action a in state s, and I : S → [0, 1] constitutes the initial state distribution.

The typical MDP formulation for infinite-horizon settings (i.e. where the agent can take an

infinite number of steps) uses discounted sum of rewards
∑∞

t=0 γ
tr(st, at), where γ ∈ [0; 1)

is the discount factor.
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Chapter 3

Learning at the Low Level: What Can

We Learn from Raw Data?

The tailored assistance we envision a robot offering to a human during collaborative tasks

requires that the robot learn at different levels so that it can make sense of what is happening

in its environment. In this chapter, we explore low-level learning, where we focus on

what kind of information we can learn directly from raw data that is useful for the HRC

context. Here, the question is how can we best break down this type of data into useful,

reusable pieces, that can eventually be utilized by high-level paradigms and algorithms?

This chapter is based on [69] 1.

In order to build adaptive robots capable of providing assistance to a human worker, the

robot needs to understand the state of the environment and how this is changing. For com-

plex tasks, state changes encompass both the movements of the person, and the motions of

the objects manipulated by the human. To this end, there has been a great deal of attention

on learning from observations of a person performing a particular task. Demonstrations

can be leveraged to both teach the robot how to imitate certain human motions we wish to

replicate, and to allow the robot to learn about the structure of the task and its progression.

1. E. C. Grigore and B. Scassellati, “Discovering action primitive granularity from human motion for
human-robot collaboration", in Robotics: Science and Systems (RSS), Boston, USA, 2017, July 12–16.
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Figure 3.1: Participant assembling an IKEA chair during data collection. We use a motion
capture system to record the participant’s hand movements (via gloves fitted with sensors),
and the trajectories of the chair components.

To handle the complexity of human motion, researchers have formalized it to be com-

posed of basic units of action, called action or motor primitives. Primitives can be se-

quenced or combined to generate more complex behavior [70]. A rich area of research

focuses on learning action primitives from raw data, in order to avoid the need for hand-

crafting, and to allow for scalability. The goal is to then feed these learned primitives into

high-level planners that expect them as inputs. Such planners usually assume that a library

of primitives is available for them to build upon [67, 71].

Obtaining clear and useful primitives necessary for existing planners is difficult to ac-

complish, and depends on the task at hand. If our task is to observe a person’s general

morning routine, we might benefit from primitives like brush teeth, get dressed, etc. How-

ever, what if we instead wish to have a robot learn how to imitate the person’s physical

movements during this routine? In that case, primitives like grab toothbrush, add tooth-

paste, execute brushing motion might be better suited, depending on the robot’s physical

capabilities. Other situations also show the need to investigate this level of granularity.
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For example, using primitives with low granularity such as press gas pedal or release gas

pedal when driving might prove to be useful since the motion of pressing the pedal has an

easily identifiable signature. Using a low level for a primitive like move cup to mouth when

observing a person drinking, on the other hand, might cause problems due to the variability

in the human’s motion when executing this action.

Our work aims to find a solution to the problem of discovering an appropriate level of

granularity of primitives for the task at hand. Existing methods of learning primitives from

observations do not tackle this problem. Such techniques often aim to learn primitives that

are clear and easy to label, such as running, jogging or other repetitive motions, or investi-

gate robot motion, which is inherently different from human movement. In order to make

use of existing techniques for learning primitives and use these as inputs for higher-level al-

gorithms or paradigms that have already been developed, discovering the appropriate level

of granularity is of paramount importance.

In this chapter, we present a framework for primitive granularity discovery, and imple-

ment it for a human-robot collaboration (HRC) scenario involving the complex task of as-

sembling an IKEA chair as follows. We record a set of 28 participants performing the task,

using a motion capture system to acquire both hand motions and object movements. Fig-

ure 3.1 shows a participant putting together the chair during the data collection phase. We

learn primitives in the data sets via a beta process hidden Markov model (BP-HMM) [72].

Of the learned primitives, we set out to discover the appropriate level of granularity for

object pick up, a widely used primitive in robotics. We use task-specific factors in order

to establish reasonable minimum (fine-grained) and maximum (coarse-grained) levels of

granularity, and use these levels to test what classification performance we obtain when

distinguishing them from the rest of the learned primitives. We then aim to find the low-

est granularity level with high classification performance. Our insight comes from the

observation that high or coarse granularity levels can provide us with good classification

performance when distinguished from the rest of the primitives, yet they can hide multiple
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subclasses of primitives that might be relevant to the considered task. Of course, when

we reach a level that is too low or fine-grained, the classification performance will drop

significantly, and thus this does not represent an appropriate level. The results show that

the presented framework successfully finds a well-suited granularity level for the pick up

primitive within the context of this HRC scenario.

The rest of this chapter is structured as follows. We give an overview of relevant work

in Section 5.1. We present our framework in Section 3.2, detail the experimental setup

in Section 3.3, and go into the implementation of our framework in Section 3.4. We present

our results in Section 3.5, and conclude with a discussion in Section 3.6.

3.1 Related Work

Our work focuses on discovering the appropriate level of granularity for learned primitives

from observations of human and object motion data. In this section, we first give a brief

overview of the types of primitives high-level methods expect as their inputs. We then

present relevant work in the area of action primitive discovery from motion data.

3.1.1 Primitives Expected by High-Level Methods

High-level algorithms or paradigms can work with different levels of abstraction. Most

approaches assume as their input collections of primitives and do not concern themselves

with the acquisition of these primitives. Furthermore, such methods do not specify the

granularity level expected for the primitives they take in, and include information about

this level only indirectly, through the handcrafted specification of the inputs. Different

types of representations expected by these methods include: action templates represented

with preconditions and effects (e.g., “put-block-on-table(x y)" describes the action of mov-

ing block x from the top of block y to the table) [73], primitive skills based on actions

that the agent can perform (i.e. specifying a start condition, a set of effects, and a set of
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executable actions) [74], or primitives with manually specified inputs and outputs (e.g.,

unscrew takes in a stud as input and returns a nut as output) [75]. Other work investigated

symbolic descriptions for use in low-level environments for planning [76]. Although this

technique goes beyond using handcrafted primitives, it also requires careful specifications

of preconditions and effects of atomic components.

3.1.2 Primitive Action Detection

Understanding the motions that make up different tasks requires finding patterns in the

data to facilitate the identification and characterization of actions. Thus, there has been

considerable effort in the area of learning how to decompose motion data into atomic parts

called motion or action primitives.

Methods and Approaches

One class of widely used techniques for the purpose of primitive detection is the Hidden

Markov Model (HMM). An example of the use of HMMs within this context is work that

learns primitives from observations of human motions by first segmenting the motion via

an HMM [77], and then applying another HMM over the found segments to learn the primi-

tives as clusters [77]. Another example uses Gaussian mixture models together with HMMs

in order to represent the primitives and the transitions between them, respectively [78]. Yet

other work employed parametrized HMMs over clusters of segments detected based on

changes in object state rather than looking at the full body motion [79].

Other techniques employed for primitive detection include using Orthogonal Matching

Pursuit on basis functions that model time series data [80], propagation networks that work

on activities represented as partially ordered intervals [81], spatio-temporal non-linear di-

mension reduction [82], and automatic methods for segmenting long sequences of data into

segments that usefully identify different primitives [83]. Non-negative matrix factorization

has also been utilized to perform the primitive detection part and then use the learned rep-
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resentation to predict future motions [84], as well as to predict linguistic labels given as

input for every motion data observation [85].

Building on Action Primitives

Work that explores ways of clustering or detecting higher abstractions based on learned

primitives include contributions from different fields. In communities like computer vision,

much of the focus is placed on building up from learned primitives to intuitive behaviors

that do not necessarily need to feed into higher-level planners, but are directly used by

various applications, such as camera surveillance [86], or detection of actions, gestures

and expressions [87]. This research makes contributions to building abstractions on top

of learned primitives, but does not face the problem of needing to bridge the gap between

such abstractions and inputs needed for higher-level planners. Hence, this work tackles the

problem of finding primitive granularity levels only indirectly.

In robotics, there are a number of contributions that do look at what abstractions can

be built onto learned primitives to tackle tasks at higher levels. This work is more relevant

to our aim of finding the granularity of learned primitives. In this area, we find research

that addresses defining behavior vocabularies of human motion data for movements that

include punching, dancing, handwaving, and so on [88]. Other work explores mapping

actions from full body human motion demonstrations of behaviors like raising arms and

bending down to similar actions that a humanoid robot can perform [77]. Further research

focuses on learning about the structure of a task in a bottom-up approach that starts with

automatic segmentation of learning from demonstration (LfD) data and continuing to build

useful abstractions on top [89, 90, 91, 92].

The work of [88], and [77] differs in nature from our contribution in that we consider

different types of primitives that occur over the progression of a task and also take into

account object trajectories, while the cited contributions consider actions that are repetitive

in nature or look at the full body posture of a person. The LfD contributions cited above
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are more similar in nature to the attempts in this chapter, but they consider robot motions,

whereas we investigate human motion data in the current chapter. Motions generated by

humans and robots are inherently different. Thus, even when utilizing the same approaches

and techniques for primitive discovery on both types of data, the learned human and robot

primitives fit into the task differently.

Furthermore, our contribution focuses on a framework for discovering primitive gran-

ularity levels that are well-suited for the considered task. This work brings attention to the

possible hidden structure that might exist in choosing an appropriate granularity level, even

when obtaining good performance on classification tasks for the desired primitives.

3.2 Framework for Discovering Primitive Granularity Lev-

els for a Considered Task

In order to use high-level methods that expect well-defined primitives as their inputs, it is

important to discover those primitives that (i) help capture the core patterns in the actions

part of the task, and (ii) constitute the main building blocks of the observed motion without

hiding further subclasses within. If the level we employ cannot capture the main differences

we observe in the data, our reliable identification of primitives can be compromised. This

is bound to happen with the choice of too low (fine-grained) of a granularity level, when

this level is not sufficient to capture the common basic actions present in the task at hand.

For example, if we choose a fine-grained primitive level such as move cup to mouth, this

might prove problematic due to the different ways in which a person can move their hand

with the cup to their mouth. On the other hand, if we choose too high (coarse-grained)

of a level, this can end up obscuring deeper structure present in the primitives. This can

prevent us from generalizing well from the data and from reusing learned primitives in an

effective way when we build higher-level behaviors. An illustrative example here is brush

teeth, where we might benefit from learning lower-level (finer-grained) primitives like grab

25



toothbrush, add toothpaste, and execute brushing motion. These primitives can then be

used for higher-level actions, such as brush teeth itself, but also for an action like clean

tongue, that might require the same grab toothbrush primitive. Our framework provides

a method for discovering precisely this appropriate level of granularity for the considered

application or scenario.

We introduce the framework for primitive granularity discovery in Framework 1. This

outlines the general methodology to be applied for determining appropriate levels of gran-

ularity for a considered task. In Section 3.3, we introduce the experimental setup used for

the framework, and in Section 3.4, we present the implementation of each framework step.

3.3 Experimental Setup

In this chapter, we consider the task of assembling part of an IKEA chair. We use a chil-

dren’s chair for ease of tracking and moving objects around in the workspace, but we choose

one that requires complex assembly, including several small components and the need to

use a tool. We consider part of the assembly task, namely attaching the front frame onto the

rest of the chair. This part contains similar steps as those required for the rest of the assem-

bly. It is composed of the necessary and sufficient actions for showcasing all the different

types of objects and movements that are part of the full chair building process. Figure 3.2

shows all the components of the task: the front frame (which I refer to as the frame herein),

the rest of the chair (which we refer to as the main component herein), two pegs, two nuts,

two screws, and a screwdriver. To complete the task, participants need to: (i) place both

pegs in either the frame or the main component, (ii) place both nuts, in any order, in the

sides of the main component, (iii) attach the frame onto the main component, (iv) place the

screws into the two holes of the frame, and (v) twist the screws in.

The motion capture system we employ throughout the data recording sessions is Phas-

eSpace [93], which utilizes active LED markers as its tracking technology. To acquire
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Framework 1 Discovering learned primitive granularity levels
1: Data collection and preparation:
2: Collect raw data from scenario relevant to the considered task, from which primi-

tives are to be learned. Data should be collected in conditions that simulate as best
as possible the desired scenario.

3: Divide data set into training and test sets, depending on desired method of valida-
tion.

4: Learn action primitives from raw data:
5: Identify an appropriate algorithm for learning primitives from the raw data.
6: Apply algorithm from 5 to training set.
7: Apply algorithm from 5 to test set, using the learned parameters from 6.

8: Classification experiments:
9: Classification method:

10: Identify an appropriate method for classifying time series composed of the
learned primitives.

11: Apply method from 10 to training set.

12: Primitive choice:
13: Choose what primitive(s) to investigate.
14: Identify factors that engender different granularity levels of primitives found at

step 13. These factors rely heavily on the task.

15: Establish granularity level interval:
16: Identify the lowest (most fine-grained) reasonable level, and apply method from

10 using the learned parameters from 11 to test whether good performance is
obtained.

17: Identify the highest (most coarse-grained) reasonable level, and apply method
from 10 using the learned parameters from 11 to test whether good performance
is obtained.

18: Find final granularity level:
19: Decrease level and test with lower and lower (finer and finer) levels starting

from the highest (most coarse-grained), until a significant decrease in classifi-
cation performance occurs.

20: Choose the lowest (most fine-grained) level with high classification perfor-
mance as well-suited for the task: (i) high performance for high (coarse-
grained) levels can hide different subtypes of primitives relevant to the task;
(ii) when the significant decrease in performance occurs, it likely indicates that
the level with poor performance is too low (fine-grained), and the one with high
performance is appropriate.
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Figure 3.2: The components part of the assembly task: a frame, a main component, two
pegs (blue), two nuts (green), two screws (cyan), and a screwdriver (yellow). The figure
also includes the gloves participants wear for tracking hand movements.

motion capture data, we hand fashioned a pair of gloves specifically for participants to be

able to manipulate all the different objects during this task. We used fitted, stretching ma-

terial gloves without the tips of the fingers, which we mounted with eight sensors each for

tracking. We also tracked the frame and the main component. Figure 3.3 presents a screen

shot of the motion capture system software, highlighting the gloves and chair components

as tracked by PhaseSpace. Each glove is fitted with eight sensors, and thus the two groups

of eight sensors represent the participant’s left and right hand, respectively. For the chair

components, we created rigid bodies. A rigid body represents a collection of markers that

are fixed relative to each other. This allows for regarding the collection as one tracking

target and making the tracking more robust to individual marker occlusions. Figure 3.3 in-

cludes the two rigid bodies created for the frame and the main component, respectively. For

each, we utilized the cartesian coordinates of the rigid body center, which allowed effective
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Figure 3.3: Screenshot of the motion capture system software highlighting: (i) green—the
group of eight individual markers mounted on the left hand glove, (ii) orange—the group
of eight individual markers mounted on the right hand glove, (iii) blue—-the individual
markers mounted on the frame, together with the center of the frame rigid body, and (iv)
yellow—the individual markers mounted on the main component, together with the center
of the main component rigid body. The figure shows the individual markers visible at the
time of the screen capture, with the two rigid body centers still being tracked even with
marker occlusions. The figure also includes the (x, y, z) coordinates (red, green, and blue,
respectively) of the right hand markers recorded during an assembly session. The x, y, and
z signals show the values for all eight markers, highlighting the high correlation present for
markers on the same glove.

tracking of each of the two objects as single points in the workspace. We used redundant

sensors placed on different planes, to make the tracking robust to occlusions occurring

when participants would place the objects on the table in different positions, or cover some

of the sensors. We did not create rigid bodies for the gloves, since these markers did not

maintain a fixed position relative to each other when participants’ hands moved.

We employ this experiment to emulate the complexities of assembly tasks in which hu-

mans engage. We impose no restrictions on participants about how to perform the assem-
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bly. This provides us with a thorough understanding of what different levels of granularity

we need to consider for primitives relevant to intricate HRC tasks. For such tasks, even

primitives as intuitive sounding as pick up are not trivially defined. Given that we employ

different types of objects, each with a different result on the motion data signal, it is not

immediately apparent what level of granularity to use for such a primitive. In this scenario,

pick up can be applied to a peg, a nut, a screw, the screwdriver, the frame, or the main

component. The granularity level here refers to what types of object pick up we label as

positive examples of this class of primitive. A low (fine-grained) granularity level for our

task would involve distinguishing between different small objects, like pegs, nuts, screws,

and the screwdriver, while a high (coarse-grained) level would involve treating pick ups for

all the small and big objects as positive examples of this class.

3.4 Framework Implementation for HRC Scenario

Here, we describe the process of implementing our contributed framework. The process

starts with a data collection phase, where we record a set of participants assembling part

of an IKEA chair using the PhaseSpace motion capture system, providing us with a set

of raw motion data consisting of participants’ hand movements, as well as the motion

of the task components in the workspace. We then apply a non-parametric method of

learning a universal (shared) set of primitives from the time series consisting of the raw

motion data obtained via the motion capture system recording phase. Finally, we apply our

classification method to these learned primitives by dividing them into non-overlapping

windows of equal size, labeling them manually with different types of object pick up, and

performing a series of classification experiments in order to find the best-suited level of

granularity for the pick up primitive for our HRC task. We describe each of these steps

below, in detail.
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3.4.1 Data Collection and Preparation

We present the data collection phase that corresponds to lines 1–3 in Framework 1. To

implement line 2, we recorded data from a total of 28 participants partly assembling a

children’s IKEA chair (mounting the frame onto the main component of the chair). We

recorded each assembly as a different trial, with five-to-ten trials per participant, for a total

of 158 trials across the data set. Trials varied in length, from 57′′ to 4′21′′, with an average

length of 2′10′′. The motion capture system recorded at a rate of approximately 1.25 Hz.

During each trial, we recorded motion capture data for each of the 16 markers mounted

on the gloves (eight markers on each glove) and all the markers mounted on the rigid bodies.

We considered (x, y, z) cartesian coordinates for the glove markers and the centers of the

two rigid bodies. For each glove, we averaged over the eight values corresponding to the

eight markers each was fitted with, resulting in an average (x, y, z) signal for each hand.

We did so given the fact that the information in the signals from the different markers was

redundant. This provided a good representation for each hand. This choice is supported by

a principal component analysis (PCA) performed on the signals of the eight markers for the

right hand, and similarly, on those of the eight markers for the left hand. For each hand, we

performed PCA three times, for the x, y, and z signals. We included the average of the eight

markers for the dimension in question, resulting in nine total variables for each dimension.

For each dimension, the PCA found that the principal component composed of all nine

variables approximately equally weighted accounted for at least 89% of the variance. This

motivates the choice of representing each dimension with the average of the eight markers

for one hand, showing the nine variables within one dimension are highly correlated.

To implement line 3 of the framework, we divided our data into a training set and a

test set. Out of a total of 158 time sequences, we leave out a total of 28, one per person.

We apply the action primitive algorithm on the training set, and then apply the estimated

parameters of the model to the 28 held-out sequences to mimic learning primitives in real-

time, after the model parameters have been learned. The primitive classification is applied
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Table 3.1: Primitive Granularity Levels and Labels for Classification Experiments

granularity level = low granularity level = intermediate granularity level = high
(fine-grained) granularity level = intermediate (coarse-grained)

2 classes 3 classes 2 classes 2 classes 3 classes

label 1 screws screws small objects small and big objects small objects
label 2 — nuts — — big objects
label 0 rest rest rest rest rest

1 We employ 2-class and 3-class experiments to analyze at what granularity level we can distinguish between primitives
labeled differently.

2 Label 1 and label 2 (when it exists), refer to primitives at different granularity levels. A bar (—) appears under 2-class
experiments, and indicates a missing label.

3 Label 0 always refers to the “rest" of the primitives, i.e. all primitives that have not been labeled with 1 or 2.
4 “Small objects" include the pegs, the nuts, the screw, and the screwdriver. “Big objects" include the frame, and the main

component.

in a similar manner, training the classifier on the training set, and using the learned pa-

rameters to mimic classifying on real-time data. We note here that each held-out trial per

participant was randomly selected, and that each was segmented in accordance with the

description in Subsection 3.4.3. This resulted in approximately 25 windows per each of

the 28 held-out sequences. The results that we present in Section 3.5 constitute test results

across the different 28 participants, supporting a strong generalization.

3.4.2 Learning Action Primitives from Raw Data

The approach we use to implement lines 4–7 from Framework 1 is based on the beta process

hidden Markov model (BP-HMM) presented by [10] and [72]. We used the implementa-

tion made available online by [94]. This method uses a non-parametric Bayesian approach

based on a stochastic process—the Beta Process (BP) [95]—to learn behaviors (primitives)

that are shared among several related time series. Such Bayesian nonparametric techniques

provide us with the advantage of learning from sequential data that does not require know-

ing the number of hidden states in advance. We pick the BP-HMM algorithm presented

herein (Framework 1, line 5) due to its capability of handling multiple times series and

learning a set of primitives shared among them, with tractable analysis of hundreds of se-

ries. Below, we present the algorithm, as described by [72].
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In this case, a time series represents a recording of an assembly session. The ith series is

assigned a sparse binary vector fi = [fi1, fi2, ...], that indicates the presence or absence of

each feature in the set of shared primitives. ForN time series, matrix F = [f1; ...; fi; ...; fN ]

contains the binary features of all the time series, and is generated by the BP:

B|B0, γ, β ∼ BP (β, γB0), B =
∞∑
k=1

bkδγk (3.1)

Realization B of the BP contains potentially infinitely many features k. For each fea-

ture, θk ∼ B0 represents the model parameters, and bk ∈ (0, 1) represents the feature’s

inclusion probability in the respective ith series. The binary feature vector for the ith series

is obtained by independent Bernoulli draws fik ∼ Ber(bk). Parameter γ determines the

Poissson(γ) distribution that represents the number of active features in series i. Parameter

β dictates the frequency of sharing features between series.

The BP is then combined with an HMM to form the BP-HMM. The binary vector fi

determines a finite set of primitives available for the ith series. A single primitive zit = k

from the set {k : fik = 1} is then assigned to each time step t, determining parameters θk

that generate the data value xit at that time step.

Given that only one primitive is active at each time step, we applied the BP-HMM

algorithm on three different signals composing our task: one representing the person’s left

hand (i.e. the (x, y, z) signal averaged over the eight markers mounted on the left-hand

glove), one representing the right hand (similar to the left hand), and one representing

the tracked objects (to more easily scale up to tracking several objects throughout a task,

we learn primitives based on the signals provided by all the task components). Thus, we

obtained three sets of primitives, corresponding to the left hand, right hand, and objects,

respectively. Prior to applying the algorithm on the three different sets of time series, we

normalized the data within each set to have mean zero and unit variance. To implement

lines 6 and 7 from Framework 1, we applied the BP-HMM algorithm on the training set to

learn the model parameters, and then used these parameters when applying the algorithm
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to the test set. The training and test sets are as defined in Subsection 3.4.1.

3.4.3 Classification Experiments

In this subsection, we detail the implementation of Framework 1, lines 8–20.

Classification method

The classification method we employ for the time series consisting of learned primitives is

the k-Nearest Neighbors (k-NN) algorithm [96], with dynamic time warping (DTW) [97]

as the time series similarity metric. This constitutes the implementation of Framework 1,

line 10. Although DTW is known to be computationally expensive, it is considered one

of the best measures for use with time series across application domains [98] and has also

been shown to be able to run quickly even on very large data sets [99]. Classifying time

sequences represents a non-trivial task, and the choice of similarity metric in this context is

particularly known to be an open research question [100]. The choice of the current classifi-

cation method is based on the fact that DTW has proven a successful metric for measuring

time series similarity, especially when used together with the k-NN algorithm [99]. The

analyses in this chapter have also shown that, for the current learned primitive represen-

tation under the form of time series, other classification methods, such as support vector

machines and multinomial logistic regression, have proved ineffective.

To apply the algorithm, we divided each time sequence into non-overlapping windows

of fixed size 400 (approximately 5 seconds), starting from the beginning of each time series,

and normalized all the data to have mean zero and unit variance. For cases when the series’

length did not equally divide into the window length, we padded the sequence with the

last encountered value. Since we applied the BP-HMM algorithm for primitive action

discovery three times for each of the right hand, left hand, and the objects, this resulted

in three time series per trial, each represented as primitive sequences. For each window

of size 400, we concatenate the three primitive sequences corresponding to the right hand

34



(RH), left hand (LH), and objects (Obj), respectively. This results in a sequence of length

1200 per window, with format RH + LH + Obj. Next, we implement Framework 1, line

11. Since k-NN is a lazy algorithm (i.e. does not do any generalization using the training

data), we create a set consisting of all the 1200-length windows obtained from segmenting

the learned primitive training data set, ready to use for the testing phase.

Primitive choice

To implement Framework 1, line 13, we choose to explore pick up, since it represents one of

the most prevalent primitives in robotics. In addition, pick up presents strong relevance to

HRC scenarios such as the one in this chapter. Both humans and robots need to frequently

execute pick up actions during the assembly of the chair, and need to do so for different

kinds of objects.

In order to represent the pick up primitive, we consider the factors that engender dif-

ferent types of pick ups for our task (Framework 1, line 14). We thus turn my attention

towards the types of objects part of the chair assembly. As described in Section 3.3, there

are four different types of small objects: pegs, nuts, screws, and a screwdriver, and two

bigger objects: the frame and the main component. Looking at these objects, a low (fine-

grained) granularity would involve differentiating between peg pick up, nut pick up, screw

pick up, and screwdriver pick up. This means treating each type of pick up as a separate

class. A high (coarse-grained) level of granularity would involve simply distinguishing that

an object is being picked up, whether small or large. These represent the established lowest

and highest reasonable levels of granularity, as appears in Framework 1, lines 15–17. An

intermediate level would be placed in between, distinguishing between small object pick

up and big object pick up.
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Find final granularity level

As stated in Framework 1, lines 16 to 17, we start with the low (fine-grained) and high

(coarse-grained) granularity levels, and use classification performance to gauge if they rep-

resent reasonable minimum and maximum levels for the task at hand. We then implement

Framework 1, line 19. We work down from the highest (most coarse-grained) level and test

an intermediate value. We do so in order to ensure we are not fooled by choosing too high

of a level, which might hide multiple types of primitives.

In order to find the lowest (most fine-grained) level with high performance, per Frame-

work 1, line 20, we perform three main classification experiments and two additional ones.

The three main experiments consist of a binary classification task. Each classification aims

to distinguish between the primitives at the considered level of granularity and the rest of

the primitives present in the data set. We segment each time sequence into windows of 400

time steps. We then label the windows that include the considered pick up primitives as the

positive class (labeled as 1), and the rest of the windows as the negative class (labeled as

0). We perform two additional experiments to better interpret the results at the intermediate

and high levels, and to test exactly what types of pick up primitives we can distinguish

between. These experiments are performed using three classes, with windows that include

the first type of pick up primitive labeled as 1, the second type labeled as 2, and the rest

labeled as 0. The different levels are presented in Table 3.1.

When applying the k-NN algorithm to the classification experiments described above,

we employed a k value of 3 for the binary classification tasks and a value of 5 for the 3-class

tasks. For the 3-class tasks, ties can appear when two class labels occur an equal number

of times. In cases of ties, we decrease k until no tie is present.
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3.5 Results

We present the results of implementing our framework for the considered HRC scenario.

Subsection 3.5.1 details the results of applying the primitive learning algorithm, and Sub-

section 3.5.2 presents the discovery of the granularity level appropriate for our task. We

present an additional classification of participants in Subsection 3.5.3, performed on the

learned primitives to showcase the utility of this representation.

3.5.1 BP-HMM Algorithm Results

Figure 3.4 shows an example of the learned primitives for a time sequences representing a

single trial. The results highlight two sets of primitives: right hand (resulted in 55 global

primitives), and objects (resulted in 86 global primitives). The primitives resulted for the

left hand are not visualized so as not to overload the graph. For the left hand, we obtained

51 global primitives. The fact that we obtained a similar number of primitives for the

right and left hand indicates that the representation was able to pick up on similar types of

movements a person can perform with the right and left hand. We posit that the number of

primitives detected for the right hand is slightly higher than that detected for the left hand

due to the fact that most people used their right hand far more often than they did their left

hand (picking up the small objects placed to their right in the workspace, and even picking

up bigger objects that were placed to the left of the small items).

3.5.2 Granularity Discovery Results

We evaluate the performance of the classification experiments by looking at precision,

recall and F1 score. Table 3.2 presents the results of the experiments, and provides the

definitions of these metrics. The table shows the results for the low (fine-grained), in-

termediate, and high (coarse-grained) granularity levels, including the 2-class and, where

present, for the 3-class experiments.
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Figure 3.4: A time series from an assembly session including the raw motion capture data
in the bottom subfigure, and the learned primitives in the upper subfigure. Here, we omitted
the left hand signals for ease of visualization. The bottom subfigure presents the (x, y, z)
coordinates for each of the: (i) right hand (rh), (ii) frame (f ), and (iii) main component (mc).
The x, y, and z values are represented in red, green, and blue, respectively. The coordinates
represent displacement in meters from the motion capture system origin, set up in the center
of the data collection room. The upper subfigure presents the learned primitives for the:
(i) right hand (rh) in magenta, and (ii) the two rigid bodies (rb) in orange. We applied
the primitive learning algorithm on the f and mc data together, resulting in a single set of
primitives for the two rigid bodies.

Since we train the classifiers with unbalanced classes (i.e. positive labels occur much

less frequently than negative ones), we do not place too much emphasis on the high scores

for the negative labels. We present them in the table for completeness. The first, 2-class,

low (fine-grained) granularity level classification task provided poor results, with an F1

score of 0.31. This task represents training the classifier with only screw pick ups as pos-

itive labels. This suggests this granularity level is too low for our task, since there are

many similar small-sized objects. The intermediate level classifier provides good perfor-
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Table 3.2: Results of Classification Experiments

granularity level = low granularity level = intermediate granularity level = high
(fine-grained) granularity level = intermediate (coarse-grained)

2 classes 3 classes 2 classes 2 classes 3 classes

Precision
label 1 0.33 0.50 0.81 0.81 0.78
label 2 — 0.40 — — 0.82
label 0 0.93 0.95 0.94 0.93 0.98

Recall
label 1 0.29 0.40 0.84 0.81 0.88
label 2 — 0.43 — — 0.75
label 0 0.94 1 0.93 0.81 0.95

F1 score
label 1 0.31 0.40 0.82 0.81 0.78
label 2 — 0.46 — — 0.82
label 0 0.93 0.98 0.93 0.93 0.97

1 Precision is defined in the standard way, as true_positives/(true_positives+ false_positives)
2 Recall is defined in the standard way, as true_positives/(true_positives+ false_negatives)
3 F1 score is defined in the standard way, as 2× (precision× recall)/(precision + recall)
4 A bar (—) appears under 2-class experiments, and indicates an absent value for the missing label.

mance, with an F1 score of 0.82. This level represents pick ups for similar-sized objects

(i.e. pegs, nuts, screws, and screwdriver). The high (coarse-grained) granularity classifier

also provides a good F1 score, of 0.81. However, since we employed a binary classifi-

cation scheme, a similar result to that of the intermediate classifier might signify several

subclasses are hiding under the positive label for the more general pick up action. In this

high granularity case, we train the classifier with both small- and big-sized objects labeled

as positive examples.

Since we expect the intermediate classifier to perform significantly worse if a high

(coarse-grained) granularity would be appropriate for this task, we believe the high level

classifier is now hiding two subclasses, namely pick up for small objects and pick up for big

objects. To test this, we perform two additional classification tasks, employing three classes

instead of two. The low (fine-grained) level 3-class task labels screws with 1, nuts with 2,

and the rest with 0. The high (coarse-grained) level 3-class task labels small objects with

1, big objects with 2, and the rest with 0. We obtain poor performance for the former (F1

scores of 0.40 and 0.46 for classes screws and nuts, respectively) and good performance for
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the latter (F1 scores of 0.78 and 0.82 for classes small objects and big objects, respectively).

This indicates that, in the case of the low level classifier, it is not possible to differentiate

between different types of small objects, and so the classifier cannot distinguish between

labels 1 and 2. In the case of the high level classifier, it is indeed possible to differentiate

between the pick ups for small objects and those for big ones.

These results show strong support for the intermediate level classifier having the appro-

priate level of granularity for the pick up primitive in the current scenario. This highlights

the importance of evaluating different levels of primitive granularity in order to find the

best suited one for the task at hand.

3.5.3 Participant Classification Results

As a complement to the classification tasks performed on windows resulted from segment-

ing the data sequences, we also performed a classification task per person in order to show

the primitive action representation is also useful at a higher level. We applied the same

k-NN with DTW algorithm described in Subsection 3.4.3, but this time by using the full

sequences. We concatenated the sequences in a similar manner as above, with format

RH_LH_Obj, where RH , LH , and Obj.

We divided the data in the same fashion, leaving out one time series per participant

(ending up with 28 series in the test set) and aiming to classify participants correctly. The

algorithm classifies 21 out of 28 participants correctly, giving us a percentage accuracy of

75%. We do not present usual precision, recall, and F1 score metrics for this classi-

fier since they are ill-defined for classes expecting a single example, which is missing for

incorrectly classified participants.
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3.6 Conclusions

In this chapter, we presented a framework for discovering the appropriate level of primitive

granularity for the task at hand. We focused on an HRC scenario, for which learning from

human demonstrations is important to develop adaptive robots. We recorded a motion

capture data set of human and object motions during an IKEA chair assembly task, and used

a BP-HMM algorithm to learn primitives. We presented our framework for discovering a

well-suited level of granularity for the considered task, and applied it to pick up, a prevalent

primitive in robotics, relevant to the HRC application presented here.

The results show that the framework is able to successfully discover the appropriate

level of primitive granularity for the considered task. This method highlights that even

when obtaining high classification performance, high (coarse) granularities are not neces-

sarily the best suited for the task at hand, as we uncover hidden structure in the data at

this level. In this scenario, this occurs because it is not immediately obvious that picking

up different types of objects should be regarded as different primitives. When we label

different-sized object pick up primitives as all pertaining to the positive class of examples,

we are mistakenly lead to believe this is a well-suited level of granularity. Such a deci-

sion can initially be made based on intuitive descriptions found in the expected inputs for

high-level methods. However, the results in this chapter show that simply following the ex-

pected structure of such inputs without ensuring that the granularity level of the primitive

is actually well-suited for the task, can result in overlooking important differences in such

primitives.

The framework introduced in this chapter represents a contribution towards providing

existing methods in robotics with the types of inputs they expect to function as desired. As

a direction of future research, we would like to automate the process of finding reasonable

minimum and maximum granularity levels, as well as that of exploring the intermediate

levels most likely to prove fruitful. Another worthwhile improvement is investigating how

primitives learned from human motion relate to robot primitives for the same action. For
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example, the pick up primitive might have a granularity level better suited for the task if it

more closely resembles the type of pick up the robot can perform.

Our contribution in this chapter consists of primitives that are relevant to the considered

task, which can be sent along to higher-level algorithms or paradigms. Such approaches

that operate at higher levels expect well-defined primitives as their inputs, creating a need

for learning what constitutes an appropriate set of primitives for the considered task. Our

framework is able to provide a solution to this problem by finding the best-suited gran-

ularity level of a primitive, which maximizes the amount of information we can acquire

from low-level data and avoids primitives that might hide further subclasses relevant to the

task at hand. This contribution can ultimately form the basis of a library of primitives to

be passed onto high-level methods. Our subsequent two contributions presented as part

of Chapter 5 and Chapter 4 represent two different approaches (exploring model-based and

model-free paradigms, respectively) that operate at this higher level, and that would benefit

from such robust primitives as their inputs.
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Chapter 4

Learning at the High Level: How Can

We Learn High-Level Supportive

Behaviors? A Model-Based Approach

In this chapter, we assume capabilities to learn from raw data at the low level, which can

give the system quality state estimations that can be used to make decisions at the high

level about what supportive behaviors the robot should perform throughout the task. These

types of capabilities are obtained from techniques such as the one presented in Chapter 3,

which can provide us with robust primitives describing the state of the task, the human, and

the environment. Here, we focus on presenting a model, together with afferent techniques,

for HRC that enables the robot to decide what assistance to offer to the human worker in

a personalized manner. We utilize states composed of actual features characterizing the

task objects in order to run realistic studies on a robot interacting with human participants.

These techniques, however, generalize to any state representation, as long as it is discretized

in a similar way to the described states in this chapter. The state representations, as well as

the action representations, can ultimately be based on primitives well-suited for the task at

hand, which we can obtain by integrating the framework we introduced in Chapter 3 with
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Figure 4.1: The Baxter Research robot used in this thesis for conducting user studies.

the approach described in this chapter.

We contribute a model-based model for HRC that is well-suited for situations where

there is relatively easy access to a large pool of observations of human workers perform-

ing the task throughout which we ultimately wish a robot to provide assistance. We can

envision collecting such a dataset by mounting sensors (such as cameras or motion data

capture systems) on the floor of a factory where employees perform their daily routines.

This dataset would not contain any information about how the robot should assist the hu-
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man worker, hence no information about supportive behavior preferences. We then present

a model for building personalized models of supportive behaviors with as few as three tra-

jectories either demonstrated by a human via interaction with the robot or labelled by the

human.

The robot we utilize for the experiments is the Baxter Research robot (see Figure 4.1),

a widely used robot platform in HRC. These platforms are usually characterized by limited

capabilities compared to those of humans; they can execute pick and-place actions and

holding of components to facilitate actions performed by the human. They cannot perform

complex assembly tasks by themselves, but they are well-suited to support a human worker.

4.1 Learning with Noisy Observations

In this section, we present how to create personalized supportive behavior models for a

robot to predict what supportive behaviors to offer throughout the execution of an assembly

task. This section includes work performed in simulation, where we tackle noisy observa-

tions, and is an extension of the work from [101] 1.

Learning when and what kind of assistance to provide to different users poses non-

trivial challenges. A human worker might prefer the robot to always stabilize a particular

component like the seat of a chair while they are performing a screwing action. Another

worker might instead wish for the robot to utilize that time to bring a screwdriver for the

next step of the assembly. These different options are not the typical task preferences

referring the order in which task sub-states are executed (e.g., perform assemble leg 1

before assemble leg 2); rather, they represent different supportive behavior preferences on

the part of the users (e.g., provide supportive behavior stabilize component for the assemble

back sub-state but not for the assemble seat sub-state). We can only learn such preferences

1. E. C. Grigore, O. Mangin, A. Roncone, and B. Scassellati, “Predicting supportive behaviors for human-
robot collaboration”, in Proceedings of the 17th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), Extended Abstract. Stockholm, Sweden, 2018, July 10–15.
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when collecting data about the supportive behaviors themselves, and not by simply learning

a model of the task via observing human workers perform the task without assistance.

Furthermore, people are difficult to model and environments involving human workers

are too complex to be fully observed or understood, even with state-of-the-art perception

systems. Rather than observing discrete, well identified, human actions, this results in

robots observing sets of (often high-dimensional) features of human activities, which are

highly domain specific. Modern approaches like partially observable Markov decision pro-

cesses (POMDPs) [102, 103] require a model of state transitions and rewards for the task.

Another class of heavily used methods for learning in robotics that have model-free vari-

ants are reinforcement learning techniques [104]. Although this can alleviate the need to

learn the dynamics of the world, model-free reinforcement learning still requires a large

training set consistent with different users preferences and their interaction with the agent.

Such models are often infeasible to learn in realistic HRC settings since we are severely

limited by the number of demonstrations a person can feasibly provide.

To mitigate the need for a large corpora of user-provided training data, we propose a

model that separates learning the task model from learning a model of user preferences for

the interaction. We thus provide a solution for learning personalized supportive behavior

models for different users while building upon a common model of the task across all users.

This model not only helps take the burden off users with respect to labeling demonstrations,

but it focuses on a core challenge in HRC that does not appear in typical machine learning

domains—that of needing to model interactions that agents operating in this environment

(be it humans or robots) have or wish to have with the environment and task. In this

section, we assume access to observations in the form of task trajectories performed by

human workers. For example, this pool of observations can be acquired in a factory, while

workers perform their usual routines. Such unsupervised trajectories would not directly

include information about the assistance a robot would need to provide. They are however

easy to obtain in large quantities without requiring user interactions, and they can be used
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to learn a model of the worker’s behavior while achieving a task.

We employ hidden Markov models (HMMs) to encode information about the patterns

observed in the actions taken by the human during task execution. By doing so, this method

is able to implicitly, yet flexibly, represent the relevant structure of the task. We then assume

access to a small number of user-provided demonstrations that annotate trajectories of the

task with labels for the supportive actions the human would like the robot to provide, and

we learn a model of the supportive actions with respect to the actions performed by workers,

which were observed during training. This allows us to predict what supportive behaviors

the robot should provide that are tailored to an individual worker. We present results on a

realistic HRC task in simulation, achieving predictions with a small number of errors by

using as few as three user-provided demonstrations.

If our robots are to adapt to novel situations, another critical challenge in robot learning

is to leverage the knowledge acquired on an initial task and user for generalizing to similar

yet unseen tasks, users, and environments. In this work, we explore the question by training

the system on an initial task and testing it on variations of this task’s structure. I hence

demonstrate how the current method is flexible enough to transfer to new scenarios.

The contribution is thus threefold. First, we explain how to learn a model of human

behaviors from ambiguous observations and how use it to provide supportive behaviors to

human workers throughout the execution of a task. Second, we demonstrate that this model

can benefit from a large training set from several users, yet still account for individual pref-

erences in the type of support a user would like to receive, with only a small set of provided

labels. Third, we show that the method can perform well on new tasks, after having learned

both the task and user preference models on a similar but differently structured task.

4.1.1 Related Work

Robotics can heavily benefit from machine learning in order to develop autonomous and

adaptive robots that do not need to be pre-programmed for specific tasks. The typical
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robotics application, however, fundamentally differs in nature from the standard paradigm

assumed in machine learning due to the effects robot actions have on the state of the world

and the feedback loop this creates. This work is positioned between approaches that focus

on modeling a robot’s decision, and work on modeling and predicting human behaviors,

presented in Chapter 2.

Compared to the relevant work presented in Chapter 2, the current technique relates

in that I am interested in learning a model of the task, for which demonstrations of task

trajectories can be acquired by observations in settings like, for example, factories. This

allows a large number of demonstrations to be collected so as to allow us to use machine

learning techniques such as HMMs to represent the task. However, the models presented

in the related work either need to model the full task (including any interactions with a

human or a robot), or need a large amount of demonstrations that are used for model-free

learning. In HRC scenarios, user preferences are expensive to obtain, and so we cannot

straightforwardly employ either a very specific model, nor a technique that requires large

amounts of user-provided labels. Thus, this idea of separating the task learning problem

(from an assumed large set of relatively easy-to-obtain demonstrations of task trajectories)

from learning user preferences positions our work in an impactful intersection relevant for

the HRC application domain.

4.1.2 Problem Formulation

In this chapter, we focus on enabling robots for HRC to predict, in a way that is tailored to

individual users’ preferences, when this support is needed. To this end, we target a realistic

human-robot collaboration scenario where a robot works side-by-side with a human partner

to achieve a shared goal, and specifically the collaborative assembly of furniture. In this

work, we employ a model set for HRC that has been developed in related work [105]. It

is tailored to collaborative experiments, and it explicitly exposes a variety of experimental

variables for the evaluation of HRC algorithms (e.g., task complexity, respective roles of
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Figure 4.2: Chair assembly task utilized throughout Chapter 4 and Chapter 5. This task is
representative of a typical Human-Robot Collaboration (HRC) scenario.

robot and human in performing the task, amount of shared autonomy and so on). For the

purposes of this work, we focus on a single assembly task, namely a chair (cf. Figure 4.2).

Current robotic platforms are limited in their perception capabilities, specially when

considering realistic human working environments, and the fact that human workers’ in-
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Table 4.1: Supportive Behavior Labels Provided by User 1 for Example Trajectories

Trajectory 1 Trajectory 2

Human action Supportive behavior labels Human action Supportive behavior labels

gather parts leg 3 [bring back brackets, bring dowel, gather parts leg 2 [bring front brackets, bring dowel,
bring screwdriver] bring screwdriver]

assemble leg 3 [hold] assemble leg 2 [hold]
gather parts leg 4 [bring back brackets, bring dowel] gather parts leg 1 [bring front brackets, bring dowel]
assemble leg 4 [hold] assemble leg 1 [hold]
gather parts leg 2 [bring front brackets, bring dowel] gather parts leg 4 [bring back brackets, bring dowel]
assemble leg 2 [hold] assemble leg 4 [hold]
gather parts leg 1 [bring front brackets, bring dowel] gather parts leg 3 [bring back brackets, bring dowel]
assemble leg 1 [hold] assemble leg 3 [hold]
gather parts seat [bring seat] gather parts back [bring back]
assemble seat Ø assemble back Ø
gather parts back [bring back] gather parts seat [bring seat]
assemble back Ø assemble sear Ø

tentions are hidden, complex, and hence often not fully predictable. To account for this,

we consider that the robot only has access to noisy ambiguous observations about the hu-

man activities. Such observations might directly come from sensors such as motion capture

systems, or be the result of an algorithm that, for example, detects the presence of known

objects in the workspace, or whether a particular tool is currently in use. In this chapter,

we work under the generic assumption that a vector of features implicitly representing the

world is available to the robot. More specifically, we do not rely on domain- or hardware-

specific perception; rather, we propose to exploit generic models on top of this potentially

noisy and partial amount of low-level data. We thus target models that can scale to high-

dimensional and noisy observations.

In order for the assistance provided by the robot to be useful to an individual user,

the first aim is for the robot to learn how to do so in a personalized manner. One human

worker might prefer the robot to hold each leg dowel for him or her to perform the assemble

action for that leg (depicted in Table 4.3). A different user might instead wish the robot to

only provide this supportive behavior for a single leg instead of all legs. In this work, we

set forth to learn this spectrum of user preferences by using only a small amount of user-

provided labels. This is a central concern in collaborative scenarios, as user demonstrations
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Table 4.2: Supportive Behavior Labels Provided by User 2 for Example Trajectories

Trajectory 1 Trajectory 2

Human action Supportive behavior labels Human action Supportive behavior labels

gather parts leg 3 [bring dowel] gather parts leg 2 Ø
assemble leg 3 [hold] assemble leg 2 [hold]
gather parts leg 4 [bring back brackets, bring dowel] gather parts leg 1 [bring front brackets, bring dowel]
assemble leg 4 [bring back brackets, hold] assemble leg 1 [hold]
gather parts leg 2 [bring screwdriver] gather parts leg 4 [bring back brackets, bring dowel,

bring screwdriver]
assemble leg 2 [hold] assemble leg 4 [hold]
gather parts leg 1 [bring front brackets, bring dowel] gather parts leg 3 [bring dowel]
assemble leg 1 [hold] assemble leg 3 [hold]
gather parts seat [bring seat] gather parts back [bring back]
assemble seat Ø assemble back Ø
gather parts back [bring back] gather parts seat [bring seat]
assemble back Ø assemble sear Ø

are expensive to obtain in large numbers. The results presented in this chapter are obtained

from as few as three demonstrations.

Smooth collaboration requires that the robot supportive actions are provided when the

human needs them. This however requires anticipation since actions and, specially, robot

actions take time to happen. For instance, if the robot is to be truly helpful, it is essential

to bring a screwdriver to a worker who is about to screw before actually reaching the point

in the task when the screwing happens. In the following, we focus on the objective of

predicting the human needs with an anticipation time of ∆t.

The second aim with this work is—not only to devise a model that can be effectively

used for supportive behavior prediction in HRC—but to also be able to make use of the

knowledge learned during one task for different, related yet unseen tasks. This is in line

with much of the aspirations in robot learning, where we wish to develop techniques that are

flexible and versatile enough to be used for transfer learning. This way, we can leverage

a large corpora of training samples from different subcomponents of a task, and utilize

them for other tasks that might be composed of the same building blocks, but arranged

differently. This challenge has particular importance in HRC since user-provided labels are

difficult and expensive to obtain.
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4.1.3 Predictive Model

We propose a method of separating the problems of learning a task model from that of

learning user preferences for the collaborative interaction. This approach starts by first

learning a limited set of activity patterns and transitions between them from observations

of human behaviors. In this chapter, we implement this approach with a hidden Markov

model (HMM). During the second phase, we learn to predict (from the hidden states) what

supportive behaviors are useful to the human worker. The choice to employ an HMM to

model the task is based on the strong mix of the model’s simplicity and power of predicting

into the future given past observations. In particular, this means we can choose to model

our task by using a higher or a lower number of hidden states. The former would provide

us with a better representation of the task itself but would require more user preference

labels in order to achieve high quality predictions for supportive behaviors, while the latter

would have a more limited representational power while requiring a small amount of user-

provided labels. This is a trade-off we analyze further in Subsection 4.2.4.

We present the extended HMM in Figure 4.3. We denote by Ht the hidden state at time

t, by Yt the observations, and by Ut the preference of the user for some of the supportive

behaviors. As detailed below, we consider binary observation features with independent

emission probabilities. We hence use a Bernoulli HMM model which we detail in Subsec-

tion 4.1.3. Similarly, we model the preference for each behavior, given a hidden state, to

be independent and modeled as a Bernoulli distribution, as explained in Subsection 4.1.3.

We assume access to a training set consisting of observations, each in the form of a

vector of features. In the following, we assume demonstrations are of length T and that the

features are binary, although the proposed approach is not at all limited to such constraints.

We denote as n the number of such features so that each observation yt ∈ {0, 1}n. For

example, the feature vector [0, 1, 1, 0, 1] could represent [human worker right hand moving

object, human worker right hand moving without object, human worker left hand moving

object, human worker left hand moving without object, human worker screwing].
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Figure 4.3: The extended HMM representing a personalized supportive behavior model.
In addition to a regular model learned from observation of all the users ((Yt)1≤t≤T ), we
consider user preferences, represented by the variables Ut. We assume that the user prefer-
ences only depend on the hidden state and that they are only observed on a limited number
of examples.

Main Task HMM

To represent the task in a simple yet powerful way, we model the emission probabilities

with Bernoulli distributions. We assume access to a training set consisting of observations,

each in the form of a vector of features. In the following, we assume demonstrations are

of length T and that the features are binary, although the proposed approach is not at all

limited to such constraints. We denote as n the number of such features so that each obser-

vation yt ∈ {0, 1}n. For example, the feature vector [0, 1, 1, 0, 1] could represent [human

worker right hand moving object, human worker right hand moving without object, human

worker left hand moving object, human worker left hand moving without object, human

worker screwing ]. We train the model with the Baum-Welch algorithm, implemented on

top of the Python hmm_learn library2. Baum-Welch is the standard HMM algorithm for

learning the model parameters (i.e., in this case, the Bernoulli probabilities and state tran-

sition probabilities). In Fig. 4.3, this corresponds to learning the emission probabilities

P (Yt|Ht), as well as the transitions P (Ht+1|Ht) and the initial distribution over hidden

states.

2. The API is available at: http://hmmlearn.readthedocs.io
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Personalized Supportive Behavior Model

We represent the supportive behavior preferences by introducing variables Ut, which de-

pend only on the hidden state at time t (i.e., they do not depend on the observed Yt). The Ut

are binary vectors of dimension npreferences in which each coordinate is Ut,j = 1 if the pref-

erence is that the robot provide the supportive behavior j and 0 otherwise. The separation

in the model enables learning the preference probabilities from a different number of sam-

ples than the HMM. In particular these are user-provided labels that are more expensive

to collect than pure observations of a worker’s behavior. If the HMM correctly captures

the relevant information about the task progression, only a few examples of user labels are

needed to predict the preference, since the predictions rely on the quality of the decoded

hidden state.

In this experiment we further approximate the behavior preferences as being indepen-

dent knowing the hidden state. We model these preferences with Bernoulli distributions,

like we do for the observations. We, however, assume that the HMM has already been

learned when we proceed to train the preference model. Each labelled interaction i pro-

vided by the user consists in a trajectory of observations together with user preferences

for the supportive behaviors, that is a list of feature vectors (yit)1≤t≤T and a list of prefer-

ence vectors (uit)1≤t≤T . We start by decoding the trajectories with a soft Viterbi algorithm

(equivalent to an E-step in Baum-Welch), and then estimate the probabilities for the pref-

erences similarly to an M-step, by using the probabilities over the decoded states. More

precisely, for n trajectories:

P (Ut = u|Ht = k) =

∑n
i=1

∑T
t=1 P (H i

t = k|yi1...T )× 1uit=u∑n
i=1

∑T
t=1 P (H i

t = k|yi1...T )
. (4.1)

Predicting supportive behaviors

We are interested in predicting the supportive behaviors that the robot can provide to the

human worker with an anticipation time of ∆t. In order to predict into the future, we
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employ the standard soft Viterbi algorithm to decode the hidden state until the current time

step, knowing the observations until that step. In other words, we compute P (Ht = k|y1...t),

namely the probabilities of being in each hidden state given only the past observations. We

can then compute the likelihood of each hidden state at a given ∆t in the future using the

HMM, and from there the user preferences for that time step. In particular, if PHt+1|Ht is

the matrix of transition probabilities, the transition probabilities after ∆t steps are given

by:

PHt+∆t|Ht = P∆t
Ht+1|Ht

(4.2)

and hence

P (ht+∆t|y1...t) =
∑
ht

P (ht+∆t|ht)P (ht|y1...t) (4.3)

P (ut+∆t|y1...t) =
∑
ht+∆t

P (ut+∆t|ht+∆t)P (ht+∆t|y1...t). (4.4)

4.1.4 Model Evaluation

To show the versatility and applicability of the current model to a realistic collaborative

chair assembly task, we conducted a series of simulation experiments for different sets of

user preferences, as well as for transfer learning tasks.

Representing the task

In order to study the behavior of the learning algorithm on consistent and intuitive trajecto-

ries, we consider a task to be based on a hierarchical task model (HTM), as defined in [67].

HTMs following the definition herein represent tasks as trees of subtasks of varying com-

plexities and abstraction. Each node represents a subtask and is itself a combination of

subtasks following a sequence or parallel operation. Subtasks composed in sequence have

to be executed in the order in which they appear as children of the node. Parallel combi-

nations of subtasks can be executed in any order. Leaves of the tree are atomic subtasks.
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Figure 4.4: Hierarchical task model (HTM) representing the chair assembly task. Each leaf
is an atomic subtask; each node composes subtasks that need to be achieved in sequence
(in a given order,→) or in parallel (in any order, ‖). For each atomic subtask, the human
worker has preferences over supportive behaviors that the robot might provide.

Typically, HTMs are compact representations of a task but they can correspond to com-

plex constraints on task execution orders. In particular, parallel combinations of n nodes

enable n! execution orders. The current task represents a real world chair assembly task

that is composed of a sequence of two main blocks, each of which has children that can be

executed in parallel. The network of our task can be seen in Figure 4.4.

Training the main task HMM

In order to train the HMM for the main task, we create our training set by generating tra-

jectories according to the presented HTM. In particular, given the HTM, we generate valid

trajectories that are composed of leaves from the tree that are actually subtasks. We further

assume that each leaf corresponds to a human activity, which we model as a distribution

of patterns of observations. We simulate observations from the trajectory according to this

distribution (the Yt variables).

In particular, to simulate the noisy process of collecting partial observations in the real

world, we generate a vector of n = 5 observation features for a given subtask based on a

signature of probability values. For example, for the subtask assemble leg 1, we randomly

generate a vector [p1, p2, p3, p4, p5], where pj ∈ [0; 1] and represents the probability of

feature yjt having value 1. We then generate the actual observations, as binary vectors,

drawing from Bernoulli distributions whose parameters are given in the vector. Whenever

the same subtask appears, it will have the same signature of probabilities, but might have
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different values for its features depending on this generation process.

Training the personalized supportive behavior model

In order to train the personalized supportive behavior model, we assume access to a set

of supportive behavior labels different users provide for a small number of generated task

trajectories. We model two different users, with their own likes for what assistance the robot

should provide for different actions the users perform. Table 4.3 shows the labels provided

by user 1 and Table 4.2 those provided by user 2. The first set constitutes an easier learning

task for the user preferences, while the second one represents a more difficult learning task.

We discuss this aspect in Subsection 4.2.4.

Since in a real-world scenario, these preferences are obtained by asking users to manu-

ally label a set of trajectories, we assume no noise when generating the labels. Thus, for the

human action gather parts for leg 3, we will always have the same labels {bring back brackets,

bring dowel} for the supportive behaviors that user 1 would like the robot to offer.

To choose trajectories for labelling, we pick the number of trajectories to be labelled at

random from the training set generated following the description in Subsection 4.1.4. We

then label them by the scheme in Table 4.3 for user 1 and that in Table 4.2 for user 2.

Decision Model and Computing Errors

We use a model of an agent that only takes one supportive action at each time step based

on the prediction of supportive behaviors for the next step, derived as explained in Subsec-

tion 4.1.3, with ∆t = 1. At each time step, the agent chooses the supportive behavior with

the highest predicted probability as the supportive behavior to be executed.

To evaluate the agent, we generate a test set by using the same techniques described

for the training sets, with user annotation unobserved from the agent but used as ground

truth for its evaluation. Each different run, we choose a new trajectory at random from the

test set, and we compute the hidden state estimation from past observations. We count the
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Figure 4.5: Number of errors as a function of the number of HMM hidden states for differ-
ent user-provided number of labeled trajectories. The number of errors is computed with
500 training trajectories and labels provided by user 1 for 3, 5, 10, and 20 trajectories.

agent’s choice as an error if the ground truth for the chosen test trajectory is not labeled 1

for this supportive behavior. In other words, the agent is evaluated on its ability to provide a

relevant supportive behavior (evaluated based on this particular user’s preferences) at each

time step.

4.1.5 Results and Discussion

In this section, we present results on the main task for two different sets of user preferences,

and on two different transfer learning scenarios.

Prediction Results on Chair Assembly Task

We present the results for the main task in Figure 4.5. This graph highlights the number of

errors we obtain as a function of the number of hidden states of the HMM, averaged over

ten runs for each, for increasing user preference training set sizes. Each run, we re-train the
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HMM from scratch to make sure we obtain consistent results over time. As we increase the

number of hidden states, the power of the model to represent the task increases. However,

since we only employ a small set of user-provided labels, a higher number of hidden states

effects the need to train more parameters with very few examples provided by users, and

so we notice an error increase when maintaining the same number of user demonstrations.

We notice this trend for all the different size label sets, testing with 3, 5, 10, and 20 user-

labeled trajectories. This highlights a trade-off between the complexity of the model (the

higher, the better it can represent the task), and the desired number of trajectories we are

comfortable asking the user to label for the task.

In our scenario, this trade-off results in a minimum of 1 and an average number of 2

errors for a task with a total of 12 steps. Of course, this trade-off will differ for specific

applications. Due to the nature of the task (i.e., composed of two parallel nodes), a person’s

lower bound on the number of errors when predicting what supportive behavior the robot

should offer at each time step for this set of user preferences would be 1. Although such a

metric would be best thoroughly tested as part of a user study where humans would be asked

to predict the supportive behaviors, if we are to assume the best scenario for a person’s

answers, this would be the accurate prediction for those behaviors that happen at the same

time step within the progression of the task. For example, we assume people would be

good at predicting bring dowel and hold, since they always happen at the same point in the

task. The bring seat and bring back behaviors, however, are difficult to predict because of

the parallel nature of the assemble top task node. Our model thus shows performance close

to human level for this case.

Figure 4.6 presents the same analysis, but for a different set of user preferences (i.e., a

different user who provided labels for a total of 5 trajectories). The preferences for what

supportive actions the robot should offer are listed in Table 4.2. Here, the preferences

provided by the user represent a more challenging learning task, and so we notice a slightly

higher error average, with more variability. In this scenario, it is also not clear what the
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Figure 4.6: Number of errors as a function of the number of HMM hidden states for differ-
ent user-provided number of labeled trajectories. The number of errors is computed with
500 training trajectories and labels provided by user 2 for 3, 5, 10, and 20 trajectories.

lower bound on a human performance for predicting supportive behaviors would be. Our

results are thus a promising avenue for predicting supportive behaviors in HRC scenarios,

where we only have a small set of user-provided labels for task trajectories.

Transfer Learning

Another critical aspect in robot learning is that of transfer learning. Whenever a robot is

faced with a new task, we would like it to be able to leverage what it has learned in the past

about similar environments or situations, in order to speed up learning. The alternative is

to necessitate to learn from scratch for each new task the robot faces. Transfer learning,

however, is difficult to achieve. Typical machine learning techniques need to be consider-

ably tweaked for even the smallest change in the task formulation. We show strong results
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(a) Task on which we train (task 0 )

(b) Task composed of the sequence of building blocks A and B,
but in reverse order (task 1 )

(b) Task composed of the parallel combination
consisting of building blocks A and B (task 2 )

Figure 4.7: Structure of transfer learning tasks.

on two transfer learning tasks. We learn both the task and the user preference models on

an initial task, and test on two different tasks, composed of the same building blocks but

arranged as different HTMs. Figure 4.7 shows the initial task we train on (which we call

task 0 ), as well as the two tasks for which we report error metrics, namely task 1 and task

2. All the metrics presented in this here have been computed with a training set size of

500 and user-provided labels for 5 trajectories in the training set, in accordance to user 1 ’s

preferences.

For task 1, Figure 4.8 highlights that we obtain as low as 4 errors when trained entirely

on the initial task. The baseline we compare against is training on task 1 and testing on
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Figure 4.8: Scenario 1 for transfer learning. This graph shows the number of errors as a
function of the number of HMM hidden states when tested on a transfer learning task. Both
the model and the user preferences are learned on taks 0, and tested on task 1.

itself. For our best results, we perform worse than training on the task itself by a difference

of only 1 error, which happens in this case for a choice of 16 hidden states for the HMM.

This transfer learning result represents a success for HRC scenarios like the one we

consider herein. Figure 4.7 (b) depicts the task we are performing transfer learning on as

being composed of the same two building blocks task 0 consists of, but in reverse order.

What this amounts to in a real-world environment like a factory is being able to simply

collect observations of particular subtasks of larger, ongoing tasks. We then only require

users to label a single combination or way of arranging these subtasks together, and we are

able to export this information in a way that serves many other possible tasks. Here, we

have a combination of two blocks only, but it is immediately apparent how advantageous

this technique can become when considering tens or hundreds of such subtasks. Such

transfer learning is difficult to achieve for HRC scenarios, where we require user-provided

labels of preferences. A model that would otherwise aim to learn both the task and worker
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Figure 4.9: Scenario 1 for transfer learning. This graph shows the number of errors as a
function of the number of HMM hidden states when tested on a transfer learning task. Both
the model and the user preferences are learned on taks 0, and tested on task 1.

preference models together for an HRC scenario needs to find ingenious ways to handle

the scarcity of demonstrations a user can provide.

We also present our findings for a second transfer learning task. For task 2, depicted

in Figure 4.7 (c), we obtain results highlighted in Figure 4.9. We compose this task from

the same building blocks as above, but arrange them as part of a parallel combination. The

metrics show that we perform as well as training on the task itself. This transfer learning

problem constitutes an easier scenario than the previous one, since task 2 represents a

superset of task 0. Our results are still meaningful, however, since we work with so few

user-labeled trajectories, and are thus not likely to observe many trajectories outside task 0.

4.1.6 Conclusions

In this section, we explore the problem of predicting supportive behaviors for a realistic

chair assembly task, and show that we can learn accurate predictions from as few as three
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user-provided labels. We show there is a trade-off with respect to the representational

power of the model and the costly number of user-provided labels we can obtain. Finally,

we highlight strong results on two transfer learning tasks, where we train both our task and

user preference models on an initial task, and test on two new tasks composed of the same

building blocks, but arranged in a different structure. We are excited about continuing this

line of research by implementing our model on a real robot, as well as by extending the

model with layers of more advanced decision making processes. In Section 4.2, we imple-

ment this model on a robot, and perform a user study in order to validate our model. For our

user study, we implement a simple decision making process that utilizes the predictions our

model makes to autonomously choose the robot’s actions at each step. Expanding in the

direction of more sophisticated decision making processes represents a worthwhile future

endeavor.

4.2 Learning with Object-Based Features on Real Robot

In this section, we optimize and implement the model presented in Section 4.1 on the Baxter

robot and perform a user study where we demonstrate the practical use of the model. In this

section, we use features related to the presence of task objects in the workspace in order to

represent the state space. This work is based on [106] 3.

We test the system in a study with n=14 participants. We present results showing that

the system achieves predictions on par with human-level performance by using only five

user-provided labels. We also present the versatility of our system by asking participants to

change their preferences for what supportive behaviors the robot should offer at different

points throughout the task, and show that model separation allows us to train on these new

preferences quickly, with similar human-level results.

3. E. C. Grigore, A. Roncone, O. Mangin, and B. Scassellati, “Preference-based assistance prediction for
human-robot collaboration tasks”, in Proceedings of the 31st IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, Spain, Madrid, 2018, October 1–5.
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Figure 4.10: Human participant assembling the chair part of our user study. The robot is
holding a component, allowing the participant to use both of his hands for the screwing
action.

The contribution presented in this section is thus threefold. First, we explain how to

learn a model of human behaviors from observations and how use it to provide supportive

behaviors to human workers throughout the execution of a task. Second, we demonstrate

that this model can benefit from a large training set from several users, yet still account for

individual preferences in the type of support a user would like to receive, with only a small

set of provided labels. Third, we show that the system performs on par with human-level

prediction for our task by running a study with 14 participants.
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Figure 4.11: Hierarchical task model (HTM) representing the chair assembly task. Each
leaf is an atomic subtask; each node composes subtasks that need to be achieved in se-
quence (in a given order,→) or in parallel (in any order, ‖). For each atomic subtask, the
human worker has preferences over supportive behaviors that the robot might provide.

4.2.1 Problem Formulation

In this section, we implement the model on the Baxter Research Robot (see Figure 4.10.

We employ the same chair task as in Section 4.1, the chair seen in Figure 4.2, with a slightly

modified HTM, which can be seen in Figure 4.11.

We consider that the robot can provide a set of supportive behaviors consisting of a

total of 10 behaviors, including no action. Table 4.3 presents a sample trajectory generated

from the task together with two different sets of supportive behavior preferences, listing

the action performed by the human together with the supportive behaviors the robot should

offer for that human action. For example, when the human executes gather parts leg 3,

the robot should perform two supportive behaviors: bring back bracket and bring dowel.

In contrast to Section 4.1, where the robot prediction consisted of only one supportive

behavior per time step (the one with the highest predicted probability), in this work, the

robot aims to execute all of the behaviors labeled for each step, without missing or adding

anything. These supportive behaviors represent actions the robot can take throughout the

task to help the human efficiently complete the task.

In order for the assistance provided by the robot to be useful to an individual user, the

aim is for the robot to learn how to do so in a personalized manner. One human worker

might prefer the robot to hold both the seat and the back while they perform the assemble
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Table 4.3: Supportive Behavior Labels for a Single Trajectory based on Two Distinct Sup-
portive Behavior Preference Sets

Supportive behavior preference set 1 Supportive behavior preference set 2

Human action Supportive behavior labels Human action Supportive behavior labels

gather parts leg 3 [bring back bracket, bring dowel] gather parts leg 3 [bring back bracket, bring dowel,
bring screwdriver]

gather parts leg 4 [bring back bracket, bring dowel] gather parts leg 4 [bring back bracket, bring dowel]
gather parts leg 2 [bring front bracket, bring dowel, gather parts leg 2 [bring front bracket, bring dowel]

bring screwdriver]
gather parts leg 1 [bring front bracket, bring dowel] gather parts leg 1 [bring front bracket, bring dowel,

hold]
gather parts seat [bring seat] gather parts seat [bring seat]
assemble seat [hold] assemble seat Ø
gather parts back right [bring top bracket, bring dowel] gather parts back right [bring top bracket, bring dowel]
gather parts back left [bring top bracket, bring dowel] gather parts back left [bring top bracket, bring dowel]
gather parts back top [bring back, bring long dowel] gather parts back top [bring back, bring long dowel, hold]
assemble back [hold] assemble back Ø

action for that part (depicted in Table 4.3 under the assemble seat and assemble back human

actions).

A different user might instead wish the robot not to provide a hold behavior for the

seat or the back, preferring hold for gather parts back top and for the third time gather

parts leg happens (depicted under the assemble seat, assemble back, gather parts back

top and gather parts leg 1 actions). In this work, we set forth to learn this spectrum of

user preferences by using only a small amount of user-provided labels. This is a central

concern in collaborative scenarios, as user demonstrations are expensive to obtain in large

numbers. The results presented in this section are obtained from only five user-labeled

demonstrations, similar to Section 4.1.

Smooth collaboration requires that the robot supportive actions are provided when the

human needs them. This however requires anticipation since actions and, specially, robot

actions take time to happen. For instance, if the robot is to be truly helpful, it is essential to

bring a screwdriver to a worker who is about to screw before actually reaching the point in

the task when the screwing happens. Similarly to Section 4.1, in this section, too, we focus

on predicting human needs with an anticipation time of ∆t = 1.
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4.2.2 Predictive Model

We implement the personalized supportive behavior model consisting of the extended HMM

model presented in Section 4.1 in Figure 4.3, and perform a user study to evaluate this

model with human participants. We use the same representations as those presented in Sec-

tion 4.1, except for the observations used for the training set. In this section, each obser-

vation is in the form of a vector of features, with features based on the presence versus

absence of objects in the workspace, with a 1 denoting presence. The values the features

take on are still binary, like before, but the generation process is now based on the object

presence in the workspace, without introducing noise during the training set generation

process. We use a total of 19 features for our task.

4.2.3 Model Evaluation

Here, we detail the steps we followed to evaluate the model via the user study. 1. We gen-

erate a training set consisting of task trajectories without supportive behavior preference

data in order to train the main task HMM (the single, cross-users model of the task), and

I train the main task model on this set. We refer to this training set as set T henceforth,

and explain the details in Section 4.2.3. 2. We choose a small number of trajectories from

the training set generated for the main task, and label them with supportive behavior pref-

erences, experimenting with the exact number of trajectories to pick. We use this training

set to train the personalized supportive behavior model. We refer to this training set as

set SB henceforth, and explain the details in Section 4.2.3. 3. We decide a mechanism for

computing errors for our model (detailed in Section 4.2.3), and we optimize parameters

for all of the above during the simulation experiments (detailed in Section 4.2.3). 4. We

use the optimized model from the simulated experiments (i.e., the trained HMM and the

trajectories from set SB) to test with real users (detailed in Section 4.2.3).
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Figure 4.12: HMM parameter optimization procedure. This graph presents training eight
different models corresponding to 21 = 2, 22 = 4, ..., 28 = 256 total number of hidden
states, and running the training for each model 10 different times, each tested with a differ-
ent HTM trajectory. The procedure was repeated for 3, 5, and 10 user-labeled trajectories,
respectively. The x-axis presents the number of states equidistant for better visualization.
We picked the HMM that provided us with the best trade-off regarding number of user
demonstrations vs. number of hidden states.

Training the main task HMM

In order to study the behavior of the learning algorithm on consistent and intuitive trajecto-

ries, we consider a task to be based on a hierarchical task model (HTM), as defined in [67]

and detailed in Section 4.1. The current task represents a real world chair assembly task

that is composed of a sequence of two main blocks, each of which has children that can

be executed in parallel. The network of the task utilized in this section can be seen in Fig.

4.11.

To train the HMM in simulation, we construct training set T consisting of 350 trajec-

tories generated in accordance with the presented HTM, which can generate a total of 96

distinct trajectories. In particular, given the HTM, we generate valid trajectories that are

composed of leaves from the tree. We further assume that each leaf corresponds to a hu-

man activity, which generates the feature values based on object presence in the workspace.

We only use the HTM in order to generate trajectories consistent with the structure of the

task, which would be naturally observed in a factory environment. We do not learn, or
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insert knowledge about the HTM into the system at any point. In a real-world scenario, this

step corresponds to gathering observations of human workers performing assembly tasks

in their natural environment, without a robot providing assistance.

Training the personalized supportive behavior model

To train the personalized supportive behavior model, we need to choose a small number of

trajectories from training set T and obtain user-provided labels for the supportive behaviors

desired for these trajectories. We call this training set SB. For the simulation experiments,

we consider a user with particular behavior preferences, and label the trajectories in ac-

cordance with these preferences. This provides me with set SB. During the user study, we

perform trials in accordance with this set SB, and we also allow participants to choose their

own preferences, by labeling the same trajectories and creating a personalized set SB’.

For each set SB, we assume stationarity of preferences (e.g., if a user prefers the screw-

driver be brought for leg 3, we assume this to always be true for that preference set). The

goal is to minimize the number of trajectories for SB, since these always need to be labeled

by users. We thus experiment with different numbers for the size of SB. When training with

three or five, we use a decided-upon set of trajectories. These are chosen to cover different

trajectories from our HTM, and are the same trajectories we give our human participants

during the user study in order to compare system performance with that of human-level

performance (detailed in Subsection 4.2.3), although the results are similar when picking

these trajectories at random. When training with more than five trajectories for parame-

ter optimization, we pick these at random from the training set. In a real-world scenario,

this step corresponds to asking human workers to label a set of task trajectories with their

preferences for what supportive behaviors they would want a robot to provide during the

task.
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Decision model and computing errors

We use a model of an agent that takes all the supportive behaviors with probability greater

than 0.5 at each time step. The probabilities are computed as explained in Section 4.1.3,

with ∆t = 1, meaning the agent predicts one time step in advance. In this work, we choose

∆t = 1 because the system predicts for discrete time steps in terms of task progression,

and each task step is essential for task completion. However, the contributed model extends

to any ∆ value, and interesting investigations are possible, for example where we combine

predicting more steps into the future with using macro-actions that span multiple time steps.

We do not tell the model how many supportive behaviors it should choose at each time step.

Rather, we automatically choose only those behaviors that have high certainty (i.e., greater

than 0.5).

We count both false positive and false negative errors when computing the total number

of errors per episode. If the robot missed bringing the dowel when it should have and

brought the top bracket when it should not have, we count 2 errors for that step. For any

parallel nodes (e.g., we can either start the assembly with the back or with the legs), either

choice the agent performs is correct. We also allow users to change the order for parallel

actions whenever they choose to do so.

Choosing model parameters

HMMs are prone to local optima. To choose the parameters for the user study, we ran a

total of eight different HMMs, with increasing number of hidden states, using a single SB

preference set. We chose the number of hidden states as increasing powers of 2, starting

with 21 = 2 and ending with 28 = 256 hidden states. Fig. 4.12 shows the training process

with 3, 5, and 10 user-provided labels.

As the figure highlights, the higher the number of hidden states, the more power the

HMM has to model the task. However, when we reach a large number of hidden states,

we need more and more user-provided labels in order to scale up to the number of model
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parameters. This is revealed by the two curves seen in the figure for 3 and 5 labeled tra-

jectories, where we notice the number of errors going down when the number of states

initially increases (due to the higher modeling power of the HMM), but starts to increase

again when the number of hidden states increases beyond the modeling power of the la-

beled trajectories. The curve for 10 labeled trajectories does not show this pattern in the

figure, but we posit that with 10 trajectories, the turning point will happen with a higher

number of hidden states.

We thus chose the HMM that provided us with the best trade-off in terms of necessitat-

ing a low number of labels and a low number of hidden states, resulting in 128 hidden states

and the use of 5 user-labeled trajectories. Compared to choosing 256 hidden states with 10

labeled trajectories or 64 hidden states with 3 labeled trajectories, this choice results in the

lowest average number of errors (0.20) and lowest standard deviation (0.60).

Testing personalized supportive behavior models on robot

We run our experiments with the task presented in Figure 4.2, with the HTM from Fig-

ure 4.11. The experiment consists of two phases, as follows.

During the first phase, we provide an interactive survey to each participant. We provide

them with three labeled trajectories, two of which can be seen in Table 4.3. The participants

are given a few minutes to consider the trajectories, and they are then asked to label five

new trajectories with supportive actions based on the three examples, by thinking of the

behaviors to be offered for the next time step as the task progresses. This task represents

the equivalent of the prediction problem for the robot, with the same amount of informa-

tion given (when we train on three trajectories). We then offer two more examples to the

participants, which are based on the same task and same preferences. The new examples

do not contain any additional information, but are meant to solidify the information already

present in the previous examples. The initial three examples cover all the relevant informa-

tion for the task and are not chosen to obscure any particularities of the preferences. The
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final provided set of five trajectories represents the same set SB we use to train our model.

Finally, the participants are asked to label another set of five new trajectories. We consider

the first set to be a habituation phase with the task, and so we present only the results from

the second set.

During the second phase, we confirm with participants the structure of the task and the

set of preferences they just predicted for. We now ask them to play the part of the human

worker, and allow the robot to make the predictions, while they assemble the chair. We

have each participant assemble the chair twice with this set SB of preferences. We then

allow participants to switch their preferences and choose a new set SB’, and perform two

more assembly tasks on the new set. The trajectories are the same five ones the participants

were given during the previous phase. We need only label these five trajectories according

to the new preference set expressed by each participant in order to tailor the experience to

each participant’s liking. We perform this phase with a different set of preferences to show

that our system allows for facile and quick labeling of the necessary trajectories to tailor

assistance to individual preferences.

During the assembly phase with the robot, participants can always switch to a differ-

ent action whenever a parallel alternative exists. For each time step during our task, the

robot first makes its predictions for the following time step, and then executes the predicted

behaviors in sequence. If the participant is satisfied with the behavior, he or she presses

a green button on the robot arm that causes behavior to be completed; otherwise, the par-

ticipant can press a red button on the arm that causes the behavior to be cancelled (i.e.,

the robot takes back any objects to their original pick-up location or stops executing the

behavior in the case of hold). Participants are told to press the red button either in the case

of a desired switch (we do not count the press as an error), or in the case of an incorrectly

predicted and executed behavior on the part of the robot (we count the press as an error).

Whenever the green button is pressed and an object is successfully released, the system

automatically updates the features based on the new object presence.
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Figure 4.13: Average number of errors for the main supportive behavior preference set
SB, the user-specified set SB’, the human predictions (interactive survey), and a random
baseline.

After the robot finishes executing the predicted behaviors for a step, it asks the partici-

pant if it has missed any behaviors. The participant has three options: 1. state that the robot

did not miss any behaviors, 2. ask for a new action due to a previous switch to a parallel
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action, or 3. ask for an action the robot missed due to incorrect predictions. In the first case,

the interaction proceeds to the next step. In the latter two the experimenter, through a web

interface, gets the robot to execute the missing actions before proceeding to the next step.

The errors counted during the task execution are used only to evaluate the model, and not

for online learning, although this would be an interesting future research direction.

4.2.4 Results and Discussion

In this section, we present the results on the main set of user preferences, on the new

per-user basis preference set, and compare them with human-level prediction for the task.

Fig. 4.13 shows the average number of errors for the robot trials on the main set of pref-

erences and on the user-specified set of preferences, as well as the human-level prediction

in comparison to a random baseline for the task. We computed the random baseline by

using information about the task structure in the following way. For a total of 10 time steps

for one task trajectory, we used the number of times needed to choose 1, 2, or 3 support-

ive actions per time step to compute an estimate of how many behaviors to choose at that

step. Although the predictive system does not receive this information and automatically

chooses only those predictions it has high confidence about, we wish to show the power

of the model by computing a baseline that uses some task knowledge. After choosing the

number of behaviors for the current step, we proceed to randomly choose those behaviors

from the available set. For each step, we sample without replacement, since the system

only considers different supportive behaviors and cannot pick the same one twice for a sin-

gle step. We then sample with replacement for the next time step. We compute the total

number of errors by following the same procedure as described in Subsection 4.2.3. The

average for the baseline is 24.68 (s.d. 2.84).

We use the same evaluation in order to compute human-level prediction for the task:

we only utilize the five trajectories participants have predicted after having seen the five

examples that are also provided to the system. We compute errors similarly to the robot
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condition: when the person incorrectly predicts a supportive behavior (in accordance with

the preference set), we count this as an error. Since these trajectories represent the sec-

ond set participants go through, they have practice performing the prediction; hence this

represents a high bar to compare the system against. The average for human-level perfor-

mance is 0.97 (s.d. 1.12). Figure 4.13 shows that the system performs on par with this

human-level prediction both for the initial set of preferences we ask users to operate with,

and for the newly specified preference sets. The main set of preferences has an average of

0.46 (s.d. 1.05), and the average for the number of errors averaged over all of the newly

specified preference sets across all participants is 0.61 (s.d. 0.86).

To make sure that many possible distinct trajectories were covered, all participants were

reminded at the beginning of each assembly that they can always choose to switch to a dif-

ferent order for parallel actions. The data reveals that participants switched 11 out of 28

times and 10 out of 28 for the main and specified preference sets, respectively. These

switches were performed for the main chair assembly parallel node from the HTM ( Fig-

ure 4.11). We also experienced 10 switches for the mount legs parallel node. The total

number of different newly specified preference sets for the last two runs with the robot

amounted to 7 different new sets.

4.2.5 Conclusions

In this section, we present a way of learning personalized supportive behavior models that

leverage a single, robust model of the task, and show that the system achieves human-level

prediction for a real HRC task via a user study. Our personalized supportive behavior model

can be trained with as few as three user-labeled demonstrations of the task, and achieves

on par with human-level performance based on five such demonstrations.

Although we allowed the system to occasionally miss object-presence features when

manipulation errors occurred during our user study, we are excited to improve the system by

utilizing our model that can handle noisy observations presented in Section 4.1, integrated
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with camera or motion capture system input.

Another important direction for improvement is the integration of the model-based

method described in this chapter with the framework contributed as part of Chapter 3,

which can form the basis of our state and action representations in a more robust way,

well-suited for the considered task.
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Chapter 5

Learning at the High Level: How Can

We Learn High-Level Supportive

Behaviors? A Model-Free Approach

In Chapter 4, we introduced an approach well-suited for situations when we have reason-

able access to a relatively large pool of task trajectories, which can be used to learn a model

of the task. We leveraged this by then building an extension of this model, and needing to

obtain user-provided labels or demonstrations for only a very small number of trajectories

in order to obtain a personalized model of user preferences with respect to what kind of

support a robot should provide in an HRC scenario.

In this chapter, we investigate model-free approaches for the same HRC task, and com-

pare this solution to the model-based one. Model-free solutions are better suited for sit-

uations where it is difficult or impossible to obtain the task trajectories needed to learn a

model of the task, or where the task is too complex or difficult to model. This chapter is

based on [107] 1, and on further work building upon the concepts presented in this paper.

1. E. C. Grigore and B. Scassellati, “Hierarchical multi-agent reinforcement learning through communica-
tive actions for human-robot collaboration”, in Proceedings of the Future of Interactive Learning Machines
(FILM) Workshop at the 30th Annual Conference on Neural Information Processing Systems (NIPS), Full
paper, Barcelona, Spain, 2016, December 5–10.
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Here, we present a novel model-free paradigm based on the multi-agent setting, where

we consider both the robot and the human as agents operating in the environment. This

paradigm is multi-agent based since we consider the person to be an agent in the environ-

ment, and it is the joint action of the robot and the human (and not just the robot action)

that effects the transition from one state of the system to the next, as well as the reward re-

ceived when transitioning. However, since there is no controlling the human’s actions like

in typical multi-agent settings, we coin this paradigm multi-agent based. This allows max-

imum flexibility for specifying preferences with respect to what actions the human would

like to perform themselves vs. what actions they would like the robot to execute at each

step. Alongside this valuable flexibility, this paradigm mitigates the need for a large pool of

training data, but generally requires more interactions with the user or user-provided labels

for demonstrations. Although it requires more interactions than the proposed model-based

technique, compared to the single-agent paradigm (which I also apply to this scenario for

comparison purposes) the multi-agent based model leverages the knowledge of the human

worker, considered an expert at performing the task at hand, and thus allows both agents to

take actions during a time step, which can help speed up learning in some cases.

In order to account for different agents operating within our environment, we need to

consider the different types of actions performed by each, the effects their actions have on

the world they operate in, and the goals they are working towards. A relevant paradigm

for representing such a problem is multi-agent systems (MAS) [37], where several agents

attempt to solve tasks together in order to reach specific goals, either shared or competing.

A particularly useful method that has been widely applied to MAS is that of reinforcement

learning (RL) [38]. In RL, the agent operates in an environment in which it receives rewards

when performing different actions in each state of the world and subsequently aims to

behave such that it maximizes the long-term reward received. The use of RL for MAS has

engendered the multi-agent reinforcement learning (MARL) paradigm [39], where multiple

learners can take different actions in the same environment, each trying to maximize long-
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term reward (such agents can be collaborative, competitive, or somewhere in between).

This setup, however, assumes that we can control all the agents present in the system, and

that each has a clear set of defined actions it can take in the shared world. The current HRC

scenario, however, involves a human whose actions we neither control nor define. Yet,

these actions are important since, not only do they cause the state of the task to change over

time, but they indirectly influence and are influenced by any supportive behaviors provided

by the robot, and need to be taken into account.

We thus introduce a variant of the MARL framework, in which we know the state of the

world (i.e. the state of the task), as well as the actions each of the agents are taking (i.e. we

know what the robot’s actions are, and we know what the human worker is doing during

each state of the task), but we can only directly control the actions of the robot. Given that

we consider the human to be knowledgeable about the task, we consider them an “expert”

agent, which knows how to act within the task and has common sense knowledge about

how different supportive behaviors could be useful within the task. The actions of the

expert agent may be indirectly influenced by those performed by the robot, but this indirect

impact is accounted for through the world dynamics (i.e. the joint actions performed by

the person and the robot both affect state transitions). We present different variants of

the paradigm that consider different types of communication between agents, and how

this affects quality and speed of learning. We term these algorithms Multi-Agent Based

RL (MAB-RL) algorithms. We further use a hierarchical reinforcement learning (HRL)

framework [108] in order to re-use different types of supportive behaviors for different

subtasks within the same domain, as well as to help with abstracting away from the state of

the subtask details about the implementation of the specific supportive behaviors. We coin

the hierarchical algorithm that we present in this chapter Hierarchical Multi-Agent-Based

Reinforcement Learning (HMAB-RL).

The MAB-RL and HMAB-RL algorithms can learn a valid trajectory for the task (i.e.

valid in accordance with both the task HTM and with the supportive behavior preferences
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for the robot) from one learning episode only. Of course, we wish to learn how to provide

assistance in a robust way, and so test our algorithms by randomly choosing episodes from

the HTM and ensuring our algorithms have successfully learned what actions are to be

performed in any state of the task. Our algorithms are able to perform on par with human-

level performance (as measured in Section 4.2) from 30 to 50 episodes worth of training,

and start exceeding this level with increasing the number of episodes from 50 to 100. We

also present an algorithm that uses communicative actions the robot can take when the cost

of synchronizing to the other agents’ actions by observations is too high. We show that

we are able to learn the key moments throughout a task when the robot should take these

communicative actions.

5.1 Related Work

The field of MAS is relevant to a wide array of areas, including robotics, telecommunica-

tions, distributed control, economics, and so on. A considerable amount of research studies

the use of RL for MAS, the intersection of which is known as multi-agent reinforcement

learning (MARL) [109]. MARL presents important benefits, such as faster learning through

experience sharing (e.g., exchange of local information, skilled agents teaching less skilled

ones, etc.), speed-ups due to parallel computation when exploiting the decentralized struc-

ture of the task, robustness to failures of individual agents, and easy insertion of new agents

into the system [39], [37]. However, it is also plagued by a number of challenges, including

the curse of dimensionality (the state action-space grows exponentially with the number of

agents), the difficulty in specifying goals in such multi-agent settings (the rewards different

agents receive are correlated and thus cannot always be maximized independently), non-

stationarity due to concurrent learning (for each agent, the best policy changes as other

agents’ policies change), and an exacerbated exploration-exploitation tradeoff (agents need

to explore not only to reach new regions of the state space, but also to gather information
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about other agents) [39], [37].

Even though there exist considerable challenges in the field of MARL, this framework

is extremely relevant to our human-robot collaboration scenario. This is due to the fact that,

even though it is not part of our goal to find policies for the human worker during the task,

their actions affect the transition model of the world in which our robot needs to operate.

Beyond directly impacting the world dynamics, the actions performed by the human also

play a key role in the type of supportive behavior that is useful for the robot to offer during

different subtasks. In order to address two of the main challenges mentioned above—

the curse of dimensionality, and partial observability with respect to the policies of other

agents—researchers have looked into the use of hierarchical reinforcement learning (HRL).

Work in this area includes the use of options [40], HAMs [41], and MAXQ [42]. Other

work looks at using task-level coordination in HRL settings, where all agents were given

a hierarchical break down of the task at hand that was used as a basis for communication

[43], [44].

One of the most important and widely used ways in which we can generalize MDPs

to the domain of MARL is via stochastic games [45]. There are many different types of

stochastic games, but for the purposes of this thesis, we consider general-sum stochastic

games, where there are no constraints on the sum of the agents’ rewards. This is due to the

cooperative nature of our environment, where the two agents are working together towards

the same goal. However, if we were to simply extend techniques used to solve MDPs for

the single-agent case to the multi-agent case, we would loose optimality guarantees due to

the loss of stationarity in MARL caused by concurrent learning. One of the solutions to

this issue is using the Nash equilibrium (or other equilibria) to describe optimal policies

in multi-agent systems. In this chapter, we build upon a variant of the Nash Q-Learning

algorithm for general-sum stochastic games [46] called Friend-or-Foe Q-learning (FFQ) in

general-sum games [47].

Work that addressed partial observability and the issue of how the actions of other
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agents impact the policy of one agent includes a learning paradigm called team-partitioned,

opaque-transition reinforcement learning (TPOT-RL). TPOT-RL considers opaque transi-

tions to encompass multi-agent environments where each learner cannot rely on having

knowledge of future state transitions after acting in the world [48]. Other relevant work in

this area uses behaviors, defined as goal-driven control laws that achieve and/or maintain

particular goals, to abstract away low level details of robot control and diminish the learning

space, as well as tackling the credit assignment problem via heterogeneous reinforcement

functions and progress estimators [49].

The related work presented above considered the use of MARL for scenarios where

multiple robots or agents need to collaborate with each other in order to reach a com-

mon goal. We now mention research performed in the area of HRC, specifically. Such

work includes enabling a robot to improve its policy for a knot untying task through user-

provided guidance. In this scenario, the robot performs a set of state-action transitions to

shake the contents placed inside of a bag (with the goal of untying the knot and emptying

the contents of the bag), and asks for a reward signal from the human at the end of each

learning episode [54]. Other relevant work in the area of obtaining rewards from a human

user explored the importance of understanding the human-teacher/robot learner system as

a whole, with findings that people use the reward signal not only to provide feedback about

past actions, but also to provide future directed rewards to guide subsequent actions [55].

Yet other work investigated discovering policies for improving collaborator performance

through a task and motion planning approach [66], which differs from our contribution.

MAB-RL and HMAB-RL distinguish themselves from previous work by considering a

unique view of the (hierarchical) MARL paradigm, where one of the agents is an expert and

thus does not learn its policy simultaneously with the robot learner, but performs actions

that have a direct effect on the dynamics of the world. We thus model this scenario as a

special case of a MARL problem, where the robot needs to learn policies that adapt not

only to the state of the task, but to the uncontrolled actions of the person as well. The
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nature of this problem is also inherently different from the above work due to the fact that

we aim to learn supportive behaviors, which can (although need not) be different from the

types of actions the human worker performs, and different from the types of actions a robot

would learn for performing a task autonomously. To this end, we also take advantage of the

interaction with a human, who can use common sense knowledge about how different types

of supportive behaviors might be useful as the task progresses. For one of the variants we

present, we also include this in the reward signal via employing communicative actions.

5.2 Existing Paradigms in Reinforcement Learning

Given that the presented framework lies at the intersection of existing paradigms in RL, we

define these paradigms by going through the formalisms used for each.

5.2.1 Single-Agent RL

A typical RL formulation relies on the Markov Decision Process (MDP) formalism, which

we present in Subsection 2.2.2. The MDP formulation is very well suited for the RL

paradigm, where we have an agent that operates in a world composed of the states de-

fined above, chooses one of several actions available to it in each state, receives a reward,

and then moves into a different state based on the transition probability. The agent seeks to

maximize its long-term discounted reward and thus seeks an optimal way to behave. The

goal is then to solve the MDP by finding an optimal policy, π∗ (a mapping π : S → A from

states to actions in the deterministic case, or a probability distribution π : S × A → [0, 1]

over state-action pairs in the stochastic case), representing a policy that, for all states, is at

least as “good” as any other policy (i.e. has a value or action-value function 2 as high as

that of any other policy).

2. The value of a state under a policy is the expected discounted sum of future rewards starting from that
state and following that policy thereafter. The action-value is similar, but also considers the action taken in
that state.
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There exist several ways of solving MDPs, but here we mention Q-learning [110], an

off-policy algorithm (i.e. the agent does not need to follow the policy for which it is learning

the action-value function) that is also model-free, meaning that the agent does not need

to learn the transition probabilities. Model-free algorithms are temporal difference (TD)

techniques [38], which allow the agent to update the estimate of the value or action-value

function based on other estimates, without needing to wait for the true value.

5.2.2 HRL

HRL is typically formulated based on a semi-Markov Decision Process (SMDP), an exten-

sion of the MDP in which actions can take a variable amount of time to complete [111],

[112]. An SMDP is defined in a similar manner, as a tuple 〈S,A,P ,R, I〉. The only two

elements that are different from those in an MDP are the transition probability and reward

functions. The former is now defined as P : S ×N×S ×A → [0, 1], where P (s′, N |s, a)

is the probability of transitioning from state s to state s′ in N time steps when the agent

takes action a (the moments when transitions occur are called decision epochs). The latter

is now defined as R : S × A → R, with r(s, a) representing the expected total reward

between two decision epochs, with the agent being in state s at the first epoch and taking

action a (unlike in the MDP case, here rewards can accrue over the course of one action).

HRL is a framework for scaling RL problems with large state spaces by re-using poli-

cies learned as individual actions [108]. Such abstraction allows a learning system to ignore

details irrelevant to each level of the task, and reduces computational costs. Most of the

algorithms used for solving MDPs can be extended to solve SMDPs, including Q-learning.

HRL generalizes the idea of a “macro-operator”—a sequence of operators or actions that

can be invoked by name just like a primitive action—to closed-loop partial policies, defined

for subsets of the state set [108]. An important paradigm proposed and studied in the HRL

community is the formulation of partial policies into options [40].

Options generalize primitive actions to include temporally-extended courses of action
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[40]. An option is defined as a tuple 〈IO, π, β〉, where IO is the initiation set of the option

(the option is available in a state s if and only if s ∈ IO), π : S × A → [0, 1] is the policy

to be executed, and β : S+ → [0, 1] is the termination condition. When the agent takes the

option, it chooses actions according to the policy π until the option terminates according

to β. HMAB-RL uses options as temporally-extended options with variable number of

primitive actions composing them.

5.2.3 Hierarchical MARL

The SMDP model has been further extended to the multi-agent domain, resulting in the

multi-agent SMDP (MSMDP) model. An MSMDP is defined following [113], as a tuple

〈Υ,S,A,P ,R, I, T 〉. Υ is a finite set of n agents. Each agent j ∈ Υ has at its disposal

a set of actions, Aj , together forming the joint-action space A =
∏n

j=1 A
j . An element

of A represents the simultaneous execution of actions aj by all agents j and is denoted

~a = 〈a1, a2, ..., an〉. Elements S , P , R, and I are defined like in the SMDP case, with the

note that P (s′, N |s,~a) is the probability that the system transitions from state s to state s′ in

N steps when the agents take joint-action ~a. Finally, T represents the termination scheme

that specifies how decision epochs are defined, to handle the fact that temporally-extended

actions can have variable lengths.

Different types of termination strategies can be classified into synchronous schemes,

where all agents make a decision at each epoch (agents need to be synchronized in a cen-

tralized way), and asynchronous schemes, where only a subset of agents make decisions

at each epoch (de-centralized decision making). Examples of three termination strategies,

τany, τall, τcontinue, have been researched in [114]. τany has all agents interrupt their actions

as soon as the first action of the joint-action that has been executing terminates, at which

point the agents choose a new joint-action. τall involves waiting until all the actions part

of the joint-action terminate for the agents to choose the next joint-action, with agents who

need to wait until completion taking an “idle” action. These two strategies are examples
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of synchronous schemes. Finally, τcontinue is an example of an asynchronous scheme, and

involves choosing the decision epoch based on the earliest terminating action in a joint-

action (like τany) but having only those agents who have terminated their actions choose

new ones.

5.3 Algorithms Relevant to MARL

The algorithms we describe in this work utilize game theory concepts, which represent

a powerful mathematical tool for modeling MARL scenarios and allows agents to make

rational decisions in these contexts. A necessary paradigm for this work is that of one-

stage general-sum n-player games, which we include here following closely the definitions

from [47].

5.3.1 Stochastic Games

A one-stage general-sum n-player game is based on n players. Like in an MSMDP, each

agent j ∈ Υ has at its disposal a set of actions, Aj , together forming the joint-action space

A =
∏n

j=1A
j . The reward is defined similarly, with each agent j ∈ Υ receiving its own

reward rj when the joint-action ~a = 〈a1, a2, ..., aj, ..., an〉 is executed in state s. Each

reward functionRj maps an action choice for each of the players to a scalar reward value.

A one-stage policy for player j, πj is a probability distribution over its actions Aj . The

expected payoff to player j when players execute one-stage policies π1, π2, ..., πj, ..., πn is

Rj(π1, π2, ..., πj, ..., πn), which represents the expected value of the values ofRj weighted

by the probabilities under the given one-stage policies.

Every one-stage general-sum n-player game has a Nash equilibrium, which is a set of

one-stage policies π1, π2, ..., πj, ..., πn such that no player can improve its expected payoff

by unilaterally changing its one-stage policy: Rj(π1, π2, ..., πj, ..., πn)≥Rj(π1, π2, ..., πj−1,

π′j, πj+1, ..., πn), for all one-stage policies π′j and 1 ≤ j ≤ n. A game can have more than

87



one Nash equilibrium, and the expected payoff to player j can vary depending on the equi-

librium in use. The Friend-or-Foe Q-learning (FFQ) algorithm [47] utilizes both adversarial

and coordination equilibriums because it considers settings that are not purely cooperative.

For our purposes, we make use only of the coordination equilibrium, in which all players

achieve their highest possible value:

Rj(π1, π2, ..., πn) = max
a1∈A1,a2∈A2,...,an∈An

Rj(a1, a2, ..., an). (5.1)

A Markov game generalizes the one-stage game to multiple-stages, consisting of a finite

set of states S, with each state s ∈ S having its own payoff function. Markov games also

have a transition function that maps between a state and an action choice for each player and

a probability distribution over next states. This is equivalent to the policy in an MSMDP.

The value for a player in a game is computed as the discounted sum of payoffs, with a

discount factor 0 ≤ γ ≤ 1. The Q function for player j is defined as:

Qj(s,~a) = Rj(s,~a) + γ
∑
s′∈S

P (s′|s,~a)Qj(s
′, π1, π2, ..., πn), (5.2)

where Qj(s
′, π1, π2, ..., πn) is a weighted sum of the values of Qj(s

′, ~a′) according to the

πs. This value represents the value to player j when the state is s and the players choose

the joint-action ~a, continuing to follow their respective policies afterwards.

5.3.2 Nash-Q and Friend-or-Foe Q-Learning (FFQ)

As detailed in [47], Filar and Vrieze [115] showed how the Q function links Markov games

and one-stage games. Treating the Q functions at each state as payoff functions for indi-

vidual one-stage games, the policies at the individual states are in equilibrium if and only if

the overall multistage policies are in equilibrium. Therefore, an equilibrium for a Markov

game can be found by finding a Q function with the appropriate properties.
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The main Nash-Q update rule for learning a Q function for a player from its experience

interacting with other players in the game is:

Qj(s,~a) = (1− αt)Qj(s,~a) + αt(rj + γNashj(s,Q1, Q2, ..., Qn)), (5.3)

each time a new experience 〈s,~a, s′, r1, r2, ..., rn〉 occurs. Here,Nashj(s,Q1, Q2, ..., Qn) =

Qj(s, π1, π2, ..., πn), where the πs are a Nash equilibrium for the one-stage game defined

by the Q functions Q1, Q2, ..., Qn at state s, and the αt values are a sequence of learning

rates.

In single-player games, the Nash function reduces to maximization for one agent, which

makes the above equivalent with single-agent Q-learning [116]. In zero-sum games, which

are games that restrict the sum of all of the agents’ rewards to be equal to zero, the Nash

function reduces to a minimax function. The FFQ algorithm introduces the use of two dif-

ferent rules for computing the Nash function, based on whether the opponent is considered

a friend or a foe. Since we only consider cooperative scenarios herein, we make use only

of the friend variant:

Nashj(s,Q1, Q2, ..., Qn) = max
a1∈A1,a2∈A2,...,an∈An

Qj(s,~a). (5.4)

This is essentially the equivalent of utilizing Q-learning in the combined action space of all

the players.

5.4 Problem Formulation

In this chapter, we employ the same chair task as in Section 4.2, the chair seen in Figure 4.2,

with the same HTM that can be seen in Figure 4.11. We use the same HTM to compare the

main results of the current model-free approach with those of the model-based approach.

However, we also create different variants of this HTM in order to test the nuances that
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are more interesting and relevant for the different algorithms and approaches we introduce

here, and to show their versatility in being capable of learning more useful behaviors for

the robot.

5.5 Paradigms and Algorithms for HRC

In this section, we present a single-agent RL baseline we utilize as a first comparison to our

model-based approach, followed by two paradigms for HRC, namely Multi-Agent Based

RL (MAB-RL) and Hierarchical Multi-Agent-Based Reinforcement Learning (HMAB-RL).

We introduce three algorithms stemming from the MAB-RL paradigm and one from the

HMAB-RL paradigm, and we present data that compares these algorithms in terms of their

effectiveness and speed of learning.

5.5.1 Single-Agent Baseline

In order to compare with the results presented in Chapter 4, we start by using the same

HTM as in Section 4.2, for the same chair assembly task that can be seen in Figure 4.2. We

use the same main preference set SB as in Section 4.2, which we present here in Table 5.1.

Here, we implement the algorithm that can be seen in Algorithm 1, using simple Q-

learning. In this case, we are assuming the robot should be executing every supportive

behavior specified, like in Chapter 4. This algorithm is the standard Q-learning algo-

rithm [116], with no changes implemented. We specify the values used in the pseudocode

presented in Algorithm 1. Since we utilize features based on object-presence to represent

our states, the single-agent case is deterministic, and so we use a learning rate α = 1, which

is optimal for deterministic scenarios. For all of our multi-agent based algorithms, this does

not hold since we do not distinguish between an action taken by the human and an action

taken by the robot when we update the state. The algorithms we present in the following

subsections allow for complete flexibility for specifying what actions the robot should take
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Table 5.1: Example of two trajectories based on the main set of preferences SB used to test
the single-agent reinforcement learning baseline

Trajectory 1 Trajectory 2

Human action Supportive behavior labels Human action Supportive behavior labels

gather parts leg 3 [bring back bracket, bring dowel] gather parts leg 2 [bring back bracket, bring dowel,
bring screwdriver]

gather parts leg 4 [bring back bracket, bring dowel] gather parts leg 1 [bring back bracket, bring dowel]
gather parts leg 2 [bring front bracket, bring dowel, gather parts leg 3 [bring front bracket, bring dowel]

bring screwdriver]
gather parts leg 1 [bring front bracket, bring dowel] gather parts leg 4 [bring front bracket, bring dowel]
gather parts seat [bring seat] gather parts seat [bring seat]
assemble seat [hold] assemble seat [hold]
gather parts back right [bring top bracket, bring dowel] gather parts back left [bring top bracket, bring dowel]
gather parts back left [bring top bracket, bring dowel] gather parts back right [bring top bracket, bring dowel]
gather parts back top [bring back, bring long dowel] gather parts back top [bring back, bring long dowel, hold]
assemble back [hold] assemble back [hold]

and allow the user to take whatever actions they desire.

In Algorithm 1, we also present how we compute the reward starting with line 13. We

essentially punish the robot for taking an action that is considered invalid given the current

HTM (i.e. an action that cannot make the chair assembly task progress), and remain neutral

when the action is valid (i.e. the action makes the task progress to another valid state).

We also introduce the ability of specifying ordering preferences (not supportive behavior

preferences), such as building the back part of the chair first vs. the legs first. To do

so, we need only provide a high reward when the current state s reflects the fact that the

preferred ordering was accomplished (we can check this easily because we use features

based on object presence to represent the states). For example, if the current state s encodes

our position after we have brought all the legs and the back, we know that the legs were

executed first. Learning the ordering preferences requires more episodes, but this does not

effect the amount of time it takes to learn the supportive behavior preferences. We present

this analysis in Section 5.6.

We also present our procedure for computing the best path and choosing the actions

the robot should take at each step throughout the task in line 17. This procedure can be

used to recover the full path containing the states, together with the actions the robot is to
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Algorithm 1 Single-Agent Q-learning Baseline: Learn function Q : X ×A → R
Require:

Sates S = {s1, . . . , sns}
Actions A = {a1, . . . , ana}, A : S ⇒ A
Reward function R : S ×A → R
Black-box transition function P : S ×A → S
Learning rate α ∈ [0, 1], we set α = 1
Discounting factor γ ∈ [0, 1], we set γ = 0.9
Preference for build order PREF ∈ {′legs_first′, ′back_first′, ′none′}

1: procedure Q-LEARNING(X , A,R, P , α, γ)
2: Initialize Q : X ×A → R arbitrarily
3: while Q is not converged or max number of iterations has not been reached do
4: Start in state s ∈ S
5: while s is not terminal do
6: Calculate π according to Q and exploration strategy, we use ε−greedy with
π(s)← arg maxaQ(s, a) 70% of the time, and π(s)← random action a 30%

7: a← π(s)
8: R(s, a)← REWARD(s, a) . Compute the reward
9: r ← R(s, a) . Receive the reward

10: s′ ← P (s, a) . Receive the new state
11: Q(s′, a)← (1− α) ·Q(s, a) + α · (r + γ ·maxa′ Q(s′, a′))
12: s← s′

return Q
13: procedure REWARD(s, a)
14: if s is a final state then return 10
15: if s′ is NOT a valid next state in accordance with the HTM then return −1

16: if (PREF == ′legs_first′ and s reflects ′legs_first′) or (PREF ==
′back_first′ and s reflects ′back_first′) then return 5

return 0
17: procedure BEST_PATH(Q)
18: s← start_state
19: Append s to best_path
20: actions← Ø
21: while s is not terminal do
22: a← arg maxaQ(s, a)
23: s′ ← P (s, a)
24: s← s′

25: Append s to best_path
26: Append a to actions

return best_path
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execute by only making use of the learned Q matrix. If we always choose the action that

maximizes the Q-value of the current state, we will always recover a correct set of actions

in accordance with the HTM of the task, even after only one learning episode. This is

because we penalize all invalid actions. If we do not have any preference whatsoever about

the ordering of parallel actions, applying the standard Q-learning algorithm and training

for one episode only would work well. However, this does not allow for the flexibility of

switching to a different order for the parallel actions, since the robot has not experienced

any other path after training for a single episode. It also does not allow the flexibility of

being able to choose a valid action when the state changes for various other reasons. Thus,

we compute the number of errors by choosing episodes at random the valid HTM set of

trajectories and counting errors whenever the robot cannot produce a valid action at each

step. We present this further in Section 5.6.

5.5.2 MAB-RL: Multi-Agent Based RL

Here, we introduce a novel paradigm for HRC scenarios like the ones we tackle in this

dissertation. We introduce three algorithms that represent variants of this paradigm, each

utilizing a different method for synchronization of actions in a MAS context. We coin

this paradigm Multi-Agent Based Reinforcement Learning (MAB-RL) since we consider

the person as an agent in the task, alongside the robot, but we cannot control their actions.

This allows full flexibility in specifying preferences for what actions the robot should take

vs. what actions the user prefers to take at each step throughout the task. Since we target

settings like manufacturing domains where human workers are highly skilled in performing

the kinds of tasks we are considering herein, we consider the human an expert agent.

We present three algorithms with different techniques for synchronizing the person and

the robot’s actions during each time step of the task. The first assumes the human watches

closely what the robot does, and can observe the action the robot starts to execute at the

start of each time step, and can choose his or her action for the same time step accordingly.
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Table 5.2: Supportive Behavior Preference Set for MAB-RL and HMAB-RL Paradigms

Supportive behavior preference set

HTM Leaf Robot and human action pair

gather parts leg 1 [(bring front bracket, bring dowel)]
gather parts leg 2 [(bring front bracket, bring dowel)]
gather parts leg 3 [(bring dowel, no action human), (no action robot, bring screwdriver), (bring back bracket, no action human)]
gather parts leg 4 [(bring dowel, no action human), (bring back bracket, no action human)]
gather parts seat [(bring seat, no action human)]
assemble seat [(hold, no action human)]
gather parts back right [(bring dowel, bring top bracket)]
gather parts back left [(bring top bracket, bring dowel)]
gather parts back top [(bring long dowel, bring back)]
assemble back [(no action robot, no action human)]

We present this algorithm in Algorithm 2. The second assumes the robot can observe the

start of the action the human is taking at the beginning of each time step, and thus takes its

action accordingly. We present this second algorithm in Algorithm 3. The third does not

assume any observation of the start of an action, and instead adds a communicative action

to the robot’s set of actions, which it can take in order to ask the person what action he or

she is intending to take during the next time step. This is an ideal scenario since we do

not need to depend on observing the start of an action, but it comes at the cost increased

training time. We present this third algorithm in Algorithm 4.

In order to specify the preferences for the robot’s supportive actions, we encode each

leaf of the HTM with a list of pairs of the form (robot_actioni, human_actioni), where i

represents the time step. Each leaf can have a variable number of such pairs, without any

restrictions. We utilize a total of eight actions that both the robot and person can perform,

an extra two actions only the robot can execute, and an extra single action only the human

can execute. For the algorithm that employs communicative actions, the robot has avail-

able an extra of three actions at its disposal. Each (robot_actioni, human_actioni) pair

gets executed during one course of a single time step part of the task, with the assumptions

about observing the other agent’s actions or about being able to take communicative actions

dictating the way in which the actions are synchronized. In Table 5.2, we present the sup-

portive behavior preference set we utilized to perform the experiments herein. The order of
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the leaves as part of a trajectory is generated in accordance with the HTM. This represents

the same set of supportive preferences used in Section 4.2, as well as in the single-agent

scenario described in Subsection 5.5.1. The main and most important difference is that in

the MAB-RL case, we can specify any preference with respect to what the robot vs. the

human should do at each step, whereas we could only train the robot to perform a fix set

of actions beforehand. Thus, the (robot_actioni, human_actioni) pairs can be modified

in any way based on different preferences (including subtle changes in terms of switching

two actions between the robot and the human for different steps), and the algorithms will

learn the new preferences without the need for any adjustment.

MAB-RL: Human Watch

The first MAB-RL variant we present is based on an action synchronization scheme that as-

sumes the human observes the start of the robot action from the (robot_actioni, human_actioni)

pair during one time step, and will then perform an action that is valid in accordance with

the HTM and with the preference set. This turns out to be the most efficient algorithm

out of the three we present under the MAB-RL paradigm, and we can speed up learning by

using the hierarchical version. Of course, the ideal scenario is one in which the robot does

the observing or in which the robot takes communicative actions so as to remove the onus

places on the human, but these come at the cost of increased learning in terms of the number

of episodes needed. We present the MAB-RL Human Watch algorithm in Algorithm 2.

In this algorithm, we use the Q-value update rule Subsection 5.5.3 based on the FFQ

update rule Equation (5.3), and compute the Nash value Subsection 5.5.2 utilizing the friend

variant from FFQ Equation (5.4). We compute the reward similarly to the single-agent

case, except that we need both the robot and human actions in order to compute the next

state Subsection 5.5.2.
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Algorithm 2 MAB-RL Human Watch Q-learning: Learn function Q : S ×A → R
Require:

Sates S = {s1, . . . , sns}
Agents i ∈ Υ, we have Υ = {robot, human}
Joint-actions A = {~a1, . . . , ~ana}, with action ~ai = (airobot , aihuman

) A : S ⇒ A
Actions Arobot = {a1robot , . . . , anrobot

}
Actions Ahuman = {a1human

, . . . , anhuman
}

Reward function R : S ×A → R
Black-box transition function P : S ×A → S
Learning rate α ∈ [0, 1], we set α = 0.2
Discounting factor γ ∈ [0, 1], we set γ = 0.9
Preference for build order PREF ∈ {′legs_first′, ′back_first′, ′none′}

1: procedure Q-LEARNING(X , A,R, P , α, γ)
2: Initialize Q : X ×A → R arbitrarily
3: while Q is not converged or max number of iterations has not been reached do
4: Start in state s ∈ S
5: while s is not terminal do
6: Calculate π according to Q and exploration strategy, we use ε − greedy

with π(s) ← arg maxarobot Q(s, arobot, ahuman), ∀ahuman ∈ Ahuman 70% of the time,
and π(s)← random action arobot 30%

7: arobot ← π(s)
8: ahuman ← correct action in accordance with the HTM and the preference

set based on having knowledge of arobot
9: R(s, arobot, ahuman)← REWARD(s, arobot, ahuman) . Compute the reward

10: r ← R(s, arobot, ahuman) . Receive the reward
11: s′ ← P (s, arobot, ahuman) . Receive the new state
12: Q(s′, arobot, ahuman) ← (1 − α) · Q(s, arobot, ahuman) + α · (r + γ ·

Nashrobot(s
′, Q)

13: s← s′
return Q

14: procedure Nashrobot(s′, Q)
return max

arobot∈Arobot,ahuman∈Ahuman

Qrobot(s,~a = (arobot, ahuman))

15: procedure REWARD(s, ~a = (arobot, ahuman))
16: if s is a final state then return 10
17: if s′ is NOT a valid next state in accordance with the HTM then return −1

return 0
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MAB-RL: Robot Watch

The second MAB-RL variant we present is based on an action synchronization scheme that

assumes the robot observes the start of the human action from the (robot_actioni, human_actioni)

pair during one time step, and will then perform an action that is valid in accordance with

the HTM and with the preference set. This turns out to be less efficient than the MAB-RL

Human Watch algorithm, but it takes the onus away from the person to observe the robot’s

actions. We present the algorithm in Algorithm 3.

MAB-RL: Robot Communicative Actions

The third MAB-RL variant we present is based on an action synchronization scheme that

assumes no observation of the start of an action on either the part of the robot or the human.

Instead, we add a communicative action to the set of actions the robot can perform, and we

learn when it is ideal to execute this communicative action, together with the rest of the

supportive behaviors. This flexibility comes at the cost of increased learning time, however

it affords us with learning not only how to act in accordance with the task and the supportive

behavior preference set, but also to employ communicative actions at only key moments

during the task. These key moments represent parallel nodes (i.e. when the robot would

truly benefit from knowing in advance what the intention of the human is for the next time

step, even at test time). This is because when a node is truly parallel, the human can choose

to take either one of its children, and any option would be valid in this context. Hence,

communication at these moments is crucial. We present our algorithm in Algorithm 4.

In order to tackle this challenge, we introduce a simple model of the human, and keep

track of their actions throughout the learning phase. For each state we visit, we keep track

of the frequency of the human having taken that action by incrementing a counter for the

action the person is taking in the current state (line 19). We then reward the robot when

it chooses a communicative action only when it does so in states of high uncertainty. We

compute the uncertainty of a state based on the computed frequency, by computing the
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Algorithm 3 MAB-RL Robot Watch Q-learning: Learn function Q : S ×A → R
Require:

Sates S = {s1, . . . , sns}
Agents i ∈ Υ, we have Υ = {robot, human}
Joint-actions A = {~a1, . . . , ~ana}, with action ~ai = (airobot , aihuman

) A : S ⇒ A
Actions Arobot = {a1robot , . . . , anrobot

}
Actions Ahuman = {a1human

, . . . , anhuman
}

Reward function R : S ×A → R
Black-box transition function P : S ×A → S
Learning rate α ∈ [0, 1], we set α = 0.2
Discounting factor γ ∈ [0, 1], we set γ = 0.9
Preference for build order PREF ∈ {′legs_first′, ′back_first′, ′none′}

1: procedure Q-LEARNING(X , A,R, P , α, γ)
2: Initialize Q : X ×A → R arbitrarily
3: while Q is not converged or max number of iterations has not been reached do
4: Start in state s ∈ S
5: while s is not terminal do
6: ahuman ← correct action only in accordance with the HTM and the prefer-

ence set, and not the arobot
7: Calculate π according to Q and exploration strategy, we use ε−greedy with
π(s)← arg maxarobot Q(s, arobot, ahuman) 70% of the time, and π(s)← random action
arobot 30% . ahuman as chosen above

8: arobot ← π(s)
9: R(s, arobot, ahuman)← REWARD(s, arobot, ahuman) . Compute the reward

10: r ← R(s, arobot, ahuman) . Receive the reward
11: s′ ← P (s, arobot, ahuman) . Receive the new state
12: Q(s′, arobot, ahuman) ← (1 − α) · Q(s, arobot, ahuman) + α · (r + γ ·

Nashrobot(s
′, Q)

13: s← s′
return Q

14: procedure Nashrobot(s′, Q)
return max

arobot∈Arobot,ahuman∈Ahuman

Qrobot(s,~a = (arobot, ahuman))

15: procedure REWARD(s, ~a = (arobot, ahuman))
16: if s is a final state then return 10
17: if s′ is NOT a valid next state in accordance with the HTM then return −1

return 0
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Algorithm 4 MAB-RL Robot Communicative Actions Q-learning: Learn function Q :
S ×A → R
Require:

Sates S = {s1, . . . , sns}, Agents i ∈ Υ, we have Υ = {robot, human}
Joint-actions A = {~a1, . . . , ~ana}, with action ~ai = (airobot , aihuman

) A : S ⇒ A
Actions Arobot = {a1robot , . . . , anrobot

}, Actions Ahuman = {a1human
, . . . , anhuman

}
Reward function R : S ×A → R, Black-box transition function P : S ×A → S
Learning rate α ∈ [0, 1], we set α = 0.2, Discounting factor γ ∈ [0, 1], we set γ = 0.9
Preference for build order PREF ∈ {′legs_first′, ′back_first′, ′none′}

1: procedure Q-LEARNING(X , A,R, P , α, γ)
2: Initialize Q : X ×A → R arbitrarily
3: Initialize freq_human_actions : S → Rsize(Ahuman) to [0] ∗ size(Ahuman)
4: while Q is not converged or max number of iterations has not been reached do
5: Start in state s ∈ S
6: took_communicative_action← False, human_reply ← −1
7: while s is not terminal do
8: ahuman ← correct action in accordance with the HTM and preference set
9: Calculate π according to Q and 70%−30% exploration-exploitation strategy

10: if exploiting via π(s)← arg maxarobot Q(s, arobot, ahuman) then
11: if took_communicative_action is True then
12: π(s)← arg maxarobot Q(s, arobot, human_reply)
13: else
14: π(s)← arg maxarobot Q(s, arobot, ahuman), ∀ahuman ∈ Ahuman
15: arobot ← π(s)
16: took_communicative_action← False, human_reply ← −1
17: if arobot is communicative_action then
18: took_communicative_action← True, human_reply ← ahuman

19: freq_human_actions[s][ahuman]← freq_human_actions[s][ahuman]+1

20: R(s, arobot, ahuman)←REWARD(s, arobot, ahuman, freq_human_actions)
21: r ← R(s, arobot, ahuman) . Receive the reward
22: s′ ← P (s, arobot, ahuman) . Receive the new state
23: Q(s′, arobot, ahuman) ← (1 − α) · Q(s, arobot, ahuman) + α · (r + γ ·

Nashrobot(s
′, Q)

24: s← s′
return Q

25: procedure REWARD(s, ~a = (arobot, ahuman, freq_human_actions))
26: if arobot is communicative_action then
27: state_certainty ← freq_human_actions[s][ahuman]/sum(freq_human_actions[s])
28: if state_certainty < 1 then . 1 represents low uncertainty states
29: return 15 . Encourage communicative actions in high uncertainty states
30: else
31: return −0.002 . Discourage them in low uncertainty states
32: if s is a final state then return 10
33: if s′ is NOT a valid next state in accordance with the HTM then return −100

return 1
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Table 5.3: Example trajectory recovered after the MAB-RL Robot Communicative Actions
algorithm is trained

HTM Possible Leaves Robot and human action pair

gather parts leg 1, gather parts leg 2, gather parts leg 3, gather parts leg 4 (communicate, no action human)
gather parts back right, or gather parts back left
gather parts leg 3, or gather parts leg 4 (bring dowel, no action human)
gather parts leg 4 (communicate, no action human)
gather parts leg 4 (bring back bracket, no action human)
gather parts leg 1, or gather parts leg 2, gather parts leg 3 (communicate, bring dowel)
gather parts leg 1, or gather parts leg 2 (bring front bracket, bring dowel)
gather parts leg 2, or gather parts leg 3 (communicate, bring dowel)
gather parts leg 2 (bring front bracket, bring dowel)
gather parts leg 3 (bring dowel, no action human)
gather parts leg 3 (no action robot, bring screwdriver)
gather parts leg 3 (bring back bracket, no action human)
assemble seat (bring seat, no action human)
assemble seat (hold, no action human)
gather parts back right, or gather parts back left (communicate, bring back bracket)
gather parts back right (bring dowel, bring back bracket)
gather parts back left (bring back bracket, bring dowel)
gather parts back top (bring long dowel, bring back)
assemble back (no action robot, no action human)

ratio between the number of past actions equal to the action the human is currently taking

and the total number of all actions that have been taken so far in the current state (line 25).

Given that in our case, states of low uncertainty are those that are part of sequential nodes,

this ratio is close to 1 for such states, and thus straightforward to recognize.

In order to implement the communicative action and update the state accordingly, we

introduce a feature in the representation of the state that represents the human’s response

to the question “What action are you intending to perform next time step?” This feature

takes on value −1 whenever the communicative action is not being exercised, and takes on

the value of the human’s response when the robot decides to utilize this action. Once the

human gives their response, the feature takes on the value of the action that is intended to

be executed during the next time step by the human, and the Q matrix gets updated for the

(communicativeaction, humanresponse) pair for the current state. During the next time

step, the human takes the action they previously stated was their intention, and the new

state that now contains this action as one of its features now gets updated with the reward
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Table 5.4: Robot options and option policies for the HMAB-RL Human Watch algorithm

Option name Initiation set Policy Termination condition

gather parts leg back type 1 {s | one of the gather parts legs states [bring dowel, no action robot, bring back bracket] bring back bracket
can be accessed from s} has been executed

gather parts leg back type 2 {s | one of the gather parts legs states [bring dowel, bring back bracket] bring back bracket
can be accessed from s} has been executed

assemble seat {s | the assemble seat state can be [bring seat, hold] hold
accessed from s} has been executed

assemble back {s | the assemble back state can be [bring long dowel, no action robot] no action robot
accessed from s} has been executed

Table 5.5: Human options and option policies for the HMAB-RL Human Watch algorithm

Option name Initiation set Policy Termination condition

gather parts leg back type 1 {s | one of the gather parts legs states [no action human, bring screwdriver, no action human] no action human
can be accessed from s} has been executed

do nothing {s | one of the gather parts legs states [no action human, no action human] no action human
or the gather parts seat state has been executed
can be accessed from s}

assemble back {s | the assemble back state [bring back, no action human] no action human
can be accessed from s} has been executed

resulting from this transition. During this phase, the robot need only search those values

of its Q matrix that correspond to the human action that the person shared as part of their

reply previously.

In Table 5.3, we show a successful example of an episode that utilizes the Q matrix

maximum value for choosing arobot, with the human choosing ahuman only in accordance

with the HTM. We can see that the MAB-RL Robot Communicative Actions algorithm learns

to take communicative actions only at key points during the task, and in particular in high

uncertainty states which happen for parallel nodes in our HTM.

5.5.3 HMAB-RL: Hierarchical Multi-Agent Based RL, Human Watch

We coin the final paradigm from our contribution Hierarchical Multi-Agent Based RL

(HMAB-RL), where we use options in order to speed up learning. We implement the op-

tions on the basis of the MAB-RL Human Watch algorithm, although this can be extended

to any of the MAB-RL algorithms presented in this chapter. Hierarchical reinforcement

learning (HRL) [108] helps speed up learning by allowing the re-use of different types
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Algorithm 5 HMAB-RL Human Watch Q-learning: Learn functions Qprimitives : S ×P →
R and Qoptions : S ×O → R
Require:

Sates S = {s1, . . . , sns}
Agents i ∈ Υ, we have Υ = {robot, human}
Joint-primitives P = {~p1, . . . , ~pnp}, with joint-primitive ~pi = (pirobot , pihuman

)
Joint-options O = {~o1, . . . , ~ono}, with option ~oi = (oirobot , oihuman

)
Primitives Probot = {p1robot , . . . , pnrobot

}, Options Orobot = {o1robot , . . . , onrobot
}

Primitives Phuman = {p1h , . . . , pnh
}, Options Ohuman = {o1h , . . . , onh

}
Reward function R : S ×A → R, Black-box transition function P : S ×A → S
Learning rate α ∈ [0, 1], we set α = 0.2, Discounting factor γ ∈ [0, 1], we set γ = 0.9
Preference for build order PREF ∈ {′legs_first′, ′back_first′, ′none′}

1: procedure Q-LEARNING(X , A, Probot, Phuman, Orobot, Ohuman,R, P , α, γ)
2: Initialize Qprimitives : X ×A → R and Qoptions : X ×A → R arbitrarily
3: while Q is not converged or max number of iterations has not been reached do
4: Start in state s ∈ S
5: while s is not terminal do
6: Calculate π according to 70%− 30% exploration-exploitation strategy
7: option_flag ← False
8: if exploiting then
9: π(s)← arg maxprobot OR orobot

(arg maxprobot Qprimitives(s, probot, phuman),
arg maxorobot Qoptions(s, orobot, ohuman))

10: else
11: π(s)← random primitive probot or random option orobot
12: if picked option then
13: option_flag ← True

14: arobot ← π(s)
15: ahuman ← correct action in accordance with the HTM and the preference

set based on having knowledge of arobot
16: R(s, arobot, ahuman)← REWARD(s, arobot, ahuman, option_flag) .

Compute the reward
17: r ← R(s, arobot, ahuman) . Receive the reward
18: s′ ← P (s, arobot, ahuman) . Receive the new state
19: if option_flag is False then
20: Qcurrent ← Qprimitives

21: else
22: Qcurrent ← Qoptions

23: Qcurrent(s
′, arobot, ahuman)← (1−α) ·Qcurrent(s, arobot, ahuman) +α · (r+

γ ·Nashrobot(s′, Qcurrent)
24: s← s′

return Q
25: procedure REWARD(s, ~a = (arobot, ahuman), option_flag)
26: if s is a final state then return 20
27: if s′ is NOT a valid next state in accordance with the HTM then return −100

28: if option_flag is True then return 5
return 1
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of supportive behaviors for different subtasks within the same domain. HRL also helps

with abstracting away from the state of the subtask details about the implementation of the

specific supportive behaviors. We present our algorithm in Algorithm 5.

As we present in Subsection 5.2.2, an important paradigm proposed and studied in the

HRL community is the formulation of partial policies into options [40]. Options gener-

alize primitive actions to include temporally-extended courses of action [40]. An option

is defined as a tuple 〈IO, π, β〉, where IO is the initiation set of the option (the option is

available in a state s if and only if s ∈ IO), π : S × A → [0, 1] is the policy to be exe-

cuted, and β : S+ → [0, 1] is the termination condition. When the agent takes the option,

it chooses actions according to the policy π until the option terminates according to β.

HMAB-RL uses options as temporally-extended options with variable number of primitive

actions composing them.

Although options can be learned [117] and this is an exciting area of exploring in our

future, it is common that designers of RL systems use their prior knowledge about the

task to add a specific set of options, together with their policies (these can also instead be

learned) [108]. Learning such options is beyond the scope of this thesis, but we find this

an interesting future research direction. In Table 5.4 and Table 5.5, we define the set of

options, together with their policies, which we add onto the primitive actions used in the

MAB-RL Human Watch algorithm.

5.6 Results

In this section, we present the results for the algorithms we contributed in Subsection 5.5.1,

Subsection 5.5.2, and Subsection 5.5.3. Since all of the algorithms presented in this chapter

can learn a valid trajectory for the task from one learning episode only, we evaluate our

algorithms by computing the number of errors on random trajectories generated from the

HTM. As in Chapter 4, we only use the HTM for evaluating the model. In this chapter, we
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also use it for giving out rewards to the system because we need to compute the validity of

the next state starting from a current state and taking a (arobot, ahuman) pair, but this is only

encoded in the reward, and it constitutes the reward signal that the human would give the

robot in a real-world setting.

The way in which we compute errors is as follows. For each number of episodes, we

train each of our algorithms three times, and for each, we randomly select five trajectories

generated from the HTM. For each trajectory we test if the action the robot would take,

together with the human action, leads the task to progress into a valid state (validity is

computed taking into account both the HTM, and the supportive behavior preference set).

If this is an invalid action, we count it as an error, otherwise we do not. We then proceed

to the next state of the selected episode regardless of the next state to which the action pair

would have led us. This ensures that our system is tested for any possible state we might

end up in if, for example, the human decided to change something throughout the course

of the task, or switch to a parallel node. The only exception to how we compute errors

is the HMAB-RL algorithm, since the reason why we obtain speed-up for HRL in general

is that we learn when we can use options instead of primitive actions. This means that in

different intermediate states where options apply overall, the algorithm would not know

what primitives to employ instead. Testing knowledge of primitives in this case would go

against the goal of speeding up learning via HRL. Thus, in this case, when the algorithm

decides to take an option, and this is a valid option, we allow the algorithm to proceed to

the end of the option. We only do so if the part of the actual episode that was selected at

random coincides with the states visited while taking the option, and move from that point

onward. By doing this, we still follow the episode, and still allow for checking that the

algorithm knows what to choose at each step. In terms of selecting the human action for

testing, we do so in exactly the same manner that the individual algorithms do based on

their respective action synchronization schemes.
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Figure 5.1: Comparison between the Single-Agent RL Baseline, the MAB-RL: Human
Watch, Robot Watch, Robot Communicative Actions, and the HMAB-RL Human Watch
algorithms. This graph shows the average number of errors per length of training sessions.
Each session was ran three different times and the results were averaged. The error bars
represent standard deviation.

In Figure 5.1, we present the results of all of our algorithms, over the course of learn-

ing phases consisting of 1 up to 5000 episodes. We notice that the best performing one

is MAB-RL Human Watch, in terms of number of episodes. This algorithm achieves an

average number of errors of 1.13 (s.d. 1.45) and 0.53 (s.d. 0.88) for 30 and 40 episodes’

worth of training, respectively. This is on par with the human-level performance reported

in Section 4.2, with an average of 0.97 (s.d. 1.12) for the same supportive behavior pref-

erence set. Once we reach 200 episodes for the training phase, our error is consistently 0.

Compared to the model-based technique presented in Chapter 4 that needed a pool of either

500 or 350 task trajectories (depending on the presented model) in order to build a model of

the task and 5 user demonstrations or labels to build the personalized supportive behavior

model, this model-free technique necessitates more user-provided demonstrations or labels,

but less demonstrations overall. Compared to the model-based HMM technique that only

allows the robot to learn its own actions, both the MAB-RL and HMAB-RL paradigms allow

for full flexibility in assigning different actions to the robot vs. the human, and changing

these with ease and without any constraints. Below, we dive into deeper analyses and

present sub-components of the data shown in Figure 5.1.
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Figure 5.2: Comparison between the MAB-RL: Human Watch, Robot Watch, Robot Com-
municative Actions algorithms. This graph shows the average number of errors per length
of training sessions. Each session was ran three different times and the results were aver-
aged. The error bars represent standard deviation.

In Figure 5.2, we investigate more closely at the algorithms part of the MAB-RL paradigm.

The curves suggest that the algorithms perform, from best to worst, in the following order:

MAB-RL Human Watch (average 0.53, s.d. 0.88 for training 40 episodes), HMAB-RL Hu-

man Watch (average 1.27, s.d. 1.69 for training 40 episodes), MAB-RL Robot Watch (aver-

age 1.53, s.d. 1.02 for training 40 episodes), and MAB-RL Robot Communicative Actions

(average 2.87, s.d. 1.41 for training 40 episodes). The algorithms reach performance on

par human human-level performance at 40, 100, 100, and 500, respectively. The MAB-RL

Robot Communicative Actions algorithm is the slowest, since it needs many more iterations

in order to converge fully and learn exactly when it should apply the communicative ac-

tions. It is, however, the one that allows for the highest amount of flexibility in terms of

action synchronization since it does not assume that one of the agents is able to observe the

start of the other agent’s action during one time step.

We now turn our attention towards the single-agent baseline, where we explore the

effects of learning an added preference about the order of parallel nodes alongside the sup-

portive behavior preferences. In Figure 5.3, we notice that the Single-Agent RL algorithm

in which we incorporated ordering preferences (these are preferences with respect to the

ordering of parallel nodes) performed better than the one with no preferences. We posit this

106



Figure 5.3: Comparison between the Single-Agent Vanilla Q-Learning and the Single-
Agent Q-Learning with Preferences algorithms. This graph shows the average number of
errors per length of training sessions. Each session was ran three different times and the
results were averaged. The error bars represent standard deviation. For each of the training
session lengths, we also plotted each of the three averages resulted from training for that
length three times. We plotted with green those points where the ordering preferences were
successfully learned, and with red those points where the ordering preferences were not
successfully learned.

is because we introduce more information in the reward signal during the training phase,

and this helps even in the cases where we are not successful at learning the actual ordering

preference. The ordering preference we set out to learn in this experiment was executing

the legs before the back part of the chair. In the figure, we plot with green those train-

ings that resulted in successfully learning this ordering preference, and with red those that

resulted in failure. The Single-Agent RL with no preferences executes on par with human-

level performance at 40 episodes, with an average of 1.07, s.d. 1.57, and the Single-Agent

RL with Ordering Preferences does so at 40 episodes, with an average of 0.6, s.d. 1.20.

Finally, we investigate the difference between the MAB-RL and HMAB-RL Human

Watch algorithms as part of Figure 5.4. Although when looking only at the training session

length in terms of the total number of episodes, MAB-RL seems to perform better, adding

options actually speeds up learning in terms of the length of the episodes themselves and

the final total length of the training sessions. As the figure highlights, the MAB-RL Human

Watch algorithm performs on par with human-level performance with an average of 0.53,
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Figure 5.4: Comparison between the MAB-RL Human Watch and the HMAB-RL Human
Watch algorithms. This graph shows the average number of errors per length of training
sessions. The top graph shows the length of the training sessions in terms of the total
number of episodes, while the bottom graph shows the length in terms of the averaged
number of states visited (it takes into account the length of each epsiode). Each session was
ran three different times and the results were averaged. The error bars represent standard
deviation.

s.d. 0.88 when trained for 40 episodes, resulting in an average of 974.33 states visited

throughout the 40 episodes. However, the HMAB-RL Human Watch algorithm does so with

an average of 1.07, s.d. 1.39 when trained for 50 episodes, but resulting in an average of

only 776.00 states visited throughout the 50 episodes.

These results show the power of employing macro-actions that can be re-used across

the task. This improvement is caveated by the fact that the types of options present in

the system affect how much speed-up we end up experiencing. If the options do not get

re-used enough, the added complexity of implementing them and learning when to use an
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option vs. a primitive action might not be worth a potentially marginal improvement in

the total number of states visited. Furthermore, in some situations, this improvement is

not present. In our case, this manifests when the MAB-RL algorithm performs well with

a lower number of episodes due to a particularly good run in covering a wider variety of

trajectories. We constructed our options so that they do not render the primitive actions

completely unhelpful; however, the more primitive actions the options encompass and the

more often the options can be re-used as part of the task, the higher the benefit. Thus,

employing such macro-actions represents a trade-off between the improvement we hope to

experience and the added complexity of the model.

5.7 Conclusions

In this chapter, we have introduced two novel paradigms we coin MAB-RL and HMAB-RL,

and presented four algorithms representing different variants based on these paradigms. We

compared this model-free technique with the model-based HMM we presented in Chap-

ter 4, and showed that depending on the scenario we are faced with, we can trade off

number of user demonstrations or labels for total number of demonstrations. Our tech-

niques in this chapter make use of the multi-agent idea, but represent a variation on this,

in which we consider the human an agent in the environment, but one whose actions we

do not control. We also introduced a hierarchical approach that speeds up learning, which

extends our multi-agent based paradigm.

A limitation of this work, which represents an interesting direction of future research,

includes implementing the algorithms contributed in this chapter on the Baxter research

robot and performing another user study similar to Chapter 4. Another line of future inquiry

worthwhile exploring consists of looking into learning the options and the option policies

that we hand-crafted as part of this work, such that we can speed up learning even further,

and move towards researching transfer learning employing the learned options. Finally,
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we would also like to improve our system by representing our state and action spaces

via integrating the framework contributed in Chapter 3, which can provide us with robust

primitives, well-suited for the task we are considering.
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Chapter 6

The Multiple Facets of HRC: Social

Collaboration

In this chapter, we focus on the social aspect of collaboration and on the importance of en-

dowing collaborative robots with capabilities for maintaining users engaged and motivated

throughout the interaction. An adaptive robot need not only know the different preferences

of the user in terms of executing physical actions, but it needs to facilitate task progression

by keeping the human engaged and motivated throughout the task. Here, we present studies

that show how robots that aim to offer assistance to users, whether during verbal or physi-

cal interactions, can employ a variety of tools and behaviors, ranging from utilizing verbal

communication for improved social presence (Section 6.1), to using different embodiments

to engender improved perceptions from users (Section 6.2), to studying behaviors that en-

gender effective interactions with robots (Section 6.3). Endowing robots with such tools

that can engender positive user impressions and reactions can positively impact any type of

interaction with a robot aiming to provide assistance, making social collaboration a facet

of HRC worth exploring. 1

1. In Appendix B, we present a reinforcement learning system intended for a long-term study aimed at
maintaining motivation throughout a collaborative interaction with a robot. The studies we present in Sec-
tion 6.1 and Section 6.2 explore particular tools that we can effectively use for such a robot to successfully
and smoothly interact with a human over an extended period.
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6.1 Verbal Communication for Social Presence in Collab-

orative Environments

The ability of social agents, be it virtually-embodied avatars or physically-embodied robots,

to display social behavior and interact with their users in a natural way represents an im-

portant factor in how effective such agents are during interactions. In particular, endowing

the agent with effective communicative abilities, well-suited for the target application or

task, can make a significant difference in how users perceive the agent, especially when

the agent needs to interact in complex social environments. This can be extremely valuable

in contexts such as HRC, where we wish the robot to provide effective assistance to users

throughout the execution of a task. The work we present in this section is based on [118] 2.

In this work, we consider how two core input communication modalities present in

human-robot interaction—speech recognition and touch-based selection—shape users’ per-

ceptions of the agent. We design a short interaction in order to gauge adolescents’ reac-

tion to the input communication modality employed by a robot intended as a long-term

companion for motivating them to engage in daily physical activity. A study with n = 52

participants shows that adolescents perceive the robot as more of a friend and more so-

cially present in the speech recognition condition than in the touch-based selection one.

The results highlight the advantages of using speech recognition as an input communi-

cation modality even when this represents the less robust choice, and the importance of

investigating how to best do so.

Artificial agents, such as virtually-embodied characters or physically-embodied robots,

can take on the role of help givers, companions, teachers, coaches, and so on [119], [120].

In this work, we focus on a physically-embodied robot intended as a long-term companion

2. E. C. Grigore, A. Pereira, I. Zhou, D. Wang, and B. Scassellati, “Talk to me: verbal communication
improves perceptions of friendship and social presence in human-robot interaction”, in Proceedings of the
16th International Conferences on Intelligent Virtual Agents (IVA), Los Angeles, USA: Springer, 51–63.
Best paper finalist.
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that keeps adolescents motivated to engage in daily physical activity throughout time. The

importance of developing methods for keeping adolescents engaged in physical activity

is stressed by data revealing alarmingly low numbers of adolescents who engage in levels

recommended by health guidelines [121]. Furthermore, this occurs at an age when physical

activity holds essential benefits for healthy growth and development [122]. Given that the

constant support needed for behavior change [123] is either not readily available or costly,

employing a social agent as a companion would provide valuable social support to keep

adolescents motivated to exercise routinely.

In order for such a companion to successfully provide its users with social support over

time, enabling smooth and natural interactions through an effective communication modal-

ity is essential. We thus investigate the effects of the communication modality on users’

perceptions of the agent. To this end, we conduct a study to observe adolescents’ reactions

to different ways of communicating with the robot (Figure 6.1 shows a participant during

a session). Investigating how users’ perceptions of the robot are affected by communica-

tion modality can guide us towards creating better and more effective agent interactions.

In particular, we are interested in how users’ perceptions of the agent change in terms of

friendship and social presence factors. These factors are particularly relevant for creating

engaging and compelling interactions, and are important to assess prior to the long-term

deployment intended for the robot companion.

Given that verbal communication is at the core of how people interact with each other,

one of the most natural ways of designing a human-robot communication interface is em-

ploying speech. Speech recognition provides a basic and natural way of conveying in-

formation to the robot. Even though it has seen serious advances in recent years, speech

recognition technology still suffers from unreliable performance in noisy acoustic envi-

ronments and when faced with speaker and language variability (especially when working

with children [124]), as well as from difficulty handling free-style speech [125]. Due to the

challenges faced by utilizing speech recognition reliably, many interfaces for communica-
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Figure 6.1: Participant interacting with the robot using our smartphone interface.

tion with agents use touch-based inputs via tablet or smartphone devices [126], [127]. The

use of such interfaces makes for more robust and dependable communication, but might

take away from the benefits of having a more natural interaction.

This work investigates how adolescents’ perceptions of the robot change when speech

recognition versus touch-input selection is used to communicate with the agent. Results

reveal that, even though the former was more error-prone and less robust than the latter,

users perceived the robot as more of a friend and more socially present in the speech recog-

nition condition than in the touch-based selection one. This highlights the importance of

employing a more natural way of communication, even when this represents the less robust

choice.
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6.1.1 Related Work

Speech recognition has advanced significantly in recent years, with numerous applications

deployed on a large scale. Smartphones represent some of the most widely used devices

that employ this capability, with 3.4 billion subscriptions in 2015 set to double by the year

2021 [128]. Most smartphones come equipped with intelligent personal assistants that help

users complete day-to-day activities, from using social media platforms to searching for

travel information. Such assistants take inputs in the form of voice, images, or contextual

information to provide useful answers, typically in the form of natural language. Through

the widespread use of these devices, owners have become acquainted with the power pro-

vided by speech recognition, making for smooth and natural interactions with their devices.

Speech recognition systems, however, still suffer from lack of robustness beyond con-

strained tasks and are not reliable when used in noisy environments. The highest perform-

ing systems in research struggle to obtain word error rates (WER) lower than 10%, and

employ strategies that might prove to be unfeasible for most real-world applications [125].

Furthermore, data on the performance of commercially available speech recognition ser-

vices show considerable variability with respect to performance metrics, with WERs rang-

ing from 15.8% to 63.3% [129]. In this work, we wish to investigate whether employing

speech recognition to enable communication between a robot and its users is of value even

when this represents the less robust choice.

Speech Recognition Communication Interfaces

Speech interfaces have been used for communicating with social agents in different con-

texts and application domains, given the natural way of interaction such interfaces can

provide. A salient research area in which speech recognition is used is that of creating

multimodal human-robot interaction interfaces. Such interfaces include verbal communi-

cation and visual perception modules, among others, and employ speech recognition as an

important part of the interface allowing users to communicate with the robot [130], [131].
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In a study focusing on teaching a robot a complex task [132], the robot learns the task

by both observing a human perform it and by interpreting the speech used by the person

while doing so. The authors emphasize the utilization of speech recognition in human-robot

interfaces to create natural and familiar ways for people to interact with robots, which could

more quickly lead to their acceptance in human environments like homes and workspaces.

Alongside providing a natural mode of communication, other advantages include more

easily handling situations when a person’s hands or eyes are occupied, benefits for enabling

communication between robots and handicapped persons, and the use of the ubiquitous

mobile devices discussed above that allow for two-way voice communication [133].

Although there exist a number of studies investigating the effect of output communi-

cation modalities on users’ perceptions of agents (i.e. using different interfaces to convey

information from the agent to the user such as text-to-speech, text, etc.) [134], [135], re-

search on input communication interfaces is more scarce and is the area where we focus

our current efforts.

Touch-based Selection Communication Interfaces

Faced with the challenges surrounding the reliable use of speech recognition, a growing

number of studies have started utilizing touch-based selection input as the main form of

interaction between humans and robots. In the past ten years, we can observe a clear trend

in the increasing number of studies that make use of mobile devices or tablet touchscreens

for this purpose. For example, the Nao or DragonBot robots have commonly been paired

with touchscreen tablets to provide a context for human-robot interaction [126], [120].

Other studies have used mobile devices and touch interfaces to communicate with

robots. In such a study, authors used a smartphone as a means of interacting with Nao

and teaching it about new objects [127]. In a study exploring the concept of enjoyment in

a human-robot interaction scenario with the elderly, authors used a touchscreen interface

in place of a speech recognition system due to increased reliability and smoother interac-
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tions [119].

The research presented above provides interesting insights into using different kinds

of devices and interfaces for communication in human-robot interactions. However, re-

searchers have not yet explored the tradeoff between employing a more natural versus a

more robust interface for enabling communication between a user and a robot with re-

spect to users’ perceptions of the agent. This work explores this tradeoff by investigating

perceptions of friendship and social presence engendered by the use of different input com-

munication modalities.

6.1.2 Methodology

Interaction Context

The interaction context for this study is that of a robot companion motivating adolescents

to engage in daily physical activity. The companion is intended for long-term use, and

the single-session study presented here constitutes the first interaction users would be go-

ing through during a longer-term study. During this session, the robot walks participants

through its back-story and explains the different motivational strategies it would be using

over time. The back-story consists of the agent taking on the role of a “robot-alien” whose

space ship broke down on Earth and who needs help from the user in order to return home.

The user can help the robot by exercising routinely and transferring “energy” to the robot

by doing so. In a long-term scenario, this is accomplished by providing users with a wrist-

band device that measures the physical activity level they engage in daily, which the robot

can connect to in order to gain “energy points”.

The back-story is created in order to build an engaging, compelling, and persuasive

interaction by linking elements of the story (e.g., the fact that all inhabitants of the robot’s

planet have a high level of knowledge of physical activity) to ways in which the robot

would help the user. In a long-term deployment, the agent can accomplish this by employ-
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ing four different motivational strategies—cooperative persuasion, competitive persuasion,

conveying information about physical activity through lessons and quizzes, and promoting

self-reflection [136]. These motivational strategies are reinforced by providing users with a

smartphone they can carry around with them during the day, while away from the physical

robot. Participants also use the smartphone during their short, daily interactions with the

physical robot in order to communicate with it.

Study Design

The user study we present herein examines the effects of speech recognition versus touch-

based selection on users’ friendship and social presence perceptions of the robot within

the interaction context described in Subsection 6.2.2. Each session involves a participant

interacting with the robot for six-to-nine minutes and being engaged in a dialogue on the

topic of physical activity motivation for adolescents. The interaction is structured in the

form of a dialogue controlled by the agent in which the robot either speaks to the partici-

pant or asks a question and waits for a response. Participants interact with the robot via a

smartphone application that displays the appropriate interface based on whether the robot

or the person is speaking, as well as based on the condition to which the participant is as-

signed. The conditions represent the use of two different input communication modalities:

(1) speech recognition—when they are prompted through the smartphone interface, partic-

ipants respond to the robot’s questions by saying one of the answer choices displayed on

the screen and their answers are evaluated through speech recognition, and (2) touch-based

selection—participants respond to the robot’s questions by using their finger to drag a but-

ton onto one of the answer choices displayed on the smartphone screen. We hypothesize

that:

H1: Users would perceive the robot as more of a friend in the speech recognition than in

the touch-based selection condition.
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H2: Users would perceive the robot as more socially present in the speech recognition

than in the touch-based selection condition.

Measures

The two main dependent variables (DVs) we examine are users’ perceptions of the robot in

terms of friendship and social presence. The two measures are based on standardized ques-

tionnaires measuring friendship [137] and social presence [138]. We examine subscales

of both measures to investigate the effects of the input communication modality on users’

perceptions of the agent. The two main DVs constitute important factors to consider in any

human-robot interaction scenario in which we wish to create an engaging and compelling

interaction and engender a positive rapport with an artificial agent. This also extends to

robots that we envision providing physical assistance to human workers throughout physi-

cal tasks.

Friendship. We employ the McGill Friendship Questionnaire (MFQ) [137] concern-

ing a subject’s assessment of the degree to which someone fulfills six friendship functions.

Although friendships, like other relationships, vary in quality, research suggests it is pos-

sible to assess specific qualities, and the questionnaire used herein was created to define

theoretically distinct friendship functions that distinguish between friends and non-friends,

and that are associated with affection and satisfaction [137]. We believe that it is funda-

mental to engender the existence of such elements during interactions with social agents,

whether they be long- or short-term. These factors are key to creating positive impressions

of the agent, which is especially important during initial rapport development in relation-

ships [139]. The more users perceive that the agent can fulfill friendship functions, the

more likely they are to start building positive rapport with the agent. This, in turn, can help

with providing effective assistance to a user throughout a task, by maintaining a positive

interaction alongside the physical support offered.

The relevance of using friendship as a measure of the ability of an agent to establish
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meaningful relationships with its users has already been highlighted in a short-term study

[140]. We employ this measure in a similar way to inform this ability of the agent for

the intended long-term use of the robot companion. The MFQ consists of 30 zero-to-

eight Likert items in total, with six subscales composed of five questions each. The six

subscales included in the questionnaire are: stimulating companionship, help, intimacy,

reliable alliance, self-validation, and emotional security. Although not straightforward to

delineate, some friendship subscales such as intimacy might appear more relevant to long-

term interactions. Nevertheless, these subscales could provide insights into how verbal

communication might affect a long-term interaction. Additionally, including the full set of

subscales allows for future comparisons with long-term interaction results.

Social presence. Social presence is another core aspect of human-human interactions

that we should take into account when developing interactions between users and robots or

social agents. Social presence was initially defined as “the degree of salience of the other

person in the interaction and the consequent salience of the interpersonal relationships”

[141]. It is immediately apparent that users’ perceived social presence of the robot is of

high importance, given that we strive to develop robots that interact with their users in

a convincing and social manner. An example of the power of creating strongly socially

present robots is [142], where social presence is used to create believable and enjoyable

board game opponents. It has been shown that an agent is more effective at being persuasive

when perceived as socially present [143]. A robot companion that aims to keep adolescents

motivated over time by employing persuasive motivational strategies would thus benefit

greatly from being perceived as a strongly socially present party in the interaction.

The questionnaire used herein is based on [138], which consists of 36 zero-to-eight

Likert items in total and defines social presence to include six important factors for the in-

teraction. These factors of social presence represent the subscales used in the questionnaire:

co-presence, attentional allocation, perceived message understanding, perceived affective

understanding, perceived affective interdependence, and perceived behavioral interdepen-
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dence. Social presence is directly applicable to short-term interactions and is routinely

employed in their assessment [144], [145].

Apparatus and Experimental Setup

In this study, we use a modified (to make programmable) version of MyKeepon, a com-

mercially available variant of the Keepon robot. Keepon is a non-mobile robot with four

degrees of freedom, designed for interaction with children [146]. The modified MyKeepon

can be seen in Figure 6.1, presenting a green “alien” hat with antennae, consistent with the

robot’s back-story during the interaction.

Throughout the study, each participant sat at a table, with the robot placed on the table.

A Kinect was positioned in front of the robot and covered with a black cloth to look inte-

grated with the robot. The Kinect tracked the position of the user’s head so that the agent

would turn left or right, as needed, in order to mimic placing its attention on the participant

as he or she moved. The user was also given a smartphone device with a custom-built appli-

cation displaying the interface based on the condition. Figure 6.1 shows the experimental

setup during an interaction session with an adolescent.

Participants. We conducted a study with n = 52 participants, 26 male and 26 female, in

local high schools. The subject population consisted of early adolescents and adolescents

aged 14-to-16, with an average age of 15. Apart from the age, no other recruitment criteria

were applied. Recruitment was managed with the help of the schools’ staff and participants

did not receive monetary compensation. We obtained ethical approval from the Human

Subjects Committee at Yale University.

Procedure. Participants were randomly assigned to either the speech recognition or the

touch-based selection condition. The former included 26 participants, while the latter in-

cluded the other 26. Users were given an assent form to read and sign prior to participation.

Each participant was seated at a table, in front of the robot that was initially still and silent.

We first gave the user a brief overview of the physical activity scenario and then handed
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Figure 6.2: Interface for communication with the robot. Figures show the interface dis-
played for: (a) the robot speaking during both conditions, (b) the speech recognition con-
dition, and (c) the touch-based selection condition.

him or her the smartphone.

Each participant was given a brief explanation on how to use the interface to commu-

nicate with the robot. Figure 6.2(a) shows the interface displayed across conditions when

the robot is speaking to the user. Figure 6.2(b) shows the interface displayed in the speech

recognition condition. Users in this condition would say one of the options displayed on

the screen to answer a question. We employed the Google Speech Recognition API [147].

The system could handle synonyms and expressions with similar meaning to the words

shown (e.g., “yeah”, “sure”, and “of course” would all be recognized as “yes”). When the

system could not correctly identify the input or the participant would not use the interface

correctly, the robot would prompt the user with a brief instruction based on the particular

mistake. Figure 6.2(c) shows the communication interface displayed in the touch-based

selection condition. Participants in this condition would use their finger to drag the button

displayed on the screen onto one of the answer choices in order to respond. As long as they
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Figure 6.3: Mean ratings for (a) friendship subscales (p-values based on the Mann-Whitney
U test statistic, with means and error bars depicted to visualize results for this data), and
(b) social presence subscales (p-values based on the independent-samples t-test statistic).
We consider Bonferroni-adjusted α levels with p < .008 for significance and p < .017 for
marginal significance. All error bars represent ±1SE.

kept the button pressed, participants could change their mind and move the button from

one choice to another. In this condition too, users were prompted with a brief instruction if

they would not utilize the interface correctly.

The interaction itself consisted of the robot unfolding its back-story and talking about

physical activity motivation. The interface would change from Figure 6.2(a) to either Fig-

ure 6.2(b) or Figure 6.2(c) (depending on the condition) when the robot would go from

speaking to waiting for the participant’s answer. The robot asked a total of six questions

during each interaction, and users could choose among three simple entries to respond. The

robot’s replies to the different answer choices differed slightly to give users feedback that

their particular answer was understood, but otherwise the script was fixed. The interaction

was approximately seven minutes long. At the end of the interaction, participants were

asked to fill out the friendship and social presence questionnaires.
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6.1.3 Results

Here, we present the analysis of the friendship and social presence subscales, and discusses

the robustness of the two conditions employed in the current study.

Friendship. We first evaluated the internal consistency for each of the six friendship

subscales, resulting in highly reliable values. We thus computed the scores for the six sub-

scales by averaging over values within each. The Shapiro-Wilk test of normality revealed

the data is not normally distributed (S − W = .93, df = 52, p = .005). We thus em-

ployed the Mann-Whitney U test to compare users’ ratings of the robot between the two

conditions.

We performed the Mann-Whitney U test for each of the six subscales, using a Bonferroni-

adjusted α level of .008 (.05/6) for significance and .017 (.1/6) for marginal signifi-

cance. Participants rated the robot significantly higher in the speech input condition than

in the touch input one for help (U = 183, p = .004, z = −2.84) and reliable alliance

(U = 186, p = .005, z = −2.79), and marginally significantly higher for self-validation

(U = 200.5, p = .012, z = −2.52). Based on the Bonferroni correction, there was no

statistical significance in ratings for stimulating companionship (U = 215, p = .024, z =

−2.26), intimacy (U = 228.5, p = .045, z = −2.01), or emotional security (U = 246, p =

.094, z = −1.68), although trends do suggest higher ratings in the speech recognition than

in the touch-based selection condition. These results are highlighted in Figure 6.3(a) and

they reveal the strong effect of employing speech recognition within the context of foster-

ing positive rapport during human-robot interactions. Here, we consider significance levels

based on the Bonferroni correction, and display the actual p-values in Figure 6.3(a) for

clarity of results.

Social Presence. We computed social presence subscale scores in a similar manner to

the friendship scores, with internal consistency evaluations resulting in reliable and highly

reliable values for each subscale. The Shapiro-Wilk test of normality suggested that nor-

mality of data is a reasonable assumption for the social presence data (S −W = .97, df =
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52, p = .146), and so we employed the independent-samples t-test to compare users’ ratings

between the two conditions.

We performed the independent-samples t-test for the six subscales, using a Bonferroni-

adjusted α level of .008 (.05/6) for significance. Participants rated the robot significantly

higher in terms of perceived affective interdependence in the speech recognition condition

(M = 5.72, SD = 1.58) than in the touch-based selection one (M = 4.17, SD = 2.31),

t(50) = 2.83, p = .007 (t-value reported for unequal variances), while the other five sub-

scales (co-presence, attentional allocation, perceived message understanding, perceived

affective understanding, and perceived behavioral interdependence) were not significant

( Figure 6.3(b)). Although the friendship ratings reveal a stronger impact of the communi-

cation interface employed, social presence results also bolster the importance of employing

a more natural and familiar mode of communication with robots.

Robustness. In order to assess the reliability of the two input communication modal-

ities employed, we computed error rates for each. For both conditions, each session con-

stitutes of the robot asking the user a total of six questions, for which the participant can

choose among three simple, one-word entries to respond. In the speech recognition con-

dition, we encountered two types of errors: (1) the system evaluates the user’s speech as

something other than the options available on the smartphone screen, and (2) there is no

audible speech that can be evaluated by the system. Since each question response consists

of one-word answers, we computed the word error rate (WER) for the system by dividing

the total number of errors encountered (23) by the total number of questions asked (six

questions per participant, with 26 participants in the speech recognition condition), and ob-

tained a value of 14.74%. In the touch-based selection condition, the interface performed

without errors, given the tailored nature of the interface design and the reliability of using

a smartphone touch interface.

To ensure that the errors encountered in the speech recognition condition did not im-

pact users’ perceptions of the robot, we analyzed this data more in depth. Out of the 26
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total participants in this condition, the system presented errors for 14 (with an average of

1.64 errors per user), and worked without errors for the remainder of 12. We thus applied

the same statistical tests employed above for this condition only, using a binary coding

scheme to divide the group into participants with and without errors. We again employed

the Mann-Whitney U test for friendship subscales and the independent-samples t-test for

social presence subscales, with the same significance levels used above. We obtained no

significant effect for errors for either of the friendship or social presence subscales. This

shows that the difference in users’ perceptions of the robot is not influenced by errors

present in the speech recognition condition.

Compared to available commercial systems, the speech recognition WER represents a

fairly low error rate, but this is due to the nature of the constrained task and simple answers

employed during the interaction. To note, however, is the fact that the speech recognition

condition constitutes the less robust choice out of our two input communication modali-

ties, and that this condition still engenders higher perceptions of the robot for participants.

These results stress that it is important to consider the tradeoff between utilizing a more

natural versus a more robust interface when deciding which input communication modality

to employ for interactions with robots, or artificial agents more broadly.

6.1.4 Discussion and Conclusions

This work examines the effects of employing speech recognition versus touch-based selec-

tion as an input communication modality on users’ perception of an agent. We conducted a

study to investigate how the two modalities shape users’ friendship and social presence per-

ceptions of the robot within the context of physical activity motivation for adolescents. Our

intuition was that, as a more natural means of communication, speech recognition would

prove to engender stronger perceptions of friendship and social presence than touch-based

selection, even when this represents the less robust choice.

Hypothesis H1 predicted stronger friendship perceptions of the robot in the speech
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recognition than in the touch-based selection condition. We obtained statistically signif-

icant differences between conditions for help and reliable alliance, and marginally statis-

tically significant for self-validation. Although we did not obtain statistically significant

results for stimulating companionship, intimacy, and emotional security, we did notice a

trend in the same direction. A possible explanation for why these subscales are only show-

ing a trend could be due to their limited relevance to short-term interactions. We suspect

that a longer exposure to our agent could result in significant results for these subscales as

well, and consider this an interesting avenue for future research.

The second hypothesis, H2, is partly supported by the results. Co-presence, attentional

allocation, and perceived message understanding engendered high perceptions of the agent

for users across conditions, and so these subscales did not yield statistically significant

differences. We did not obtain any significant differences for perceived message under-

standing and perceived behavioral interdependence. However, participants in the speech

recognition condition perceived stronger affective interdependence than those in the touch-

based selection one. Perceived affective interdependence is defined as “the extent to which

the user’s emotional and attitudinal state affects and is affected by the emotional and atti-

tudinal states of the interactant.” It represents an important facet of creating an engaging,

persuasive, and compelling agent that aims to motivate adolescents. Having users perceive

high affective interdependence when interacting with a social robot is fundamental to any

type of agent, be it one that aims to entertain, motivate, help physically, or simply provide

information.

The significant differences observed in users’ perceptions of the robot are within the

context of employing a smartphone as part of the input communication modality. We do

so deliberately, in order to design a robot that can realistically be used as a long-term com-

panion in adolescents’ homes and employ widespread, commercially available technology

(smartphones) to this end. Although comparing the conditions in this study to using speech

recognition without a smartphone would help put the significant differences obtained into
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context, it would introduce another independent variable, i.e. the presence or absence of

the device. Nevertheless, we believe this comparison to be an interesting future direction.

The results yielded by the current single-session study inform us that, for a long-term

application scenario, or a HRC context during which we aim for effective support, using

natural language for communication with a social agent is worthwhile despite the presence

of speech recognition errors. Given the general pertinence of the two scales we employed,

we believe that these results can be applied to many other human-agent interaction domains

where social interactions are critical.

6.2 Differently Embodied Agents for Collaborative Envi-

ronments

The question of whether to use a robot or a virtually-embodied character for applications

in need of a socially intelligent agent depends on the requirements of the task at hand. To

overcome limitations of both types of embodiment and benefit from advantages provided

by both, we can complement a physical robot with a virtual counterpart. In order to link

the two embodiments such that users perceive they are interacting with the same entity, the

concept of “migration” from one embodiment to the other needs to be addressed. The work

in this section based on [148] 3.

In this work, we investigate a particular aspect of this concept, namely how to best

perform the triggering of migration, within the context of a physical activity motivation

scenario for adolescents. We design two methods, a proximity-based method and a control,

and compare their effects on adolescents’ perceptions of our agent. Results show that users

perceive the agent as more of a friend and more socially present in the proximity-based than

3. E. C. Grigore, A. Pereira, J. J. Yang, I. Zhou, D. Wang, and B. Scassellati, “Comparing ways to
trigger migration between a robot and a virtually embodied character”, in Proceedings of the 8th International
Conference on Social Robotics (ICSR), Kansas City, USA: Springer, 2016, November 1–3, 839–849. Best
student paper finalist.
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in the control condition. This emphasizes the importance of investigating different facets of

entity migration for systems in need of employing both a physical and virtual embodiment

for an artificial agent.

The field of Human-Robot Interaction (HRI) has highlighted the importance of a phys-

ical embodiment in contexts where we wish to use an artificial agent to provide supportive

behaviors to a person. Research shows that having a physically embodied agent (as op-

posed to a virtually embodied one) has significant positive effects such as increased com-

pliance [149], better learning gains [150], improved social facilitation [151], and higher

perceived social presence [152]. However, physical robots still present a variety of prob-

lems, such as limited battery life, need for mechanical maintenance, wear and tear, and

physical limitations in the range of behaviors displayed. Such problems are particularly

significant for robots intended as social companions or as collaborative robots aiming to

provide assistance since they are expected to be constantly present and available for inter-

action. Virtual embodiments are more robust, allow more complex interaction design and

greater portability. An agent that can co-exist across multiple embodiments can be help-

ful in obtaining the benefits of both types of embodiment and mitigating their individual

disadvantages.

Entity migration is defined as “the process by which an agent moves between embod-

iments” [153]. This concept has been studied in Human-Computer Interaction and HRI

as an important paradigm allowing for the extension of a particular embodiment’s abilities

and limits. Migration has a huge potential to benefit applications seeking to employ social

companions providing assistance to people in a multitude of domains, such as supervision,

companionship, coaching, motivation, and so on. Migration can also strongly benefit robots

that are meant to collaborate with users in industrial settings, where the aim is to provide

humans with supportive behaviors throughout the execution of a physical task. This is

due to the fact that each mentioned application has its own requirements for the length,

duration, frequency, and form of interactions. Switching between a physical and virtual
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embodiment can greatly help meet the necessities dictated by the task at hand at any point

during the interaction.

We present an investigation into entity migration within the context of a robot compan-

ion whose long-term intended purpose is to keep adolescents motivated to engage in daily

physical activity. Such an application domain for robot companions (especially relevant to

adolescents, for whom physical activity plays a key role in healthy growth and develop-

ment [122] and who show severely low adherence to physical activity levels recommended

by health guidelines [121]) stands to fully benefit from employing entity migration. Thus,

providing constant support necessary for behavior change [123] can be achieved through

continual access to a virtual embodiment, while employing persuasive strategies necessary

for motivation [136] would gain from temporarily switching to a physical embodiment. We

argue that the way in which we perform migration from one embodiment to the other can

engender different perceptions of the agent in users, providing a valuable tool for achieving

more positive perceptions.

We thus explore the effects of the triggering phase of migration on users’ friendship and

social presence perceptions of the agent. Such perceptions are important for the supportive

behaviors provided by our agent to be effective in a future-intended long-term deployment

or in an HRC context. These perceptions can be used to leverage humans’ tendency to

develop social relationships with the objects they interact with, tendency that is especially

strong with respect to biological and artificial agents. Leveraging this tendency is impor-

tant in guiding users towards perceiving the robot companion as more than a mere tool,

rather as a social and persuasive agent (capable of changing their attitudes, behaviors, or

opinions) [154].

In this work, we develop a proximity-based method of performing migration triggering

(a more novel, sensor-based approach) and a control method (a button-based approach). We

test the effects of our migration triggering methods during a single-session study centered

around our physical activity motivation scenario. We hypothesize that:
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H1: Users will perceive the agent as more of a friend in the proximity-based condition

(PBC) than in the control condition (CC).

H2: Users will perceive the agent as more socially present in the PBC than in the CC.

The results support both H1 and H2, revealing that we can effect stronger friendship and

social presence perceptions via migration triggering methods that rely on more innovative

approaches. This suggests that exploring different migration aspects has the potential of

bolstering positive rapport building in HRI.

6.2.1 Related Work

One of the first projects investigating the concept of “migration” was The Agent Chameleon

Project [155]. This work addressed research questions including agent identity [156], mi-

gration architecture design [155], and agent change of form based on deliberative rea-

soning [157]. Other projects have investigated how to implement migration between two

robots [158], how to implement migration of multiple companions who share the same em-

bodiment [159], whether migrating the memory of the agent would affect users’ perception

of consistent agent identity [160], and higher engagement of children with blended reality

characters [161]. The current work investigates the triggering phase of migration and its

effects on users’ perceptions of the robot, an aspect of migration not present in this body of

work.

In a study designed to construct an emotional relationship between humans and inter-

active systems, participants’ tendency to “help” an agent is higher when the agent first

migrates into a physical robot than when it remains in a virtual avatar displayed on a lap-

top [162]. This study indicates the relevance of using a physical embodiment to establish-

ing a positive emotional relationship. The enhancement of user-agent relationship is also

stressed in a study in which participants interact with a personal agent on a mobile PC

that migrates to a physical robot guiding them on a tour [163]. The system is designed to
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support the user gaining familiarity with the personal agent, but no aspects about users’

perceptions of the agent are discussed. Finally, a study in which children interact with an

artificial pet dinosaur that migrates between a virtual avatar on a smartphone and a physical

embodiment finds that close to half of the participants perceive the two embodiments as

corresponding to the same entity [153].

This work investigates an aspect that has not been previously explored in migration

literature. The studies presented here do not tackle the triggering of migration and they

either do not specify exactly how this is performed or they trigger migration through a

button-based approach [153]. In this work, we focus on how changes in the triggering phase

can affect how strongly users perceive the agent as a friend and as a socially present party

in the interaction. Perceptions of friendship and social presence engendered by migration

triggering also constitute a research direction that has not yet been investigated in this

literature and represent an important step for gaining insights into how we can leverage

migration to effect more positive perceptions of agents.

6.2.2 Methodology

Application Scenario

This study centers around the application scenario of a robot companion motivating adoles-

cents to engage in daily physical activity. We present here a single-session study, represent-

ing the first interaction of the intended long-term deployment. The current study consists

of the robot walking users through its back-story, while explaining the different motiva-

tional strategies it would employ during the longer study. The agent has the back-story of

a “robot-alien” whose space ship broke down on Earth, and needs to gain “energy points”

for repairing its ship and returning home. By exercising routinely, the user can transfer

points to the robot. The transfer is mediated through a wristband device (which the robot

can connect to) provided to users during the intended long-term deployment, measuring

their daily physical activity level.
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(a) Control condition (b) Proximity-based condition

Figure 6.4: Interaction design showing the agent’s physical and virtual embodiments.

During the intended long-term study, the agent can employ four motivational strategies:

cooperative persuasion, competitive persuasion, conveying information about physical ac-

tivity via lessons and quizzes, and promoting self-reflection [136]. We sustain these strate-

gies by providing users with a smartphone they can carry with them constantly, including

when they do not have access to the physical robot. Participants also use the device during

their short, daily interactions with the physically-embodied robot to communicate with it.

Forms of Embodiment

Physical. This embodiment is based on the Keepon robot, a non-mobile platform with

four degrees of freedom [146]. We use a commercially available version named

MyKeepon, modified to make programmable. This is a robust and simple platform

allowing for a potential long-term use of our agent. This embodiment allows for a

straightforward design of our 2-D virtual avatar as the robot has salient features that

can be intuitively replicated, i.e. its shape and color. The green hat with the antennae

add-on is reminiscent of an alien and is used to complement the agent’s “robot-alien”

back-story, as seen in Figure 6.4.

Virtual. This embodiment consists of a 2-D avatar with similar visual appearance to Keepon

(so that users perceive they are interacting with the same entity across conditions).

We display this avatar as part of an application installed on a smartphone that helps

the user communicate with the agent. The application consists of an interface show-
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ing the avatar. When the user performs the migration triggering action, the interface

changes to display a set of antennae (reminiscent of the physical robot’s hat) with a

signal crossing between them. This animation always appears when the agent is talk-

ing, as suggested by the signal crossing between the two antennae. This sequence is

depicted in Figure 6.4.

Migration Triggering Methods

Control condition (CC). This condition is depicted in Figure 6.4 (a) and represents a ba-

sic, button-based approach of performing migration. This method consists of the

initial screen showing an image of the avatar together with a “Start” button beneath

it, as can be observed in the first sub-image. The second sub-image highlights the

action the user needs to accomplish to trigger the migration, namely pressing the but-

ton displayed under the virtual avatar. When the user does so, the avatar disappears

from the screen with a fade-off animation and the physical robot wakes up and starts

talking.

Proximity-based condition (PBC). This condition is depicted in Figure 6.4 (b) and repre-

sents our sensor-based approach. For this method, we use Near Field Communication

(NFC). NFC is a technology that enables a device to communicate with another at a

maximum distance of around 20 cm, and is widely used in commercially available

smartphones. Triggering migration via NFC allows users to employ devices they are

already familiar with for communicating with artificial agents. NFC has been used

in gaming applications [164], but has not been previously employed in the context of

HRI for migration.

We place the NFC tag on top of the robot’s head, under its hat. Users see a similar

initial screen as in the CC showing an image of the avatar, with a message under-

neath reading the text “Tap the robot’s head with the back of the phone”. When
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the user does so, the phone vibrates once and the avatar disappears by displaying a

swirling away animation and sound. This is represented in the second sub-image.

The physical robot then displays the same “waking up” animation as in the CC and

the interaction proceeds in the same manner thereafter. We decided to use a vibra-

tion effect when touching the robot. This is common in NFC-based applications as it

gives users additional feedback that an action was triggered, something that is clear

when pressing a button. We chose to change the animation from fade-off to twirling

such that the agent seems to be disappearing into the robot’s head. We did so to

maximize the visualization of the PBC.

Participants

We conducted a study in local schools in Connecticut, USA. The study population consisted

of early adolescents and adolescents aged 13-to-15, with an average age of 14. Participants

were recruited with the help of the school staff and did not receive monetary compensation.

The study consisted of n = 26 participants, 14 female and 12 male.

Procedure

We assigned participants randomly to one of our two conditions. We employed the CC for

13 participants and the PBC for the other 13. Each participant was given an assent form

to read and sign prior to taking part. The participant was then seated at a table where the

physical robot was already present yet still and silent. A researcher started by giving a

brief overview of the project so that the participant would be aware of the physical activity

motivation scenario.

Participants were not instructed on how to use the system, rather they were provided

with a smartphone presenting a screen with our virtual avatar. The screen presented dif-

ferent instructions based on the triggering migration group participants were assigned to,

with explanations to proceed. In the CC, participants saw a button labeled with the text
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“Start” underneath the virtual avatar, whereas in the PBC, participants read the text “Tap

the robot’s head with the back of the phone” displayed underneath the virtual avatar.

The interaction proceeded as follows. Users were able to initiate the migration process

from the virtual avatar to the physical robot at any point, as explained by the instructions

for each condition. The migration occurred as described in Subsection 6.2.2. After the

process was complete, participants interacted with the agent by using our custom dialogue

interface. During this part, users were introduced to the story line of our scenario, as the

agent talked about the importance of physical activity and different motivational strategies

it would employ in a long-term scenario. An example of something the robot said is “On

my home planet, we know a lot about physical activity”, linking elements of its back-story

to the physical activity topic. The agent asked six questions as part of the dialogue, and

participants could choose between three simple entries to answer. I used the Google Speech

Recognition API to allow users to verbally respond with one of three simple answer choices

displayed on the smartphone. The different choices slightly affected the robot’s responses

so that participants were assured that the robot understood their answers. The script was

otherwise fixed and straightforward. Overall, the interaction lasted approximately seven

minutes.

After the interaction with the agent, participants filled out two questionnaires, and were

interviewed by a researcher on the migration aspect they had just experienced.

6.2.3 Measures

During the study, we gathered both quantitative and qualitative data. First, we collected

questionnaire data in the form of one-to-five Likert scales for both friendship and social

presence. Second, we simultaneously recorded and wrote succinct transcriptions of users’

answers to interview questions about migration.

The friendship and social presence measures we used in this work are the same as those

presented in Section 6.1.
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Figure 6.5: Participant ratings for the (a) friendship scale, (b) social presence scale. Error
bars represent ±1SE.

6.2.4 Results

Here, we present the study findings and reports on both questionnaire and interview data.

Friendship Perceptions. We evaluated the internal consistency of the complete friend-

ship scale of 30 items (highly reliable, Cronbach’s α = .947), as well as that of the six

subscales (reliable and highly reliable values for each). We thus computed the score for

the complete scale by averaging over all values, and scores for each of the six subscales by

averaging over values within each. The Shapiro-Wilk test of normality suggested that nor-

mality of data was a reasonable assumption (S −W = .97, df = 26, p = .707), and so we

employed an independent-samples t-test to compare friendship ratings between conditions.

Comparing the ratings for the agent between the two conditions yielded significant

results for the complete friendship scale. Figure 6.5 (a) shows participants rated the agent

significantly higher in the PBC (M = 3.89, SD = 0.47) than in the CC (M = 3.35, SD =

0.74), t(24) = 2.24, p = .034. This supports hypothesis H1 and emphasizes the effect of

migration on how well users are able to relate with a social agent. Below, we look at the

data more in-depth.

Given that we had a total of six subscales for each questionnaire, we performed the

independent sample t-test using a Bonferroni-adjusted α level of .008 (.05/6) for sig-

nificance. The data yielded significant results for the intimacy subscale, with users rat-

ing the agent significantly higher in the PBC (M = 3.63, SD = 0.58) than in the CC
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(M = 2.46, SD = 0.33), t(24) = 3.18, p = .005 (t-value reported for unequal variances).

Social Presence Perceptions. We analyzed the social presence data in a similar way

to the friendship data. We obtained highly reliable internal consistency for the complete

scale (Cronbach’s α = .874), and reliable and highly reliable values for each of the six

subscales. Scores for the complete scale and the subscales were computed in a similar

fasion to the friendship scores. The Shapiro-Wilk test again suggested that normality of

data was a reasonable assumption (S −W = .97, df = 26, p = .560), and so we employed

an independent-samples t-test to compare social presence ratings between conditions.

Comparing the ratings for the agent between the two conditions yielded significant re-

sults for the complete scale. Figure 6.5 (b) highlights significantly higher ratings in the

PBC (M = 4.15, SD = 0.49) than in the CC (M = 3.60, SD = 0.81), t(24) = 2.08, p =

.049. This finding validates hypothesis H2 and supports the importance of investigating

how migration effects social presence perceptions when creating an agent intended to en-

gage with its users in a compelling way.

Interview Data. Alongside investigating the effects of migration triggering on users’

friendship and social presence perceptions of the agent, we also conducted participant in-

terviews. The goal was to gauge the impressions users had on the migration process, as well

as whether they perceived having interacted with a single entity across conditions. Percep-

tions of interaction with a single entity are useful when employing migration in order to

preserve the acquired positive rapport with the same agent (as perceived by users).

We asked users a range of questions including what they thought was happening when

the avatar would disappear from the smartphone and the physical robot started to move,

what they felt was being transferred between the two embodiments, and when they felt this

transfer was happening. Based on the interview transcriptions, we grouped the answers

in themes to gain a better understanding of whether users truly understood the concept of

a single “entity” moving between the two embodiments. The main themes we obtained

regarding how the agent was described are: “entity,” “energy source,” “soul,” and “spirit.”
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Two interesting examples of responses include “I thought it was a spirit or an energy source

because it was talking about inhabiting” and “The robot is a vessel for the entity.” These

answers show users’ understanding that they were interacting with a single agent capable

of migrating between different embodiments.

We also asked users the following question: “Did you think that the character in the mo-

bile phone and the yellow robot in the physical world were the same entity?”. This question

was asked of all participants, regardless of the migration triggering group they were in. An

overwhelming majority, 23 out of 26, of participants perceived they had interacted with a

single entity during the study. When looking at the groups individually, we obtained the

same results. 11 out of 13 participants in the CC and 12 out of 13 in the PBC said they

perceived having interacted with a single entity.

Another finding from the interview data was the positive reaction to the migration as-

pect in terms of its perceived benefits. One participant noted “It is easier to carry around

the phone than the actual robot,” realizing how useful employing this technique would be

in a long-term scenario such as the intended context of use for the robot companion.

6.2.5 Discussion and Conclusions

We have investigated entity migration between a physically- and virtually-embodied agent

as an important paradigm for contexts requiring us to leverage advantages of both types

of embodiment. Within the application context of physical activity motivation, we investi-

gated how changes in the triggering phase of migration affect users’ friendship and social

presence perceptions of the agent.

This study reveals that participants rated the social agent significantly higher in the

PBC than the CC for both friendship (H1) and social presence (H2). For the friendship

measure in particular, we obtained a statistically significant difference for the intimacy

subscale, with users rating the agent higher in terms of intimacy in the PBC than in the

CC. The PBC employed a more physical trigger for migration through the use of an NFC
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sensor requiring a more direct type of interaction. We speculate that for friendship, this

trigger effected a more personal type of interaction causing users’ perceptions of intimacy

toward our agent to increase. For social presence, the proximity required by the method

seems to have increased the feeling of “being with the agent”, and thus engendered higher

perceptions overall. These results show that we can use different aspects of the migration

process to our advantage in order to engender higher perceptions of agents, which play

an important role in building positive user-agent rapport. Exploring the various nuances

of entity migration is thus an avenue well worth pursuing within the context of creating

robot companions for application domains such as HRC, health, education, coaching, and

beyond.

6.3 Designing Robot Behaviors for Effective Interactions

In this work, we investigated the impact of endowing robots with mimicking capabilities

during their interactions with humans. This work is based on [165] 4.

Mimicry, the automatic imitation of gestures, postures, mannerisms, and other motor

movements, has been shown to be a critical component of human interaction but needs

further exploration in human-robot interaction. Understanding mimicry is important for

building better robots, learning about human categorization of robots in social ingroups /

outgroups, and understanding social contagion in human-robot interaction. We investigate

the extent to which humans will mimic a robot during the task of describing paintings by

comparing the time participants put their hands on their hips before and after observing a

robot cue that behavior. We observed no significant difference in participants’ hands on

hips time before and after the robot’s cue. However, we did find that some participants per-

formed the behavior more after the robot’s cue while others performed it less. Furthermore,

4. A. Suman, R. Marvin, E. C. Grigore, H. Admoni, and B. Scassellati, “Prior behavior impacts human
mimicry of robots”, in Proceedings of the 25th IEEE International Symposium on Robot and Human Inter-
active Communication (RO-MAN), New York, USA, 2016, August 26–31, pp. 1057–1062.
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the direction of this change was a function of whether or not a participant performed the

specified behavior prior to the robot’s cue. This was similarly observed both for frequency

of behavior performance and for a second behavior (hands behind back). As such, this

study informs future research on human-robot mimicry, particularly on the importance of

prior behavior during a human-robot interaction. In doing so, this study provides a base-

line for further understanding and exploring mimicry in human-robot interaction as well as

evidence for a social component in human-robot mimicry.

Behavioral mimicry—the imitation of gestures, postures, mannerisms, and other motor

movements—is pervasive in human interactions [166]. Behavioral mimicry is often un-

conscious and unintentional [167, 168]. In Chartrand and Bargh’s 1999 study, participants

mimicked confederates by tapping their feet or touching their faces during interactions,

even without realizing they were doing so [169]. Participants also found confederates more

likable when the confederates mimicked the postures of the participants [169].

Mimicry is an important element of human-robot interaction for three main reasons.

First, we can make better decisions not only about how to design robots generally but

also about how to effectively use or avoid mimicry in human-robot interactions. Mimicry

influences human-human interactions in a variety of ways, resulting in smoother interac-

tions, smoother negotiations, more interpersonal trust, and more likability with their part-

ners [170, 171, 172]. Leveraging this knowledge could be valuable when designing robots.

Second, studying human-robot mimicry informs us about ingroup versus outgroup divides

between humans and robots, and thus highlights how humans view robots as social partners.

When mimicry is performed by a member of someone’s ingroup, it can foster smoother and

more positive interactions [169], and it has even been called the “social glue” that brings

people together and bonds them [166]. However, this is not the case with mimicry and

social outgroups. When mimicry is performed by a member of someone’s outgroup, not

only does it not increase rapport or liking but it also can have negative effects on the inter-

action between those partners [166,173,174]. Mimicking can even backfire when it comes
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to public judgements of social competence when done inappropriately [166].

Given the difficulties seen with directly asking how people perceive robots [175], mimicry

could serve as a proxy in determining how an individual perceives a robot partner. It would

be difficult to rely on a human subject’s own account or depiction of the relationship or

social standing of a robot partner, but unconscious mimicry could be used to determine

that instead. Lastly, understanding how mimicry works in human-robot interactions can

act as a stepping stone to understanding the larger phenomenon of social contagion within

human-robot interaction [166]. Social contagion is defined as mimicry with all aspects of

social experience and not just motor behavior [166] (such as an emotional reaction or a

judgement/opinion). This means that mimicry could be a first step towards understanding

questions such as empathy between human and robot partners.

Similar to human-human interactions, people who are mimicked by robots have found

the robots more likable and their interactions with them smoother, more persuasive, and

more positive [166, 176, 177, 178, 179]. However, less work has explored the question of

whether humans will mimic robots during interactions. The current study tests if humans

mimic a humanoid robot’s body postures while interacting during a task. In the study de-

scribed below, the robot puts its hands on its hips while describing a painting to a human

participant. We measure for what period of time and how often the participant displays this

behavior before and after the robot performs it. We repeated this with the robot performing

a second behavior.

6.3.1 Related Work

This study aims to test the possibility of humans mimicking robots at the most fundamen-

tal level, while minimizing the use of catalysts (such as goal to affiliate, emotions, com-

municative behaviors, or pre-existing rapport) that have been shown to increase mimicry

in human-human interaction [166, 180, 181, 182, 183]. This distinguishes this study from

previous work [182,184,185,186,187] in that it does not uses facial expressions, emotion-
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conveying gestures, or communicative postures. This study instead employs a humanoid

robot that uses behaviors (hands on hips and hands behind back) that do not convey any

emotion and that are not overtly communicative. The experimental design also does not ex-

ploit goal to affiliate, pre-existing rapport, or any other facilitators seen to increase human-

human mimicry. Lastly, this study also introduces a new line of questioning previously

unexplored and unexpected in seeing how humans respond when already performing the

behavior the robot performs, providing evidence for social mechanisms in human-robot

mimicry [188].

In designing this study we drew heavily from one of the seminal papers in human-

human mimicry, Chartrand and Bargh [169], which showed that people do mimic one an-

other during social interactions, and that those who are mimicked find the mimickers more

likable and have smoother and more positive interactions with them [169]. In particular,

this study demonstrated mimicry in both directions, participants mimicking and partici-

pants being mimicked, while they described paintings alongside a confederate. During

this interaction, the confederate performed a behavior, and researchers measured the fre-

quency with which the participant then performed that behavior as a means for quantifying

mimicry. Analogously, this study uses a robot in the role of the confederate.

There has been some work examining the question of whether a human will mimic a

robot. Activation of the mirror neuron system in humans can occur through the perception

of robot behavior [189], robotic movement can support visuomotor priming enough to

elicit automatic imitation [190], humans match emotional expressions of a hyper-realistic

android in a mimicry-like manner [184], and gestural alignment occurs for humans when

interacting when virtual agents [188].

Researchers have also looked at the question of human-human mimicry’s impact in

light of social ingroup/outgroup status. Lakin and Chartrand found that humans who are

excluded in some way by a member of their ingroup will selectively and unconsciously

mimic that person, but that they will not do so if the excluder was a member of their
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outgroup [191]. These different kinds of treatment towards members of an ingroup or an

outgroup are important concerns when designing human-robot interactions. If humans treat

robots similarly to the way they treat other members of their ingroup, we can expect them

to mimic robots.

Beyond evidence of whether a human will mimic a robot, there exists research sug-

gesting mimicry impacts human-robot interactions and how humans view them as partners.

Work by Li, Ju, and Nass showed that mimicry in a human-robot interaction can affect

perceptions of the interaction, particularly that observers found a robot less attractive when

a confederate mimicked a robot than when a robot mimicked a confederate (but not during

human-human interactions) [192]. This suggests that mimicry and the role it plays with

human-robot interaction is both important and distinct from human-human interaction, fur-

ther necessitating a study to determine the most basic parameters of humans mimicking

robots. Also, humans found a computer avatar more likable when it mimicked their head

postures than when it did not [166, 176], demonstrating that non-human actors can elicit

the positive effects of mimicry seen in human-human mimicry.

6.3.2 Method

Following the method of Chartrand and Bargh [169], participants were given the task of

describing paintings together with a robot. As it described the paintings, the robot switched

from its initial standing pose to one of two test behaviors. We called this switch the cue.

We measured how long and how many times the participants took on the cued posture both

before and after the robot’s cue. To assess mimicry, we looked for the difference between

the two durations and frequencies.

We tested mimicry with two distinct behaviors: hands on hips and hands behind back.

These behaviors were chosen because they were easily identifiable and could be clearly

articulated by the robot. Our main question was whether robots could induce mimicry in

people. Our hypothesis was:
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Figure 6.6: Each painting was displayed for two minutes; the robot spoke for the first
minute, and the participant spoke during the second. The robot changed its posture from
standing to the cued posture at minute six.

H: People will display the behavior performed by the robot more after the robot’s cue.

In other words, people will mimic the robot.

Procedure

For this experiment our robot platform was a Nao, a 58 cm tall humanoid robot. Participants

were first asked to fill out consent and video release forms. The experiment consisted

of two 12-minute sessions and six paintings (Figure 6.6). The sessions differed only in

which behavior was performed by the robot. The order of the sessions was randomly

counterbalanced.

Participants were brought in to a closed 420 cm x 300 cm room and faced the robot

at a distance of 180 cm. The robot stood on a platform raised 75cm off the ground. Next

to the robot stood a 68 cm monitor which displayed a timed slideshow of paintings, and

simultaneously controlled the robot’s behaviors through a local area network. The monitor

was placed adjacent to the robot to ensure that participants could see both the paintings and

the robot’s posture simultaneously. One camera was located at the back of the room and

aimed at the participant’s back, and a second camera was placed in the corner of the room
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facing the participant.

The participant was asked to read the first slide of directions while the experimenter

turned on the cameras. The directions told the participant that the robot would describe the

painting for one minute and that the participant would then describe the same painting for

one minute.

The experimenter started the session by tapping the robot’s head sensor. The slides

and the robot’s behaviors were synchronized. The robot would turn its head to “see” the

painting, turn back to the participant, and describe the painting using pre-defined scripts

for one minute, after which the participant was notified on-screen that it was his or her

turn (Figure 6.6). The robot displayed no other idle behaviors while describing paintings

or while the participant described paintings. This continued for three paintings total. At

this point, the robot performed the cue by moving to the test posture and maintaining that

posture for three more paintings. Therefore, half of the session (six minutes) was before

the robot’s cue, and half of the time was after the robot’s cue. During the second part

of the session, the robot continued to turn its head to “see” the painting at the start of its

turn. After six total paintings (12 minutes), the robot returned to a crouch position. To

begin a new session, the experimenter replaced the robot with a new one to make it clear to

participants that they were interacting with a different robot. The second session was the

same as the first, but with the other cued posture.

We used two robots to replicate the setup of the Chartrand and Bargh study, which

had two different humans perform separate behaviors (touching the face and tapping the

feet). The use of continuous postures (like hands on hips) rather than a discrete behavior

(like tapping feet) was largely due to limitations of the robot. We had little reason to

believe continuous postures would not be effective behaviors given their use in human-

human mimicry research [166, 193, 194].

The robot’s descriptions of the paintings were kept as simple as possible, with little to no

emotion or interpretation. The robot also made no acknowledgement of the participants or
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their descriptions and the behaviors of hands on hips and hands behind back were chosen to

minimize postural communication. This fell in line with our goal for understanding human

mimicry of robots at its most basic level without any facilitators or inhibitors.

After both sessions were completed, participants filled out a survey comprising of

Likert scale questions on intelligence and likability, short answer questions on what they

liked/noticed about the trial, and demographic questions.

Participant Information and Coding

Participants were 47 university undergraduates, 27 males and 20 females, ages 18 to 23.

Four participants were excluded from analysis due to technical problems, such as a loss

of internet connection during the trial. In total, data from 43 participants were used in

the final analysis. Participants were recruited through direct appeal and fliers. They were

compensated $5 for their participation. Videos of the participants were collected through

two cameras in the room.

For analysis, we defined strict and loose variants of each behavior (Figure 6.7). For

hands on hips, the strict definition matches the robot’s behavior of putting two hands on

hips. The loose definition is a superset of this, with the participant exhibiting at least one

hand on hip. For hands behind back, the strict definition matches the robot’s behavior of

putting two hands behind back. The loose definition is a superset of this, with the partici-

pant exhibiting at least one hand behind the back. Having a strict and loose interpretation

allowed us to take into account participants who partially performed the behavior in our

analysis.

The videos were coded using ELAN 4.7.3. The coders were two of the authors, who

were blind to the conditions while coding by not being able to see the robot’s actions in

the video recordings. Inter-rater reliability was high, with 97.8% agreement on a validation

sample of 10% of the videos.
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(a) (b) (c) (d)

Figure 6.7: Examples of behavioral postures: hands on hips (a) strict and (b) loose, hands
behind back (c) strict and (d) loose.

6.3.3 Results

We tested our hypothesis using both duration and frequency of displayed behaviors. Du-

ration measures how long participants held a particular posture, while frequency measures

how many times they did so. For a given participant and posture, the “before” measure

is the total time/number of times for which that participant displays that posture before

the robot’s cue, and the “after” measure is the total time/number of times the participant

displays that posture after the cue.

We analyzed the data with a 2-tail paired t-test. We found no statistically significant

difference between the “before” duration (M = 18.90 s, SD = 53.70 s) and the “after”

duration (M = 16.10 s, SD = 34.80 s), t(42) = -0.43, p = 0.66. We found no statistically

significant difference between the “before” frequency (M = 0.51, SD = 1.33) and the “after”

frequency (M = 0.74, SD = 1.25), t(42) = 1.21, p = 0.23.

However, further analyses yielded an unexpected effect of participants’ prior behavior

on mimicry. Some participants displayed the robot’s posture before the robot ever did

while others did not. We defined these to be two categories: postures that are performed

independently before the robot’s cue (which we call spontaneous behavior) and the absence
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(a) Duration of behavior for non-spontaneous group. (b) Duration of behavior for spontaneous group.

Figure 6.8: Duration with which participants performed the hands on hips behavior before
and after the robot’s cue, split by spontaneous and non-spontaneous groups. Significant
differences between pre- and post-cue behaviors are indicated on the graphs (∗∗ = p <
0.01, N.S. = Not Significant).

of such postures before the cue (which we call non-spontaneous behavior). So spontaneous

participants performed the specific behavior before the robot did at the halfway point while

non-spontaneous participants did not.

We observed that participants whose prior behavior was non-spontaneous started dis-

playing the cued behavior after the robot’s cue significantly more than before the cue.

Additionally, spontaneous participants performed the behavior less after the robot’s cue,

albeit at non-significant levels. Analyses of these two groups are separated by duration and

frequency below, and reported in Figure 6.8 and Figure 6.9.

Non-spontaneous behavior, by definition, has a “before” duration and “before” fre-

quency of zero. Since duration and frequency can only go in the positive direction, we

applied one-tailed t-tests in this analysis. For the spontaneous group, we applied two-tailed

t-tests because duration and frequency can go in either the negative or positive directions.
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(a) Frequency of behavior for non-spontaneous group. (b) Frequency of behavior for spontaneous group.

Figure 6.9: Frequency with which participants performed the hands on hips behavior before
and after the robot’s cue, split by spontaneous and non-spontaneous groups. Significant
differences between pre- and post-cue behaviors are indicated on the graphs (∗∗ = p <
0.01, N.S. = Not Significant).

Hands on Hips Duration Analysis

We examined the difference in duration times for participants placing their hands on their

hips before and after the robot’s cue. We analyzed the results for spontaneous and non-

spontaneous participants separately. We present these results in Figure 6.8 and detail them

below. These results correspond to the strict definition of hands on hips. We obtained

the same levels of significance for the loose definition of hands on hips for both non-

spontaneous and spontaneous participants.

Non-spontaneous participants (N = 34) had significantly higher “after” duration (M

= 9.28 s, SD = 21.27 s) than “before” duration (M = 0.00 s, SD = 0.00 s), t(33) = 2.51,

p < 0.01. For our study, this means that participants who never put their hands on their

hips before the robot’s cue did so significantly more after observing the robot do so. We

highlight these results in Figure 6.8a.

Spontaneous participants (N = 9) had non-significantly lower “after” duration (M =

42 s, SD = 59.60 s) than “before” duration (M = 90.38 s, SD = 88.71 s), t(8) = -2.16, p =
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Figure 6.10: Timeplot of hands on hips occurrences across all participants. The robot cued
hands on hips at minute six.

0.05. For our study, this means that participants who previously did put their hands on their

hips before the robot’s cue did so less after observing the robot do so. We highlight these

results in Figure 6.8b.

Hands on Hips Frequency Analysis

The results for the frequency of the displayed hands on hips behaviors mirror those that we

found for duration. We highlight these results in Figure 6.9 for both the non-spontaneous

group (Figure 6.9a) and the spontaneous group (Figure 6.9b). We present the exact mo-

ments when the hands on hips behavior occurs as part of Figure 6.10. Here, we obtained no

statistical significance for “both hands behind back” occurrences following the robot cue

of hands on hips (M = 0.12, SD = 0.50), t(42) = 1.53, p = 0.07.
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Hands Behind Back

The results for hands behind back showed a similar pattern of results as the results for

hands on hips in terms of both the duration and frequency analyses.

6.3.4 Discussion

Our results provide some support for our hypothesis, albeit with some caveats. We found no

significant difference between the before and after durations or frequencies for either hands

on hips or hands behind back. In observing the recordings and reading through the survey

responses, we noticed that some participants did in fact perform the behaviors more after

the robot’s cue while others performed it less. This motivated us to consider our sample as

two groups: non-spontaneous and spontaneous (i.e. those who perform a behavior before

ever seeing the robot’s cue for that behavior). Doing so highlighted a curious result: non-

spontaneous and spontaneous participants behaved in opposite directions. The opposite

direction of the spontaneous participants (on average 48.38 s less hands on hips after the

robot’s cue, N = 9) effectively canceled out the effect of the non-spontaneous participants

(on average 9.28 s more hands on hips after the robot’s cue, N = 34) in the initial analysis.

For both the strict and loose definitions of hands on hips, non-spontaneous participants

significantly put their hands on their hips more after seeing the robot do so, in terms of both

duration (Figure 6.8a) and frequency (Figure 6.9a). Most of the hands on hips occurrences

for non-spontaneous participants were observed in the first three minutes after the robot’s

cue, with occurrences trailing off after (Figure 6.10). This supports the explanation that

the robot was prompting the participants’ behavior. It also weakens other possibilities

such as participants getting tired (which would show more occurrences at the end of the

trials), participants switching to a more comfortable position (which would show an even

distribution), or participants generally putting their hands on their hips more over time.

Furthermore, participants did not display hands behind back significantly after the robot’s

cue of hands on hips, suggesting some degree of specificity in their response to the robot
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cue.

Surprisingly, participants who spontaneously performed hands on hips prior to the robot

doing so actually performed that behavior less after the robot performed it. This group was

fairly small (N = 9), and the results were not significant for the strict or the loose defini-

tions of hands on hips, in terms of both duration (Figure 6.8b) and frequency (Figure 6.9b).

This effect’s magnitude was larger than the one seen in non-spontaneous participants, but

our statisictical tests were limited by the small sample size (which in turn was so small

because we did not anticipate this result and did not prescreen participant’s tendencies to

perform the specific behaviors).

While we cannot conclude why this would happen, we can make inferences, especially

with the help of our survey responses. Several responses by spontaneous participants noted

that when they saw the robot first put its hands on its hips, they thought the robot was

mimicking their behavior. This thought process makes sense when we recall that the spon-

taneous participants had performed that behavior before the robot’s cue.

Mimicry research in psychology has shown that mimicry can lead to socially cold feel-

ings or the feeling that something is “off” [195]. In particular, an inappropriate amount of

mimicry arouses suspicion in the party being mimicked [196, 197, 198, 199]. This might

help explain why there was a decrease in performance of our targeted behaviors for sponta-

neous participants. If participants were suspicious about being mimicked, they might have

decreased their postural changes in order to prevent further mimicry. This is potentially

useful for future studies examining whether mimicry can be used as a proxy for determin-

ing outgroup status. However, given that non-spontaneous participants do mimic the robot,

it is still unclear what conclusions can be drawn about social ingroup / outgroup status of

robots more generally.

Our results regarding non-spontaneous participants provide evidence that robots can

induce mimicry in humans. In particular, this was observed while minimizing the use

of catalysts, providing a baseline from which to move forward. This opens many new
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research possibilities and questions. For example, is the salience of mimicry in human-

robot interaction similarly affected by facilitators in the same patterns as it is in humans?

Does having a goal or similarity between partners induce greater mimicry in human-robot

interaction as it does in humans?

Our results regarding spontaneous participants raises concerns about building mimicry

into human-robot interaction, especially in terms of having robots mimic humans. There

may be conditions in which mimicry is unfavorable or damaging to the interaction. Fur-

thermore, the opposite responses of spontaneous and non-spontaneous participants pro-

vides support for the existence of social mechanisms in human mimicry of robots [188]

and contrasts against the view that it is primarily “motor-driven” [184].

Further research should more formally consider the spontaneous scenario with a larger

sample size, possibly through pre-screening participants and their tendencies to perform

a cued behavior. In addition, a control study could further cement the findings presented

through the timeplot of hands on hips occurrences and the specificity of behavioral response

(i.e. non-spontaneous participants performed hands on hips but not hands behind back after

the robot cued hands on hips). Prior behavior impacts mimicry during human-robot inter-

action, and future studies should incorporate these findings when considering experimental

design and interpretations.
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Chapter 7

The Multiple Facets of HRC: Social

Collaboration Case Study

In this chapter, we present an application of a robot that interacts effectively with its users

in a social collaboration context. This application consists of a case study centered on con-

veying information effectively during interactions with robots that aim to teach, presenting

evidence for relationship-building. Be it during physical or social interactions with robots,

the ability of a robot to build and maintain a positive rapport with its users determines the

effectiveness of the interaction.

Here, we present the results of a case study that investigated whether we can engender

learning and higher engagement during interactions with a robot acting as a peer during

interactions. This work is based on [120] 1.

This work describes an extended (6-session) interaction between an ethnically and geo-

graphically diverse group of 26 first-grade children and the DragonBot robot in the context

of learning about healthy food choices. We find that children demonstrate a high level of

enjoyment when interacting with the robot, and a statistically significant increase in en-

1. E. Short, K. Swift Spong, J. Greczek, A. Ramachandran, A. Litoiu, E. C. Grigore, D. Feil-Seifer, S.
Shuster, J. J. Lee, S. Huang, et al., “How to train your dragonbot: socially assistive robots for teaching
children about nutrition through play”, in Proceedings of the 23rd IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), IEEE, 2014, August 25–29, pp. 924–929.
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gagement with the system over the duration of the interaction. We also find evidence of

relationship-building between the child and robot, and encouraging trends towards child

learning. These results are promising for the use of socially assistive robotic technologies

for long-term one-on-one educational interventions for younger children.

Children love imaginary play, and such play can make learning more engaging and

effective [200, 201]. There is also much need for individualized support in a classroom,

allowing each child to progress at their own speed using the learning strategies most ap-

propriate for that child. Child-friendly social robots have the potential to provide this indi-

vidualized support through imaginary play, allowing children to engage with their lessons

in a tangible and active way. We take a Socially Assistive Robotics (SAR) approach to

teaching nutrition to 1st-grade children, with the goal of promoting positive habits and be-

havior change through human-robot interaction (HRI). In order to move towards the kind

of long-term deployment that would be necessary to see major gains in learning (consider

that a single topic might be covered in a school setting for many weeks), we first evaluate

the feasibility of this approach, including measuring children’s engagement with the SAR

system over time and evaluating whether it has the potential to facilitate nutrition infor-

mation learning. We present a semi-autonomous SAR system, and a three-week biweekly

evaluation study with a diverse group of 26 children, aged between five to eight years.

7.1 Related Work

Childhood obesity has tripled in the United States over the past four decades [202]. Obesity

among children and adolescents has been shown to increase the risk of being overweight

in adulthood [203], as well as to increase the risk of other adverse health outcomes such

as high cholesterol and triglycerides, hypertension, and type 2 diabetes [204]. Educating

children about healthy food and beverage choices, and motivating them to make healthier

choices, can help to lower rates of obesity [205]. Technological interventions in partic-

156



ular lend themselves to the broad replication and personalization that will be necessary

to combat what has proven to be a challenging problem [206]. Several technology-based

nutrition interventions for children have been developed, using smartphones, computers,

and video games (see [207] or [208] for a review). While these interventions make use of

technologies that are widely available, there is some evidence that HRI systems promote

learning more than screen-based technologies. Leyzberg et al. showed that the physical

presence of a robot can increase cognitive learning gains [150]. Movellan et al. [209]

demonstrated that a social robot could be used to teach young children new words, despite

other results suggesting that young children do not learn language from pre-recorded hu-

man speech [210]. Other work in HRI focuses on the use of robotic teachers for English

language learning [211,212] and teaching children to play chess [213]. In adults, Kidd and

Breazeal [214] show that SAR systems have the potential to improve eating and exercise

beyond a paper- or computer based intervention.

Our work aims to use SAR to leverage children’s excitement about both pretend play

and technology, to provide an affordable, accessible, and personalized means of delivering

nutrition education and coaching. In this paper we focus on teaching first-grade children

(aged six-to-seven years, with several participants aged five or eight years at the time of the

study). We target this age group in order to have the strongest possible impact in terms of

instilling healthy habits in children, before unhealthy ones become ingrained.

7.2 Methodology

In the sections that follow, we describe the design of a SAR-based nutrition education inter-

vention, as well as the study used to test the effects of the initial version of the intervention.

Our study addresses five research questions, as follows:

Q1: Do children enjoy interacting with the SAR system?

Q2: Are children able to maintain engagement with a SAR system over time?
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Q3: Are children able to build a relationship with the SAR system over time?

Q4: What is the impact of the SAR system on child learning of nutrition information?

Q5: What is the relationship between the child’s temperament and their interaction with

the SAR system?

7.2.1 Intervention Design

While most nutrition education interventions are 12 − 16 weeks long, most SAR systems

are used in much shorter term interactions (often as little as one session). In order to move

towards a longer intervention, we developed a 3− week long, twice-weekly intervention

for first grade children, with a within-subjects design. Each of the six intervention sessions

consists of an approximately 5− to 10−minute long one-on-one interaction between the

child and the robot. We used a Wizard-of-Oz interaction and monitoring design, with a tele-

operator providing dialogue selection and some perceptional capabilities, with pre-scripted

dialogue behaviors (including both speech and movement), and autonomous control of the

overall interaction flow. Each session consisted of two parts, introduction and food selec-

tion game, as described in section III-D. In the first session of each week, the robot acted

as an expert, giving feedback on food choices one-by-one, while in the second session of

the week the child and robot collaborated toward making healthy choices together.

7.2.2 Robot and Experimental Setup

The intervention centered around an interaction with the DragonBot robot [215], a dragon-

like squash-and-stretch robot with five degrees of freedom (see Figure 7.1, center-left). The

robot is covered with a plush skin designed in collaboration with an expert puppeteer. The

skin includes posable arms and tail, as well as removable wings in four sizes, allowing the

robot’s wings to “grow” from session to session. The robot is approximately 18 inches tall

at its full height and can be seen in Figure 2. The interaction was conducted in a small
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Figure 7.1: Intervention room setup for social collaboration case study.

parent-teacher conference room, allowing children to interact individually with the robot.

The robot was set up on a table facing the child, with realistic artificial foods arranged

around it; the arrangement of foods was kept constant across participants. In order to

provide the richest possible dataset for future analysis, a Microsoft Kinect sensor, an HD

camera, and USB camera are arranged as seen in Figure 7.2, in addition to the two laptops,

the DragonBot base station (providing power to the robot), and set of speakers necessary

to run the robot. The intervention setup can be seen in Figure 7.1 (the cameras and Kinect

are out of the frame).

7.2.3 Interaction Structure and Progression

The verbal interaction between the child and robot used pre-recorded speech following a

script that was written with the assistance of a screenwriter experienced in children’s tele-
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Figure 7.2: Diagram of the intervention setup for social collaboration case study.

vision, and follows the story of Chili the DragonBot through several weeks of training and

preparation for the big upcoming “dragon race.” We employed child-centric storytelling

techniques such as character development and backstory to create a richer interaction. We

also increase the difficulty of the task over the three-week intervention, challenging the

child within her or his zone of proximal development, using a socio constructivist ap-

proach [216, 217] to integrate the increasing difficulty and social interaction, maximizing

the child’s learning potential.

Over the course of a six-session, three-week experiment, we covered three nutrition

topics, one per week: packing a lunch box (choosing whole grains and non-sugary drinks),

choosing after-school snacks (avoiding nutritionally bankrupt junk food), and building bal-

anced meals (choosing whole grain breakfast cereals and colorful vegetables at dinner).

Each topic had two sessions devoted to it; each session built upon the previous one, us-

ing a gradual increase in challenge of content. In the first session, the robot served as an
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expert, sampling foods offered to it one at a time and providing nutritional information as

feedback. In the second session, the robot behaved in a more cooperative role, in order

to provide feedback in a more challenging game where the child chooses several foods at

one time. We refer to the first of these as the expert sessions (ES) and the second as the

cooperative sessions (CS).

7.2.4 Interaction Segments

Before the beginning of the interaction, the participating child was brought from the class-

room by an adult experimenter (not the teleoperator). This person, the ?fetcher?, remained

in the room, sitting behind the child, instructed to answer as simply as possible any ques-

tions asked by the child, and to make sure that the child did not damage the robot. The

child was invited to sit down, and told to wake up the robot. Once the child said something

to the robot, the robot woke up and began the first segment, the introduction. The intro-

duction included a welcome speech, relationship building through small talk, and finally

backstory and character progression. During the CS, the second day on a given nutritional

topic, there was a brief review of the nutritional curriculum from the previous session. The

interaction then moved into the food choice segment. For the ES, there were two rounds

of the food choice game, where the child was asked to choose a food, the robot ?tasted?

the food, and then provided feedback. In the CS, the child was asked to select a food items

until they chose a healthy item, receiving progressively more specific advice about how to

improve the selections, based on an evaluation external to both robot and child (in this case,

a “magic plate”), and following the theory of graded cueing, an occupational therapy tech-

nique [218]. For both session types, some vocabulary used in the feedback was explained

with a backstory-type dialogue item.

161



7.2.5 Data Collection and Associated Measures

We recorded several types of electronic data during the intervention in order to build a

rich dataset, including teleoperator selections, pre- and post-questionnaires (modified to be

administered orally by an experimenter), audio- and video-data, and Kinect pose data. In

addition to the technology mediated data collection, we collected data from four question-

naires widely used either in the robotics or child development research fields as measures

of child personality, child evaluation, and child interaction.

The Child Behavior Questionnaire [219] (CBQ-S; Cronbach’s = 0.87) contains a 4-

point Likert-type scale and requires parents to rate various aspects of their child’s behavior

and personality (affect). It contains three subscales and provides an efficient child temper-

ament measure for school aged children (ages 5- 12). The CBQ-S subscales are surgency

(positive affect), effortful control (self-regulation) and negative affect. The following three

were administered directly to the children, in an interview-type format to accommodate the

children’s limited cognitive and developmental abilities and to avoid biases associated with

diversity in child reading abilities [220].

The Perceived Value Questionnaire is adapted from an evaluative questionnaire by

Lombard [221] and also used in SAR related research by Kidd and Breazeal [222] (Cron-

bach’s = 0.95). This questionnaire required child participants to rate their interaction with

the robot using an 8-point Likert-type scale. The ?utility? and ?value? subscales of this

questionnaire were administered after the first interaction that the child had with the robot,

and then again after the final interaction with the robot at the culmination of the interven-

tion.

The Social Presence Questionnaire was used to quantify the effectiveness of the robot’s

social capabilities (or social presence). The social presence of the robot was measured by an

8-point Likert-type scale using questionnaire items established from Jung and Lee [223],

(Cronbach’s = 0.82). We administered this questionnaire after the first intervention ses-

sion and at the end of the intervention. Finally, the Adapted Companion Animal Bonding
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Scale [224] asks the child to rate the various features of the robot including whether the

robot is bad/good, loving/not loving, cuddly/not cuddly, and warm cold. This question-

naire was administered twice, first before the children interacted with the robot (but after a

brief introduction to the robot), and again at the culmination of the intervention.

7.2.6 Hypotheses

Six research hypotheses were developed that are associated with the study’s research ques-

tions:

H1: Participants will have a positive reaction to the SAR system, that will increase over

time.

H2: Children will be more engaged with the robot over time, as measured by a decrease

in their response time to the robot’s verbal questions (a well-established proxy for

engagement in the child development literature [225]).

H3: Children will use more complex speech with the robot over time, as measured by

mean length of utterance (MLU) and a qualitative categorization of their utterances.

H4: Children’s time to make a choice of food when prompted by the robot will decrease.

H5: Children’s performance on the nutrition task will improve over time, as measured by

a choice indicating ratio.

H6: Children with a positive affect and higher self-regulatory ability will have greater

interaction with the robot.

7.2.7 Study Population

As we hope to design and evaluate systems that can be deployed to populations of chil-

dren across a wide range of economic and social backgrounds, we collected data from
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two highly diverse sites: a west coast site in an urban center and an east coast site that

drew from primarily suburban households. We treated these samples as one cohort in our

analysis to highlight the commonalities that would need to be utilized for a more robust

long-term deployment. There were twenty-six participants in the study with age range of

5-8 (twenty-two 6-7-year-olds; two 5-year-olds; two 8- year-olds). Seventeen of the chil-

dren were female (65%) and the remaining nine were male (35%). In terms of ethnicity, the

sample was diverse and representative of the population in the areas in which the partici-

pants reside. The largest ethnic group represented was children of Hispanic descent (69%),

19% were children of African American descent and the remaining 6% were European

American or had mixed ethnicities. Approximately 62% of the study participants reside in

the western United States in a large urban city and the remaining study participants (38%)

came from the eastern most region of the U.S. The participating children’s parents’ ages

ranged between 20 − 49, with 25% of the parents Fig. 3. Child evaluation of the robot

in several categories in the 20 − 29 year age range, 44% between 30 − 39 years of age,

and 31% between 40 − 49 years of age. With regard to parental education, approximately

19% of the children’s parents did not graduate from high school, 19% were high school

graduates, 43% had completed some college, 19% of the parents had bachelor’s degrees,

and the remaining 6% had completed graduate or professional education.

7.3 Results

7.3.1 Evaluation and Perception of the Robot

In general, the participants in our study had positive perceptions and reactions to the so-

cially assistive robot before, during, and and after the SAR intervention. The children’s

perception of the robot was high (M = 7.58, SD = .76, 8-pt. scale) pre-intervention and

remained relatively constant through the culmination of the intervention (M = 7.45, SD =

.80). Specific to the measures of robot evaluation, the children perceived the robot as use-
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Figure 7.3: Child evaluation of the robot in several categories for social collaboration case
study.

ful (MPRE = 7.35, SD = 1.9;MPOST = 7.31, SD = 1.7) and enjoyable (MPRE =

8, SD = 0;MPOST = 7.85, SD = .54). They also rated it as exciting (MPRE = 8, SD =

0;MPOST = 7.92, SD = .40), valuable (MPRE = 7.62, SD = 1.4;MPOST = 7.85, SD =

.63), as having strong social presence (MPRE = 6.81, SD = .76;MPOST = 7.04, SD =

.43), and as attractive (MPRE = 6.65, SD = 1.7;MPOST = 7.89, SD = .35). We did not

find significant differences between the pre-and post-intervention ratings, as seen in Fig-

ure 7.3, likely due to the extremely high positive evaluation. Thus the first part of H1,

the positive perception of the robot, is supported, but not that there is an increase in this

perception over the duration of the intervention.
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Figure 7.4: Child response times to robot conversational queries and food selection prompts
for social collaboration case study.

7.3.2 Child-Robot Interaction

To determine the level of engagement between the robot and the child during the interven-

tion, we calculated the children’s mean response time (in seconds) when prompted by the

robot’s verbal questions. Although we found that child response times ebbed and flowed

across intervention sessions, the comparative results of these calculations revealed that the

mean child response time decreased from the first day of the intervention to the end of

the intervention. The mean response time across children during the first intervention was

4.3 seconds and the mean response time(see Figure 7.4). Child response times to robot

conversational queries and food selection prompts was 3.5 for the last session, indicating

a .8 second mean decrease in response time. A paired t-test was performed to ascertain

whether there was statistically significant response efficiency between the beginning and

culminating weeks of the intervention; we use this pre-post comparison of means through-

out the analysis in this paper, because the limited length of the intervention renders mid-
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Figure 7.5: Response categories over time in child-robot interaction for social collaboration
case study.

intervention measurements and predictive analyses non-significant (see [226]). The change

response efficiency was significant, M = 1.35, SD = 3.13, N = 26, t(25) = 2.206, two-

tailed, p < .05 (see Figure 7.4). A Cohen’s d statistic was also computed to measure this

effect size (Cohen′sd = .57), which indicates a moderate intervention effect. This supports

H2, that children’s engagement increases over time.

7.3.3 Conversation as a Means of Interaction

We were also interested in the level of conversation that the child had with the robot. To

demonstrate this, we calculated each participating child’s mean length of utterance (MLU).

The MLU is a widely utilized proxy for speech production by researchers and practitioners

in the speech and language fields. The mean length of utterance for participants across

all weeks of the intervention was 28.41(SD = 24.57). There were successive changes in

response words to the robot over time. There was a 2.29 mean increase in utterance length

from the start to end of the intervention period, in accordance with H3, however this trend

did not reach statistical significance.
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In order to explore differences in the types of utterances employed by the children,

we employed an empirical analysis of the spoken language transcripts. We analyzed the

content of the 137 verbal utterances employed by the participants, categorized these in-

teractions and quantified them (via frequency distribution) to measure changes in types

and frequency of interaction over time. The categories we used to identify patterns in the

transcripts included: (a) simple responses to prompts, which included one-to-three word

responses to robot prompts (e.g., yes, no, huh, um, okay), (b) expansions that included re-

sponses with details (e.g., it’s healthy, I like it, a magic plate!), and (c) relational responses,

which demonstrate evidence that the child was beginning to relate to the robot (e.g., he’s

hungry? you said you didn’t like it). While there was great variability in Figure 7.5. Re-

sponse categories over time in child robot interaction response types across children, we

noted robust changes in types of interactions over time. For example, one child began his

interaction with “yeah” and “maybe,” and proceeded to recall what the robot had said in a

previous session and said “You said you don’t like mashed potatoes!”, demonstrating both

relational speech and, given the tone of the interaction, humor with the robot. We com-

puted the percentage of each category by child and then computed an average percentage

per week, per category for the study sample. Figure 7.5 illustrates these changes between

week one and three of the intervention. Thus we find overall some weak support for H3,

that children use more complex speech with the robot.

7.3.4 SAR in the Context of Learning

Similar to our measurement of child-robot interaction, we calculated the mean time that

children in the intervention took to make food choices in response to the robot’s prompt-

ing. The mean response time increased from 13.11 seconds in the first session to 15.36

seconds in the final intervention session, a 2.25 second increase. A paired t-test was per-

formed to ascertain whether the child’s food selection time became more efficient (mea-

sured by decreases in response times). The mean response difference for food selection
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(M = 2.24, SD = 5.26, N = 26), (t(25) = 2.174, two-tailed, p < .05), Cohen′sd = .45

providing evidence of the effect size of this change (see Figure 7.4). This is in direct con-

tradiction to H4, however, the child task expectations increased in difficulty each week.

Accordingly, we interpreted this result as an indication that as the tasks in the interventions

became successively more challenging, the children took additional time to make thought-

ful selections. As an indicator of whether the child participants had learned how to make

healthy food selections, we computed the ratio of poor to healthy food selection for each

child as a way to normalize choice quality across sessions and facilitate comparison. We

found a trend towards improved choices, with a decrease the the mean poor choice ratio

from .46 to .39, indicating that the children may have begun to make healthier food selec-

tions between the first and last intervention sessions, weakly supporting H5, however this

change was not statistically significant.

7.3.5 Temperament, Interaction, and Learning

As a final comparative measurement, we wished to determine if child temperament and as-

sociated behavior influenced child interaction with the robot. Therefore, we used CBQ-S as

a comparative metric for our other research results. The mean child self-regulation score on

the CBQ-S was 3.08(SD = .53), the mean child positive affect level was 2.95(SD = .38),

and the mean negative child affect was scored as 2.40(SD = .34) for our study sample.

Specifically, using this measure, we wished to determine whether child temperament pre-

dicted child interaction time, child food selection time, or food ratio (described above).

Accordingly, each of these variables was selected as dependent variables in multiple re-

gression analysis, with Bonferroni error correction. A step-wise regression was selected

using our theoretical perspectives as a means of determining the order in which indepen-

dent variables would be loaded into the model. Accordingly, socio-demographic variables

were loaded into the model first, followed by child temperament variables. These analy-

ses revealed that positive child affect was moderately predictive of food ratio (serving as
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a proxy for learning), r2 = .359, F (3, 14) = 6.15, p < .05, supporting the first part of

H6, that children with a positive affect will have greater learning agains. Child-robot in-

teraction and food selection did not contribute to the model and therefore are not predicted

by child temperament (thus leaving H6 unsupported), however child temperament (which

contributed to the model) may predict child learning.

7.3.6 Discussion

The goal of this study was to examine the feasibility of a SAR-based intervention for teach-

ing children about nutrition. We wished to examine the children’s evaluation of, and en-

gagement with, the robot, changes in their verbal interaction with the robot over time, the

learning effects of the SAR system, and the effect of child temperament on interaction

and outcomes. We find that children rate the robot highly positively across all measures

used, and retain a positive perception of the robot after a three-week intervention. We find

that over the course of the intervention, children respond more quickly to the robot’s verbal

queries, suggesting that they not only maintain engagement with the SAR system over time,

but likely become more comfortable with the system, perhaps even building rapport with

the robot character. While we do not find changes in their MLU, we do find that they use

more complex speech with the robot over time, suggesting that the social presence of the

robot encouraged child-robot relationship building. We do not find a relationship between

between child temperament and social interaction with the robot (H6), but this may mean

that children with diverse temperaments can interact equally well with the SAR system.

In terms of the educational goal of the intervention, we find limited evidence that the

children in the study learned about nutrition over the intervention (H5). We find that posi-

tive affect is moderately predictive of healthier food choices (our proxy for learning), which

is consistent with the literature on education. Finally, our results indicate that children take

longer to make food selections over time, contrary to H4, however we have modest evi-

dence that children choose healthier foods over time, suggesting that the increase in time
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may be indicative of greater thoughtfulness in their responses.

In terms of limitations, while this study examines a relatively large, diverse group of

children over many sessions, the sample size and intervention length are still limited relative

to typical nutrition interventions. Because this work is designed to examine the changes

in the interaction over time, we use a within-subjects design and do not include a control

group. In future work with a more primary focus on learning, we would include such a

control.

7.4 Conclusions

In summary, our results provide a promising basis for future SAR interventions for teaching

young children, in particular for the task of nutrition education. We demonstrate that chil-

dren have an extremely positive reaction to the robot, even after several weeks of periodic

interaction with the SAR system. Children were able to sustain engagement with the robot

character, and perhaps even build a relationship with the robot, a result that is promising

for future, longer-duration interventions. While we do not find strong learning gains over

this intervention, we expect that such longer interventions would show greater changes in

knowledge. We are therefore encouraged to extend this work to longer interventions as we

move towards a more autonomous SAR system. A robot that is capable of maintaining

its users engaged and motivated throughout the course of multiple interactions can more

effectively provide assistance to its users, whether such assistance is physical or verbal.
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Chapter 8

Conclusion

In this dissertation, we tackle the challenge of developing adaptive robots for Human-Robot

Collaboration (HRC) that aim to provide assistance to a human worker throughout the

progression of a task. To do so, we focus on robots that do not aim to complete a task

on their own. Rather, we focus on developing robots that aim to provide assistance that

is tailored to individual human workers’ preferences. This allows both the robot and the

human to focus on the types of actions for which they are each best suited. Our approach

helps bridge the gap between current robot capabilities and those a robot would need in

order to fully execute complex tasks requiring both a high degree of knowledge about the

task and a high dexterity level in terms of manipulating objects.

Developing robots that assist, however, is not without its challenges. Doing so re-

quires developing robust techniques for learning about object and human motion and how

this translates to actions performed by the human, learning about the structure of the task,

learning about users’ individual preferences with respect to what support the robot should

offer, and learning about different actions the robot vs. the human should be performing.

Furthermore, all of these problems need to be tackled as part of a scenario where user-

provided demonstrations or labels are expensive to obtain because they require the user to

either interact with the robot or take time to label demonstrations.
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8.1 Summary of Contributions

To address the challenges reiterated above, we summarize the contributions we made through-

out this thesis below.

• Learning at the low level—we tackled the difficulty of learning useful information

about what happens throughout the execution of a complex task in HRC: We learned

action primitives (building blocks of motion) that a human worker executes

throughout a physical task. We presented a framework that discovers whether

a coarser- or a finer-grained level is better suited for a primitive given the task

at hand, coining this concept the granularity level of a primitive. Learning such

useful and robust primitives for the task at hand is essential if we are to pass

them on to models, algorithms, or paradigms operating at higher levels, which

expect well-defined primitives as their inputs.

• Learning at the high level via a model-based approach—we then tackled scenar-

ios for high-level learning, starting with contexts where it is feasible to obtain a

large pool of data consisting only of task trajectories executed by the human worker,

with no information about preferences for robot assistance: We created a model

of personalized supportive behavior preferences for different users that can be

trained from as few as three task trajectories labeled by a user, built atop a sin-

gle, cross-users model of the task. This system achieves on par with human-level

performance when trained with five user-labeled trajectories.

• Learning at the high level via a model-free approach—we further tackled scenarios

where it is either difficult to obtain large amounts of data or where the task is too

complex or too difficult to model: We introduced Multi-Agent Based Reinforce-

ment Learning (MAB-RL) and Hierarchical Multi-Agent Based Reinforcement

Learning (HMAB-RL), a paradigm inspired by multi-agent reinforcement learn-

ing designed for HRC and its extension to hierarchical reinforcement learning.
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These paradigms are based on the idea of considering both the robot and the

human worker as agents in the environment, but without the ability to control

the person’s actions throughout the task. We then introduced and compared

four algorithms based on these paradigms, which employed different methods

of synchronizing the robot and human’s action during each time step, including

an algorithm that utilized communicative actions. We presented results on par

with human-level performance from training sessions composed of 40 episodes,

with varying episode lengths.

• Exploring the social dimension of collaboration—we finally focused on investigat-

ing different tools we can endow robots with in order to keep users engaged and

motivated throughout collaborative tasks: We performed a series of studies that

presented results supporting different behaviors with which we can endow col-

laborative robots in order to engender users to form positive impressions of the

robot. We also conducted a case study centered on an application of a robot that

interacted effectively with its users in a social collaboration context, presenting

evidence for relationship-building with users.

8.2 Future Work

Throughout this thesis, we have tackled learning useful information for our HRC scenario

starting at the low level by exploring what we can learn from raw data, and moving to

the high level by focusing on building both model-based and model-free techniques and

paradigms for the robot to be able to make high-level decisions. Three of the many ex-

tensions to this work that we believe to be of acute importance moving forward include

building a system that links and integrates the work at the different levels that we presented

herein, working to improve the models at the high level in order to reduce training time and

facilitate transfer learning, and learning goal-oriented hierarchies for HRC.
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8.2.1 Integrating low- and high-level algorithms

Creating a system that can work autonomously (not in terms of completing the task on

its own, but in terms of operating within the bounds of offering assistance to a human) is

crucial in order to have a robot that can be placed in a manufacturing setting and trusted to

collaborate with a human worker without constant supervision. Connecting algorithms and

paradigms like the ones we introduce in this dissertation is non-trivial and requires novel

contributions. This is due to the challenges faced when considering the different types of

inputs and outputs each of these components require and produce, both in terms of how

they are defined and in terms of the assumptions each of these components makes along

the way.

Another research direction that would be extremely powerful in this context would be to

create an end-to-end system, capable of applying the paradigms and algorithms presented

in Chapter 4 and in Chapter 5 directly on raw data. Such systems indeed exist and have al-

ready been used in robotics in the form of deep reinforcement learning, but have so far only

been applied to more constrained tasks like manipulation. Creating novel ways of applying

such algorithms, or developing new algorithms that might be better suited to applying the

types of models that need to work at the high level, is a promising and exciting research

direction.

8.2.2 Improving modeling techniques for facilitating better learning

and transfer learning

In this dissertation, we presented both model-based and model-free paradigms for HRC,

each best suited for different scenarios depending on how much as well as what kind of data

is available for training. Developing these techniques further would allow us to come up

with model-free methods that are not as data hungry and that would not require us to build

a model of the task. In this category, we believe exploring more paradigms in hierarchical
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reinforcement learning, including methods for us to learn macro-actions directly from the

data without hand-specifying them, would allow re-use of higher and higher level actions,

and would also facilitate transfer learning. In this case, transfer learning would be useful for

making use of the knowledge the robot has acquired for a assembling a chair, for example,

in order to assemble a table that might require similar sub-tasks.

Another direction is to develop model-based techniques, where we focus on learning

better models of the task, and focus on developing less data hungry techniques for this part,

so that we can easily build personalized models for the users’ preferences atop. This is the

method we employ in Chapter 4, which can be extended and combined with techniques

from model-based reinforcement learning, for example.

8.2.3 Learning goal-oriented hierarchies

Focusing on the exploration of hierarchical methods not only aids in speeding up learning

but also provides an approach that more closely resembles the type of goal-oriented tasks

we typically tackle in HRC. Beyond facilitating the re-use of policies or macro-actions

without the need to re-learn them every time they appear as a subtask, learning hierarchies

would allow the robot to gain a better understanding of the task in terms of higher-level

components, focusing on the critical parts of a task, and learning to ignore irrelevant de-

tails. For example, if the robot understands it needs to bring a screwdriver for the next step

of the task, it can then focus on this goal in a variety of situations: it might need to abstract

away details regarding its motion in order to avoid obstacles along the way, it might need

to perform other subtasks prior to being able to fetch the tool (such as clearing the space

around the tool), or it might need to wait longer prior to bringing the tool if it notices the

person has encountered a problem during his or her current activity. Each one of these

scenarios involves learning about the relevance of different details such as motion, learning

how to adapt to new situations based on similar goal-oriented subtasks that have previ-

ously been encountered, and learning about how the progression of the task and changes
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throughout this progression determine what actions the robot should take. Such lines of

future inquiry would represent a valuable extension to the HMAB-RL paradigm introduced

in Chapter 5.

To conclude the work presented in this dissertation, we are excited to advance the vi-

sion of bringing robots closer to being able to operate in environments where they can

seamlessly interact with humans, and adapt to their environments in a robust manner.

177



Appendices

178



Appendix A

Exploring Useful Supportive Behaviors:

Modeling Skill Duration for

Collaborative Tasks

In this work, we investigated an approach for autonomously predicting the amount of time

required for different agents to complete actions. This work is based on [227] 1.

A system’s ability to assess its (and others’) skill level regarding the performance of

different tasks is essential to achieving efficient scheduling and collaboration. In this

appendix, we present an observation-driven modeling approach allowing an agent to au-

tonomously predict the amount of time required for different agents to complete actions.

This approach utilizes insights and observations from the developmental psychology and

operations research communities to accurately develop agent-personalized skill proficiency

models. We demonstrate our model by evaluating its performance at estimating agent per-

formance in a set of common assembly tasks. Our evaluation measures knowledge-transfer

1. B. Hayes, E. C. Grigore, A. Litoiu, A. Ramachandran, and B. Scassellati, “A developmentally inspired
transfer learning approach for predicting skill durations”, in Proceedings of the 4th Joint IEEE International
Conferences on Development and Learning and Epigenetic Robotics (ICDL-Epirob), IEEE, 2014, October
13–16, pp. 181–186.
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via novel task introduction, as well as extrapolation by predicting future performance given

previous experience.

Collaborative activities are ubiquitous in daily life. Although people often successfully

engage in different types of collaborative activities and thus understand how to coordinate

their actions to achieve a common goal, there is no consensus on how adults come to

have this complex understanding [228]. An essential part of this understanding is derived

from evaluating one’s own proficiency at performing different tasks — not only to reach a

common goal, but to reach it as efficiently as possible.

Prior work has confirmed that adults are good at evaluating other people in a variety

of social contexts. Research shows that adults achieve this by analyzing both the behav-

ior and physical features of people with whom they interact [229, 230]. Investigations of

mechanisms employed for self-evaluation, however, constitute an entirely different line of

research.

Adults do not make perfect assessments [231] and can easily overestimate or underes-

timate their capabilities [232] because of potential damage to an individual’s self-esteem

[233], difficulty in processing available information [234], or uncertainty related to evalu-

ating outcomes [235]. However, they do have a clear and full understanding of the concept

of ability and self-efficacy. The process through which adults achieve this understanding is

being extensively studied in developmental psychology research. It is believed that young

children, preschoolers and kindergartners do not have a clear notion of ability as an internal

quality [236].

Changes in the way children think about ability have been observed to occur between

kindergartners and seven-to-eight year olds, and between seven-to-eight and ten-to-twelve

year olds [236]. Qualitative changes begin at ages seven-to-eight years, when children be-

come increasingly interested in performance and ability. This is indicated by the act of

making comparisons with peers, with respect to friendship formation, classroom norms,

and academic achievement. The notion of ability starts becoming its own domain for
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children at this age, whereas younger children can sometimes conflate intelligence with

conduct, likability, or social behavior [237, 238]. More importantly, children start mak-

ing more accurate predictions about their own capacities. Younger children tend to suffer

from positive biases or “wishful thinking” [239], overestimating their abilities in a range

of domains, such as school achievement [240, 241], running [242], or peer group domi-

nance [243]. Research has shown that at the age of seven-to-eight years, children begin to

adjust expectations, become more accurate in their self-perceptions, and start approaching

their teachers’ ratings [236, 244, 245].

The second stage of changes happens between seven-to-eight and ten-to-twelve year old

children. At this time, children’s reasoning skills develop further, as they start being able

to differentiate between the concepts of ability and effort [236, 246, 247]. Children at this

stage begin interpreting ability as a capacity rather than a set of skills and knowledge [236,

248]. Although the development of their reasoning skills helps increase self-evaluation

accuracy during this stage [249,250], some children continue their trend of becoming more

pessimistic and thus sometimes underestimate their abilities [241].

In this work we present a skill estimation system inspired by these developmental shifts

in self-evaluation. Similar to the transition experienced between kindergartners and 7-8

year olds, where comparisons between tasks and between others become prevalent, our

system utilizes transfer learning strategies that allow for the use of comparable, indirectly

related experiences to improve estimation proficiency. By exploiting these experiences, our

system is similarly able to converge on more accurate estimations of ability (as measured

by predicting task durations).

The second developmental transition, where the notion of ability separates from the

skills themselves, is represented through components of the presented model that aug-

ment heuristic-driven predictions (e.g., casual or generic estimates akin to “It should take

someone about ten minutes”) of expected performance with evaluations of personal abil-

ity. These components model agents’ proficiencies with the tools or motor skills required
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for a task, allowing for an accurate personal interpretation of impersonal, or crowd-based

knowledge. Our work is particularly motivated by scheduling and multi-agent planning

scenarios, where providing tighter bounds for worker-subtask pairings can directly result

in improved time management and more efficient planner solutions.

A.1 Related Work

Our work utilizes techniques drawn from the Transfer Learning (TL) and Learning from

Demonstration (LfD) communities. TL is a well-studied area within both robotics and

psychology, leveraging the idea that one can generalize across topics as well as within

them [251]. This idea has been applied within several domains, including reinforcement

learning [252], cognitive architectures [253, 254], machine learning [255, 256], and plan-

ning [257, 258].

Transfer Learning-based techniques have also been used for improving performance on

supervised learning tasks in situations where adequate labeled data are not readily avail-

able [259]. In other work, a conceptual framework is presented to capture the process

of transferring skills and knowledge from one task to another [260]. Relevant work in

observation-driven skill acquisition and evaluation includes the construction of parameter-

ized skills from experience [261], the construction of skill trees from demonstration tra-

jectories [262], and building of hierarchical collections of skills for intrinsically motivated

reinforcement learning paradigms [263].

A.2 Domain

In this work we address the problem of estimating agent skill proficiency, in terms of gen-

erating estimations of the amount of time required for their completion. In particular, we

build models that accurately estimate the amount of time required for an agent to perform

subtasks obtained from decompositions of complex tasks (Fig. A.1). We chose a man-
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Figure A.1: The hierarchical task network used for assembling the Lätt chair, indicating
the ordering constraints and goal of each step. Actions were coded in terms of the goals
represented by each leaf node.

ufacturing domain for our evaluation, using IKEA furniture construction as a task class

representative of well specified, multi-step, complex assembly work.

We model construction times for subtasks within the assembly of three different pieces

of IKEA furniture: a chair, a table, and a shelving unit (Fig. A.2). Instructions for these

pieces were segmented into seven, seven, and nine subtasks, respectively. These tasks were

chosen due to their partial overlap in terms of tools required, motor skill similarity, and for

their parallels to many real-world tasks.

A.3 Approach

We approach the problem of skill proficiency estimation as one of agent modeling. By

analyzing video recordings of humans performing assembly tasks, we were able to extract

relevant features such as execution duration, tools required, and motor skills used for each

subtask. Once the recordings were annotated, we were able to look for correlations in the

data indicating potential areas for transfer learning, with the goal of making previously

unrelated training data applicable. An agent simulator was then built based on the human

task performance data. This simulator, capable of generating agents with a multitude of
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Figure A.2: Pieces of furniture that were used in assembly tasks. (Left) IKEA Lätt table
and chairs. (Right) IKEA Kallax shelving unit.

proficiencies and learning curves based on the observed human data, allowed for the pro-

posed modeling technique to be applied to a much wider and more difficult range of worker

types. Finally, we evaluate our system’s performance both on its ability to estimate perfor-

mance for previously untrained tasks and on its ability to extrapolate agent performance for

already known tasks.

A.3.1 Data Collection

We recorded four participants performing multiple assemblies of three different types of

IKEA furniture. Participants were given instructions for each task in the form of a hier-

archical task network (the “task network”), providing both goal information and ordering

constraints to the worker (Fig. A.1). These task networks were generated from a Semi-

Markov Decision Process-compatible encoding of the instruction manuals that were pro-

vided. Each action in the task’s SMDP was annotated with metadata including any tools

required (e.g., “hex wrench”, “hammer”) in addition to a keyphrase describing the motor

skill required (e.g., “peg in hole”, “slide in place”, “secure 2 bolts”). Skills and subtasks

were coded at a granularity such that an annotation indicating a required tool or motor skill

meant that the skill or subtask was dominated by the use of that tool or motor skill.

Each participant performed between 5 and 10 assemblies of each piece of furniture in

184



succession. For each subtask or action represented in the task network, the duration of time

the worker spent was annotated from the video recording. Each demonstration resulted

in an execution trace of the task that indicates the order of subtasks completed and their

durations. These execution traces, in the form of (agent name, subtask name, start time,

end time)-tuples, serve as input for the model learning step.

A.3.2 Feature Analysis and Data Synthesis

A more in-depth analysis of recorded data provided more detailed features for each subtask.

The data showed a clear experience curve as participants made procedural improvements

over successive demonstrations, some nearly halving their execution time over the course of

their trials. As such, we investigated the magnitude of change and rate of convergence to a

stable execution proficiency to model this curve for each skill. Other features we examined

included the amount of variance present once a stable execution strategy was achieved, as

well as the range of bias of these values as measured across agents.

Additionally, we found correlations within agents between durations for subtasks that

shared annotations either in terms of required tools or motor skill description. This is

supported by the intuition that for any set of skills dominated by a particular action, such as

the use of the hex wrench in “Secure Board A” and “Secure Frame” (Fig. A.1), an agent’s

performance is tied to its ability to use the tool.

Using these data, we developed generic agent templates that could generate a multitude

of agents, simulating a range of proficiencies mimicking trends seen in the real-world data.

A.3.3 Evaluation Criteria

Our approach is evaluated based on its performance in two important use cases: adaptation

to new tasks and extrapolation on known tasks. These metrics are measured using the

average error on a per-skill basis across tasks and agents. The model is evaluated based

on its ability to predict the time taken for each execution the agent performs of each skill,
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incorporating effects due to procedural improvement and variance.

In the case of novel task introduction, we evaluate the model’s ability to use knowl-

edge transfer. This is accomplished by evaluating predictions of an agent’s performance

exclusively on a new, untrained task, while varying the amount of training provided to non-

target tasks. Additionally, we investigate effects that arise when modulating the number of

non-target tasks provided. In the case of extrapolation-based evaluation, we evaluate the

model’s ability to predict future performance across all tasks, given a variable amount of

training data.

A.4 Agent Proficiency Modeling

Based on our analysis of the annotated video data, we predictively model an agent’s skill

performance based on four types of features: a heuristic prior for a skill’s expected du-

ration (‘E’), a skill’s experience curve (‘xp’), an agent’s tool proficiencies (‘tp’), and an

agent’s motor skill proficiencies (‘mp’). The heuristic prior used for each skill represents

an expected duration (analogous to a common-knowledge estimate), based on the mean

of observed execution times from the human-recorded data. This value is agent-agnostic,

and does not directly represent any empirically derived knowledge from evaluated agents.

A skill’s experience curve represents the efficiency gains made from procedural improve-

ments that occur over the course of practicing a skill or task. Tool and motor skill proficien-

cies are indicators of an agent’s proficiency with particular tools or types of manipulation.

Each feature is represented as a corrective scaling factor to be applied against the expected

duration of the skill (E), with default values of 1.0 in the case of the experience curve, and

0 in the case of tool or motor proficiencies.

We combine these features by predicting a skill’s execution duration with the following

formula, given an agent a, skill s, expected duration of s from the heuristic prior E(s), and
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demonstration number x:

estimate(a, s, x) = E(s) ∗ xp(s, x) ∗ (1 + tp(a, s) +mp(a, s)) (A.1)

A.4.1 Experience Curve

The experience curve of a subtask represents the effects of transitioning from a novice to

an experienced practitioner. This is represented by the changes in expected duration that

occur over the course of gaining familiarity with practice. These functions, also known as

learning curves, have been studied extensively within operations research [264, 265, 266]

as they are important in many real-world planning scenarios.

It is important to learn a subtask’s experience curve for predicting the completion du-

ration of a skill. It is equally important to learn for the purpose of correcting experience-

related effects out of observed data, allowing for the isolation of other factors that may be

contributing to a subtask’s execution duration. Beneficially, doing so enables one to include

early demonstrations in subtask analysis and feature extraction, as these initial samples will

no longer be dominated by effects from procedural improvements. We compute this value

across agents, independent of factors attributable to individual agent variation when possi-

ble, such as tool or motor skill proficiency, with the intention of isolating effects intrinsic

to the particular skill or subtask’s progression as familiarity increases.

As the experience curve can be heavily influenced by agent-specific factors, we at-

tempt to remove effects attributable to each agent’s tool and motor proficiency effects as

a pre-processing step. A subtask’s experience curve is calculated by partitioning observed

executions into groups by demonstration index, independent of the performing agent. For

each indexed demonstration (e.g., 1st, 2nd, ..., nth), we compute the ratios of the observed

durations to the expected duration (given by the baseline prior) of the subtask. With these

values, we perform a power fit to obtain an estimate for how experience changes the ex-

pected duration with practice.
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For a pool of agents A, skill or subtask s, heuristic function E(s) returning the expected

duration of s, and function d(agent, skill, iteration) returning the observed duration of a

particular iteration of a skill by an agent, we compute the parameters (α, β) of the expe-

rience curve. We begin by constructing the set of coordinates (x, y) ∈ P , where x is the

demonstration index (given X total demonstrations) and y is the execution duration ratio

with tool and motor proficiency effects removed.

Ps = {(i, d(a, s, i)

(1 + tp(s, a) +mp(s, a)) ∗ E(s)
)|∀a ∈ A, i ∈ [1, X]}

βs =
|Ps| ∗

∑
p∈Ps

ln(px)ln(py)−
∑

p∈Ps
ln(px) ∗

∑
p∈Ps

ln(py)

|Ps| ∗
∑

p∈Ps
ln(px)2 − (

∑
p∈Ps

ln(px))2

αs =

∑
p∈Ps

ln(py)− βs ∗
∑

p∈Ps
ln(px)

|Ps|

With these parameters, we obtain the experience curve modifier value for iteration x:

xp(s, x) = eαsxβs

A.4.2 Tool and Motor Proficiency

Analysis of the annotated video data revealed correlations between durations of subtasks

with similarly annotated tool requirements or motor skill descriptions, suggesting that these

could be substantial factors in a skill’s execution duration. For some subtasks, this can be

explained as the usage of a tool (e.g., how fast one can turn a screwdriver) dominating how

long a subtask takes to be completed. For other subtasks, the type of motor skill involved

can just as easily be a major factor, such as how well someone performs at peg-in-hole

tasks or how adeptly they can manipulate a cumbersome type of object.

To measure these proficiencies, we isolate the observed execution times from any ef-

fects arising from an agent’s learning curve. In practice this is imperfect, as agents may

improve motor skills or tool proficiency over time concurrent with the task. In our data,
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these abilities were not observed to change in a perceptible way when contrasted with the

procedural improvements attributed to the experience curve.

The calculation of an agent’s proficiency for a given tool involves examining perfor-

mance across all skills that utilize the target tool. To isolate the effects of tool use from

other contributing factors, we ensure no effects from procedural improvements (as repre-

sented in an experience curve) are being mistakenly attributed to tool proficiency. Our

approach accounts for this by limiting sampling whenever possible to demonstrations after

the agent’s performance curve has leveled off (where the magnitude of δ
δx
xp(s, x) is small).

Unlike experience curves that are calculated cross-agent, tool and motor proficiency values

are calculated strictly within-agent as a personalization feature.

Given an agent (a), a set of skills or subtasks that agent has performed (s ∈ S), their

expected durations (E(s)), and the set of demonstrations for a given skill s by agent a

(Da,s), we can compute the agent’s tool proficiency.

First, we define a function r that returns the average ratio of observed to expected

execution durations for a given agent and skill.

r(a, s) =
1

|Da,s|
∑
d∈Da,s

d

E(s)

Using this function, we can compute the weights to apply to each skill when assessing

tool proficiency. In tool proficiency assessment, these weights are meant to assign more

importance to skills that comprise a larger percentage of the target tool class and comprise

a smaller percentage of their motor class. To do this, we assign weights inversely propor-

tional to the distance between the mean of an individual skill’s duration ratios and the mean

of all skills utilizing the same tool. We also utilize the distance between a skill’s duration

ratio and the mean of all skills in its motor skill class. Intuitively, in measuring tool profi-

ciency, this weighting scheme attributes more importance to the skill if it is either a poor

representative of its motor skill class or if it is a good representative of its tool class.
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(a) Performance graph for estimating completion time of novel, untrained tasks using cross-task knowledge
transfer.

(b) Predictor performance for estimating future completion time of tasks with prior experience.

Figure A.3: Evaluation results of the presented skill proficiency assessment predictor.

We define Ts to be the set of all skills sharing the same required tool as skill s and Ms

to be the set of all skills that share the same motor skill keywords as s. For an agent a and
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skill s, we compute the following weighting:

ωa,s = 1−
|r(a, s)−

∑
t∈Ts

r(a,t)
|Ts|∗E(t)

|

|r(a, s)−
∑

t∈Ts
r(a,t)
|Ts|∗E(t)

|+ |r(a, s)−
∑

m∈Ms

r(a,m)
|Ms|∗E(m)

|

Finally, we must compute the proportion of credit (γ) for any observed effect to assign

to the tool proficiency (as opposed to a motor skill proficiency that may also be represented

in the improvement).

This credit assignment is performed to proportionately distribute performance changes

across all involved model features.

γ(s) =
1

2
∗
[
|Ts ∩Ms|
|Ts|

+ 1− |Ts ∩Ms|
|Ms|

]
Combining these equations, we compute the tool proficiency of a given agent a for a

skill s:

tp(a, s) =
1∑

t∈Ts ωa,t

∑
t∈Ts

γ(t) ∗ (r(a, t)− 1) ∗ ωa,t

To calculate an agent’s motor skill proficiency, we utilize the same process as for com-

puting tool proficiency, replacing instances of Ts with Ms, and vice versa.

A.5 Evaluation and Discussion

We evaluate our model by testing its ability to predict execution durations for specific

agents on a variety of tasks in the assembly domain. Our dataset included 20 simulated

agents performing 25 demonstrations of each piece of furniture. This resulted in 75 total

trials per agent and a total of 1500 demonstrations. We measured model performance in

two scenarios: cross-task knowledge transfer and within-task extrapolation. Performance

is measured across the entire collected data set of 1500 demonstrations, measuring the

predictor’s ability to generate accurate estimates of future results in addition to maintaining

191



accurate representations of its history. Error is presented as |estimated−actual|
actual for each skill

execution in the data set.

A.5.1 Cross-Task Transfer Learning

In the cross-task knowledge transfer scenario, we define the ‘target’ task to be a novel,

previously unseen task. Our predictor is then trained with execution data from all tasks

except the target task. Performance is thus measured as the average, per-skill duration

estimation error on the target task. We repeat this process using leave-one-out validation

for all tasks, reporting the average, per-skill duration estimation error across each target

task (Figure A.3a). The cross-task performance indicates the ability of the predictor to

perform within-agent knowledge transfer.

In the no transfer case, there was no agent- or task-specific data to use, so the heuristic

prior is evaluated instead. In the single-task transfer case, the predictor was given a single

task’s worth of training data to estimate performance on the target task. In the multi-task

transfer case, all non-target tasks were provided as training. Intuitively, as more tasks are

added to the training set, more insights are available to boost cross-task performance.

Using solely the generic heuristic prior for each skill in the target task results in a

substantial performance estimation error for our generated agent pool (M = 0.638, σ =

0.136). For a typical IKEA assembly task lasting 600 seconds, this means schedules based

on the heuristic prior would typically be incorrect by approximately 382 seconds. Training

the predictor with demonstrations of tasks sharing some tool requirements and motor skills

dramatically increases performance. When trained with one other task, the prediction error

reduces by over a third (M = .368, σ = 0.06). Providing training data on a second task

further improves prediction results, resulting in a 24% error when fully trained (M =

0.236, σ = 0.024). In the 10 minute IKEA task example, this amounts to a prediction

accuracy improvement of 4 minutes over a non-personalized approach.

These results are not meant to be representative of all tasks or skills, and may vary
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widely depending on the agents, tasks, tools, and motor skills being evaluated. However,

they are encouraging and supportive of our work’s premise: that building models of agent

proficiencies that leverage transfer learning can provide valuable improvements over less

personalized methods in planning domains.

A.5.2 Extrapolation-based Estimation

In the extrapolation scenario, we train our predictor on uniform amounts of execution data

for each task. The model is then tested on its ability to estimate the future performance

of each agent for each skill represented across each task. As in the cross-task transfer

evaluation, performance is measured as the mean per-skill duration estimation error (Fig-

ure A.3b). Intuitively, this measures the predictor’s ability to estimate future performance

given a limited amount of direct target task observations.

We evaluate our predictor’s ability to extrapolate on past performance by measuring

performance across five methods: no transfer, naive transfer, experience modeling, profi-

ciency modeling, and using our full model. In the no transfer case, agent performance is

assumed to be the average of all demonstrations by that agent observed up to that point.

The naive transfer predictor uses the average skill duration as computed across all agents

as its estimate. The experience curve-based estimator fits a power curve to the unmodified

observed data across all agents, using it as its predictor. Proficiency modeling utilizes the

within-agent tool and motor skill proficiency estimation as a modifier on the heuristic prior.

Finally, the full model combines the experience curve with tool and motor skill proficiency

modeling (Eq. A.1). As studied within developmental literature, our model too improves

its performance by leveraging behaviors noted in 7-8 year olds (cross-agent comparisons)

and 10-12 year olds (cross-task transfer).

Our results strongly suggest that variations in agent performance rule out sole reliance

on cross-agent transfer techniques for this scenario. In isolation, cross-agent methods take

longer to converge and do so to less optimal solutions than their within-agent counterparts,
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with naive transfer and experience curve strategies peaking at approximately 41% error.

Within-agent, cross-task methods do considerably better, with the proficiency modeling and

no-transfer methods converging to approximately 20% error. Our full model, combining

developmentally inspired aspects of cross- and within-agent knowledge transfer, performs

noticeably better, rapidly converging to approximately 13% error.

As with the cross-task results, these findings are not meant to suggest a universal perfor-

mance guarantee for any particular class of task or skill. These results support the premise

that transfer learning is a promising approach to skill estimation, allowing for improved

accuracy when considering multi-agent scenarios.

A.6 Conclusion

In this work we present a novel, developmentally inspired approach to estimating task per-

formance. We use transfer learning techniques to generalize knowledge across tasks and

across agents, allowing for more accurate estimates of skill execution durations with less

training data. Our approach shows promising results for planning systems, particularly

within the chosen manufacturing domain. These improvements are present both in cases of

adapting and applying existing knowledge to novel tasks and extrapolating future perfor-

mance from past experience.
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Appendix B

Maintaining Motivation during

Interactions with Collaborative Robots

Alongside physical assistance during tasks we envision in a collaborative scenario such as

those encountered in the manufacturing industry, the field of HRC includes a wide range

of collaborative scenarios during which we might wish a robot to provide assistance to the

user throughout the interaction. These types of scenarios include tasks where the user and

the robot are working toward the same goal, where the ultimate aim is that of having the

robot help the user be more effective at accomplishing this goal.

This research aims to develop an adaptive human-robot collaboration system that works

with users over long periods of time to achieve a common goal that is beneficial to the user.

This work is based on [118] 1.

The particular scenario I focus on as part of this work is that of a robot companion in-

teracting with adolescents, helping them succeed at achieving daily physical activity goals.

To develop such a system, I propose a method of modeling the user’s motivational state and

employing this model in order to adapt motivational strategies best suited for each user. The

1. E. C. Grigore, “Modeling motivational states through interpreting physical activity data for adaptive
robot companions”, in Proceedings of the 23rd International Conference on User Modelling, Adaptation and
Personalization (UMAP), Dublin, Ireland: Springer, 2015, June 29–July 3, pp. 379–384.
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proposed system uses both physical activity data obtained from wearable sensors (such as

wristband devices) and information acquired by the robot from its interaction partners.

B.1 Problem and Motivation

The benefits of physical activity are well known, as research shows that daily physical

activity has wide-ranging benefits, from improving cognitive and academic performance to

helping with bone development and health [267]. My work seeks to sustain these benefits

with robot home companions through personalized, data-driven coaching.

The U. S. Department of Health and Human Services comprehensive guidelines on

physical activity for individuals ages 6 and older state that children and adolescents should

aim to accumulate at least 60 minutes of moderate- or vigorous-intensity aerobic physical

activity on most days of the week, preferably daily [268]. Current evidence shows that

levels of physical activity among youth remain low, and that levels of physical activity

decline dramatically during adolescence [121]. These data show the importance of de-

veloping methods to keep adolescents on track to achieving daily-recommended levels of

physical activity. With this in mind, I seek to develop a human-robot interaction system

that motivates adolescents to engage in physical activity on a daily basis.

B.2 Background and Related Work

There exists a great deal of work concerning health and well-being applications, such as

commercial systems that use motivational strategies to help users stay engaged in physical

activity, or that support goal-setting and reflection for the user [269], [270]. Other prior

work explores tracking of long term goals along with factors that have an important role in

goal-setting theory [271].

In the field of human-computer interaction (HCI), wearable sensors are being used in

the development of persuasive technologies that motivate healthy behavior. Work in this
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area is wide, ranging from activity recognition systems that employ this information to keep

users engaged in physical activity [272] to how such applications should be evaluated [273].

Social robots have also been used to promote and keep users engaged in physical ac-

tivity within the field of human-robot interaction (HRI). Work in this area touches on in-

vestigating the role of praise and relational discourse [274], as well as on how to create a

long-term interaction for help with weight loss [275].

The user model I am building employs an ontology-based approach. Ontologies are

defined as explicit accounts of shared understanding in a given subject area, and bolster

communication between users, experts, and technology systems [276]. Since ontologies

are extremely useful in providing a formalism that specifies and clarifies concepts in a

domain and the relationships among them, their value for health applications has been

recognized by different lines of research. Such research includes the investigation of com-

putational models of dialogue trying to simulate a human health counselor [277] and that

of computerized behavioral protocols that help individuals improve their behaviors [278].

Although the work presented above is wide-ranging, the current work aims to link all

the components important in maintaining physical activity motivation into one system by

leveraging human-robot interaction techniques together with the benefits of wearable sen-

sors.

B.3 Research Questions and Intended Main Contributions

The key research questions I am investigating within this context are as follows. How can I

develop an ontology-based user model of people’s motivational states by employing long-

term human-robot interaction to gather information needed for the model? How can I then

use this interpretation of the user’s motivational state in order to create an adaptive robot

companion that chooses appropriate motivational strategies to help the user stay on track

to achieving daily physical activity goals? The contributions expected from answering

197



these two research questions consist of the following.

The first contribution represents the ontology-based user model, validated via expert

interviews. The model makes use of long-term human-robot interaction by acquiring data

from the user about his or her motivational state each interaction, and also acquires con-

textual information about external factors from online sources (e.g. weather). The second

contribution represents an adaptive algorithm based on Q-Learning that uses both the out-

put of the user model and the physical activity data collected from the wristband device. Its

output consists of choosing the most appropriate motivational strategy the robot companion

employs for a user each day.

Such a system would lie at the intersection of HRC, HRI, HCI, user modeling, and

applied machine learning. Although there are a multitude of applications related to well-

being and physical activity, there is no system to date that ties together continuous remote

monitoring of user physical activity obtained from wearable sensors with an assistive robot

for daily, long-term interactions.

B.4 Methodology and Design of the System

The robot platform chosen for this research is Keepon, a non-mobile platform with four

degrees of freedom, designed to interact with children [146]. The adolescent wears a wrist-

band device that keeps track of the number of steps taken throughout the day. He or she

interacts with a robot once daily, both directly and via a phone application. The application

presents an avatar for the robot with simple, 2D animations.

The system is depicted in Figure B.1 above. When the adolescent interacts with the

robot, the back-story of the robot unfolds in order to keep the user engaged in the long-

term interaction. The robot asks the user a series of questions meant to obtain information

about his or her motivational state, as well as acquires external information from online

sources (e.g. weather information). This data is fed into the user model. The adaptive
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Figure B.1: Reinforcement learning system diagram for maintaining user motivation.

system then takes the user model output, together with the physical activity data from the

wearable sensor, and outputs an appropriate motivational strategy for the user. This strategy

is used to shape the new physical activity goal the adolescent needs to accomplish the next

day.

B.5 User Model

The ontology my model relies upon needs to represent core concepts related to creating a

profile of a user and keeping track of how this changes over time. Thus, I have initially

performed extensive literature review in order to identify the key elements influencing the

achievement of a goal. These are factors long studied in goal setting theory [279], social

cognitive theory [280], and theory of planned behavior [281], and are introduced below.

Since these key elements are part of the ontology-based model, the creation and validation

of this model does not rely solely on literature review, but it is also heavily based on expert

interviews.

As shown in Figure B.1, the inputs to the user model are dichotomized into two cat-

egories. The first represents the user’s answers to the robot’s questions about how the

participant felt while trying to accomplish a goal. These questions regard key elements

influencing the achievement of a goal, namely socio-structural factors (composed of facili-

tators and impediments), social pressure, self-efficacy, and attitude toward behavior. They

are phrased in an easy to understand manner, avoiding academic and arcane terms. The

199



second input category represents external information acquired by the system online about

factors that might have influenced the achievement of a goal, e.g. daily weather, school

schedule changes. This information is fed into the socio-structural factors, into either the

facilitators or impediments feature. All of these core factors make up the feature vector for

a user, which contains numerical values based on the user’s responses during the interaction

with the robot.

The output of the user model is an interpretation of the user’s state. It represents the

state of the world (the state the user is in) at each time step (each day). The numerical value

of each feature is mapped onto one of three discrete categories representing intensity levels,

namely low, neutral, and high. This mapping is applied to reduce the state space size and

produce a more intuitive interpretation of the user’s state. For example, a value of 7 on a

1-to-7 scale for self-efficacy would be assigned to the “high” level. The interpretation thus

consists of a feature vector with intensity levels for each feature.

To validate the user model and create an ontology that links the core elements model-

ing a user to motivational strategies employed by experts (e.g. health and physical activity

counselors, physical education teachers, personal trainers), I utilize a formal interview pro-

cess. This aims to validate and identify missing main concepts in the domain of physical

exercise motivation and the relationships among them. The interview is structured in two

parts, as follows.

The first part asks the expert to list (1) important factors for keeping students engaged in

physical activity (corresponding to the main concepts used in the ontology), (2) techniques

used by experts to identify the students’ motivational state (used to create a mapping from

users’ answers to the state space), (3) information about students that helps the expert

interpret the students’ success or failure (used to validate the user model’s output), and

(4) strategies and techniques employed by the expert to keep students engaged in physical

activity (corresponding to motivational strategies).

The second part presents the expert with the same categories, but with given answers
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(drawn from literature). The expert is asked to indicate how much he or she agrees with the

specific answer, using a Likert scale. This part aims to check if experts indeed use concepts

identified in literature as key factors, acquire new key factors used in practice, and acquire

the basis for creating an ontology linking the user model to the motivational strategies used

by experts.

B.6 Adaptive System

My adaptive human-robot collaboration system chooses a motivational strategy based on

the user model’s interpretation of “why” and “how” the user was (un)successful at his or

her previous goal, i.e. the interpretation of the user’s state. This is possible since the moti-

vational strategies identified from literature (such as cooperative and competitive strategies,

making the user aware of the importance of engaging in physical activity, autonomy sup-

port, structure, and involvement) are associated with factors present in the user model, e.g.

“Intrinsic motivation is associated with the desire to master a task and the satisfaction that

comes with that, whereas extrinsic motivation refers to completing tasks solely as an ego

boost, be it beating peers in a competition, or receiving praise from a parent, teacher or

colleague” [282].

My system adapts to an individual user by following a Q-learning approach. In the

current work, the actions the “agent” (in our case the robot) can take are the different

motivational strategies mentioned above, a ∈ {m1, m2, m3, ...}, which are to be finalized

after concluding expert interviews. The states of the world are the interpretations of a

user’s state (the output of the user model). Thus, a state is a feature vector representing the

interpretation of the user’s state, and is defined as intrpt = [f1 f2 f3 f4 f5], where the fis

represent the features discussed above that take values associated with intensity levels. The

reward for a particular state is the difference between the number of steps taken by the user

and the number of steps set as the goal, rt = #stepstaken −#stepsgoal.
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At time step t, the algorithm observes the current state intrpt, chooses an action at

among the motivational strategies based on an ε-greedy policy, takes the action, observes

the reward rt as well as the new state intrpt+1, and then updates the Q-value for the state

using the observed reward and the maximum reward possible for the next state. The update

is performed based on the following formula: Q(intrpt, at) = Q(intrpt, at) + α[rt +

γ max
at+1

Q(intrpt+1, at+1) − Q(intrpt, at)], where α and γ are both set between 0 and 1

and specify how quickly learning occurs and how much future rewards matter, respectively.

The algorithm will thus work toward finding an optimal policy, in order to maximize the

expected return, i.e. positive reward or small values for negative rewards.

In Section 6.1 and Section 6.2, I present two studies exploring this idea of maintaining

engagement and engendering positive impressions of the robot in collaborative interactions

that are intended for the long-term. These valuable tools can readily be employed by robots

in HRC contexts, where we envision robots aiding humans throughout their daily tasks, be

it in manufacturing settings like factories, or in our homes.
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