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Abstract—Developing robots capable of making sense of their
environment requires the ability to learn from observations.
An important paradigm that allows for robots to both imitate
humans and gain an understanding of the tasks people perform
is that of action primitive discovery. Action primitives have been
used as a representation of the main building blocks that compose
motion. Automatic primitive discovery is an active area of
research, with existing methods that can provide viable solutions
for learning primitives from demonstrations. However, when we
learn primitives directly from raw data, we need a mechanism to
determine those primitives that are appropriate for the task at
hand: is brushing one’s teeth a suitable primitive or are the actions
of grabbing the toothbrush, adding toothpaste onto it, and executing
the brushing motion better suited? It is this level of granularity
that is important for determining well-suited primitives for
applications. Existing methods for learning primitives do not
provide a solution for discovering their granularity. Rather,
these techniques stop at arbitrarily chosen levels, and often use
clear, repetitive actions in order to easily label the primitives.
Our contribution provides a framework for discovering the
appropriate granularity level of learned primitives for a task.
We apply our framework to action primitives learned from a
set of motion capture data obtained from human demonstrations
that includes hand and object motions. This helps find a well-
suited granularity level for our task, avoiding the use of low levels
that don’t capture the necessary core pattern in the actions, or
high levels that miss important differences between actions. Our
results show that this framework is able to discover the best
suited primitive granularity level for a specific application.

I. INTRODUCTION

Robotic systems deployed in industry today work in isola-
tion from humans, and perform precise, repetitive tasks based
on well-defined plans and known task structures. A great
deal of robotics research has focused on how to develop
adaptive systems, capable of offering supportive behaviors
to a person during a task [3]. To accomplish this, the robot
needs to understand the state of the environment and how it
is changing. For complex tasks, state changes encompass both
the movements of the person, and the motions of the objects
manipulated by the human. To this end, there has been a great
deal of attention on learning from observations of a person
performing a particular task. Demonstrations can be leveraged
to both teach the robot how to imitate certain human motions
we wish to replicate, and to allow the robot to learn about the
structure of the task and its progression.

To handle the complexity of human motion, researchers
have formalized it to be composed of basic units of action,

Fig. 1: Sample assembly during data collection. The motion
capture system records users’ hand movements (via gloves fit-
ted with sensors), and the trajectories of the chair components.

called action or motor primitives. Primitives can be sequenced
or combined to generate more complex behavior [30]. A rich
area of research focuses on learning action primitives from
raw data, in order to avoid the need for hand-crafting, and to
allow for scalability. The goal is to use these learned primitives
in high-level planners that typically assume that a library of
primitives is available for them to build upon [10, 32].

Obtaining clear and useful primitives necessary for existing
planners is difficult and depends on the task at hand. If our
task is to observe a person’s general morning routine, we
might benefit from primitives like brush teeth, get dressed, etc.
However, what if we instead wish to have a robot learn how to
imitate the person’s physical movements during this routine?
In that case, primitives like grab toothbrush, add toothpaste,
execute brushing motion might be better suited, depending on
the robot’s physical capabilities. Other situations also show
the need to investigate this level of granularity. For example,
using primitives with low granularity such as press gas pedal
or release gas pedal when driving might prove to be useful
since the motion of pressing the pedal has an easily identifiable
signature. Using a low level for a primitive like move cup to
mouth when observing a person drinking, on the other hand,
might cause problems due to the variability in the human’s
motion when executing this action.

Our work aims to find a solution to the problem of dis-
covering an appropriate level of granularity of primitives for
the task at hand. Existing methods of learning primitives
from observations do not tackle this problem. Such techniques
often aim to learn primitives that are clear and easy to



label, such as running, jogging or other repetitive motions,
or investigate robot motion, which is inherently different from
human movement. In order to make use of existing techniques
for learning primitives and use these as inputs for higher-level
planners that have already been developed, discovering the
appropriate level of granularity is of great importance.

In this paper, we present a framework for primitive granular-
ity discovery, and implement it for a human-robot collabora-
tion (HRC) scenario involving the complex task of assembling
an IKEA chair. We record a set of 28 participants performing
our task, using a motion capture system to acquire both hand
motions and object movements. Fig. 1 shows a participant
putting together the chair during our data collection phase.
We learn primitives in the data sets via a beta process hidden
Markov model (BP-HMM) [13]. Of the learned primitives,
we set out to discover the appropriate level of granularity for
object pick up, a widely used primitive in robotics. We use
task-specific factors in order to establish reasonable minimum
and maximum levels of granularity, and use these levels to test
what classification performance we obtain when distinguishing
them from the rest of the learned primitives. We then aim
to find the lowest granularity level with high classification
performance. Our insight comes from the observation that
high granularity levels can provide us with good classification
performance when distinguished from the rest of the primi-
tives, yet they can hide multiple subclasses of primitives that
might be relevant to the considered task. Of course, when we
reach a level that is too low, the classification performance
will drop significantly, and thus this does not represent an ap-
propriate level. Our results show that the presented framework
successfully finds a well-suited granularity level for the pick
up primitive within the context of our HRC scenario.

II. RELATED WORK

Our work focuses on discovering the appropriate level of
granularity for learned primitives from observations of human
and object motion data. In this section, we first give a brief
overview of the types of primitives high-level planners expect
as their inputs. We then present relevant work in the area of
action primitive discovery from motion data.

A. Primitives Expected by High-Level Planners

High-level planners can work with different levels of ab-
straction. Most planners assume as their input collections of
primitives and do not concern themselves with the acquisition
of these primitives. Furthermore, such planners do not specify
the granularity level expected for the primitives they take
in, and include information about this level only indirectly,
through the handcrafted specification of the inputs. Different
types of representations expected by planners include: action
templates represented with preconditions and effects (e.g.,
”put-block-on-table(x y)” describes the action of moving block
x from the top of block y to the table) [34], primitive skills
based on actions that the agent can perform (i.e. specifying a
start condition, a set of effects, and a set of executable actions)
[26], or primitives with manually specified inputs and outputs

(e.g., unscrew takes in a stud as input and returns a nut as
output) [24]. Other work investigated symbolic descriptions
for use in low-level environments for planning [17]. Although
this technique goes beyond using handcrafted primitives, it
also requires careful specifications of preconditions and effects
of atomic components.

B. Primitive Action Detection

Understanding the motions that make up different tasks re-
quires finding patterns in the data to facilitate the identification
and characterization of actions. Thus, there has been consid-
erable effort in the area of learning how to decompose motion
data into atomic parts called motion or action primitives.

1) Methods and Approaches: One class of widely used
techniques for the purpose of primitive detection is the Hidden
Markov Model (HMM). An example of the use of this method
is work that learns primitives from observations of human
motions by first segmenting the motion via an HMM [19], and
then applying another HMM over the found segments to learn
the primitives as clusters [19]. Another example uses Gaussian
mixture models together with HMMs in order to represent the
primitives and the transitions between them, respectively [5].
Yet other work employed parametrized HMMs over clusters
of segments detected based on changes in object state rather
than looking at the full body motion [18].

Other techniques employed for primitive detection include
using Orthogonal Matching Pursuit on basis functions that
model time series data [20], propagation networks that work on
activities represented as partially ordered intervals [31], spatio-
temporal non-linear dimension reduction [15], and automatic
methods for segmenting long sequences of data into segments
that usefully identify different primitives [2]. Non-negative
matrix factorization has also been utilized to perform the
primitive detection part and then use the learned representation
to predict future motions [11], as well as to predict linguistic
labels given as input for every motion data observation [22].
Another method leveraged by work in this area is that of
grammar-based motif discovery in order to identify trajectories
corresponding to the reusable primitive actions in a narrated
human demonstration [25].

2) Building on Action Primitives: Work that explores ways
of clustering or detecting higher abstractions based on learned
primitives include contributions from different fields. In com-
munities like computer vision, much of the focus is placed
on building up from learned primitives to intuitive behav-
iors that do not necessarily need to feed into higher-level
planners, but are directly used by various applications, such
as camera surveillance [23], or detection of actions, gestures
and expressions [35]. This research makes contributions to
building abstractions on top of learned primitives, but does
not face the problem of needing to bridge the gap between
such abstractions and inputs needed for higher-level planners.
Hence, this work tackles the problem of finding primitive
granularity levels only indirectly.

In robotics, there are a number of contributions that do look
at what abstractions can be built onto learned primitives to



tackle tasks at higher levels. This work is more relevant to
our aim of finding the granularity of learned primitives. In
this area, Jenkins and Mataric [14] address defining behavior
vocabularies of human motion data for movements that include
punching, dancing, handwaving, and so on. Kulić et al. [19]
look at mapping actions from full body human motion demon-
strations of behaviors like raising arms and bending down to
similar actions that a humanoid robot can perform. Other work
focuses on learning about the structure of a task in a bottom-up
approach that starts with automatic segmentation of learning
from demonstration (LfD) data and continuing to build useful
abstractions on top [16, 9, 6, 27].

The work of Jenkins and Mataric [14], and Kulić et al.
[19] differs in nature from our work in that we consider
different types of primitives that occur over the progression
of a task and also take into account object trajectories, while
the cited contributions consider actions that are repetitive in
nature or look at the full body posture of a person. The
LfD contributions cited above are more similar in nature to
our attempts, but they consider robot motions, whereas we
investigate human motion data in the present paper. Motions
generated by humans and robots are inherently different. Thus,
even when utilizing the same approaches and techniques for
primitive discovery on both types of data, the learned human
and robot primitives fit into the task differently.

Furthermore, our contribution focuses on a framework for
discovering primitive granularity levels that are well-suited
for the considered task. It delves into identifying appropriate
granularity levels to an extent that the work cited above
does not explore. Our work brings attention to the possible
hidden structure that might exist in choosing an appropriate
granularity level, even when obtaining good performance on
classification tasks for the desired primitives.

III. FRAMEWORK FOR DISCOVERING PRIMITIVE
GRANULARITY LEVELS

In order to use high-level planners that expect well-defined
primitives as their inputs, it is important to discover those
primitives that (i) help capture the core patterns in the actions
part of the task, and (ii) constitute the main building blocks of
the observed motion without hiding further subclasses within.
If the level we employ cannot capture the main differences we
observe in the data, our reliable identification of primitives can
be compromised. This is bound to happen with the choice of
too low (i.e. fine-grained) of a granularity level, when this
level is not sufficient to capture the common basic actions
present in the task at hand. For example, if we choose a low
primitive level such as move cup to mouth, this might prove
problematic due to the different ways in which a person can
move their hand with the cup to their mouth. On the other
hand, if we choose too high (i.e. too coarse) of a level, this
can end up obscuring deeper structure present in the primitives.
This can prevent us from generalizing well from the data and
from reusing learned primitives in an effective way when we
build higher-level behaviors. An illustrative example here is

Framework 1 Discovering learned primitive granularity levels

1: Data collection and preparation:
2: Collect raw data from scenario relevant to the con-

sidered task, from which primitives are to be learned.
Data should be collected in conditions that simulate
as best as possible the desired scenario.

3: Divide data set into training and test sets, depending
on desired method of validation.

4: Learn action primitives from raw data:
5: Identify an appropriate algorithm for learning primi-

tives from the raw data.
6: Apply algorithm from 5 to training set.
7: Apply algorithm from 5 to test set, using the learned

parameters from 6.

8: Classification experiments:
9: Classification method:

10: Identify an appropriate method for classifying time
series composed of the learned primitives.

11: Apply method from 10 to training set.

12: Primitive choice:
13: Choose what primitive(s) to investigate.
14: Identify factors that engender different granularity

levels of primitives found at step 13. These factors
rely heavily on the task.

15: Establish granularity level interval:
16: Identify the lowest reasonable level, and apply

method from 10 using the learned parameters from
11 to test whether good performance is obtained.

17: Identify the highest reasonable level, and apply
method from 10 using the learned parameters from
11 to test whether good performance is obtained.

18: Find final granularity level:
19: Decrease level and test with lower and lower

levels starting from the highest, until a significant
decrease in classification performance occurs.

20: Choose the lowest level with high classification
performance as well-suited for the task: (i) high
performance for high levels can hide different
subtypes of primitives relevant to the task; (ii)
when the significant decrease in performance oc-
curs, it likely indicates that the level with poor
performance is too low, and the one with high
performance is appropriate.

brush teeth, where we might benefit from learning lower-
level primitives like grab toothbrush, add toothpaste, and
execute brushing motion. These primitives can then be used
for higher-level actions, such as brush teeth itself, but also for
an action like clean tongue, that might require the same grab
toothbrush primitive. Our framework provides a method for
discovering precisely this appropriate level of granularity for
the considered application or scenario.

We introduce our framework for primitive granularity dis-
covery in Framework 1. This outlines the general methodology
to be applied for determining appropriate levels of granularity



Fig. 2: The components part of the assembly task: a frame,
a main component, two pegs (blue), two nuts (green), two
screws (cyan), and a screwdriver (yellow). We also include
the gloves participants wear for tracking hand movements.

for a considered task. In Section IV, we introduce the experi-
mental setup we employed for our framework, and in Section
V, we present the implementation of each framework step.

IV. EXPERIMENTAL SETUP

In this paper, we consider the task of assembling part of
an IKEA chair. We use a children’s chair for ease of tracking
and moving objects around in the workspace, but we choose
one that requires complex assembly, including several small
components and the need to use a tool. We consider part of the
assembly task, namely attaching the front frame onto the rest
of the chair. This part contains similar steps as those required
for the rest of the assembly. It is composed of the necessary
and sufficient actions for showcasing all the different types of
objects and movements that are part of the full chair building
process. Fig. 2 shows all the components of the task: the front
frame (which we refer to as the frame herein), the rest of the
chair (which we refer to as the main component herein), two
pegs, two nuts, two screws, and a screwdriver. To complete
the task, participants need to: (i) place both pegs in either the
frame or the main component, (ii) place both nuts, in any order,
in the sides of the main component, (iii) attach the frame onto
the main component, (iv) place the screws into the two holes
of the frame, and (v) twist the screws in.

The motion capture system we employ throughout our data
recording sessions is PhaseSpace [28], which utilizes active
LED markers as its tracking technology. To acquire motion
capture data, we hand fashioned a pair of gloves specifically
for participants to be able to manipulate all the different
objects during this task. We used fitted, stretching material
gloves without the tips of the fingers, which we mounted
with eight sensors each for tracking. We also tracked the
frame and the main component. Fig. 3 presents a screen
shot of the motion capture system software, highlighting the
gloves and chair components as tracked by PhaseSpace. Each
glove is fitted with eight sensors, and thus the two groups
of eight sensors represent the participant’s left and right

Fig. 3: Screen shot of the motion capture system software
highlighting: (i) green—the group of eight individual markers
mounted on the left hand glove, (ii) orange—the group of
eight individual markers mounted on the right hand glove, (iii)
blue—-the individual markers mounted on the frame, together
with the center of the frame rigid body, and (iv) yellow—the
individual markers mounted on the main component, together
with the center of the main component rigid body. We show
the individual markers visible at the time of the screen capture,
with the two rigid body centers still being tracked even with
marker occlusions. We also include the (x, y, z) coordinates
(red, green, and blue, respectively) of the right hand markers
recorded during an assembly session. The x, y, and z signals
show the values for all eight markers, highlighting the high
correlation present for markers on the same glove.

hand, respectively. For the chair components, we created rigid
bodies. A rigid body represents a collection of markers that
are fixed relative to each other. This allows for regarding the
collection as one tracking target and making the tracking more
robust to individual marker occlusions. Fig. 3 includes the two
rigid bodies created for the frame and the main component,
respectively. For each, we utilized the cartesian coordinates of
the rigid body center, which allowed us to effectively track
each of the two objects as single points in the workspace. We
used redundant sensors placed on different planes, to make
the tracking robust to occlusions occurring when participants
would place the objects on the table in different positions,
or cover some of the sensors. We did not create rigid bodies
for the gloves, since these markers did not maintain a fixed
position relative to each other when participants’ hands moved.

We employ this experiment to emulate the complexities of
assembly tasks humans engage in. We impose no restrictions
on participants about how to perform the assembly. This pro-
vides us with a thorough understanding of what different levels
of granularity we need to consider for primitives relevant to
intricate HRC tasks. For such tasks, even primitives as intuitive
sounding as pick up are not trivially defined. Given that we
employ different types of objects, each with a different result
on the motion data signal, it is not immediately apparent what
level of granularity to use for such a primitive. In our scenario,



pick up can be applied to a peg, a nut, a screw, the screwdriver,
the frame, or the main component. The granularity level here
refers to what types of object pick up we label as positive
examples of this class of primitive. A low granularity level for
our task would involve distinguishing between different small
objects, like pegs, nuts, screws, and the screwdriver, while a
high level would involve treating pick ups for all the small
and big objects as positive examples of this class.

V. FRAMEWORK IMPLEMENTATION FOR HRC SCENARIO

In this section, we detail the implementation of the pre-
sented framework for the considered HRC scenario.

A. Data Collection and Preparation

We present the data collection phase that corresponds to
lines 1–3 in Framework 1. To implement line 2, we recorded
data from a total of 28 participants partly assembling a
children’s IKEA chair (mounting the frame onto the main
component of the chair). We recorded each assembly as a
different trial, with five-to-ten trials per participant, for a total
of 158 trials across the data set. Trials varied in length, from
57′′ to 4′21′′, with an average length of 2′10′′. The motion
capture system recorded at a rate of approximately 1.25Hz.

During each trial, we recorded motion capture data for each
of the 16 markers mounted on the gloves (eight markers on
each glove) and all the markers mounted on the rigid bodies.
We considered (x, y, z) cartesian coordinates for the glove
markers and the centers of the two rigid bodies. For each
glove, we averaged over the eight values corresponding to the
eight markers each was fitted with, resulting in an average
(x, y, z) signal for each hand. We did so given the fact that
the information in the signals from the different markers was
redundant. This provided us with a good representation for
each hand. Our choice is supported by a principal component
analysis (PCA) performed on the signals of the eight markers
for the right hand, and similarly, on those of the eight markers
for the left hand. For each hand, we performed PCA three
times, for the x, y, and z signals. We included the average of
the eight markers for the dimension in question, resulting in
nine total variables for each dimension. For each dimension,
the PCA found that the principal component composed of all
nine variables approximately equally weighted accounted for
at least 89% of the variance. This motivates our choice of
representing each dimension with the average of the eight
markers for one hand, showing the nine variables within one
dimension are highly correlated.

To implement line 3 of our framework, we divided our
data into a training set and a test set. Out of our total of
158 time sequences, we leave out a total of 28, one per
person. We apply the action primitive algorithm on the training
set, and then apply the estimated parameters of the model
to the 28 held-out sequences to mimic learning primitives
in real-time, after the model parameters have been learned.
The primitive classification is applied in a similar manner,
training the classifier on the training set, and using the learned
parameters to mimic classifying on real-time data. We note

here that each held-out trial per participant was randomly
selected, and that each was segmented in accordance with the
description in Subsection V-C1. This resulted in approximately
25 windows per each of the 28 held-out sequences. The results
that we present in Section VI constitute test results across the
different 28 participants, supporting a strong generalization.

B. Learning Action Primitives from Raw Data
The approach we use to implement lines 4–7 from Frame-

work 1 is based on the beta process hidden Markov model
(BP-HMM) presented by Fox et al. [8] and Hughes et al. [13].
We used the implementation made available online by Hughes
[12]. This method uses a non-parametric Bayesian approach
based on a stochastic process—the Beta Process (BP) [33]—
to learn behaviors (primitives) that are shared among several
related time series. Such Bayesian nonparametric techniques
provide us with the advantage of learning from sequential data
that does not require knowing the number of hidden states in
advance. We pick the BP-HMM algorithm presented herein
(Framework 1, line 5) due to its capability of handling multiple
times series and learning a set of primitives shared among
them, with tractable analysis of hundreds of series. Below, we
present the algorithm, as described by Hughes et al. [13].

In our case, a time series represents a recording of an
assembly session. The ith series is assigned a sparse binary
vector fi = [fi1, fi2, ...], that indicates the presence or absence
of each feature in the set of shared primitives. For N time
series, matrix F = [f1; ...; fi; ...; fN ] contains the binary
features of all the time series, and is generated by the BP:

B|B0, γ, β ∼ BP (β, γB0), B =

∞∑
k=1

bkδγk (1)

Realization B of the BP contains potentially infinitely many
features k. For each feature, θk ∼ B0 represents the model
parameters, and bk ∈ (0, 1) represents the feature’s inclusion
probability in the respective ith series. The binary feature
vector for the ith series is obtained by independent Bernoully
draws fik ∼ Ber(bk). Parameter γ determines the Poissson(γ)
distribution that represents the number of active features in
series i. Parameter β dictates the frequency of sharing features
between series.

The BP is then combined with an HMM to form the
BP-HMM. The binary vector fi determines a finite set of
primitives available for the ith series. A single primitive
zit = k from the set {k : fik = 1} is then assigned to each
time step t, determining parameters θk that generate the data
value xit at that time step.

Given that only one primitive is active at each time step,
we applied the BP-HMM algorithm on three different signals
composing our task: one representing the person’s left hand
(i.e. the (x, y, z) signal averaged over the eight markers
mounted on the left-hand glove), one representing the right
hand (similar to the left hand), and one representing the
tracked objects (to more easily scale up to tracking several
objects throughout a task, we learn primitives based on the sig-
nals provided by all the task components). Thus, we obtained



TABLE I: Primitive Granularity Levels and Labels for Classification Experiments

granularity level = low granularity level = intermediate granularity level = high

2 classes 3 classes 2 classes 2 classes 3 classes

label 1 screws screws small objects small and big objects small objects
label 2 — nuts — — big objects
label 0 rest rest rest rest rest

1 We employ 2-class and 3-class experiments to analyze at what granularity level we can distinguish between primitives labeled differently.
2 Label 1 and label 2 (when it exists), refer to primitives at different granularity levels. A bar (—) appears under 2-class experiments,

and indicates a missing label.
3 Label 0 always refers to the “rest” of the primitives, i.e. all primitives that have not been labeled with 1 or 2.
4 “Small objects” include the pegs, the nuts, the screw, and the screwdriver. “Big objects” include the frame, and the main component.

three sets of primitives, corresponding to the left hand, right
hand, and objects, respectively. Prior to applying the algorithm
on the three different sets of time series, we normalized the
data within each set to have mean zero and unit variance. To
implement lines 6 and 7 from Framework 1, we applied the
BP-HMM algorithm on the training set to learn the model
parameters, and then used these parameters when applying
the algorithm to the test set. The training and test sets are as
defined in Subsection V-A.

C. Classification Experiments

In this subsection, we detail the implementation of Frame-
work 1, lines 8–20.

1) Classification method: The classification method we
employ for the time series consisting of learned primitives is
the k-Nearest Neighbors (k-NN) algorithm [1], with dynamic
time warping (DTW) [4] as the time series similarity metric.
This constitutes our implementation of Framework 1, line 10.
Although DTW is known to be computationally expensive,
it is considered one of the best measures for use with time
series across application domains [7] and has also been shown
to be able to run quickly even on very large data sets [29].
Classifying time sequences represents a non-trivial task, and
the choice of similarity metric in this context is particularly
known to be an open research question [21]. Our choice of
the current classification method is based on the fact that
DTW has proven a successful metric for measuring time
series similarity, especially when used together with the k-NN
algorithm [29]. Our analyses have also shown that, for our
learned primitive representation under the form of time series,
other classification methods, such as support vector machines
and multinomial logistic regression, have proved ineffective.

To apply the algorithm, we divided each time sequence into
non-overlapping windows of fixed size 400 (approximately 5
seconds), starting from the beginning of each time series, and
normalized all the data to have mean zero and unit variance.
For cases when the series’ length did not equally divide into
the window length, we padded the sequence with the last
encountered value. Since we applied the BP-HMM algorithm
for primitive action discovery three times for each of the right
hand, left hand, and the objects, we have three time series per
trial, each represented as primitive sequences. For each win-
dow of size 400, we concatenate the three primitive sequences
corresponding to the right hand (RH), left hand (LH), and
objects (Obj), respectively. This results in a sequence of length

1200 per window, with format RH LH Obj. Next, we im-
plement Framework 1, line 11. Since k-NN is a lazy algorithm
(i.e. does not do any generalization using the training data), we
create a set consisting of all the 1200-length windows obtained
from segmenting the learned primitive training data set, ready
to use for the testing phase.

2) Primitive choice: To implement Framework 1, line 13,
we choose to explore pick up, since it represents one of the
most prevalent primitives in robotics. In addition, pick up
presents strong relevance to HRC scenarios such as the one
we investigate in this paper. Both humans and robots need to
frequently execute pick up actions during the assembly of the
chair, and need to do so for different kinds of objects.

In order to represent the pick up primitive, we consider the
factors that engender different types of pick ups for our task
(Framework 1, line 14). We thus turn our attention towards
the types of objects part of the chair assembly. As described
in Section IV, we have four different types of small objects:
pegs, nuts, screws, and a screwdriver, and two bigger objects:
the frame and the main component. Looking at our objects, a
low granularity would involve differentiating between peg pick
up, nut pick up, screw pick up, and screwdriver pick up. This
means treating each type of pick up as a separate class. A high
level of granularity would involve simply distinguishing that
an object is being picked up, whether small or large. These
represent our established lowest and highest reasonable levels
of granularity, as appears in Framework 1, lines 15–17. An
intermediate level would be placed in between, distinguishing
between small object pick up and big object pick up.

3) Find final granularity level: As stated in Framework 1,
lines 16 to 17, we start with the low and high granularity levels,
and use classification performance to gauge if they represent
reasonable minimum and maximum levels for the task at hand.
We then implement Framework 1, line 19. We work down from
the highest level and test an intermediate value. We do so in
order to ensure we are not fooled by choosing too high of a
level, which might hide multiple types of primitives.

In order to find the lowest level with high performance, per
Framework 1, line 20, we perform three main classification
experiments and two additional ones. The three main experi-
ments consist of a binary classification task. Each classification
aims to distinguish between the primitives at the considered
level of granularity and the rest of the primitives present in
the data set. We segment each time sequence into windows



of 400 time steps. We then manually label the windows that
include the considered pick up primitives as the positive class
(labeled as 1), and the rest of the windows as the negative
class (labeled as 0). We perform two additional experiments to
better interpret the results at the intermediate and high levels,
and to test exactly what types of pick up primitives we can
distinguish between. These experiments are performed using
three classes, with windows that include the first type of pick
up primitive labeled as 1, the second type labeled as 2, and the
rest labeled as 0. The different levels are presented in Table I.

When applying the k-NN algorithm to the classification
experiments described above, we employed a k value of 3
for the binary classification tasks and a value of 5 for the 3-
class tasks. For the 3-class tasks, ties can appear when two
class labels occur an equal number of times. In cases of ties,
we decrease k until no tie is present.

VI. RESULTS

In this section, we present the results of implementing our
framework for the considered HRC scenario.

A. BP-HMM Algorithm Results

Fig. 4 shows an example of the learned primitives for a
time sequences representing a single trial. The results highlight
two sets of primitives: right hand (resulted in 55 global
primitives), and objects (resulted in 86 global primitives). We
did not visualize the primitives resulted for the left hand so
as not to overload the graph. For the left hand, we obtained
51 global primitives. The fact that we obtained a similar
number of primitives for the right and left hand indicates that
the representation was able to pick up on similar types of
movements a person can perform with the right and left hand.
We posit that the number of primitives detected for the right
hand is slightly higher than that detected for the left hand
due to the fact that most people used their right hand far more
often than they did their left hand (picking up the small objects
placed to their right in the workspace, and even picking up
bigger objects that were placed to the left of the small items).

B. Granularity Discovery Results

We evaluate the performance of our classification experi-
ments by looking at precision, recall and F1 score. Table
II presents the results of our experiments, and provides the
definitions of these metrics. The table shows the results for
the low, intermediate, and high granularity levels, including
the 2-class and, where present, for the 3-class experiments.

Since we train our classifiers with unbalanced classes (i.e.
positive labels occur much less frequently than negative ones),
we do not place too much emphasis on the high scores for the
negative labels. We present them in the table for completeness.
Our first, 2-class, low granularity level classification task
provided poor results, with an F1 score of 0.31. This task
represents training our classifier with only screw pick ups
as positive labels. This suggests this granularity level is too
low for our task, since we have many similar small-sized
objects. Our intermediate level classifier provides us with good

Fig. 4: A time series from an assembly session including the
raw motion capture data in the bottom subfigure, and the
learned primitives in the upper subfigure. Here, we omitted
the left hand signals for ease of visualization. The bottom
subfigure presents the (x, y, z) coordinates for each of the: (i)
right hand (rh), (ii) frame (f ), and (iii) main component (mc).
The x, y, and z values are represented in red, green, and blue,
respectively. The coordinates represent displacement in meters
from the motion capture system origin, set up in the center of
the data collection room. The upper subfigure presents the
learned primitives for the: (i) right hand (rh) in magenta,
and (ii) the two rigid bodies (rb) in orange. We applied the
primitive learning algorithm on the f and mc data together,
resulting in a single set of primitives for the two rigid bodies.

performance, with an F1 score of 0.82. This level represents
pick ups for similar-sized objects (i.e. pegs, nuts, screws, and
screwdriver). The high granularity classifier also provides us
with a good F1 score, of 0.81. However, since we employed
a binary classification scheme, a similar result to that of our
intermediate classifier might signify several subclasses are
hiding under the positive label for the more general pick up
action. In this high granularity case, we train the classifier with
both small- and big-sized objects labeled as positive examples.

Since we expect our intermediate classifier to perform
significantly worse if a high granularity would be appropriate
for this task, we believe the high level classifier is now hiding
two subclasses, namely pick up for small objects and pick
up for big objects. To test this, we perform two additional
classification tasks, employing three classes instead of two.
The low level 3-class task labels screws with 1, nuts with
2, and the rest with 0. The high level 3-class task labels
small objects with 1, big objects with 2, and the rest with
0. We obtain poor performance for the former (F1 scores of
0.40 and 0.46 for classes screws and nuts, respectively) and
good performance for the latter (F1 scores of 0.78 and 0.82
for classes small objects and big objects, respectively). This
indicates that, in the case of the low level classifier, we cannot
differentiate between different types of small objects, and so
the classifier cannot distinguish between labels 1 and 2. In the
case of the high level classifier, we can indeed differentiate



TABLE II: Results of Classification Experiments

granularity level = low granularity level = intermediate granularity level = high

2 classes 3 classes 2 classes 2 classes 3 classes

Precision
label 1 0.33 0.50 0.81 0.81 0.78
label 2 — 0.40 — — 0.82
label 0 0.93 0.95 0.94 0.93 0.98

Recall
label 1 0.29 0.40 0.84 0.81 0.88
label 2 — 0.43 — — 0.75
label 0 0.94 1 0.93 0.81 0.95

F1 score
label 1 0.31 0.40 0.82 0.81 0.78
label 2 — 0.46 — — 0.82
label 0 0.93 0.98 0.93 0.93 0.97

1 Precision is defined in the standard way, as true positives/(true positives+ false positives)
2 Recall is defined in the standard way, as true positives/(true positives+ false negatives)
3 F1 score is defined in the standard way, as 2× (precision× recall)/(precision+ recall)
4 A bar (—) appears under 2-class experiments, and indicates an absent value for the missing label.

between the pick ups for small objects and those for big ones.
Our results show strong support for the intermediate level

classifier having the appropriate level of granularity for the
pick up primitive in our scenario. This highlights the impor-
tance of evaluating different levels of primitive granularity in
order to find the best suited one for the task at hand.

C. Participant Classification Results

As a complement to the classification tasks performed on
windows resulted from segmenting the data sequences, we also
performed a classification task per person in order to show the
primitive action representation is also useful at a higher level.
We applied the same k-NN with DTW algorithm described in
Subsection V-C1, but this time by using the full sequences.
We concatenated the sequences in a similar manner as above,
with format RH LH Obj, where RH , LH , and Obj.

We divided the data in the same fashion, leaving out one
time series per participant (ending up with 28 series in the test
set) and aiming to classify participants correctly. Our algorithm
classifies 21 out of 28 participants correctly, giving us a per-
centage accuracy of 75%. We do not present usual precision,
recall, and F1 score metrics for this classifier since they
are ill-defined for classes expecting a single example, which
is missing for incorrectly classified participants.

VII. CONCLUSIONS

In this paper, we presented a framework for discovering
the appropriate level of primitive granularity for the task at
hand. We focused on an HRC scenario, for which learning
from human demonstrations is important to develop adaptive
robots. We recorded a motion capture data set of human and
object motions during an IKEA chair assembly task, and used
a BP-HMM algorithm to learn primitives. We presented our
framework for discovering a well-suited level of granularity
for the considered task, and applied it to pick up, a prevalent
primitive in robotics, relevant to our HRC application.

The results show that our framework is able to successfully
discover the appropriate granularity level for the considered
task. We highlight that even when obtaining high classification

performance, high granularities are not necessarily best suited
for the task, as we uncover hidden structure in the data
at this level. In our scenario, this occurs because it is not
immediately obvious that picking up different object types
should be regarded as different primitives. When we label
different-sized object pick up primitives as all pertaining to
the positive class of examples, we are mistakenly lead to
believe this is a well-suited level. Such a decision can be
made based on intuitive descriptions found in the expected
inputs for high-level planners. However, our results show that
simply following the expected structure of such inputs without
ensuring that the level is actually well-suited for the task, can
result in overlooking important differences in such primitives.

Our framework represents a contribution towards providing
existing methods in robotics with the types of inputs they
expect to function as desired. We would like to acknowledge
limitations of the presented work, and consider automating
the process of finding reasonable minimum and maximum
granularity levels, as well as that of exploring the intermediate
levels an important future direction. Another issue to notice is
that the task-specific factors we use have impact on the results
of the framework. This makes the choice of such factors for a
different task non-trivial, yet represents an important way of
injecting domain knowledge into the framework. Finally, an-
other worthwhile improvement is investigating how primitives
learned from human motion relate to robot primitives for the
same action. For example, the pick up primitive might have a
granularity level better suited for the task if it more closely
resembles the type of pick up the robot can perform.
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