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Why do puppies chase their tails? Folk wisdom would tell us that a puppy is being
playful or is seeking attention. Veterinarians would say that the puppy chases, and
sometimes even bites, its own tail because it does not realize that this fascinatingly
evasive object is actually part of its own body. While this behavior in a puppy is
nothing to be concerned with, tail chasing in an older dog is often a sign of dementia,
skin irritation, or anxiety. Whereas an older dog is expected to understand that its
own tail is not an object that should be chased or bitten, a young puppy is still
coming to understand the boundaries of its own body. We assume that through its
experiences, a puppy is able to learn that its tail does belong to itself, perhaps by
observing that its tail is a constant companion or that catching and biting its tail
results in pain.

Like puppies, human infants are not born with a complete sense of themselves.
During the first few months of life, infants must learn to discriminate between their
own bodies, the movements of parents and others who are responsive to the child,
and the movement of objects on television or of wind-blown leaves, that is, items that
are unresponsive to the child’s actions (Rochat, 2003). They must come to understand
that the flailing fingers and arms that they often see in their cribs are part of them-
selves, that they will be able to control the movements of these strange-looking
appendages, and eventually be able to effect desired changes in the world using them.

Traditionally, robots have had no sense of self, nor did they need it. In factory
automation, or even in traditional task-based robotic systems, the robot carried out a
specific goal by selecting between appropriate behaviors or by tuning the parameters
of a fixed behavioral repertoire. These robots could not perceive their own mechanical
bodies and did not need to discriminate between different types of activity within
their environment. As robots become more complex (involving richer sensing and
more degrees of freedom) and as they move out of the factory and into environments
like our homes, schools, and hospitals, the need for these machines to be more aware
of their own limits, their own capabilities, and the results of their own actions becomes
critical. Robots should not chase their own mechanical tails.
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To highlight this point, consider two robotic applications. First, consider a robot
operating in a factory that constructs automobiles. This robot consists of a camera
system that looks down onto a conveyor belt, a mechanical arm that can maneuver
parts from one position on the belt to another, and the computational resources to
recognize defects in these parts. As parts slide into view on the belt, the robot must
decide if the part is defective. The robot must orient itself to defective parts, grasp
them, and remove them from the line. In this case, distinguishing the robot’s arm
from other objects in the field of view can be accomplished simply in multiple ways.
One solution would be to paint the arm and gripper a distinctive color that is not
used elsewhere in the vicinity of the robot, allowing the robot to spot the gripper and
the part by identifying the unique color. Another would be to preprogram the kine-
matics (the body structure and motion capabilities) of the robot. The kinematic equa-
tions could then be solved algebraically to identify how to move the arm to grasp
particular parts. When wear and tear on the robot’s parts slowly degrade the accuracy
of these precoded equations, trained technicians can be on hand to recalibrate or
reprogram the equations as needed. Faults can be detected simply by establishing
boundaries on the robot’s behavior. If the gripper moves too far away from the assem-
bly line, or parts are not picked up as frequently as expected, a fault can be signaled.
The system could then be stopped until a technician repairs the equipment.

Now compare this factory automation system to a robot designed to aid elderly
homeowners carrying groceries or other supplies from their car to their kitchens.
Perhaps with two arms and a wheeled base, this robot would need to perform grasp-
ing, lifting, and carrying of arbitrary packages under the direction of its owner. This
home assistant robot requires many of the same behavioral capabilities as the factory
robot; it too must recognize important components in the environment, grasp them,
and maneuver them into appropriate positions. However, none of the easy-to-
construct systems that were used in the factory robot are likely to be successful in the
home assistance robot. We cannot count on selecting a unique color for the robot
that completely distinguishes it from all homes and from all shopping packages. We
also cannot rely on maintaining a perfect kinematic model to predict the locations of
the robot’s limbs—without the constant supervision of trained technicians, these
equations are likely to be useful for only a short time. Instead, our robot requires some
more flexible way of identifying itself, identifying when faults occur, and adapting to
new configurations (such as when it is carrying a large shopping bag).

The real-world requirements of robotics add a dimension to the self-model not
directly considered in other chapters of this book. To our formalism, this chapter will
add the capability to reason about the robot’s physical presence in the world, its con-
struction, its sensory capabilities, and its interactions with its environment. As adap-
tive and self-trained kinematic and sensory self-models are introduced, we will also
observe that lower-level processes, traditionally hard-coded into the system and buried
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beneath convenient abstractions, will become first-class cognitive models accessible
directly to the system (as discussed in this vol., chap. 1).

Self-Identification

In ethology, the traditional test of self-awareness in animals is the mirror rouge test
(Gallup, 1970). Figure 18.1 shows a chimpanzee participating in this test. First, a mirror
is placed into the habitat of an animal and the animal is given time to acclimate to
its presence. During this phase, many animals will engage their own reflection with
either social or aggressive behaviors, as they do not recognize the reflection as them-
selves. After acclimating to the mirror, some animals, such as chimpanzees, will begin
to use the mirror to groom themselves, in a recognizable self-directed behavior. The
animal is then anesthetized, and a section of the body that can only be seen in the
mirror (such as the forehead) is dyed. If the animal inspects the mark through use of
the mirror, it is considered to have recognized its own appearance in the mirror.
Gallup’s (1982) model supposes that the animal must have a self-concept, typically
in the form of an image that resembles the animal. This supposition leads to a model
of how to perform self-recognition based on similarity of appearance. An appearance-
based model stores an explicit representation of appearance that is then matched
against a current sensory state to determine if the animal (or robot) currently perceives
itself. Though this technique has a simplicity that is appealing, there are many diffi-
culties in implementing this solution. First, the perspective of the image is often seen
as third person (as one would appear in a photograph), though this is clearly not easily

Figure 18.1
A chimpanzee subject of the mark test. (Photo used by permission of Daniel Povinelli.)
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matched to a first-person perspective (as the animal might observe itself). Second, the
complexity of the matching process makes a complete implementation of this strategy
infeasible. To identify the difficulty inherent in this process, imagine looking down
at your hand and attempting to catalog all of the possible shapes that your hand might
form. The range of possible appearances from a fist to an open palm to a peace sign
provides an endless variety of physical appearances.

A second methodology focuses not on visual appearance matching but rather on
some matching process between the movement of the body and the visual scene.
Mitchell (1997) supports the idea of kinesthetic-visual matching in which the only
knowledge required to recognize oneself in the mirror is the relationship between the
visual scene and proprioception. In our own research, we have demonstrated the
effectiveness of this alternative explanation by constructing a robot that can distin-
guish between self and other. An early version of this system (Michel, Gold, &
Scassellati, 2004) used temporal contingency to learn timing parameters that distin-
guished the movement of the robot’s own arm (seen in the camera’s field of view)
from the movement of people in the environment. The robot estimated the delay
between sending a motor command and observing a visual change. Though this
approach had some advantages, it was limited in its extensibility and by sensor noise.

A more recent version of this system (Gold & Scassellati, 2007) uses a Bayesian
kinesthetic-visual matching model to allow a humanoid robot to perform self-other
discrimination and mirror self-recognition without social understanding and without
an explicit kinematic model. A humanoid robot named Nico learned the relationship
between its own motor activity and perceived motion by observing the movements
of its arm for four minutes. Each new observation was used to update three models
for each object in its visual field. The first model is that of random noise, generated
with no structure over time. The second model consists of an observed internal state
of motor activity that generates the external feedback of motion; thus, the consistency
of the match between motor activity and motion dictates the likelihood of this model.
The third model is that of motion generated by somebody else; it is identical to its
own self-motion model, only the motor state is hidden and must be reasoned about
probabilistically. Presented with a mirror, the robot then judged its mirror image to
match its “self” model, while people were judged to be “animate others.” Figure 18.2
shows the scene through Nico’s cameras during this test. In this picture, we can see
Kevin Gold in front of Nico, a mirror that Nico can see himself in, and to the right
we see Nico’s finger. In figure 18.3, we see that Nico has segmented out Kevin as an
animate other, marking him in purple. Nico has marked himself both in the mirror
and directly in his visual field in green. Other moving objects determined to be noise
are marked in red.

Why pursue such research for a robotic system? What advantage does the ability
to recognize oneself provide to a robot? One answer is that the modeling effort itself
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Figure 18.2
Nico looking at himself in the mirror, with experimenter Kevin Gold behind it (Gold &
Scassellati, 2007).

Figure 18.3
Nico’s software segmenting himself and an animate other, Kevin Gold, from the scene (Gold &
Scassellati, 2007).
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has value, as it provides insight into potential methodologies and algorithms that may
be occurring in biological systems. Though the fact that a robot performs a task in a
certain way is never proof that a biological system also necessarily utilizes the same
solution, the computational model can both provide a proof-of-concept for a particu-
lar solution and potentially provide insights into the nature of the problem itself
(Webb, 2001). In this case, the fact that a kinesthetic-visual matching algorithm can
successfully solve the self-identification problem leads us to question the necessity of
purely visual appearance-based methods.

A second answer is that these self-identification algorithms are the first step toward
a more comprehensive robotic model of self. Current research in our lab focuses on
developing robotic self-models that integrate the kinematic and sensory systems of
the robot (Hart, Scassellati, & Zucker, 2008). Kinematic self-models such as ours and
others (Hersch, Sauser, & Billard, 2008) enable robots to learn through experience the
structure of their bodies and how they move through space. We will argue that a robot
that had a more comprehensive model of its body schema and of its own capabilities
would provide connections to other areas that have been traditionally disparate areas
of research in robotics: fault recognition and recovery, causal learning, and tool use.

Fault Detection and Recovery

Though the majority of robotic systems operate with no fault-detection mechanism,
the detection, identification, and diagnosis of faults in machinery is an active area of
interest in both research and industry. Systems used to perform this in an automatic
fashion offer both the capability to assist human technicians in diagnostic tasks as
well as to allow machinery to automatically diagnose and recover from faults.

In industry, the dominant method to accomplish this task is rule-based diagnosis
(Darwiche, 2000). These systems use hand-crafted sets of rules written by domain
experts that are checked against the system’s status. More popular in research is model-
based diagnosis, in which a model of the system is developed using symbolic logic (de
Kleer & Williams, 1987, 1989; Darwiche, 2000; Hofbaur & Williams, 2002). An auto-
mated theorem prover then uses this model along with status reports from devices in
the system in order to perform diagnosis.

Rule-based diagnosis systems are favored in industry because they have a lower
computational overhead and do not require a background in symbolic logic and arti-
ficial intelligence to understand (Darwiche, 2000). Model-based diagnosis systems offer
a number of advantages including being easier to update and modify and allowing
developers to mathematically prove properties of the model.

Perhaps the most intriguing use of model-based diagnosis to date has been the
Livingstone system, which was employed in the Remote Agent software aboard NASA's
Deep Space One probe (Muscettola, Nayak, Pell, & Williams, 1998). Deep Space One was
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the first spacecraft to be controlled by artificial intelligence without human supervi-
sion. Though Deep Space One’s self-model was built by scientists and engineers on the
ground, it did use a logical model of itself while operating in space in order to adapt
its control policy to systems reporting faults.

Fault detection as it is currently envisioned follows either rule-based or model-based
techniques, both of which require a constant detection and recovery system to be
preconstructed by the programmers when the system is initially deployed. These
techniques cannot adapt to online changes in the system’s hardware configuration,
nor can they adapt to changes in the control architecture. For a robot that can con-
struct its own model of its physical extent, its kinematic structure, and its capabilities,
fault detection takes on a somewhat different role; fault detection becomes an ongoing
process of comparing current short-term models of the robot’s self with a more stable
longer-term model of the robot’s self. An adaptive model thus allows for a more flex-
ible recognition process that is based on the perception of the robot’s current capabili-
ties that also allows for long-term modifications.

Causal Learning

Causal learning is a research area concerned with the sequences of events that link
causes with effects. Often modeled by the forward algorithm (Rabiner, 1989), which
asserts that prior time steps have a causal relationship to future ones, causal learning
often operates over symbolic descriptions of the world (which at times makes it dif-
ficult to apply in robotic systems). These symbols are linked together in either prede-
termined or statistically salient sequences to create causal chains that indicate the
prevalence at which a particular event (the cause) results in the production of a sec-
ondary event (the effect). Though this learning is often symbolic in nature, there have
been many attempts to ground these symbols in perceptually salient cues (Yoshikawa,
Hosoda, & Asada, 2004; Yoshikawa, Tsuji, Hosoda, & Asada, 2004).

Notice that this process, by which a causal learning system searches for pairings of
events separated in time, is very similar to the process of kinesthetic-visual matching
described above for self-identification. Rather than seeking a visual stimulus to match
an earlier motor command from the robot, we instead initially match any motor
command from the robot with a later-occurring event. If these two events recur under
similar actions and situations, we can imagine that the robot could learn to produce
particular actions (causes) to create a certain desired result (the effect). While this
process by itself may provide interesting evidence and goal-directed behavior to the
robot system, the most common application for this type of learning is tool use, which
we discuss as a special case below. Causal learning has also been studied in the context
of fault detection and diagnosis, as implemented in the OCCAM system (Pazzani,
1990a,b).
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Tool Use

When a person uses a tool, that tool becomes causally tied to him or her. An interest-
ing example of this incorporation into the self-model comes from Yamamoto, Moizumi,
and Kitazawa (2005), in which it is demonstrated that when a person touches some-
thing with the tip of a tool, the sensory experience attached to that action is the
sensation of feeling the tip of the tool contacting the object being touched rather than
the feeling of the tool providing increased tactile resistance in the hand in response
to the touch. In other words, while the person is using that tool, they perceive it as
an extension of his- or herself.

Experiments to allow robots to build better models of this boundary between them-
selves and the rest of the world also mark the crucial difference between a robot that
must be programmed to grip an object in its gripper and one that can learn to grip
an object on its own. The current state-of-the-art is to preprogram robots with such
capabilities. A robot with a causal model, however, can learn its own optimal gripping
strategies. By modeling the relationship of objects in the environment to the
self, rather than programming in grasping behaviors, future robotic systems may
be able learn things such as tool use without needing to be programmed to use indi-
vidual tools.

Conclusion

We often think of metareasoning as a high-level component that can be added to
existing agent architectures to oversee or monitor typical activity. This internal critic
offers suggestions, monitors progress, or infers higher-level information from the
mundane activities of the agent. Perhaps the most salient lesson from our work on
self-modeling in robotic systems is that metareasoning can be built into some of the
most basic components of these systems in order to solve real-world problems. This
may include basic components that are often considered to be complete and beyond
need for revision (such as low-level control algorithms and kinematic models). As part
of the basic construction of an agent, metareasoning and self-modeling systems can
serve to unify a range of problem domains under a single system-wide design. This
integration also allows for problems (like self-recognition) that on the surface appear
to be high-level cognitive tasks to become part of the moment-to-moment operation
that is critical to agent behavior. Perhaps we should not consider metareasoning
systems as an additional module that can be added late in the design process but rather
as central guiding principles to self-governed behavior.

In this chapter, we have promoted a viewpoint that unifies a few subfields of robot-
ics that until now were studied in isolation. By recasting the primary questions of
these fields as part of the continual process for constructing an accurate model of self,
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Figure 18.4
Nico, the humanoid robot, used by the authors in robotic self-modeling experiments.

we demonstrate that each of these questions can be characterized as part of a larger
domain. Adaptive, self-taught models of self provide a framework for studying causal
learning, tool use, kinematic analysis, and fault detection and recovery. While the
study of these fields independently will continue to advance the state of the art, it is
our belief that the study of these as part of an integrated self-model will allow for even
more fundamental insights into how to build useful, adaptive, and practical robotic
systems and may cast light onto the underlying processes of self-identification that
biological systems must also solve.
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