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Abstract—I present the outline for my dissertation work, So-
cial Hierarchical Learning (SHL). SHL leverages and extends the
capabilities of state-of-the-art hierarchical learning (HL) systems
to operate under realistic human-robot interaction domains. SHL
is designed for multi-agent coordination with humans in the loop.
Traditional HL systems excel when presented tasks in which
the agent has full environmental awareness and control, yet
such systems are not intended to handle elements outside the
agent’s control interacting within its workspace. SHL is designed
to provide the required flexibility in task decomposition and
assignment for successful human-robot collaboration.

I. INTRODUCTION

As recent years have demonstrated, the introduction of
robot systems to collaborative environments requires a substan-
tial engineering effort aimed at not only producing capable and
robust robots but also requiring careful and planned interaction
methodology for human operators to utilize robotic resources.
In most cases, the dominant metaphor for the operation of
these robots is as a co-worker or teammate, operating side-by-
side with human personnel, rather than as a fully autonomous
system operating in isolation [1]. To construct flexible systems
that can adapt to the changing needs of daily operations,
researchers have proposed to construct robots that learn basic
skills that can be re-used in multiple tasks and under varying
conditions. To this end, hierarchical learning is designed to
support skill abstraction and to provide a level of portability
to acquired knowledge that improves performance on distinct
future tasks.

While traditional hierarchical learning has been success-
fully applied to a number of real-world robotic tasks in which
the robot acts autonomously in isolation, this method suffers a
critical weakness when applied to collaborative scenarios. Di-
vision of responsibilities, role identification, and joint actions
are unaddressed, leaving most hierarchical systems inapplica-
ble in collaborative domains. Where traditional hierarchical
learning assumes an isolated, autonomous robot that learns and
performs on its own, Social Hierarchical Learning enables and
develops a collaborative robot that pairs social modeling with
portable skills from human guidance and engages in tasks with
human co-workers.

II. BACKGROUND AND MOTIVATION

Hierarchical learning provides a variety of approaches
permitting traditional reinforcement learning algorithms to
handle complex or large problem spaces. This is accomplished
by introducing levels of abstraction, encapsulating sequences
of primitive actions or sequences of already-encapsulated ac-
tions into higher-level sequences. Hierarchical reinforcement
learning seeks to develop methods by which an agent can
autonomously acquire its own higher-level skills [2], [3].

Recent HL systems have begun to incorporate skill portability.
This enables an agent to develop a library of skills, commonly
through exploration, and determine which are problem specific
and which can be transferred beyond the current domain [4].

While there have been substantial efforts devoted to the
development of HL algorithms, these systems are not well
suited to collaborative human-robot interaction (HRI) tasks.
HL algorithms are typically designed for robots that have
complete control over their selection of actions, and have been
extended to multi-robot cooperative domains [5]. In HRI sce-
narios, robots must continuously adapt to the preferences and
needs of the human partner while at the same time accounting
for the limits of the robots own capabilities. Further, the robot
may be capable of executing only parts of the joint task to
be accomplished. Finally, even for tasks that the robot could
perform, the actions of the human partner will influence which
parts of the task the robot should engage in, and in which order
those tasks should be attempted. These cases are not typically
designed for in traditional HL systems.

III. SOCIAL HIERARCHICAL LEARNING

SHL accomplishes hierarchical learning for socially coop-
erative tasks between one or more robots and one or more
humans operating in the same physical space on the same
tasks. Reinforcement learning and learning by demonstration
are leveraged to acquire basic skill competency. Second, the
nature of the overall task presented to the system is learned,
along with a decomposition of subtasks (a ”plan”). Finally, the
system learns how best to assign roles in real-time, adapting
SHL agents to collaborate with human co-workers to improve
efficiency and performance while executing a plan.

The SHL test environment is a workbench with two KUKA
youBot arms mounted to it (Fig. 1). The system is available as
a ROS stack, utilizing existing libraries for collision detection
and scene modeling. Current SHL work centers on learning
effective skill execution policies that are compatible with a
human operating in the same physical space. Thus, given an
existing comprehension of how to execute a skill, this work
determines the best way to adapt existing knowledge for safe
execution in an environment with humans by adding heuristics
derived from socially predictive models for potential external
agents.

Social Hierarchical Learning consists of three phases:
primitives acquisition, plan decomposition, and cooperative
execution.

A. Primitives Acquisition

In the first phase of SHL, human-guided reinforcement
learning and learning from demonstration is used to acquire



component sub-skills. This allows non-experts to become ef-
fective instructors, simultaneously leveraging humans foresight
while remaining independent of complex natural language
processing requirements. A human operator interacting with an
SHL-enabled agent must first teach the robot the basic skills
that it lacks. Due to the portability of skills from task to task,
it is reasonable to suppose that the robot may already know
how to perform some relevant actions, but not others. After a
small number of demonstrations, the robot should be able to
reproduce a similar action in similar settings, but may not have
an entirely accurate representation of the concept when taken
to new environments or settings. Mistakes can be negatively
reinforced by feedback or repeated demonstrations from the
human partner, eventually eliminating undesirable behavior
and resulting in proficiency. Choosing not to train the robot
on such primitives limits the eligible roles for it in the final
cooperative execution phase.

B. Plan Decomposition

The second phase involves learning the structure of the
task to be solved. Utilizing methods akin to learning from
demonstration, the system learns to sequence primitive actions
to achieve a complex hierarchical task representation. The
primary focus of this research is discovering, manipulating,
and optimizing the collaborative structure of the task, rather
than goal state discovery or primitive action learning. Research
within robotics as it pertains to learning from demonstration
typically involves a robot mimicking an action undertaken
by a single human or robot. Modeling an entire interaction,
inclusive of all actors from initiation to goal state, is helpful
but not altogether necessary for a SHL system to succeed.
A robot placed in a situation where it was fully trained on
the entire interaction would determine its role quicker and
react more effectively to those it is working with. The same
robot placed in a situation on which it is not fully trained
could accomplish this learning through its own experience by
observing the humans it is working with.

This process of observation results in a skill tree and
sample successful traversal (a sample plan ”solution”), with
social metadata indicating potential roles that may be assigned
within a particular skill tree traversal. This social metadata
adds context to known skills and helps restrict the action
search space. A substantial component of SHL-based research
involves establishing a suitable representation for this skill tree
that contains all of the required social modeling and metadata
for constructive collaboration. The hierarchical structure of
the task is learned simultaneously with the relevant social
metadata.

C. Cooperative Task Execution

The final phase of SHL involves learning to produce live
role assignments in an effective and safe way. Reinforcement
learning is applied to teach the system how to divide la-
bor amongst autonomous workers in response to the human
workers’ actions in a socially optimal way. This feedback
regarding the system’s assignment and parallelization of tasks
to agents guides the autonomous agents’ resource allocation.
The primary challenge of this phase is analyzing the social
metadata and applying it to both the skill tree and proposed
traversal of it (plan solution). The result of this process is a

Fig. 1. Social Hierarchical Learning Workbench

role assignment tree, a flexible assignment structure that can
compensate for unknowns and uncontrollable agents in the
overall task completion plan.

IV. IMPACT

Flexible, dynamic cooperation on this level is novel
and would greatly benefit hierarchical learning systems and
planners. Real-time, reactive role determination and learned
task execution combine to form a powerful system enabling
side-by-side collaboration between humans and robots. Roles
may inherently carry restrictions within this role assignment
paradigm, as it can be learned that certain tasks may be better
suited for robots to complete and that some tasks should
exclusively be performed by humans.

The primary contribution of the proposed work is to
take steps toward more natural, task-centered, shared space,
peer-to-peer human-robot interactions. The SHL architecture
allows for a cognitively compatible representation of task
composition, which is essential for both allowing transparent
interactions and for constructing task allocations dynamically.

A secondary contribution of this work is an architecture for
collaborative work. This architecture allows for a representa-
tion of structured tasks that can be manipulated for variations
in individual preferences or capabilities. Understanding the
structure of a task and particular variations, may also lead
to a better understanding of cognitive load (and especially
overload) in demanding task scenarios. Future experiments
based on comparisons of task load could lead to a more general
model of how robots can collaborate efficiently with humans,
reducing the time required for plan execution and cognitive
load requirements placed upon human co-workers.
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