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Abstract—We present and discuss four important yet un-
derserved research questions critical to the future of shared-
environment human-robot collaboration. We begin with a brief
survey of research surrounding individual components required
for a complete collaborative robot control system, discussing the
current state of the art in Learning from Demonstration, active
learning, adaptive planning systems, and intention recognition.
We motivate the exploration of the presented research questions
by relating them to existing work and representative use cases
from the domains of construction and cooking.

I. INTRODUCTION

Robots have the potential to revolutionize many domains,
spanning all manner of industry from manufacturing to health-
care. Today’s robots operate autonomously with speed and
precision within tightly controlled, isolated environments. The
next step in personal and industrial robotics is to move robots
out of isolation and into collaborative relationships, operat-
ing side-by-side with human personnel. As demonstrated in
recent years, the introduction of these systems to real-world
environments requires a substantial engineering effort with
a carefully planned interaction methodology, so that human
operators can effectively utilize robotic resources. We include
in this paper an exposition of what we believe to be some of
the most important research questions yet to be fully addressed
within shared-environment collaborative robotics. We highlight
the challenges associated with these research questions and
identify existing and future work in the field.

Collaborative operation is ripe for exploration and inno-
vation, opening the possibility for widespread adoption of
robots into problem domains for which they may currently
be perceived as unsuitable or unready. Even with the current
state-of-the-art in skill acquisition and execution, robots have
difficulty performing at their full potential when removed from
the typically well-controlled environment of the lab.

In this paper, we will use the term collaborative task
execution to describe an agent autonomously performing a task
either collaboratively with or in the presence of other agents,
while respecting any associated social roles and divisions of
responsibility. Within this definition, we focus exclusively on
fully autonomous robots and humans working as a team, as op-
posed to teleoperated agents. A skill is defined as a temporally
extended action similarly to options in reinforcement learning
[1], and is assumed to minimally include a set of known pre-
conditions, expected post-conditions, and known goal states.

We define a task as a tree of skills and a plan as an arrangement
of skills resulting from a complete traversal of that tree,
respecting any ordering constraints. A plan constructed to
include multiple agents may include parallel branches of skill
execution, subject to the ordering constraints of the individual
skills involved.

Requirements for robot control systems that are capable
of engaging in collaborative behaviors with humans are in-
credibly complex. Such systems require many components to
operate safely and properly, often leveraging the state-of-the-
art in Learning from Demonstration (LfD), intention detection,
speech recognition, non-verbal communication, planning sys-
tems, physical manipulation, and more. In this paper, we out-
line four major challenges in building complete autonomous,
socially collaborative systems and discuss how the state-of-
the-art from the fields of HRI, LfD, hierarchical learning,
and reinforcement learning can be synthesized to help solve
these problems. Attempting to build a socially collaborative
system forces the designer to address issues of safety, user
modeling, environment sensing, and various teamwork-related
human factors in addition to the already numerous technical
challenges inherent to robotics involving real-world manipula-
tion [2].

II. BACKGROUND AND RELATED WORK

Most existing work relevant to human-robot collaboration
has focused on two topics: engaging non-technical users and
skill acquisition. Developing capable systems that are acces-
sible to non-roboticists is a primary concern for collaborative
robotics. One research area essential for accessible collabo-
rative systems that has received a great deal of attention is
skill transfer. Shared-space human-robot collaboration can be a
powerful enabler for skill transfer between humans and robots.
In particular, collaborative tasks provide great opportunities
for applications of learning from demonstration. LfD includes
mechanisms for enabling skill transfer between humans and
robots, producing systems that learn from skill executions
led by humans or other agents [3]. For robots to achieve
widespread adoption and incorporation into everyday tasks, it
is critical that non-experts be capable of imparting knowledge
to them through familiar means.

LfD has established itself as a valuable point of interest
within the human-robot interaction (HRI) research community,
particularly with respect to the intuitive interface it provides



users that have never interacted with robots. Members of
the HRI community have performed user studies on various
LfD techniques, and continue to present results valuable to
interaction designers [4]–[7]. Results from applications of
these works demonstrate that the effectiveness of each training
method is dependent upon factors inherent to the nature of
the skill being taught as well as the comfort of the user with
manipulating the robot itself.

Some systems have been developed to navigate the spec-
trum between guidance-based learning (such as LfD) and
exploration-based learning (like reinforcement learning, or RL)
to operate more efficiently in environments where human col-
laboration is expected. Systems that leverage socially guided
exploration are equipped to learn from non-experts during task
execution through familiar forms of social learning. Including
a human in the loop for skill acquisition greatly increases
the potential value of time spent training. One technique that
particularly takes advantage of humans in the loop is the
combination of socially guided machine learning and active
learning [8], [9].

Active learning is a method designed to accelerate time to
skill acquisition. By enabling the learner to ask questions of
its teachers, the learner can guide instructors to fill the most
critical gaps in its knowledge with training data. Work by
Cakmak and Lopes details an algorithm capable of identifying
the most desirable areas of training data through analysis
within sequential decision problems [10]. This result is applied
in a user study, showing gains in performance by agents trained
by humans who leveraged the agent’s capacity for active
learning over those that did not. Designing active learning into
systems that interact with non-experts requires special care, as
designing for certain query types has been shown to influence
user perception [11]. Active learning remains an open topic of
interest within HRI. Guidelines for indicating appropriate types
of agent queries within various types of scenarios are only
beginning to emerge, and will become increasingly important
as the complexity of collaborative systems increases.

For robots working collaboratively and sharing goals with
humans, having relatable mental representations of skills and
tasks contributes to behaviors that are more comprehensible,
facilitating the completion of complex tasks. Internal task
decomposition is at the core of this mental model. Various
existing algorithms are capable of decomposing tasks into
representations agreeable for the internal processing of an
autonomous agent [12]–[15]. Collaborating with humans in-
troduces a preference for representations that are inherently
comprehensible to people, avoiding the introduction of any
unnecessary cognitive load when properly implemented [16],
[17]. Recent work in this area has begun yielding effective
results, including an action segmentation algorithm inspired
by human-like methods of segmentation [18]. By utilizing
statistical regularities in action sequences performed by hu-
mans, a robot observer can discern meaningful options from
identifying boundaries between probable groupings of actions.
Maintaining and converging upon common mental representa-
tions of tasks facilitates interaction design across all levels of
abstraction.

A variety of approaches have been studied involving inter-
faces by which non-programmers can impart plans for fulfilling
complex tasks to robots. In addition to the training of primitive

skills, enabling non-experts to develop complex interaction
behavior for robots is necessary for widespread adoption.
In addition to making flexible skill acquisition accessible,
compiling higher-level sequences of actions must also be
approachable by non-technical users. Rybski et al. introduce
an interface by which a human can train a robot verbally
through the correlation of location data, agents present, and
spoken commands to known skills [19]. The work primarily
leverages spoken language to allow non-experts to impart skill
sequences to a mobile robot. Breazeal et al. have performed
studies utilizing an interface combining verbal communication
with joint intention theory [20]. Their system approaches this
problem using dynamically interleaved sub-plans to produce
coherent teamwork between involved parties, focusing on task
representation in terms of goals rather than solely motion tra-
jectories. In lieu of verbal communication, which can quickly
become infeasible as task complexity scales, others have
developed software interfaces targeted at non-programmers.
Glas et al. evaluate this method by way of a user study in which
interaction designers were able to use a graphical interface to
achieve greater success in programming a complex interaction
than groups that did not have access to the interface [21].

III. HARD PROBLEMS IN SHARED-ENVIRONMENT
COLLABORATION

While skill acquisition and engaging non-technical users
are clearly essential and relevant fields of research, they alone
are not sufficient. The ability to collaborate is reliant upon vari-
ous physical, perceptual, and social capabilities. For example, a
successful teammate often requires a model of its collaborators
and the ability to communicate with them. A competent worker
requires the ability to execute skills while adapting to a
dynamic environment changing outside of its control. Basic
operational safety demands a robot with access to a variety
of sensors and real-time interpretations of the resulting data
inflow, along with knowledge of appropriate actions to respond
in kind. Additional software-level precursors such as emotional
state recognition, object permanence, and self-evaluation of
performance also dictate the potential quality of any possible
team activities.

Even if a robot was constructed with dexterous capabilities
exceeding that of a typical adult human, a sensor suite capable
of producing features useful for complex object recogni-
tion, and hardware powerful enough to do real-time complex
modeling, shared-environment collaboration in the real world
presents a challenging set of research questions. Because of the
great technical difficulty and hardware requirements involved,
the vast majority of innovations surrounding these questions
have only begun to be accomplished by the collaborative
robotics (co-robots) and HRI communities.

In this paper, we discuss four of the deepest and most
important research questions facing those that seek to build
complete systems for human-robot collaboration. The chal-
lenges we feel to be most important within this domain are:

• How can co-robots enable and facilitate bi-directional
intent recognition?

• How does a co-robot know what roles to take when
working with human teammates?



• How does a co-robot know when to trade off task
execution optimality for co-worker preferences?

• How does a co-robot self-evaluate during live collab-
oration?

We seek to motivate investigation into these questions with
representative examples from the domains of construction and
cooking. Though many human-robot teams will comprise a
many-to-many relationship, we focus on one-to-one teams as
a scalable baseline for highlighting fundamental sub-questions
that need be addressed within each of these four major areas.

From the domain of construction, we consider the task of
assembling a structure such as a small animal shelter. The as-
sembly of this structure requires two plastic storage containers,
polystyrene foam insulation, and straw. It is constructed by
cutting the insulation to shape, placing the insulation inside
one container, nesting the second container within the first,
and placing straw in the inner container. The construction is
completed by placing and sealing the lids on the containers
and cutting an access hole in one side. This task embodies
many challenges present in collaborative task execution, in-
cluding division of responsibilities, fine motor control, object
manipulation, and potentially dangerous actions (the cutting of
materials).

From the domain of cooking tasks, we consider making
cherry gelato. To make a gelato base, a chef requires milk,
heavy cream, egg yolks, and sugar. The difficulties inherent
to gelato production include the need for precise control of
temperatures and consistencies. Milk and cream must be mixed
and heated, after which egg yolks and sugar are mixed in and
heated to a particular consistency (e.g., just coating a spoon).
Finally, the mixture is strained into a bowl and chilled until
ready to freeze. For the added flavoring, cherries must be pitted
and chopped, mixed with sugar and lemon juice, heated, and
pureed before being combined with the base mixture. This task
entails precise measurements and observations, manipulation
of materials with delicate or complex physical properties, and
rigid temporal constraints. Given the complexity of the sub-
tasks, many cooking tasks inherently have steps best suited to
humans and steps best suited to robots [22].

A. How can co-robots enable and facilitate bi-directional
intent recognition?

Humans tend to communicate intent through a variety
of methods during collaborations, enabling co-workers to
predict each others’ future actions and plan around them.
This communication can occur both verbally and non-verbally,
potentially spanning multiple levels of abstraction. Teams that
communicate implicitly improve performance under stresses
caused by temporal constraints or uncertainty by acting in
anticipation of teammates’ actions [23]. For example, suppose
two humans (X and Y) are constructing the animal shelter from
the construction example above. If X requires use of the cutting
tool, X’s gaze may orient towards the desired object. Y may
be capable of anticipating X’s need based on prior observed
action history, or may require more information to realize
that assistance is being requested. Y can actively calibrate
his intention recognition by holding the perceived object of
desire in the air while focusing attention on X, as X is also
likely to provide a response confirming or disconfirming Y’s

interpretation. This interaction communicates the same infor-
mation across a multiple channels, including joint attention,
object manipulation, and socially meaningful gestures.

Active engagement within intention recognition is a pow-
erful tool for a robot to leverage, with the potential to greatly
enhance the speed and quality of learned collaboration [24].
Collaborative robots must have robust classifiers capable of
determining human intent, especially in situations where two
agents’ skills require coordination, like object transfer. By
conveying intent at a high level, such as that of role selection, a
co-robot can guide human teammates to choose roles with non-
conflicting subtasks for greater overall efficiency. At a finer
level, such as conveying intention within individual skills, the
ability to broadcast one’s goals or intended motion paths will
lead to fewer instances of turn-taking behavior and conflicts
over occupancy of shared spaces. Intention recognition is
a dynamically calibrating process, where each agent plays
an active role of synchronizing communication channels and
establishing expectations.

Identifying intent is especially important for potentially
dangerous tasks, such as cutting an opening into the animal
shelter. Tasks that endanger either humans or robots necessitate
the prior conveyance of intention for basic operational safety,
beyond any safeguards inherent to the motor control sequence
itself. From an HRI standpoint, collaborating humans’ per-
ceptions of danger are as important to consider as any actual
danger during robot operation.

Beyond safety concerns, anticipation of where objects will
be placed or moved while in use directly affects the possible
actions or available space usage of collaborators. As available
space is a precious resource within shared-space collaborative
task execution, the importance of communicating one’s intent
grows inversely proportionally to the amount of available
working space usable by the team. In the context of the
cooking example, a situation where the active working space
is presumably a small area such as a kitchen, communicating
one’s intended motion path is critically important. Fragile or
loose materials that may become dangerous under improper
handling (e.g., hot liquids) must be transported with care. This
requirement can be satisfied without sacrificing advantages
afforded by the parallel nature of the task, but only if team
communication is effective enough to enable it.

Early research in bi-directional intention recognition has
focused on pre-execution communication and anticipatory mo-
tion. Existing approaches rely upon attempting to characterize
significant features used in human-to-human collaborative ac-
tivities, such as handover tasks [25], [26]. These lab-based
studies measured the importance of various features on detect-
ing an intent to handoff an object, including partner orientation,
gaze direction, hand occupancy, social gestures, and partner
distance. These results were used to build a classifier with
human-interpretable rules capable of recognizing handover
intention within their coded dataset. It is important to follow
up on these studies with deployed collaborative systems to un-
derstand how bi-directional intention recognition can function
in more stochastic environments.

Some questions that remain unanswered with regard to
intention conveyance include: How can effective non-verbal
cues be generated for learned skills? How can a robot leverage



channels of communication that humans understand, despite
dissimilar physical forms or capabilities? How can a robot
ensure the comfort and safety of its teammates throughout its
operation without compromising the ability to occupy the same
working environment? How can a robot identify human intent
for skill execution, and how can this information be used by
the robot to better select actions to execute?

B. How does a co-robot know what roles to take when working
with human teammates?

When participating as a member of a team, fluency of
operation can be achieved by determining a division of labor
within a task and assigning the various divisions to roles. Each
team member’s role dictates their expected actions, simplify-
ing the task of predicting their intent or future movement.
Furthermore, a division of labor may be more efficient than
single-stream task execution, especially if roles are chosen
with collaborators’ skills in mind. Humans are capable of
decomposing tasks into multi-role, multi-collaborator endeav-
ors, and synchronizing these decompositions between them
with minimal verbal communication. This decomposition has
a strong possibility of being ambiguous, requiring a wealth
of contextual knowledge to disambiguate, which is unlikely
to be explicitly available to a robot. Being able to generate
potential role divisions from a task, synchronizing them with
co-workers, and properly selecting a role based on the demands
(both social and practical) of the team greatly boosts a co-
robot’s ability to function as an effective member of a team.

Role assignment is not a static, one-time activity. Pre-
activity role determination is important for setting initial
roles and expectations, but real collaboration can involve role
trading and overlap, the likelihood of this increasing with task
complexity. Co-workers often bridge the boundaries between
roles to assist each other, even when not explicitly specified
in the duties associated with an assigned role. Recognizing
implicit communication and anticipating the needs or actions
of co-workers contributes to fluent collaboration, increasing
both the objective and perceived value of the robot [27]. Roles
may change or adjust throughout a task’s execution, requiring
the capacity to be sensitive to others’ preferences, the ability to
evaluate one’s own and others’ skill proficiencies, the ability to
evaluate temporal constraints of subtasks between and within
roles, and the potential to build action policies within given
safety constraints. These components must all become part of
the role selection mechanism, evolving over time as more about
teammate preferences are revealed.

For a team to achieve fluency of collaboration, learning
patterns and appropriate reactions from task repetition is essen-
tial. Adaptive planning systems that are capable of modeling
and adjusting to human behaviors with social understanding
are only beginning to be developed and tested in the real
world. Important work yet to be addressed within this space in-
cludes the handling of unfulfilled commitments by teammates
and handling execution-time variation in ordering constraints
[28], [29]. A complete system capable of adapting to team
preferences and behaviors requires many other components.
In addition to the abilities listed above, a complete system
requires the ability to identify roles chosen by teammates
through participation and live observation, as well as the

ability to estimate the impact of one’s actions on others given
knowledge about their goals.

Task decomposition algorithms that operate on input
demonstrations have achieved success in learning execution
policies from low repetitions of demonstrations of skill se-
quences [12], [30]. They provide a great benefit through re-
ducing the complexity of potentially intractably large problem
spaces. This is accomplished by limiting the number of rele-
vant input dimensions according to the demands of particular
segments of a task. However, these task decompositions are
typically optimized for internal use and are not meant to
be interpreted by the user. In collaborative domains, it is
important to be able to communicate one’s understanding of
a task in a manner comprehensible to one’s teammates, while
maintaining the ability to actively participate. Reconciling this
notion with the output from automated task decompositions
presents another aspect of the immense challenge inherent
to comprehensibly representing one’s mental state to another
agent.

The objective of a robot teammate for any collaborative
activity should be to reduce the workload, either physically
or cognitively, of fellow teammates. A co-robot should be
capable of identifying divisions of responsibilities within tasks,
synchronizing its plan with its teammates, and self-selecting
appropriate roles to assume during execution. These behaviors
must be adaptive and flexible to both plan and role-assignment
changes during execution.

Live role selection requires answers to the questions: How
can a robot learn decompositions of complex tasks? How
can a robot synchronize these decompositions with human
teammates? How can a robot reduce the dimensionality of
required skills such that they become tractable to represent
or execute? Given a task decomposition and list of roles
associated with actions within said decomposition, how does a
robot know which role(s) to assume while minimizing conflict
with co-workers? How can a robot transfer previously observed
team dynamics to new tasks? How can a robot communicate
its internal task decomposition in an understandable manner?

C. How does a co-robot know when to trade-off task execution
optimality for co-worker preferences?

When operating in mixed human/robot teams, it is in-
evitable that tasks will require the use of skills that certain
teammates are better at than others. Likewise, there will be
situations in which certain subtasks should be handled explic-
itly by a robot and situations where subtasks are best suited to
human execution. For example, dangerous or repetitive tasks—
cutting through plastic or pitting 100 cherries—are good can-
didates for robotic execution, while tasks that require human-
human communication or high-level decision making —getting
size specifications for a shelter or measuring the consistency of
gelato—are ideal for human execution. Evaluating co-worker
proficiency and recognizing these situations presents a difficult
research challenge [31]. Even if a system were capable of this,
however, the question of when and how this information should
be leveraged remains.

One approach is to develop a plan over several iterations
in concert with the robot teammate(s) to be used. This allows
the plan to evolve naturally with all collaborators present in



the process, engendering trust between workers [32]. In the
future, collaborative robotics will need to enable robots to
join existing teams without incurring the high costs associated
with disrupting existing dynamics and redefining roles. This
question introduces many others, perhaps most notably: How
does one balance between preferences of co-workers, the
necessities of the assigned task, and the performance criteria
with which the group is being judged?

Further adding to the difficulty of this question, the per-
formance criteria may be unknown, varying by team and task.
An agent must be able to successfully balance time, monetary
cost, energy expended, and even emotional costs incurred by
someone doing a task against their preferences. Psychological
considerations may also be taken into account, including meth-
ods of handling co-worker disengagement or dissatisfaction.
This evaluation function may also be subject to an external
authority dictating constraints, which may occasionally be in
conflict with teammate preferences. A complete collaborative
system should be able to determine which trade-offs are most
important and what is the best possible decision considering
the team as a whole. This not only requires robust models
of each teammate’s intent as covered previously, but also the
ability to take measurements of teammate performance, each
of which evolves over time.

As a participant in the animal shelter construction example,
a robot may be more precise when cutting insulation than
humans, but whether that role is a desirable choice may depend
on the preferences of the human. Within the cooking example,
it may be optimal for the robot to perform steps that have
strict monitoring requirements such as heating milk or custard,
but a human may not trust the robot to perform the task
safely or with proficiency. Some tasks may be too complex
or costly to perform full trials of for demonstrative purposes.
How can a robot instill trust in co-workers without the luxury
of demonstration as proof?

Pertinent questions within the concept of optimality versus
preferences tradeoff include: How can a robot adapt its role
selection to optimally mesh with an already-established human
team? When should a robot collaborator object to an observed
role distribution? How can a robot learn which subtasks it
should handle rather than humans? How does one quantify
ongoing co-worker satisfaction? How can this data be used
to impact a robot’s role selection decisions? How can a robot
mediate disputes when co-worker preferences are at odds with
optimal roles?

D. How does a co-robot self-evaluate during live collabora-
tion?

Interacting with multiple agents in a shared task presents
opportunities to evaluate personal proficiencies. While individ-
ual skills often include measures of success that can be evalu-
ated during execution, assessing one’s proficiency at being an
effective and useful team member can be less straightforward.
Determining this quality requires a shared mental model of
the task, knowledge of co-workers’ roles and responsibilities,
and accurate estimates of expected overall task progress at
given times. Even still, determining the appropriate metrics
and acquiring reasonable real-time measurements presents a
substantial research challenge. Once acquired, this information

can be used to reinforce role selections, refine skill execution
choices, and evaluate novel task decompositions.

A collaborative robot must use some form of contingency
detection to measure the impact it has on its teammates at small
timescales. Contingency detection is the detection of a change
in an agent’s behavior within specified time bounds of another
agent’s action. This phenomenon has been studied within
HRI for several reasons, including its utility in understanding
differences between oneself and others [33] and in general
for classifying responses (or non-responses) to actions [34].
Some planners have begun to use these behavioral or temporal
fluctuations to increase the fluidity of team operation, adapting
to perceived co-worker preferences in task execution [35].

Individuals are capable of using a wide variety of metrics
to gauge success. Beyond mere evaluation of whether the
group completed the assigned task, self-evaluation can include
questions measuring personal performance or growth as well.
A co-robot must be able to judge whether it performed its
assigned tasks properly; for instance, it must be able to
evaluate not just whether it has made gelato, but whether
the gelato actually tastes good. Success may also partially
be defined as self-improvement with regard to various sub-
skills used throughout the task; for example, a robot may have
developed its insulation cutting skill to be more efficient during
construction. Building cohesive teams requires pairing workers
who value each others’ contributions, so co-worker satisfaction
and satisfaction levels of authority figures should also comprise
a component of a comprehensive self-evaluation function.

During task execution, humans are capable of evaluating
a teammate’s progress executing a skill against their own
perceived ability to perform the same skill. A co-robot with
this capability introduces new potential issues related to team
management. How does a co-robot know when to switch
off of its current task, either due to a recognized inability
to perform it efficiently or because it has discovered it can
perform a different required task with better results? At what
performance threshold does it become appropriate to intercede
with an inefficient human worker for the greater good of the
team? What are the psychological implications of a robot co-
worker suggesting a teammate is not performing at his or her
potential?

Other pertinent questions within collaborator self-
evaluation include: How does a robot detect if it is performing
in line with its teammates’ expectations? How can a robot
evaluate its proficiency at performing its assigned role within
the context of the team at large? How can contingency
detection scale to scenarios involving three or more agents
while disambiguating false positives for teammate actions?
What are appropriate actions for a robot to take if it detects
it is underperforming to best maintain team cohesion? When
should a robot ask for help with a task if it means interrupting
an otherwise occupied teammate?

IV. CONCLUSION

Human-robot collaboration promises to revolutionize the
way people work, following from the world-altering changes of
industrial robotics. In this paper, we have presented four ques-
tions that highlight topic areas within collaborative robotics.
Our discussion of each question contains a multitude of



research ideas and critical points to be addressed by future
works studying human-robot teaming. Within each topic area,
we have provided examples of current work and as well as
examples of how specific collaborative tasks could benefit
from answers to each of the four questions. Our aim is to call
attention to what we perceive to be some of the most critically
underserved and promising research opportunities within the
rich field of human-robot collaboration. We seek to inspire
researchers to look at questions essential for building complete
systems capable of fluid, flexible, and natural collaboration
between arbitrary collections of skilled agents.
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