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Abstract—One of the hallmarks of development is the transi-
tion of an agent from novice learner to able partner to experi-
enced instructor. While most machine learning approaches focus
on the first transition, we are interested in building an effective
learning and development system that allows for the complete
range of transitions to occur. In this paper, we present a mecha-
nism enabling such transitions within the context of collaborative
social tasks. We present a cooperative robot system capable
of learning a hierarchical task execution from an experienced
human user, collaborating safely with a knowledgeable human
peer, and instructing a novice user based on the explicit inclusion
of a feature within the planning and skill execution subsystems
we’ve termed social force. We conclude with an evaluation of
this feature’s flexibility within a collaborative construction task,
changing a robot’s behaviors between student, peer, and instruc-
tor through simple manipulations of this feature’s treatment
within the planning subsystem.

I. INTRODUCTION

Most robotics learning systems focus on developing a
robot to be either a student or a teacher. In robot-learner
applications, a robot is tasked with acquiring a skill from some
collection of input signals, examples of which include human
demonstrations, simulations, or solutions to complex sets of
constraints. In robot-instructor applications, the robot focuses
on transferring a set of knowledge to another agent, measuring
competency and modulating the pace of knowledge transfer.
These two domains are often treated as unrelated, with little
crossover between communities. Between the two exists the
relatively new field of socially collaborative robotics, a distinct
but related research domain focusing on human-robot teaming
and interactions. Collaborative robotics is interested in robots
as capable learners, peers, and instructors, examining both
the roles themselves and transitions between them. As robots
transition out of isolation into roles where collaboration with
humans or other robots is possible or even required, a focused
effort must be made to engineer systems that can accommodate
these complex requirements.

A multitude of challenging research problems must be
addressed to enable fluent interactions between humans and
robot agents [1]. Facilitating communication between humans
and robots constitutes a substantial portion of these issues.
Human teams constantly communicate explicitly and implicitly
over a variety of verbal and non-verbal channels. Humans
are capable of leveraging complex intention recognition ca-
pabilities in real-time, developing and updating models of
their co-workers as they gain experience collaborating with
or observing them. Further, we are able to infer a great deal
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about complex interactions between others merely through
observations. This holds true at a distance when the actors
are reduced to low fidelity representations of themselves,
even in the absence of explicit context. While intention is
tremendously complicated, interpreting basic motion is not,
requiring very little from one’s environment to provide context.
This irrepressible, constantly utilized ability to infer intention
from motion develops quickly in children around 9 months of
age [2]. The limited processing requirement combined with the
vast potential for understanding agent behaviors makes this an
extremely attractive phenomenon to interpret and incorporate
into collaborative robot systems.

Though people share a host of available avenues for
communication, synchronizing mental models remains a chal-
lenging task for human teams. It has been demonstrated that
increased implicit communication directly improves the perfor-
mance of teams under stresses caused by temporal constraints
or uncertainty, by enabling members to act in anticipation
of teammates’ actions [3]. To build robot systems capable
of natural collaboration with humans, a targeted engineering
effort and planned interaction methodology must be explored
and developed regarding intentionality detection and expres-
sion. Additionally, integrating teammate-like behaviors into
collaborative systems may dissuade notions of robots being
unsuitable or unready for certain application domains.

Beyond the difficulties inherent to developing cooperative
systems, complexities within skill and task representation
further complicate the design and production of socially ca-
pable, collaborative robots. While humans often have little
trouble verbalizing their understanding of a skill or task,
robot systems’ internal representations often do not afford
such transparency. Designers must architect socially oriented
solutions to the problems of skill acquisition, role definition,
role selection, and action selection. Hierarchical Learning (HL)
has yielded substantial success relating to the challenges of
task representation, allowing for the scaling of skill complexity
by dividing intricate tasks into collections of simpler, related
sub-skills [4]. Concepts from HL have also been leveraged
within individual skill acquisition to improve learning from
demonstration and skill transfer between similar environments
[5]. The weakness inherent to such HL techniques is the lack
of explicit specification for human-accessible representations
of information.

Addressing the challenges inherent to skill acquisition, task
representation, and role selection introduced by building a
collaborative system requires explicitly architected, socially



Fig. 1. The Collaborative Workbench used in the proof-of-concept implemen-
tation. The left monitor mirrors the tablet’s display, showing live information
about the task tree throughout task execution and allowing human participants
to claim roles within the system. The right monitor displays a simulated
environment mirroring the real world, along with social force fields as they
are generated from user motion.

directed features within these core behaviors. We define Social
Hierarchical Learning (SHL) as an extension to HL designed to
facilitate the development of systems that can flexibly acquire
skills from multiple sources, generalize these skills to cooper-
ative tasks, and execute a complex plan collaboratively as part
of a mixed human-robot team while maintaining transparency
to its peers [6]. Our work is presented as a component that
offers much benefit to an SHL-like system.

Within this paper we examine the utility of a feature
we describe as social force, a projection of external agents’
anticipated movements. Social force can carry vastly different
meanings depending on the context in which it is applied. As
an example of social force expression, consider two humans A
and B selecting objects from a table. If A and B simultaneously
reach for an object from the same region, the reaching action
of A may cause B to select objects from a different region.
The likelihood of a change in B’s selection region depends
on a number of factors, including the magnitude of repulsive
social force expressed by A’s action and B’s commitment to the
initially selected area. However, if A points towards an object
and communicates intent for B to select it, the magnitude of
the attractive social force expressed by A’s gesture (modulated
by insistence/sharpness of motion) and B’s commitment to the
initial selection will determine if B follows A’s suggestion. We
have integrated this feature into the skill execution and plan-
ning subsystems of a kinesthetically trainable, collaborative
robotic workbench with two robot arms.

II. BACKGROUND AND RELATED WORK

Skill acquisition within state of the art robotics systems can
be accomplished through a variety of methods ranging from
methods accessible to true novice users with no robotics or pro-
gramming experience to methods requiring expert roboticists
intricately familiar with the hardware, software, and sensor
suites available to the robot. Techniques such as learning from
demonstration (LfD) allow subject matter experts who may
be novice robotics users to impart knowledge and abilities
into robot systems [7]. These methods work exceptionally
well for collaborative applications, as the robot’s teammates
may not have robotics or programming expertise. LfD is used

frequently for human subjects experiments, providing valuable
feedback to interaction designers [8]-[10]. Within LfD, kines-
thetic teaching has shown exceptional utility as a method of
learning skills from novices [11]-[14]. By physically guiding a
robot to perform a skill, users are capable of directly imparting
knowledge to a robot through example skill executions driven
via a physical, intuitive interface. Other advantages of this
method include no requirement of external sensing equipment,
no danger of violating kinematic limitations of the robot, and
minimal danger of unexpected self-collisions [15].

Once individual skills are learned, one must focus on
task-level completion. Fluency of collaboration can only be
attained once members of a team have a consistent mental
model of the task to be completed. This mental model must
include information relating orderings of skills, the mechanics
of each skill’s execution, and skill groupings that make up roles
that can be assumed. Hierarchical task representation offers a
convenient way to condense large quantities of information,
exposing the proper level of sophistication required for the
requesting agent or process. There exist several algorithms
capable of decomposing tasks into representations suited for
autonomous agents [4], [5], [16]-[19], but the addition of hu-
man co-workers introduces requirements for human-readable
and human-communicable task representations [20], [21]. Re-
cent contributions in this area have yielded human-inspired
methods of action segmentation [22]. Statistical regularities in
observed action sequences can be used to discern meaningful
segmentations by identifying boundaries between probable
action groupings. Other means of introducing shared mental
models include exposing an interface by which a human can
share his or her mental model of the task with a robot,
overriding any existing representation [23]-[25]. Converging
towards common mental representations of tasks represents
significant progress towards fluent human-robot teaming, and
can potentially simplify the task of interpreting the intentions
broadcast by one’s peers.

Once a common model of the task’s components has
been established, the next challenge facing a team lies in
learning individual members’ preferences for execution. Given
potentially parallel branches of subtasks, it is important that
teammates have accurate models of each other’s expectations.
Adaptive planning systems capable of modeling human behav-
iors with social understanding are beginning to emerge and
face testing in real-world environments. Much active work
remains in both the area of socially-oriented adaptive plan-
ners and that of addressing unfulfilled team commitments or
execution-time variation in ordering constraint fulfillment [26],
[27]. One effective method of learning teammate preferences
is cross-training, a technique in human-human training in
which participants trade roles. This approach has shown some
promise when applied to human-robot teams, improving both
the comfort of the human operator and the performance of the
team [28].

One particularly promising avenue of exploration for build-
ing solutions to these collaboration-centric problems is inten-
tion detection and classification. In this domain, the unseen
social forces that agents exert upon one another have been
shown capable of yielding rich social, cultural, and intentional
information [29]-[31]. It’s been shown that details about inter-
agent relationships and causal relationships between agents and



Fig. 2. Realtime visualization of a social force particle field generated from
the user’s motion patterns, rendered over point cloud data from the workbench
sensors. Social force magnitude is represented by the blue channel, with
the intensity of force increasing as particles range from black to blue. The
estimated position of the user’s hand is represented by a red square, shown
under the gloved hand.

the world can be deduced from observations of impoverished
and low-context trajectory data [32]. While social forces have
been used in the past within perceptual tasks both to understand
the actions of agents as intentional and to classify agency, we
integrate social force understanding into a collaborative robot’s
planner to provide it the ability to dynamically transition
between the roles of student, collaborator, and teacher.

III. APPROACH

Our system is implemented as a minimalist component of a
larger SHL system, seeking to explore the addition of socially
oriented algorithms to traditional Hierarchical Learning. The
primary motivations behind SHL systems are to enable flexible
skill acquisition from non-experts, generalize skills to social,
cooperative tasks, and be able to collaboratively execute these
skills within the context of complex tasks as part of a mixed
human-robot team. We are also interested in facilitating bi-
directional skill transfer within SHL. Many learning systems
primarily focus on methods of inputting skills, but truly collab-
orative systems must also be able to effectively communicate
learned knowledge to other agents.

A. Robot System

We have implemented our collaborative task execution
proof-of-concept on our Collaborative Workbench (Figure 1), a
1.83m x 0.762m worktable equipped with two KUKA YouBot
5-DoF light manufacturing arms spaced 0.5m apart, with
approximately 0.5m of overlapping operational envelope. Each
arm is equipped with a 2-DoF gripper. Sensing is performed
through registered point cloud data, captured via a Microsoft
Kinect mounted above the workspace.

B. Software Architecture

The collaborative system we implemented to demonstrate
social force is built in the Robot Operating System (ROS)

software framework. Core data structures, such as skills, task
trees, and robot controller interfaces are incorporated into
a static software library. Other necessary, live components
such as the social force publishing service, kinesthetic skill
trainer, hand tracker, and cooperative execution program are
implemented as separate ROS nodes. Following this type of
module-oriented design pattern within ROS allows for near-
trivial portability between application domains. User interfaces
are implemented in HTML and Javascript, utilizing the ROS-
Bridge web interface to allow for device portability, effective
visualization, and rapid prototyping.

C. Kinesthetic Teaching

Skill acquisition within our system is accomplished via
demonstration, through kinesthetic teaching. Kinesthetic teach-
ing is a process by which a user physically manipulates the
learner through an execution of the target action. While there
are many valid ways of performing kinesthetic teaching, each
with various strengths and weaknesses depending on the target
domain, our system is based upon keyframing as opposed to
pure trajectory-based recording. Keyframing is a process by
which actions are recorded as a sparse set of important anima-
tion frames. Playing keyframes back in sequence can be used
to recreate the skill as demonstrated. Individual trained skills
within SHL are intended to be primitive action components
that may be combined to achieve high-level functionality.

To train a skill within our system, a user must explicitly
engage the robot into training mode through the provided web
interface. Once training has started, the user is free to pose the
robot to the desired position and set keyframes as necessary.
Features to be tracked (e.g., motor positions, gripper distance
to object, etc.) are indicated by the user prior to training,
rather than learned during training. Keyframed state feature
vectors are recorded as vertices within a skill’s state graph,
initially linked by edges reinforced from the explicit training
example. As skills are executed, more densely populated paths
are created, as explored states are recorded and linked. We
explicitly simplify this component of the system to retain
the minimally viable interactive feature subset to illustrate
the flexibility and magnitude of effect of social force as a
feature. Additionally, only a linear interpolation exploration
function was used during skill execution, leaving the explicit
user-trained paths as the only available options for the system
to follow.

D. Task Structure and Execution

Complex tasks are represented as a hierarchical collection
of primitive skills with varying goals and pre-/post-conditions.
A task tree is a generalized representation of a complex task
sequence. Branches represent divisions of labor along poten-
tially parallel paths of execution, each relating to a possible
role to be fulfilled by a participating agent. As tree nodes are
claimed by human or robot agents for execution, all child nodes
are also claimed for the agent. Ownership of subtasks can be
released, returning the unfinished and newly unclaimed skills
back to the available work pool. The task tree is managed by
a process independent from working agents and is responsible
for managing ownership requests and status updates. A web
interface provides users of our system a visualization of the



Fig. 3. Full demonstration of the task by the robotic agent. When multiple agents participate, it is possible to execute the subtask that joins the blue and green
bases and the subtask that moves the red block into position in parallel.

task tree, including information such as branch ownership and
completion status.

The collaborative execution of a task is accomplished
through agents claiming ownership of subtasks from the task
tree and executing the associated skills. It is the responsibility
of each agent’s planner to determine which subtasks to request
ownership of and fulfill. For our tests, we utilized a simple
planning algorithm that would choose the most promising
role according to a social force value associated with each
subtask at the time of the decision, fulfill it, and query the
task tree for additional roles. An agent only claimed one
branch of subtasks at a time. In the absence of social force
measurements or in case of ties, decisions would be made
randomly amongst candidate options. Throughout execution,
agents would evaluate unclaimed roles against their chosen
role, aborting their choice if the difference in desirability
(measured solely through social force) between an unclaimed
role and the currently assumed role passed a predetermined
threshold. If no roles are unclaimed and the chosen role is
evaluated to have low desirability beneath a predetermined
threshold, the agent would halt its actions, continuing once
the role’s desirability increased above the threshold again.

IV. SocIiAL FORCE

Enabling collaboration between humans and robots is a
major research challenge within the robotics community. Col-
laborative robots must be capable of learning co-worker role
selection preferences in addition to modeling optimal role
selection choices for themselves. Scenarios where multiple
agents interact within a shared environment increase the likeli-
hood of collisions between workers, both in terms of physical
space occupancy and resource requirements. Collaborators
must also be able to adapt to new situations, ranging from
changes in skills required to perform one’s duties to training
new teammates. These high-level abilities all require some
form of intention modeling to be effective.

One feature that we demonstrate as capable of assisting
in fulfilling these requirements is that of social force. We
define social force as a projection of one’s intention through
movement. While physical force generates straightforward
behavior when applied to most agents, social force affects each
agent differently and can be context-sensitive depending on the
skill being executed. The social force exerted by an agent at
a point in space can be computed given a model of the agent
along with its motion history. In the absence of a kinematic
model, the end effector position in space may be used.

Given a series of samples S of the target agent’s end
effector positions, one can compute an ellipsoid representative
of likely future positions of the agent as a projection of antici-
pated motion. For work performed on the Collaborative Work-

bench, we used a 2D projection of the samples (Figure 2), as
including the z-axis did not offer any accuracy or responsive-
ness gains for its computational cost. We define a temporally
bounded set of positions P = {p: p € i, —tuurationstnow] )+
For our experiments, we empirically set tgyration = 0.75s.
Adjusting tgyrqtion changes the sensitivity of the social force
projection, with increasing values softening the effect of sharp
motions and decreasing values increasing their effect.

We obtain the covariance matrix of our samples

cov(Py, Py)  cov(Py, Py)

M= cov(Py, P;) cov(Py, Py)

which is guaranteed to be a real, symmetric matrix (for any di-
mensionality sample set). Given this guarantee, we can obtain
real, orthogonal eigenvectors describing the principal compo-
nents of P through the eigendecomposition D = VMV,
extracting eigenvectors from columns of V and eigenvalues
from the diagonal matrix D. Using the eigenvectors as axes and
eigenvalues as axis lengths, we can construct an ellipse model-
ing the second order moments of the sample, providing a rough
description of the data’s shape and orientation while remaining
robust against outliers from sensor fluctuations. Finally, we
translate the ellipse’s center by a value c representative of
the inertia of the latest sampled position p € P, given by
c=p—P.

Once the social force ellipse is defined, determining the
social force value for a given point is a fast operation. A trans-
formation matrix 7' can be constructed from scaling, rotating,
then translating the unit circle into the ellipse described by the
parameters extracted from the steps above. Given a test point
x, one need only apply the transformation 2/ = T~z and test
for the presence of x’ within the unit circle. The distance of
2’ from the origin along each axis may be used to scale the
social force value assigned to z.

Simple changes in treatment of social force within a robot’s
action planning algorithm can be used to dramatically alter
its behavior between that of student, peer, and instructor. The
robot can use generated social force fields to evaluate potential
skill or role choices. By obtaining readings of social force at
the various locations its end effector will travel through at
keyframes within the candidate skills, the robot can use social
force to affect its skill selection decisions.

To illustrate the effectiveness of social force as a trans-
formative feature within human-robot collaboration, we use a
simple construction task as a test domain (Figure 3). Three
blocks are set on the worktable, a red top piece, a green base
piece, and a blue base piece. From the initial setup, the goal is
to join the two base pieces with a single top piece in the middle
of the working area. The task tree consists of two branches, one
to move the blue base next to the green base and one to place



the red piece on top of the joined bases. Each branch consists
of three subtasks: a "grasp’ or ’locate’ action, a ’place’ action,
and a ’return to resting pose’ action. The ’return to resting
pose’ action is not displayed in the task tree visualization
figures. The first actions of each branch can be done in parallel,
but the red piece cannot be placed until the base pieces are
moved together. This construction task constitutes the simplest
possible task formulation that allows for meaningful expression
of all modes of operation that we wish to demonstrate.

1) Robot as Student: 1f social force from a particular agent
is treated as an attractive, positive force within the action
planning system, the robot will behave as a learner, as if
taking cues from an instructor (Figure 4). As the designated
instructor gestures towards particular areas of the workspace,
the generated social force will positively weight any decisions
involving skills passing through that space. By enforcing
a minimum, non-zero value of social force required before
making a role or skill choice, one can ensure that the robot will
remain inactive unless instructed towards a particular choice.
The order of actions taken from this behavior can be used
to learn task-level preferred action orderings that may not be
obvious given data inherent to the skills in question (e.g., it’s
typically better to pour the cereal into the bowl before the
milk).

During the construction task, the robot evaluates its skill
choices within the task tree and chooses the skill that best fits
the working area covered by the social force of the instructor.
As the instructor motions towards the blue base block, the
robot performs its locate blue block skill, moving its end
effector to the side of the block, ready to push it. Once the
instructor gestures towards the green block, the robot executes
its push blue block skill, moving the block to its desired
position. Similarly, if the instructor gestures towards the red
block first, the robot will execute its pick up red block skill.
Once the instructor moves the blue block to its final position,
social force exerted near the newly combined base region will
trigger the robot to execute its place red block action.

2) Robot as Collaborator: When social force is treated as
a negative, repulsive force within the action planning system,
the robot will behave as a peer, choosing subtasks that can
be fulfilled in parallel with other agents while minimizing
collisions (Figure 5). As other agents begin to execute their
roles, the robot will initially choose from the minimally con-
flicting options. During execution, the robot becomes capable
of reacting to invasions to its workspace, choosing to adopt a
different role when it becomes apparent through other agents’
social forces that it will be interrupted.

Throughout the construction task, the robot chooses to
execute parallel, non-conflicting subtasks in concert with the
agent it is working with. As an agent begins to perform an
action, the robot is biased against choosing spatially similar
actions to execute. If a robot has already chosen a particular
task, but detects negative social force due to a conflicting task
choice by another agent (e.g., human co-worker) operating in
the same space, the robot aborts its selection and chooses a
different, less conflicting action. This behavior may also lead
to instances of turn-taking, which while typically avoided in
collaborative exercises, can lead to safer operation in confined
workspaces.

3) Robot as Instructor: If social force is used as a trig-
ger once its value passes a particular threshold, the robot
can behave as an instructor, indicating which skills it de-
sires its student to complete and in which order (Figure
6). Leveraging the keyframing within the trained skills, a
robotic instructor can step through the skill in stages until
the social force trigger criterion is met. More formally, given
a skill A consisting of keyframes kfy,kfo,....;kf, € A,
the robot will execute keyframes in the set K = {kf; €
A : i < (# times demonstration has been repeated), kf; ¢
GoalStates(A)}. The robot first executes keyframes k € K
in increasing order from ki, ks, .., kx|, then reverts to its
start state by executing keyframes £ € K in reverse order
from k|, k|k|—1, ---, k1. This staged execution has the benefit
of progressively revealing more of the desired action while
leveraging existing information to do so. Once the student
begins to perform the desired action, the trigger criterion will
be met and the robot is able to move on to the next desired
skill.

When social force is treated as a triggering feature during
the construction task, it can be leveraged to teach skills or
orderings to the robot. Using the staged skill execution tech-
nique, the robot executes instructive behaviors from existing
skill data. The robot chooses its preferred ordering of tasks
to execute and directs another agent to perform them. In the
construction task, the robot was trained to instruct the user
to perform the following ordering: locate blue block, move
blue block, pick up red block, place red block. While waiting
for the user to indicate knowledge of the desired action and
to demonstrate the intention to perform it, the robot begins
to demonstrate the introductory motions of the skill. This
demonstration is performed in increasingly complete motions,
stopping just before completing the goal of the subtask. Within
the context of the pick up red block skill, the robot first moves
above the red block. If the user does not respond, the robot
then begins again by moving over the red block, opening and
orienting its gripper such that the block can be grasped. Finally,
if there is no response from the user, the robot executes the
entirety of the action with the exception of the final goal state:
moving over the red block, orienting its gripper towards the
block, opening its gripper, and placing the red block within its
fingers before aborting and returning to a resting position.

With minor changes in treatment, social force is a feature
that makes collaborative robotic systems capable of tran-
sitioning between student, peer, and instructor roles. With
minor changes to the robot’s skill execution algorithm, the
robot becomes capable of teaching other agents kinematically
demonstrated actions, in addition to teaching task ordering
preferences.

V. CONCLUSION

We’ve introduced a rich feature called social force to a
collaborative robot’s planning and skill execution subsystems.
This feature can be calculated in real-time and has been
shown capable of providing robotic systems a range of social,
collaborative functionality based on its treatment. By adding
social force considerations into a robotic system’s planner, the
robot becomes capable of working with others as a peer as well
as learning task ordering from others as a student. With minor
changes to a robot’s skill execution algorithm, it becomes
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Fig. 4. An example of the ’student” behavior, achieved by attractive social force. In the first panel, the robot is waiting for guidance before choosing an action.
In the second panel, the user has gestured near the blue block, exerting social force in the goal region of “Locate Blue Block”. The red box around the skill
name indicates that robot intends to complete this action. The final panel shows the action as ’completed’ in the task tree visualization (green box).
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Fig. 5. An example of the peer” behavior, achieved by repulsive social force. In the first panel, the robot intends to complete “Locate Blue Block”. The second
panel shows an interruption of the action by a human user. Upon detecting strong social force in its current skill’s goal region, the robot aborts its execution
and chooses a different, non-conflicting skill. The third panel shows the robot continuing to exercise conflict-avoidant behavior with the user.
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Fig. 6. An example of the “instructor” behavior, achieved by a using social force as a trigger. The first panel shows the robot evaluating available actions to
teach. The second panel shows the robot demonstrating part of the "Pickup Red Block™ subtask without actually completing it. In the third panel, the user has
picked up the red block as previously pointed to by the robot, triggering the robot to mark the task as complete.



capable of using social force to teach skills and task orderings
to others. We’ve demonstrated this functionality through a
proof-of-concept implementation on a collaborative workbench
equipped with a robotic, lightweight manufacturing arm. The
advantages offered by this approach can result in improved
team efficiency and robot integration into social roles.

Incorporating social force as a feature within a collabo-
rative planner and skill execution algorithm yields promis-
ing results, meriting further study through inclusion in more
complex, more capable collaborative systems. Future work
exploring the benefits of this feature includes correlating the
robot’s own projected social force values with environmental
changes that occur during skill execution to learn about the
consequences of one’s action paths. Agents can also learn
models of collaborators’ social force tolerances, and use this
data to optimally adapt skill execution to minimize cross-agent
conflicts. Socially collaborative robots can also correlate social
force values with collaborators’ reactions to determine whether
an agent is looking to occupy a student, peer, or instructor role
when interacting with the robot.
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