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Abstract—Atypical gaze behavior is a diagnostic hallmark of
Autism Spectrum Disorder (ASD), playing a substantial role in
the social and communicative challenges that individuals with
ASD face. This study explores the impacts of a month-long,
in-home intervention designed to promote triadic interactions
between a social robot, a child with ASD, and their caregiver.
Our results indicate that the intervention successfully promoted
appropriate gaze behavior, encouraging children with ASD to
follow the robot’s gaze, resulting in more frequent and prolonged
instances of spontaneous eye contact and joint attention with
their caregivers. Additionally, we observed specific timelines for
behavioral variability and novelty effects among users. Further-
more, diagnostic measures for ASD emerged as strong predictors
of gaze patterns for both caregivers and children. These results
deepen our understanding of ASD gaze patterns and highlight
the potential for clinical relevance of robot-assisted interventions.

Index Terms—human-robot interaction, autism spectrum dis-
order, socially assistive robotics, social-skills training

I. INTRODUCTION

Social interactions involve complex exchanges of gaze.
People rely on eye contact to direct attention to objects or
events, respond to others’ shift in attention [1], encourage
prosocial behaviors [2], [3], and infer others’ thoughts, desires,
or intentions [4], [5]. Recent findings emphasize the key role
our gaze patterns play in coordinating joint activities [6] and
facilitating social learning [7]–[9]. In essence, gaze serves a
critical communicative function and its temporal dynamics
provide valuable cues in a social exchanges.

Yet, eye contact in Autism Spectrum Disorders (ASD) is a
subject of continuing discussion in the literature. Atypical gaze
behavior is a diagnostic hallmark of ASD and contributes to
many of the social and communicative challenges individuals
with ASD face [10], [11]. For example, individuals with ASD
show a reduced motivation to share attention with others [12].
As compared to neurotypicals, individuals with ASD initiate
joint attention to a lesser extent, are less sensitive to social
gaze, and tend to avoid eye contact [13], [14].

It is commonly believed that training appropriate gaze
behavior will enhance one’s overall social skills because it
is considered a prerequisite for more complex behaviors [15].
Therefore, eye contact is often targeted first for ASD interven-
tion [10]. The intervention pedagogies are typically centered
around positively reinforcing naturally-occurring incidences of
eye contact [16], [17], modeling eye contact with others during
social interactions [18], or adjusting one’s behavior by using
visual supports to encourage eye contact with a speaker [19],

[20]. Although these interventions are intuitive methods for
training appropriate gaze behavior, they demand the continued
motivation of the caregiver, consistency in their behavioral
feedback, and constant sensitivity to the specific needs and
abilities of the individual with ASD over time.

Socially assistive robotics (SARs) has the potential to aug-
ment the current efforts of caregivers and clinicians by eliciting
positive and productive outcomes in ASD interventions [21].
The robots envisioned by these efforts support social and
cognitive growth by improving access to on-demand, personal-
ized, socially-situated, and physically co-present interventions.
Research on SARs for ASD show increased engagement,
improved attention regulation, and more appropriate social
behavior such as joint attention and spontaneous imitation
when robots are part of the interaction [21], [22].

However, many of these studies focus on short-term inter-
actions under controlled settings, or ultimately fail to demon-
strate learning that generalizes to human-directed actions. In
response to this critical gap in the literature, Scassellati et al.
[23] reports directly assessed improvements in social skills in
children with ASD following an in-home, month-long inter-
vention conducted by an autonomous, socially assistive robot.
The study is a preliminary step to demonstrating that SARs
are capable of producing lasting enhancements in social and
communicative skills that are generalizable beyond the specific
robot encounter to real-world, human-human interactions.

The rich dataset that resulted from this study characterized
skills improvement using standard assessments at four time
points: (i) 30 days before the intervention began; (ii) on the
first day of the robot intervention; (iii) on the last day of the
intervention; and (iv) 30 days after the end of the intervention.
These assessments include measures of engagement based on
the child’s performance in various social skill games, joint
attention between the child and their caregiver, and caregivers’
surveys of their child’s initiation of eye contact and verbal
communication beyond the robot-assisted intervention.

Automated measures of performance in the dynamic, un-
constrained environment that is the home, demand complex
sensing. Therefore, the measures of gaze behavior reported by
Scassellati et al. [23] were conducted manually by a clinician
at these four time points. Although investigating improvement
in this discretized fashion speaks broadly to the clinical effects
of the training provided, an analysis of continuous change over
the month-long intervention may better capture the subtle and



nuanced behavioral patterns of ASD. However, in order to
perform this analysis, a reliable method of gaze extraction
must first be developed and then applied to the entire source
dataset. The results produced by this automated method will,
not only confirm those that were collected manually by a
clinician, but also provide valuable insights into the sensing
required to accurately detect gaze behavior in the home.

Furthermore, the analysis examined only one aspect of gaze
behavior, i.e., joint attention between the child and the care-
giver. The source data contained substantial information about
other forms of gaze behavior such as attentional shifts, mutual
gaze, and gaze-following among the robot, child, caregiver,
and other agents in the home environment. This additional
exploration can provide a more comprehensive analysis of the
effects of the intervention on gaze behavior in ASD.

In summary, Scassellati et al. [23] presented initial findings
on the feasibility and efficacy of delivering an ASD interven-
tion with a robot. This study expands the definitions, detection,
and analysis of gaze behavior in [23] to better describe the
effects of a long-term, in-home, social robot intervention on
gaze behavior in ASD. The results of this expanded analysis
have the potential to transform how we design and approach
long-term, robot-assisted interventions for ASD.

II. METHOD

Participants for the initial study were recruited through the
university’s medical school, and the current research team
obtained Institutional Review Board approval to access their
data. The following sections provide details on the participants,
the design and components of the intervention system, and the
methods used to extract and analyze gaze behavior from the
interactions. Most of these details were not included in the
initial study by Scassellati et al., thus supplementing the prior
work and providing essential context for the current analysis.

A. Participant Information

Fifteen families with a child with ASD enrolled in the study.
Two families withdrew, one due to unrelated health problems
and one due to technical difficulties with the robot installation.
Among the families who completed the study, five of the
children were females and eight were males. The participants’
age ranged from 6 to 12 years old (M = 10.0, SD = 1.4).

The diagnosis of ASD was established using a clinical
best-estimate (CBE) approach by licensed psychologists and
speech-language pathologists experienced in the diagnostic
process. Prior to study inclusion, autism symptoms were
characterized using the Autism Diagnostic Interview-Revised
(ADI-R) and the Autism Diagnostic Observation Schedule
(ADOS), gold-standard tools for clinical ASD diagnosis.

The ADI-R is a semi-structured parent interview assessing
four domains: reciprocal social interactions (M = 18.3,
SD = 6.9, cutoff: 10), communication (M = 16.6, SD = 4.7,
cutoff: 8), restricted and repetitive behaviors (RRB; M = 3.6,
SD = 0.8, cutoff: 3), and early abnormal development history
(M = 3.4, SD = 0.7, cutoff: 1). The ADOS is a clinician-
administered behavioral assessment that provides a calibrated

Fig. 1: Modeling Gaze. The robot’s context-contingent gaze
guides the child’s attention between the screen and caregiver,
promoting increased interaction. See Sec. II-B for more details.

severity score (M = 7.3, SD = 2.0, cutoff: 4). While useful
for symptom characterization, both tools were designed for
diagnostic classification, not for measuring change, as they
lack item granularity and sensitivity/specificity to short-term
intervention outcomes [24], [25]. In this study, the ADI-R and
ADOS were used to explore associations between detected
changes and ASD symptomatology.

All participants had IQ scores ≥ 70 as measured by the
Differential Ability Scales (DAS-II), with means across verbal
reasoning (M = 91.8, SD = 25.9), nonverbal reasoning
(M = 95.2, SD = 15.7), spatial reasoning (M = 94.2,
SD = 16.0), and general conceptual ability (M = 93.1,
SD = 19.6). Participants exceeded ASD cutoffs on either the
ADOS or ADI-R, alongside a confirmed CBE diagnosis.

B. Robot-Assisted Intervention System

We describe here the design and expected outcomes of the
robot-assisted intervention, the content of the interactions, and
the physical and technical components of the system.

Intervention Design. The robot-assisted intervention con-
sisted of 30-minute sessions each day for 30 days and involved
triadic opportunities for interaction and shared experiences
among the robot, the child, and the caregiver. To achieve this,
the robot was designed according to four primary goals: to (i)
model realistic social behaviors; (ii) operate autonomously in
the home; (iii) deliver personalized content; and (iv) facilitate
interactions between the child with ASD and the caregiver.

Intervention Content. The intervention content consists of
three interactive games that allowed children with ASD to
practice social skills through play. Each of the three games
targets one of three social skills: social and emotional un-
derstanding, perspective-taking, and ordering and sequencing.
The design of these social games is further described in [23].

During the games, the robot demonstrates context-
contingent gaze, as illustrated in Fig. 1. When the child looks
at the robot (A), the robot will direct the child’s attention to the
game content on the screen (B). After, the robot redirects the
child’s attention to the caregiver (C). We expect the child will
follow the robot’s gaze (D) and, thus, improve the frequency
and duration of their interactions with their caregiver.

System Components. We used the robot Jibo [26] which
stands 11 inches tall and has 3 full-revolute axes designed for



Fig. 2: System Hardware. The system includes several com-
ponents to coordinate the robot’s behavior, content, and data
collection during the intervention sessions.

360-degree movement. Jibo’s onboard capabilities allowed for
the programming of personified behaviors such as naturalistic
gaze, pose, and movement. Other hardware included a touch-
screen monitor, two RGB cameras, a perception computer, and
a main computer. The setup is illustrated in Fig. 2.

Since the robot-assisted intervention relied on modeling
appropriate gaze behavior using the robot, Jibo was developed
to have a pair of animated eyes as opposed to its default
single eye. The perception computer used an elevated camera
to track users’ attentional focus, relaying this data to the main
computer to coordinate the robot’s behavior and game content.
The touchscreen monitor displayed game content and served
as a shared medium between the robot, child, and caregiver. A
second camera recorded the sessions for post-study analysis.
All components operated within the ROS framework [27].

C. Gaze Extraction

A total of 156 hours of interaction was collected, with each
child completing an average of 25 sessions over the month.

Each session recording was pre-processed using OpenFace
[28] to extract the gaze orientation of each person in the video
feed (Fig. 3). The resulting features represented information
such as the gaze coordinates, facial landmarks, and facial
action units for every image frame in the video recordings.
Although the caregiver and child sat side-by-side during the
intervention, we anticipated natural movement throughout the
study, so their locations were not fixed in the analysis. Using
OpenFace, we detected multiple faces in each video frame,
designating the rightmost as the child and the leftmost as
the caregiver. If more than two faces appeared—due to other
people in the home—the correct faces were manually selected.

To determine the attentional target of the participants, we
defined the visual field of the child and caregiver as a cone.
Since the location of static primary targets (i.e., screen and
robot) are known and that of the caregiver relative to the child
can be estimated, a person’s gaze is recorded when a target’s
location falls within their visual cone. For each frame in each

Fig. 3: Gaze Extraction. We extract the several features such
as gaze coordinates and facial landmarks to determine the gaze
orientation of the child and their caregiver.

Table I: Detection Accuracy. The performances of the detec-
tion algorithm based on manual annotations are shown.

Gaze Component N Sensitivity Specificity PPV NPV AUC F1

Individual Gaze 9,327 97% 93% 95% 90% 95% 96%
Shared Gaze 6,972 96% 92% 94% 88% 93% 95%
Mutual Gaze 5,823 93% 90% 92% 88% 92% 93%
No Detection 1,195 91% 94% 92% 90% 93% 91%

Overall Performance 23,317 94% 92% 93% 89% 94% 94%

video recording, we extract the attentional targets of the child,
caregiver, and robot as well as the start time and duration of
attention on the target as measured in seconds. Targets include
the robot, caregiver, child, screen, and unlabelled objects
beyond the intervention content. Gaze data is compressed by
grouping consecutive frames where attention remains on the
same target, providing event-based data for shifts in attention.

Annotation Method. To assess the accuracy of the gaze de-
tection algorithm, we performed annotations of the participant
data. Since we are examining change over time, we randomly
selected one session from the first two weeks and another from
the last two weeks of each participant’s study. 26 sessions were
selected across the 13 participants for annotation, representing
12.4 hours or 7.9% of the total dataset. We used the ELAN
software [29] to timestamp when the child, caregiver, or robot
looked at a target and when they looked away.

To account for the fidelity of human transcriptions, the
annotation representing the start of the gaze event was rounded
down to the nearest quarter of a second and the annotation
representing the end of the gaze event was rounded up to the
nearest quarter of a second. As a result, 5, 635 total gaze events
were annotated. We aligned all annotated events with the
23,317 detected by the algorithm based on video timestamps
to measure overlap. The percentage overlap between detected
and annotated events represents the algorithm’s accuracy.

Performance by Gaze Component. We identified three
primary components of gaze behavior: (i) individual gaze,
where one person shifted attention to a target, (ii) shared gaze,
where two or more people looked at the same target, and (iii)
mutual gaze, where two people made eye contact. An event
was labelled “no detection” when it could not classify, such as
when one’s eyes were obscured or out of the camera’s view.

We evaluated the detection accuracy using several metrics,
summarized in Table I. Sensitivity was high for the three gaze



types (≥ 91%). Positive Predictive Value (PPV), Negative
Predictive Value (NPV), and the area under the ROC curve
(AUC) confirmed the detections were sufficiently accurate. F1
scores provided a balanced view of precision and recall. Lastly,
weighted averages summarized the overall performance.

Performance by Subject. We assessed the performance
of the detection algorithm in capturing the gaze behavior of
both children and their caregivers. This evaluation provided
essential insights into the algorithm’s reliability across these
two user groups in diverse home settings. We employed
accuracy as the primary metric to assess whether algorithm
correctly identified the attended target for each gaze event.

The detection algorithm demonstrated strong performance
in characterizing the gaze behavior of caregivers (M = 94%,
SD = 3.7%, N = 10, 909) and children (M = 88%,
SD = 7.3%, N = 12, 408). Notably, the algorithm yielded
a significant difference in average accuracy between caregiver
and child data, as determined by a one-tailed z-test for sample
proportions (z = 16.6, p ≤ 0.001). This finding indicated
that, on average, the algorithm more accurately detected the
caregivers’s gaze than the children’s. Furthermore, an analysis
of variance yielded a main effect of the individual, F = 24.7,
p ≤ 0.001, indicating that there is a significant difference in
the algorithm’s performance between caregivers and children.

In light of this, we investigated whether specific behav-
iors contributed to this accuracy difference. we observedd a
significant difference for gaze events in which a caregiver
looked at their child versus not (94%, N = 1, 522, z = 3.7,
p ≤ 0.001) and a significant difference for gaze events in
which a child looked at their caregiver versus not (90%,
N = 637, z = 3.7, p ≤ 0.001) regardless of whether the
individual was engaging in independent gaze, shared attention,
or mutual gaze. Altogether, this suggested that looking at a
target to the immediate right or left significantly influences the
accuracy of detection. This is to be expected as turning one’s
head decreases the amount of facial data to determine gaze.
Yet, a significant majority (57%, z = 28.2, p ≤ 0.001) of the
events that could not be categorized and received a label of “no
detection” by the detection algorithm were of children data.
We suspected that this may be because the children showed
more physical movement throughout the study than did the
caregivers, as confirmed by examining the session recordings.

The difference in the algorithm’s accuracy for gaze behavior
between the caregiver and child is unsurprising, as most open-
source datasets for automatic facial behavior analysis focus
on neurotypical adults. The algorithm relies on OpenFace’s
eye gaze estimation [30], which was evaluated by its authors
using the MPIIGaze dataset [31], collected from 15 adults
during everyday laptop use. Despite growing interest in au-
tomatic gaze estimation, these methods have not been tested
on individuals with ASD or children. Future research should
investigate whether OpenFace and similar models are good
surrogates for the behavioral annotation of these populations.

Lastly, no significant variations in the algorithm’s accuracy
were observed when comparing the initial and final stages of
the study, by week, or across other categories of gaze behavior.

Fig. 4: Target Detection. Attentional targets are estimated by
the intersection of one’s visual cone and static object locations.

D. Dataset

A total of 269, 278 gaze events resulted from this detection.
This dataset thus describes gaze behaviors by the frequency
and duration an individual engages in throughout their inter-
vention. The current distribution of gaze duration is unimodal
and positively skewed. Therefore, a log transform was applied
to the duration of gaze to better conform the final dataset to
normality, assessed using the Shapiro-Wilk test.

With the resulting dataset, we explore three main compo-
nents of gaze behavior: (i) overall gaze describing general
attentional shifts to a target, (ii) mutual gaze describing eye
contact among the child, caregiver, and robot, and (iii) joint
attention between the child, caregiver, and robot in which
two interacting partners first engage in eye contact, then one
partner shifts their gaze to an object, causing their partner
to orient their gaze to the same object. We describe these
behaviors by the frequency and duration the child or caregiver
engages in them over the course of the intervention.

III. RESULTS

For each component of gaze behavior, we calculated the
averages and variances of gaze instances and duration. We
also conducted multiple linear regression analyses to identify
predictors of gaze instances for each attentional target. Similar
models were used to determine predictors of gaze duration on
each target and to assess the moderating effects of clinical
measures, including the ADOS, ADI-R, and DAS-II.

We assessed the weekly effects on each gaze component
while acknowledging that tasks varied day-to-day based on
the children’s interests and selections. Because the intervention
system adapted to individual preferences, direct comparisons
between children or per session were not feasible. However, at
the weekly level, each participant was sufficiently exposed to
the intervention, despite variations in the daily games and in-
teraction content. Thus, we assessed behavioral changes across
participants on a weekly basis throughout the intervention.

A. Overall Gaze Behavior of the Child

We first investigate the children’s distribution of attention
across the various targets over time. A multiple linear re-
gression was calculated to predict the log duration of the



children’s gaze on each attentional target. The regression
reveals a significant effect of the week (F = 19.5, p ≤ 0.001)
when the target is the caregiver (β = −0.63, p ≤ 0.001), when
the target is the robot (β = −0.29, p ≤ 0.001), when the target
is the screen (β = 0.34, p ≤ 0.001), and when the target is
other than these predefined targets (β = −0.37, p ≤ 0.001).
Estimated coefficients are denoted as β. A regression did not
reveal any significant effects of the clinical measures (ADOS,
ADI-R, or DAS-II) on the children’s distribution of gaze.

A Tukey’s HSD reveals that the average duration of gaze
occurrences with the robot (M = 6.31s, SD = 1.08s) and
caregiver (M = 4.07s, SD = 1.21s) is significantly lower
(p ≤ 0.001) than that with the screen (M = 70.8s, SD =
2.66s) or targets outside of the intervention (M = 13.2s,
SD = 1.40s). Children’s focus on the screen is expected,
given that the game’s content is a core part of the intervention.
Thus, we further examine attention patterns for each target.

1) Gaze with the Caregiver: A paired t-test performed on
the average number of attentional shifts toward the caregiver
per week reveals a significant increase in the frequency a child
shifts attention toward the caregiver between the first and the
last week of the intervention (t = 3.38, p = 0.005).

A multiple linear regression calculated to predict the log
duration of the child’s gaze on the caregiver revealed a
significant effect of the week (F = 9.71, p ≤ 0.001). The post-
hoc analysis reveals a significant decrease in gaze duration
until the third week (M = 2.82s, SD = 0.54s, β = −0.26,
p ≤ 0.001), where the first two weeks of the study resulted
in a significant decrease in gaze duration (∆M = −1.82s,
p = 0.003) and a significant decrease in gaze duration between
the second and third week (∆M = −1.45s, p = 0.006).
However, in the last week of the study, we observed a
significant increase in the gaze duration of the child with the
caregiver (∆M = 1.86s, p ≤ 0.001). This change indicates
that increased gaze duration with the caregiver occurred after
having engaged with the intervention for at least three weeks.

The multivariate linear regression showed no significant
effect of clinical scores on children’s gaze toward the caregiver.
Overall, participants with ASD increased both their gaze
frequency and duration toward the caregiver over time.

2) Gaze with the Robot: A paired t-test performed on the
average number of attentional shifts towards the robot per
week reveals a significant increase in the frequency a child
with ASD shifts gaze to the robot beginning in the third
week of the intervention (t = 2.65, p = 0.03). However,
this significant increase does not persist into the last week of
the intervention (t = 1.34, p = 0.21). This change indicates
that participants with ASD showed an increased tendency of
looking at the robot only after two weeks of the intervention.

A regression calculated to predict the log duration of the
child’s gaze on the robot reveals a significant effect of the
week (F = 18.8, p ≤ 0.001). The post-hoc analysis reveals a
significant decrease in gaze duration with the robot throughout
the study. The decrease becomes extremely significant in the
third week of the study (M = 10.0s, SD = 15.3s, β = −0.17,
p ≤ 0.05) as compared to the previous week (M = 14.5s,

SD = 5.14s, β = −0.07). This rate of decrease persisted to
the end of the study (β = −0.17, p ≤ 0.001) and therefore
suggests that children with ASD were more likely to shift
attention away from the robot over time.

However, a Levene variance test shows log gaze durations
varied significantly by week (w = 7.96, p ≤ 0.001). A signifi-
cant change in the gaze duration variance in children with ASD
occurred until two weeks into the study and persisted until
the end (p ≤ 0.001). This change suggests that, although the
rate of decreased attention to the robot was similar among all
participants with ASD, the variability in gaze duration among
participants with ASD was greater later in the intervention.

In addition, the regression showed a significant effect of
the ADOS severity score (β = 1.21, p = 0.006) and
all categories of the ADI-R (reciprocal social interactions,
β = 0.59, p = 0.007; communication, β = −0.35, p = 0.007;
restricted, repetitive, and stereotyped behaviors, β = −0.87,
p = 0.005; history of early abnormal development, β = 1.32,
p = 0.006), and of the DAS-II (verbal reasoning, β = 0.02,
p = 0.02; nonverbal reasoning β = 0.52, p = 0.006; spatial
reasoning, β = 0.22, p = 0.007; GCASS, β = −0.45,
p = 0.007). Children with higher ASD severity scores, lower
communicative ability, or more stereotyped behaviors were
more likely to show increased attention toward the robot.

3) Gaze with the Screen: A paired t-test performed on the
number of attentional shifts reveals a significant increase in
the frequency the children look at the screen between the first
and last week of the intervention (t = 5.50, p ≤ 0.001).

A regression calculated to predict the log duration of the
child’s gaze on the screen revealed a significant effect of the
week (F = 76.8, p ≤ 0.001). The post-hoc analysis reveals a
significant increase in gaze duration with the screen throughout
the study (β = 0.33, p ≤ 0.001), suggesting that children with
ASD consistently attend longer to the screen over time.

However, a Levene variance test shows log gaze duration
significantly varies among children with ASD by week (w =
24.43, p ≤ 0.001). This significant change begins in the third
week of the study (M = 1737.8s, SD = 33.7s), as compared
to the previous week (M = 100.0s, SD = 5.92s), and
persists to the end of the study. This suggests that, although
the rate of increased attention to the screen is similar among
all participants with ASD across each week, the variability in
gaze duration is greater after two weeks into the intervention.

The effect of clinical scores1 on gaze duration with the
screen, although similar in magnitude, is in the opposite
direction of that with the robot; children with lower severity
and stereotyped behaviors, and higher communicative ability
and IQ showed increasing attention toward the screen.

4) Gaze with Other Targets: A paired t-test reveals a
significant decrease in the frequency in which a participant

1ADOS calibrated severity score (β = −1.04, p = 0.002); all ADI-
R categories: reciprocal social interactions (β = −0.56, p = 0.001),
communication (β = 0.36, p ≤ 0.001), restricted, repetitive, and stereotyped
behaviors (β = 0.76, p ≤ 0.001), history of early abnormal development
(β = −1.14, p = 0.002); and all DAS-II categories: verbal reasoning
(β = 0.02, p = 0.01), nonverbal reasoning (β = −0.45, p = 0.002),
spatial reasoning (β = −0.19, p = 0.002), GCASS (β = 0.39, p = 0.002).



Fig. 5: Clinical Severity on Gaze. The effect of ASD severity
on gaze behavior toward the robot is similar in magnitude to,
yet of the opposite direction of that with the screen.

with ASD turns attention to targets outside of the intervention
between the first and last week (t = 4.32, p ≤ 0.001).

A multiple linear regression calculated to predict the log
duration of the child’s gaze outside of the intervention’s targets
revealed a significant effect of the week (F = 7.06, p ≤
0.001). The post-hoc analysis reveals a significant increase
in gaze duration with external targets after the second week
(β = 0.05, p ≤ 0.001), but this significant increase is not
observed throughout the study (β = −0.01, p = 0.82). This
transition after the second week (M = 10.72s, SD = 12.26s)
is reflected in a significant increase in average gaze duration
with external objects between the third week (M = 19.1s,
SD = 25.0s, p ≤ 0.001), and significant decrease the fourth
week (M = 7.08s, SD = 4.37s, p = 0.013). The differences
of variance between the weeks is also significant (w = 13.41,
p = 0.004) after in the second week and supports previous
results indicating that the behavioral variability among those
with ASD was greater after two weeks into the intervention.

The effect of clinical scores2 on gaze duration is similar in
both magnitude and direction as that with the robot; children
with lower ASD severity scores, high communicative ability,
or less stereotyped behaviors are more likely to show increased
attention toward the robot.

B. Overall Gaze Behavior of the Caregiver

Using a paired t-test, we found a significant increase in
caregiver gaze shifts to the robot from the first to the last week
of the intervention (t = 7.97, p ≤ 0.001), with no significant
change in gaze to the screen (t = 1.33, p = 0.21). Caregivers
showed a significant decrease in gaze toward the child over
the study period (t = −15.2, p ≤ 0.001) and a significant
increase in shifts to external targets (t = −3.82, p = 0.002).

A regression of the log duration of the caregiver’s gaze also
reveals a significant effect of the week (F = 70.7, p ≤ 0.001)
and when the target is the child (β = −0.23, p ≤ 0.001),

2ADOS calibrated severity score (β = 1.26, p ≤ 0.001); all ADI-R cate-
gories: reciprocal social interactions (β = 0.66, p ≤ 0.001), communication
(β = −0.41, p ≤ 0.001), restricted, repetitive, and stereotyped behaviors
(β = −0.91, p ≤ 0.001), history of early abnormal development (β = 1.39,
p ≤ 0.001); and all DAS-II categories: verbal reasoning (β = 0.01,
p = 0.04), nonverbal reasoning (β = 0.55, p ≤ 0.001), spatial reasoning
(β = 0.23, p ≤ 0.001), GCASS (β = −0.46, p ≤ 0.001).

Fig. 6: Change by Week. Average gaze duration and fre-
quency for adult caregivers (a) and children (c) are shown.
Circle diameters indicate average duration (in seconds) toward
each other and robot (r), while line lengths indicate frequency.
Bar chart representations are provided in the Appendix.

robot (β = 0.16, p ≤ 0.001), screen (β = 0.67, p ≤ 0.001),
or outside of these predefined targets (β = 0.22, p ≤ 0.001).

A Tukey HSD revealed that caregivers spent significantly
more time attending to the screen (M = 166.0s, SD = 3.95s)
compared to other targets, including those outside the inter-
action (M = 32.4s, SD = 3.36s), the robot (M = 14.1s,
SD = 2.32s, p = 0.03), and their child (M = 6.03s,
SD = 1.32s, p ≤ 0.001). The increased attention to the robot,
screen, and other targets beyond the intervention indicates a
quicker shift in focus away from the child. Although children’s
gaze duration and frequency toward their caregiver increased
significantly (though not consistently across the weeks, see
Sec. III-A1), caregivers’ gaze toward their child decreased in
a more pronounced, consistent manner over time. Fig. 6 shows
the magnitude of change for the children and caregivers.

The regression calculated to predict the log duration of
the caregiver’s overall gaze reveals significant effects of their
child’s ADOS calibrated severity score (β = 1.00, p ≤ 0.001),
all categories of the ADI-R (reciprocal social interactions,
β = 0.46, p ≤ 0.001; communication, β = −0.28, p ≤ 0.001;
restricted, repetitive, and stereotyped behaviors, β = −0.73,
p ≤ 0.001; history of early abnormal development, β = 1.06,
p ≤ 0.001), and all categories of the DAS-II (verbal reasoning,
β = 0.02, p ≤ 0.001; nonverbal reasoning, β = 0.42,
p ≤ 0.001; spatial reasoning, β = 0.19, p ≤ 0.001, GCASS,
β = −0.37, p ≤ 0.001). Further investigation reveals that
the significant effects of clinical measures occur only when
caregivers focused on the robot or child. This suggests that
caregivers of children with high ASD severity scores engaged
in longer gaze behavior with both the robot and child over
time. Moreover, the direction of these effects is similar for
both caregivers and children: both engage in longer gaze with
the robot when clinical measures indicate high ASD severity,
low communicative ability, or more stereotyped behaviors.

C. Joint Attention Based on Mutual Gaze

The previous analyses focused on trends in individual gaze
instances and durations, as well as predictors such as weekly
exposure to the intervention and clinical measures. We now
expand our scope to examine the contingency of gaze among
the robot, children, and caregivers throughout the intervention.
We define this contingency through joint attention involving
eye contact, which occurs when two individuals engage in
mutual gaze, and one shifts their gaze to an object, prompting
the other to follow. This gaze following reflects an expectation-
based orienting, where one person’s change in gaze cues the



other’s attention [32]. It is anticipated that joint attention
initiated by mutual gaze leads to greater motivation to follow
gaze cues and longer durations of shared gaze [33], [34].

1) Between Child and Caregiver: A paired t-test revealed
a significant increase in spontaneous mutual gaze between
children and caregivers (t = 4.31, p = 0.009). A regression
predicting the duration of shared gaze following joint attention
showed a significant effect of the week (F = 10.30, p ≤
0.001), with a marked increase in the first week that persisted
throughout the study (β = 0.27, p ≤ 0.001). These findings
suggest that joint attention between children and caregivers
increased, with more frequent mutual gaze leading to longer
periods of shared gaze over time. No significant effects of
clinical measures were found in the regression.

We also observed a significant decrease in the duration
of mutual gaze from the first to the last week of the study
(∆M = −1.43s, β = −0.20, p = 0.002). Despite the
significant increase in joint attention and the resulting shared
gaze between the child and caregiver, the duration of mutual
gaze decreased. This may be viewed as a positive outcome, as
shorter durations of the joint attention cue (i.e., eye contact)
allows for longer durations of shared attention.

2) Between Robot and Child: A paired t-test on the fre-
quency of the child’s gaze toward their caregiver following
eye contact with the robot indicates a significant increase after
the second week of the intervention (t = 4.56, p ≤ 0.001).
Similarly, after the second week, when the child shifted gaze
away from the caregiver, they more frequently redirected
their attention back to the robot (t = 3.46, p = 0.004). A
regression analysis also shows a significant effect of the week
(F = 8.44, p ≤ 0.001). Joint attention between the robot and
child significantly increased from the first week and continues
through the study (β = 0.03, p = 0.006).

We observed a similar trend in the duration of eye contact
between the child and the robot (β = 0.05, p ≤ 0.001) and in
gaze duration when the joint attentional target is the caregiver
(β = 0.27, p = 0.05). The increase in joint attention indicates
that the children directed more attention to their caregiver
while engaging with the robot over time. The regression,
however, does not show a significant effect of clinical scores.

3) Between Robot and Caregiver: A paired t-test of the
frequency of gaze of the caregiver towards their child follow-
ing eye contact between the robot and the caregiver by week
suggests that the caregiver significantly shifted gaze more
often toward the child after following the gaze of the robot
throughout the study (t = 2.80, p = 0.02). When shifting
gaze away from the child, caregivers shifted their attention
more often to the screen (t = 10.1, p = 0.004).

A regression predicting instances of joint attention between
the caregiver and robot shows a significant weekly effect
(F = 5.00, p = 0.002), with a notable increase starting after
the second week and persisting throughout the intervention
(β = 0.07, p = 0.004). Additionally, we observed a significant
increase in the duration of eye contact between the caregiver
and robot (β = 0.33, p ≤ 0.001), as well as in gaze duration
when the child is the joint attentional target (β = 0.07,

p = 0.006), but not when the target is the screen (β = −0.05,
p = 0.52). This suggests that caregivers increasingly focused
on their children while engaging with the robot over time.

The effects of a child’s clinical severity on their caregiver’s
overall gaze3 and the joint attention between the caregiver
and robot are similar in both direction and magnitude; joint
attention between the caregiver and robot increased when
their child exhibits higher ASD severity, lower communicative
ability, or more stereotyped behaviors.

IV. DISCUSSION

Scassellati et al. [23] introduced a robot-assisted interven-
tion system that provided personalized, on-demand cognitive
and social support for children with ASD. We expand the
definitions, detection methods, and analysis of user behavior
to better capture the effects of a long-term, in-home social
robot intervention for ASD. Our findings center on three key
themes: (i) the intervention improved gaze behavior in chil-
dren with ASD; (ii) behavioral variability among participants
increased significantly after two weeks of engagement; and
(iii) diagnostic measures like the ADI-R, ADOS, and DAS-
II proved to be strong predictors of behavioral change for
both caregivers and children. These insights are crucial for
designing effective robot-assisted social skills interventions
and understanding behavioral trends in ASD.

A. Improvements in Gaze Behavior

The social robot promoted appropriate gaze behavior during
the intervention, leading to improved spontaneous gaze be-
tween children with ASD and their caregivers. Children were
significantly more likely to direct their attention and make eye
contact with their caregivers. Our analysis revealed significant
increases in instances of joint attention, spontaneous mutual
gaze, and the duration of shared gaze between the pairs.
However, while children engaged in eye contact with their
caregivers more frequently, the duration of eye contact prior
to shared gaze decreased over time. We view this as a positive
outcome, as it indicates that children needed less time for the
joint attentional cue (eye contact) to maintain longer periods
of shared attention with their caregivers.

Furthermore, the children’s gaze with the caregiver was
contingent on that of the robot throughout the study: children
with ASD were more likely to engage in longer eye contact
with their caregiver after they saw the robot shift its attention
to the caregiver. This contingency of gaze is also true of
caregivers: caregivers were more likely to engage in longer
eye contact with their child after they saw the robot shift its
attention to the child. This suggests that a robot designed to
redirect a person’s attention by modeling the shift in gaze may
be effective at improving the frequency of eye contact.

3ADOS calibrated severity score (β = 1.38, p ≤ 0.001); ADI-R cate-
gories: reciprocal social interactions (β = 0.70, p ≤ 0.001); communication
(β = −0.43, p ≤ 0.001); restricted, repetitive, and stereotyped behaviors
(β = −0.99, p ≤ 0.001); history of early abnormal development (β = 1.49,
p ≤ 0.001); DAS-II categories: verbal reasoning (β = 0.03, p ≤ 0.001);
nonverbal reasoning (β = 0.61, p ≤ 0.001); spatial reasoning (β = 0.26,
p ≤ 0.001); GCASS (β = −0.53, p ≤ 0.001).



Ultimately, gaze following with the robot was natural, in-
creased throughout the study for both children and caregivers,
and encouraged more frequent eye contact and shared attention
between the children and caregivers. Using a joint attention
probe, Scassellati et al. [23] found significant improvements
in joint attention among children with ASD following a robot
intervention. Similarly, this study confirms consistent joint
attention gains with both the caregiver and the robot. Yet, we
must acknowledge that the impact of the robot or any other
system component cannot be measured independently. Further-
more, the sustainability of the observed gains may depend on
ongoing participation in the intervention or additional support.
These improvements were noted during the intervention, but
further research is necessary to determine whether they persist
long after the study concludes. We present this as a limitation
of this study and an area for future work.

B. Timing & Variability of Skill Improvements

Several improvements in gaze behavior emerged only until
two weeks into the intervention. For instance, joint attention
between the robot and caregivers significantly increased only
after the second week. Additionally, children’s gaze duration
toward their caregiver initially decreased during the first two
weeks, followed by a significant increase in the final two
weeks. Hence, we recommend that similar social skills inter-
ventions be evaluated over a duration longer than two weeks to
better capture the potential for significant behavioral change.

It is well known that individuals with ASD show a broad
spectrum of challenges and (dis)abilities, and vary greatly in
their levels of social functioning. Although the participants
were high-functioning individuals with ASD and able to
understand the intervention’s content, we observed significant
variability in the gaze behaviors between users only after two
weeks. This variability among the children was especially
evident in gaze towards objects that were initially novel: the
screen and the robot. While each child’s gaze behavior with
these objects followed a similar pattern for the first two weeks,
their behaviors with these objects diverged significantly after.
Based on these findings, we recommend that interventions
aimed at improving gaze behaviors in children with ASD be
evaluated for more than two weeks, allowing for novelty ef-
fects to subside and increased individual variability to emerge.

C. Predictive Power of Diagnostic Measures

Scassellati et al.’s joint attention probe found that children
with lower nonverbal ability, as measured by the DAS-II,
showed greater gains in joint attention skills. Our analysis
further supports this, revealing a strong positive relationship
between nonverbal ability and joint attention, suggesting that
children with lower nonverbal reasoning had more capacity to
grow in terms of joint attention skills.

Furthermore, the strong correlation between clinical mea-
sures of ASD severity and gaze behaviors suggests that these
metrics can be valuable for predicting intervention outcomes.
For example, children with higher ASD severity and lower
nonverbal ability showed increased attention to the robot while

their attention to the screen decreased over time. These scores
not only predicted the children’s behaviors but also their
caregivers’. Caregivers of children with high ASD severity
engaged in longer gaze interactions with both the robot and
their child. Being able to anticipate user outcomes based on
clinical severity can influence how we think about the inter-
vention’s effectiveness and allow researchers to streamline the
process by reducing the need for constant clinician oversight.

V. CONCLUSION

This study analyzes gaze behavior in a long-term, in-home
social robot intervention for ASD. Our findings contribute sev-
eral recommendations for designing social skills interventions
and for understanding gaze behavior in ASD. The primary
findings demonstrate that the robot-assisted intervention im-
proved various aspects of gaze behavior in children with ASD,
that there is a marked difference in when the children improve,
and diagnostic measures can be good predictors of long-term
gaze behavior of both caregivers and children with ASD.

We recommend that designers of social skills interventions
for ASD leverage these findings by recognizing the potential
of robots to foster appropriate gaze behavior among users.
Additionally, the results indicate that such an intervention on
gaze behavior should be evaluated for at least two weeks to
account for the decline of novelty effects and the subsequent
behavioral variability among individual users. Further research
is necessary to determine how effectively clinical assessments
of ASD predict the outcomes of robot-assisted social skills
interventions. The strong correlation between clinical scores
and gaze behavior suggests that these assessments could
reliably predict the behaviors of both children with ASD and
their caregivers during the intervention. This relationship may
reduce the need for constant oversight by a clinician or for
disrupting in-home interactions to administer tests that may
not fully capture the specific skills targeted by the intervention.

While our study provides valuable insights into gaze behav-
ior during a long-term, in-home social robot intervention for
ASD, it has several limitations. The small sample size (13 chil-
dren with ASD and 13 caregivers) limits the generalizability
of our findings. Behavioral changes from training often require
weeks or months, and while the month-long intervention
captured novelty effects and early impacts, longer studies are
needed to assess the sustainability of improvements. Future
research with larger samples and extended interventions is
essential to better understand the long-term effects of social
robot interventions on gaze behavior in ASD.
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