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Abstract— Collaborative robots represent a clear added value
to manufacturing, as they promise to increase productivity and
improve working conditions of such environments. Although
modern robotic systems have become safe and reliable enough
to operate close to human workers on a day-to-day basis, the
workload is still skewed in favor of a limited contribution from
the robot’s side, and a significant cognitive load is allotted to the
human. We believe the transition from robots as recipients of
human instruction to robots as capable collaborators hinges
around the implementation of transparent systems, where
mental models about the task are shared between peers,
and the human partner is freed from the responsibility of
taking care of both actors. In this work, we implement a
transparent task planner able to be deployed in realistic, near-
future applications. The proposed framework is capable of basic
reasoning capabilities for what concerns role assignment and
task allocation, and it interfaces with the human partner at the
level of abstraction he is most comfortable with. The system
is readily available to non-expert users, and programmable
with high-level commands in an intuitive interface. Our results
demonstrate an overall improvement in terms of completion
time, as well as a reduced cognitive load for the human partner.

I. INTRODUCTION

In recent years, research on constructing fully autonomous
and self-capable robotic systems has shifted toward partially-
capable machines that collaborate with human partners,
allowing the robot to do what robots do best and the human to
do what humans do best. Among the vast range of strategies
employed in human-robot collaborative activities, common
approaches are: i) dividing the work into independent sub-
tasks to be performed in parallel with little to no overlap—
such as in factory lines [1]; ii) exploiting robot-specific
benefits—e.g. the absence of fatigue and need to rest—to
provide support for the more dexterous and capable human
partner [2]. In both cases, a certain amount of autonomy from
the robot’s side is extremely beneficial in terms of efficiency
and efficacy of the collaboration. Moreover, the degree of
transparency about task execution and role assignment that
the partners exhibit is crucial: both peers need to reason and
to communicate about the role of each partner, so that the
other agent can act accordingly.

In the last decade we have witnessed a partial shift
in research from observation-based mechanisms for skill
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Fig. 1. The experimental setup is composed of the Baxter robot engaging
in the joint construction of flat-pack furniture with an human partner (see
Section IV-A for details).

acquisition (e.g. learning from demonstration or reinforce-
ment learning) toward collaboration-based mechanisms for
task learning [3], [4] and joint operations within a shared
workspace [5]. Unfortunately, collaborative robots still lack
efficient ways of coordinating their actions with a human
peer, as for example another human would do in similar
settings [6]. Such capabilities involve on-the-fly work dis-
tribution, bi-directional communication about task progress,
and adaptive (re-)planning in case of errors or unpredicted
human decisions. Additionally, recent work in human-robot
teaming suggests how the collaboration benefits from the
human partner being in the position of leveraging his superior
dexterity or decision making capabilities [7]. Typically, these
are domains in which it is hard for the robot to fully
understand the state of the world, especially when the human
reacts to unforeseen situations for which the robot has not
been trained or programmed. In such contexts, the state
of the system (composed of the environment as well as
the human partner with his intentions and beliefs) is only
partially observable and understandable by the robot. Whilst
communication may curtail the uncertainty the robot has
about the state of the world, there are some fundamental
limitations that a constant communication channel between
the two peers would entail. First, communication is costly,
because it requires both partners to allot time for it, and
increases the cognitive load on the human. Further, vocal
communication with synthetic systems may be faulty, partic-
ularly in noisy environments such as factories or workshops.
Finally, communicating about every aspect of a task is often
inefficient compared to directly acting, which represents an



implicit way of communicating about the task itself.
In this work, we set forth to address the following prob-

lems: i) the ability of collaborative robots to plan under
uncertainty, and specifically in situations where the state of
the task as well as the intentions of the human partner are
only partially observable, ii) the capability of deciding when
to communicate and what to communicate about. We target
collaborative robots that are capable of choosing the best
execution plan according to the information they are provided
with (i.e. a suitable representation of the task), and are able
to explicitly optimize some task-relevant parameters (such
as completion time) while at the same time reducing the
cognitive load on the human partner. Importantly, we focus
on implementing a system that is transparent by design, in
order for the human to be able to choose the appropriate next
action or to timely intervene if the system’s decisions are
wrong. Thus, we will treat communication not only as a way
for the robot to gather information about the environment,
but also as a channel where the robot itself can transfer
information to the human partner about its own internal
state and intents. The contributions of this work are: i) a
fully automated technique able to convert human-readable
task models into robot-executable plans; ii) the ability for
the system to reason about the task being performed and
provide a transparency layer to the user, on top of executing
the task; iii) the demonstration of this technology in a
real collaborative scenario, where it optimizes the overall
task completion time by actively making decisions on role
assignment and task allocation.

In the following, we introduce the reader to hierarchical
task models and partially observable Markov decision pro-
cesses (POMDPs, Section II). Then, we describe the pro-
posed approach (Section III), and the experimental scenario
used to evaluate the system (Section IV). Finally, results
collected from experiments are described in Section V,
followed by the discussion and conclusions (Section VI).

II. BACKGROUND AND RELATED WORK

This work rests on the idea that shared knowledge and
transparent commitment to the task are central for collab-
orative behaviors. We base our approach on an original
combination of two elements. On one hand, we exploit high
level task models such as hierarchical task models, that
are understandable by both the human and the robot. On
the other hand, we capitalize on adaptive planning from
POMDPs, that offer the ability to reason under uncertainty
and plan at the high level of representation, a level that is
most suitable for communication with the human partner.

A. Hierarchical Task Models

Hierarchical structures form an appealing framework for
high-level task representations. In particular, hierarchical
task networks (HTNs) have been widely used to describe
task representations and derive robotic planners [8]. Another
example are “and/or” graphs that represent tasks as hierar-
chies of conjunctions and alternatives of subtasks; they also
provide efficient planning for single and multiple agents [9].

In collaborative setups, hierarchical task models can help
predicting the actions of a human peer, hence improving
a robot’s ability to provide support in the task [10]. Addi-
tionally, their level of abstraction often makes them close
to human intuitions about the proceeding and constraints
of the tasks, which facilitates human-robot communication
about the task. The level of abstraction also enables human
operators with moderate to no training to manually provide
such task descriptions. The hierarchical nature of these
models makes it easy to reuse parts from one task to a similar
one. On the other hand, because manual task specification
is not always feasible or efficient, active research explores
techniques to learn hierarchical task models automatically
from demonstration [4] or self-exploration [11].

B. Partially Observable Markov Decision Processes

We use the Markov decision process (MDP) framework to
model the optimization of the robot’s actions, an approach
that has been shown to provide efficient planning for human-
robot interaction (e.g. [2]). In this paper, we additionally
optimize the actions related to the task assignment dynamics
between the human and the robot. Our design choice of
extending the MDP approach to include partial observability
with POMDPs has two main advantages. Firstly, it handles
the uncertainty in the interaction as non-observability. This
includes both misalignment while the human progresses in
the task and changes in the environment that are not observ-
able by the robot, e.g. when the human performs a complex
manipulation whose progress may be difficult to observe.
Indeed, POMDPs and similar models (e.g. MOMDPs) have
been shown to improve robot assistance [12] and team effi-
ciency [13] in related works. Secondly, partial observability
enables to model the robot’s decisions about communicative
actions. These do not directly modify the state of the world
but instead gather knowledge. In the following example, the
robot decides whether or not to ask the human if his action
finished. Similar models have been used for polling the peer’s
internal state in a driving setup [14] and communicating in
a collaborative tasks [15], [16]. Similarly to [15], in this
work we explicitly leverage the partial observability principle
to model the internal (not observable) state of the human
partner, such as the action he is currently involved with
or his beliefs and intents. In doing so, we address both
task allocation and information gathering and demonstrate
the efficiency of the resulting system in a real robotic
experiment.

III. METHOD

Our work leverages recent advancements in the field of
high-level task reasoning and representation. Importantly,
we focus on improving the efficacy of the collaboration
in the context of a task model that is already learned or
directly provided by the user. As a consequence of this,
we do not direct our efforts on learning task models from
demonstrations [3], [17], although we exploit similar repre-
sentations, as detailed in Section II-A. Our work addresses
questions similar to [18], [7], but differs by providing means
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Fig. 2. User interface for high-level task representation. The user can inspect the task at various levels of granularity, and get a feedback on the subtask
the robot has been instructed to accomplish (→ for sequential tasks, || for parallel tasks, ∨ for alternative tasks). During task execution, the robot can
provide feedback to the user by highlighting its estimate of the current subtask (cyan block in picture). The task depicted is the joint construction of a
stool (cf. Section IV-B).

to explicitly model decisions about communication acts; a
question that [19] also targets from the different perspective
of optimizing the formulation of a request for help.

A. Approach
We target robotic systems that are readily available to non-

expert users. In this respect, a hierarchical representation of
the task serves as the entry point for such users: it models
the task with the same level of abstraction that one would
use to describe the task to another person, while hiding the
details of the implementation. An example of such model is
shown in Fig. 2: each of the nodes of the graph are either a
subtask or an atomic action that can be executed by either of
the partners (or both). Without loss of generality, we extend
the CC-HTM representation presented in [4] by introducing a
new topological element in the task representation, that is the
alternative operator (∨ in Fig. 2). This operator, which joins
the already available sequential and parallel (respectively→
and || in Fig. 2) operators, allows for a disjunction between
subtasks, and adds a significant amount of expressiveness to
the network introduced in [4].

As mentioned in Section I, the first contribution of this
work is a system able to convert high-level hierarchical mod-
els into low-level task planners capable of being executed
by the robot. We propose to transform high-level HTMs into
low-level, on-line planners by using POMDPs, that model
the commitment of robot and human to parts of the task and
hence address the task allocation problem. POMDPs are also
able to explicitly plan for actions that do not affect the state
of the system but whose role is to reduce uncertainty about
the system. This property enables communicative actions
to be treated as first-class actions available to the system’s
policy (cf. Section III-B). Furthermore, we consider here the
extreme situation of a blind robot that is not capable of ob-
serving the actions of the human. This forces us to investigate
mechanisms of coordination though communication only.

Importantly, a robot being able to plan the task at a
high level of abstraction serves as the first step toward a

transparent, natural interaction with the human. An efficient,
collaborative robot needs to reason about the kinds of sup-
portive behaviors it can provide given the state of the world
and the human collaborator, and should be able to eventually
steer the human partner in order to optimize the task accord-
ing to some metric. This degree of proactiveness enables
a larger scope of socially-aware and natural collaborative
systems. Firstly, it is possible to reason on regular planning
problems, e.g. ‘Should the human or the robot take care
of a specific action?’, the answer of which depends some
metric to optimize. Secondly, the system can also reason
about unobserved transitions: for example, if the human
chooses a specific execution plan when multiple are allowed,
the robot is not able to observe the human intention, and
may gather information with a question. Optimizing under
uncertainty enables taking such action only when beneficial,
that is only if it is expected to impact the outcome of the
robot’s decisions. This situation also arises when the robot
does not observe directly whether the human has finished
some subtask (as with fine manipulation tasks). Analogously,
to limit uncertainty on the human side, the robot should make
its own decisions transparent to the user. Such communica-
tion in turn reduces uncertainty on the future actions from
the human. Finally, considering the cost of various actions,
the robot can decide which communication channel to use.
In particular, when making an error is not too costly, it may
be preferable to try a physical action in an uncertain context
rather than engaging in a complex communication process.

B. Restricted Model (RM)

We propose an automated technique able to transform
task-level HTMs into low-level POMDPs. We focus on the
optimal exploitation of communication as a (costly) way
to reduce uncertainty on the system without affecting its
state. To fulfill this goal, we convert each primitive subtask
(that is, each leaf composing the HTM in Fig. 2) into a
small, modular POMDP, which we call a restricted model
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Fig. 3. Each subtask is modeled as an atomic POMDP. Nodes represent
states, whereas links represent the [action, observation] pair that connects
states together. For the sake of clarity, only the most relevant actions for
each state are depicted, even though the planner is allowed to choose any
action in any state. See Section III-B for details.

(RM [20]). Hence, the RMs are mostly independent from
the rest of the problem and can be studied in isolation.
Differently from [20], each RM is then composed at a later
stage and the problem is solved in its entirety. This approach
benefits from the modularity of the HTM representation,
without the typical sub-optimality of policies that do not
consider the full problem.

Fig. 3 depicts the restricted model developed in this work.
Each leaf—that is, each atomic action in the task—can
be ideally assigned to either the human or the robot. The
state space S of the restricted model is composed of three
states. The initial state (‘init’ in Figure) is used to negotiate
role assignment in the restricted model. Here, the system
takes care for this duty: according to some metric (here
minimal overall completion time, see Section IV-B), the
system decides whether to communicate that the action is
going to be performed by the robot (‘tell intent’ in Figure)
or to suggest that the human partner should be allotted to
the task (‘ask intent’, question to which the human may
answer ‘yes’ or ‘no’ ). In both cases a transition occurs
to the corresponding state (‘human acts’ or ‘robot acts’),
where either the human or the robot is assigned and publicly
committed to the task. In the current version of our system,
both peers are required to follow through with the action
once roles are assigned in the negotiation step. That is, we do
not allow the agents to change their plan mid-action. Then
the agent (human or robot) needs to execute the expected
‘physical ‘ action to trigger the transition to the first ‘init’
state of the next (or one of the next) subtask. This mechanism
iterates for all the leaves composing the HTM representation
until an end state is reached and the task is completed.

The pairs [action, observation] link the various states in the
graph. In this work we restrict to observations that represent
the way in which the human partner can interact with the
system; possible observations are: ‘yes’ (green), ‘no’ (blue),
‘error’ (red). In addition, the ‘nothing’ observation (where
the human does not reply or is not needed to) is also

taken into account (gray link in Figure). Five actions can
be taken by the robot: ‘ask intent’ and ‘ask finished ’, to
gather information about the human state, yield a ‘yes’ or
‘no’ observation; ‘tell intent’, to communicate the robot’s
intentions to the human partner, does not require an answer
(‘nothing’ observed); ‘physical ’, to actually complete the
subtask (‘nothing’ or eventually an ‘error’ in case of failure
are observed); and finally, ‘wait’ always yield the ‘nothing’
observation. Importantly, the system is allowed to pick any
irrelevant action in any possible state (‘*’ in Figure), but will
receive a ‘nothing’ or ‘error observation.

This describes the basics of the transition probabilities T
and observation probabilities O of the restricted POMDP;
however they include more stochasticity as described below.
We allow, with a small probability, the robot actions to lead
to an error that does not change the current state, or the
human to skip answer to a question from the robot. This
forces the solver to plan for unexpected or unobserved events
and favors more robust policies. Similarly, while the human
is committed to achieving the current subtask (‘human acts’
state), the model accounts for the durations of the robot’s
actions by varying the probability that the human completes
his or her action (i.e. the probability of transition to the
next state) depending on the duration of the robot’s action
(such as ‘wait‘ or ‘ask finished ‘). Specifically, we model
the completion of the human action as an exponential decay
whose mean time is the average duration of the action.
Given a robot action, the event that the human finishes
during this action is modeled as a Bernoulli variable; its
probability corresponds to the probability of the decay during
the duration of the robot’s action.

C. Assembling the modular POMDP

From the HTM we derive the list of successors for each
node and compute the total number of states and actions of
the global POMDP. We then populate the matrices repre-
senting transitions, observation, and reward probabilities to
encode the RM from Fig. 3, for each node as well as for node
to node transitions. The topological operators introduced in
Section III are accounted for when restricted models are
linked together. For what concerns a sequential operator (→
in Fig. 2), each ‘init’ state represents the final state of the
previous model. Alternative operators (∨) branch out the
POMDP in multiple paths with equal transition probability—
the choice of the path will be dictated by their intrinsic costs
or randomly in case of equal costs. Finally, it is always
possible to convert a parallel operator (||) into an alterna-
tive between paths containing the subtasks the operator is
composed of, but in a differently ordered sequence.

Scalability is a common issue when PODMPs are applied
to problems with a large number of states. In our approach,
since we consider a high level representation of the task and
each subtask introduces three new states, the size of the state
space increases linearly with the number of leaves in the
HTM. In the realistic scenario we present, this system is
used in contexts in which an upper bound to the number of
leaves is the number of subtasks that an human operator can



physically handle. Hence keeping the state space relatively
small. In extreme cases where the state space would be too
big, our framework intrinsically accounts for the ability to
split the full problem into smaller POMDPs and retrieve a
successful (although sub-optimal) policy—similarly to [20].
We however do not implement this strategy in this paper.

IV. IMPLEMENTATION

A. Experimental Setup

We implemented our system on a Baxter Research Robot
(cf. Fig. 1), using the Robot Operating System (ROS, [21]).
As mentioned in Section III, although we did not place our
focus on boosting its overall skills, we devised a set of
basic capabilities in order for the robot to be an effective
partner. To this end, we implemented two low-level, state-
less controllers (one for each of the robot’s arms) able to
operate in parallel and to communicate one another if needed.
A library of high-level predefined actions (in the form of
ROS services) is available for the POMDP planner to choose
from; such actions range from the simple, single arm ‘pick
object’ to the more complex ‘hold object’ (which requires a
physical collaboration with the human partner) or ‘hand over’
(which demands a bi-manual interaction between the two
arms). Inverse kinematics is provided by TRAC IK [22], an
efficient, general-purpose library that has been adapted to the
Baxter robot and guarantees a control rate of 100Hz. For both
controllers, the perception system is based on Aruco [23], an
OpenCV-based library able to generate and detect fiducial
markers. Each object in the workspace is equipped with an
unique ID associated with a specific marker; by exploiting
the robot’s kinematic model and receiving visual feedback
from the cameras placed on the end effectors, the robot is
able to track objects into its three-dimensional operational
space. This is particularly useful in order to achieve precise
localization and grasping skills, because it is possible to
implement visual servoing algorithms with a feedback loop
that is as close as possible to the interaction itself.

The system allows for context-based, multi-modal inter-
actions with the user. Multiple, redundant communication
channels are exposed by the framework, with the goal
of interacting with the user on ‘human terms’ [24]. This
redundancy aims at allowing the human partner to choose
the interface that suits him the most; importantly, it also has
the advantage of making the interaction itself more robust.
The exposed layers are the following:

1) Web Interface: it enables bi-directional communication
between the robot and the human peer. The user can load new
tasks, inspect the current task, and receive feedback from
the robot’s understanding of the state of the task (see Fig. 2
for details). It is based on roslibjs, a JavaScript library that
interfaces with ROS [25].

2) Feedback Channel: it is presented to the user in the
Baxter’s head display (see Fig. 1). It allows the user to
receive constant feedback about the robot’s state and intents.

3) Text-to-Speech (TTS) System: based on the SVOX-
PICO engine1, is used to verbally interact with the human
peer during task execution. For the purposes of this work,
the verbal interaction is limited to yes/no questions, that can
be answered by the user in the web interface. The questions
are also prompted in the Baxter’s head display.

4) Force Interaction Layer: it endows the robot with
the capability of detecting when a specific force pattern
is applied by the human partner to the robot’s arm. This
is particularly important to accomplish natural interactions
during physical collaborative actions (for example holding a
lumber while the human drills into it).

5) Emergency Channel: it allows the human partner to
send error messages to the controllers: it can be triggered by
either pressing one of the buttons on the robot’s end-effector,
or by pressing an appropriate button on the web interface, if
the arm is not within reach.

B. Experiment Design

We devised an experiment in which the human and the
robot are engaged in the joint construction of flat-pack
(IKEA-like) furniture—specifically a stool (cf. Fig. 1). It
is a miniaturized version of a real stool commercially sold
online2, and is composed of four parts (a central frame, the
right and left legs, and the top part) that simply require being
snapped together—a task that the Baxter is not able to per-
form in its entirety. The constituent parts are placed in a pool
of objects that can be accessed by the robot exclusively (see
Fig. 1). The human and the robot are allowed to interactively
build the stool in a common workbench. It is worth noting
how, although simple, this experiment represents an ideal
scenario to evaluate the proposed approach: we purposely
chose a task that does not require any particular skill from
the human partner, but where the roles of both the human
and the robot are decidedly clear. That is, there is no need for
the experimenter to clarify to the human the role assignment
in this task: each of the four parts that constitute the stool
require a retrieval from the pool of parts (to be performed
by the robot), and eventually a snap onto the frame (to be
performed by the user).

The metric used to assess the effectiveness of our ap-
proach is the completion time that the overall human-robot
collaborative system takes to complete the task. As a control
condition, we compare our technique with a similar system
where no anticipation and task reasoning is in place. That
is, a system in which the human operator actively asks for
specific actions to be performed by the robot through a
web interface. The skill set and capabilities of the robot
are the same in both scenarios. In the following paragraphs,
the two experimental scenarios are presented. For both the
experiments, completion time between the beginning and the
end of the full task are recorded, as well as completion time
for each of the subtasks the stool assembly is composed of.

1 https://en.wikipedia.org/wiki/SVOX
2 The CAD design of the stool has been downloaded from opendesk.cc,

and then 3D-printed with a 1:2 scale.
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https://www.opendesk.cc


(a) Exp. A (b) Exp. A (c) Exp. A

(d) Exp. B (e) Exp. B (f) Exp. B

Fig. 4. Snapshots acquired during the collaborative assembly of the stool in the control and the interactive conditions. Control condition (top): a) The
participant asks for the central frame through the web interface (tablet on table); b) the robot supports the human by holding the central frame in place; c)
the user snaps the right leg onto the central frame that is held by the robot. Interactive condition (bottom): d) the robot communicates the intention to get
the central frame (as computed by the POMDP); e) the robot asks the human to snap the right leg onto the central frame, because the human is deemed
more efficient (third column in Table I); f) after the last subtask is completed, the POMDP enters a final (virtual) state.

1) Exp. A - control condition: in this scenario, the human
is required to perform the task in conjunction with the robot
by explicitly requesting robot actions when needed (similarly
to the Explicit Teaming Group in [7]). Firstly, the human
participant is introduced to the Baxter and and the task. The
experimenter shows the capabilities of the robot (that are the
ability to retrieve an object from the pool and to hold a part in
place when supporting the human), and briefly illustrates how
to complete the stool task. Finally, the human is presented
with the web interface (cf. Section IV-A.1), which displays
HTM for the task under completion (cf. Fig. 2), and a series
of five buttons that trigger the robot actions (that are ‘get
central frame’, ‘get left leg’, ‘get right leg’, ‘get top’, ‘hold
part’, respectively). The human participant is allowed to
complete the task without any restrictions.

2) Exp. B - interactive condition (collaborative assembly
with role assignment and task allocation): this scenario
introduces a shift in task allocation responsibilities from the
human to the robot. That is, the human is freed from rea-
soning about the task and what action each partner is going
to perform. In this case, the experimenter only anticipates to
the participant that the robot is going to be more proactive
and communicative. The web interface is now simplified, and
the action buttons are replaced with a ‘yes’ and ‘no’ button
(to reply to the robot’s questions), plus the ‘error’ button
that the human is instructed to press if the robot is taking
the wrong action or is generally in error. Importantly, these

buttons explicitly correspond to the type of observations that
the POMDP planner allows for, and they represent the on-line
interaction channel that the human partner is provided with
in order to affect the execution of the task (see Section III-B).

V. RESULTS
The framework has been released under the LGPLv2.1

open-source license, and it is freely accessible on GitHub3.
Although the majority of the codebase is robot-independent,
the control architecture is readily available for any Baxter
robot. We test the proposed system in a proof-of-concept
scenario in which the human and the robot are engaged in
the joint construction of a stool. We define the problem as
a sequence of 9 subtasks; this translates to a state space
dimensionality of 28 (9× 3 state for each restricted model,
plus 1 final state), and an action space composed of 37
possible actions (9 × 4, where 4 is the number of possible
actions described in Section III-B, plus a ‘wait’ action).

The high-level actions presented to the user in the hier-
archical task model fall into four different categories. As
described in Section III-B, leaves in the HTM are then
transformed into a restricted model with equal treatment.
To showcase the flexibility of the proposed approach, we
enforced different costs for each action typology in order for
the POMDP solver to act differently in each case. Table I

3github.com/scazlab/baxter collaboration hosts the
source code for the Baxter’s controllers, whereas github.com/
scazlab/task-models hosts the HTM to POMDP planner.

https://github.com/scazlab/baxter_collaboration
https://github.com/scazlab/task-models
https://github.com/scazlab/task-models


TABLE I
COSTS (COMPLETION TIMES) FOR THE STOOL TASK.

Get Hold Snap Release Communicate

Human Acts [s] ∞ 5 5 ∞ N/A

Robot Acts [s] 20 10 ∞ 1 2

Robot Error [s] 10 ∞ ∞ 1 N/A

illustrates the costs used to allocate a specific subtask to
either the human or the robot, in terms of realistic completion
times estimated from prior experimental sessions. For each
high-level action, the completion times in seconds for the
human and the robot are shown(‘Human Acts’ and ‘Robot
Acts’ respectively). Additionally, the POMDP solver allows
for a cost to be paid if the robot performs a ‘physical ’ action
in the wrong state (‘Robot Error’ in Table). As described in
Section III-B, each action can be theoretically performed by
both peers, but the stool task has been explicitly designed
to constrain some actions to either the robot or the human
exclusively, in order to enforce role assignment (cf. Sec-
tion IV-B). To this end, we assign an infinite completion
time for the peer that is not supposed to perform the task.
Additionally, a constant cost of 2 seconds has been desig-
nated for each communicative action. The system has been
evaluated with 8 participants, in a within-subjects design. All
experimental conditions are to be performed twice for each
participant, for a total of four demonstrations—hereinafter
referred to as A1, A2, B1, and B2. To reduce the chance
that familiarization with the task would penalize the first
demonstrations, we randomized the initial condition—i.e.
four participants started their experiment with condition A,
whereas the other four started with condition B. Nonetheless,
some degree of improvement in terms of completion time
between the first and the second demonstration pertaining
to a specific condition (i.e. A1 vs. A2 and B1 vs. B2) is
still expected. Additionally, the two experimental conditions
were alternated—i.e. participants were allowed to perform
experiments following two trajectories: either [A1-B1-A2-
B2] or [B1-A1-B2-A2].

To solve the POMDP problem, we employ the solver
developed in [26]. For all the participants, each POMDP
solution took less than 10 seconds to compute: that is, the
POMDP solver took less than 10 seconds to solve the full
task. A series of snapshots illustrating the task is shown in
Fig. 4. Please refer to the accompanying video for a more
extensive demonstration of the experimental session (full
resolution available at youtu.be/l6alHuMqx6Y).

Fig. 5 depicts the completion time that each participant
needed to complete the four demonstrations. A two-samples
t-test between conditions A and B—see Table II for a
comparison of the average completion time and standard
deviation among demonstrations—shows statistically sig-
nificant difference, with a p-value of 0.016. Overall, the
results suggest evidence of an improvement in terms of task
efficiency: the total time spent in carrying out the task was

Fig. 5. Completion time [s] for each participant involved in the construction
task. A total of 8 participants (red dots in figure) performed two baseline
conditions (A1 and A2), and two interactive sessions (B1 and B2). For
each trial, average completion time and standard deviation are shown in
blue.

TABLE II
AVERAGE COMPLETION TIME [S] DURING THE CONTROL (EXPERIMENT

A) AND THE INTERACTIVE (EXPERIMENT B) CONDITIONS.

Exp A - Control Exp B - Interactive

154.8 (21.8) 139.4 (14.7)

A1 A2 B1 B2

159.9 (21.8) 149.6 (13.0) 145.9 (17.7) 132.9 (2.1)

reduced by 10%. Interestingly, the condition B2—that is,
the second demonstration of the interactive condition—is
considerably better in terms of standard deviation. This could
be interpreted by the fact that all the participants were hitting
a plateau for what concerns how fast they could complete the
task, since in such a scenario more responsibility is allotted
to the robot, and less variability is allowed to the human in
terms of number of interactions with the system.

We have registered a general user preference toward the
proposed system. Interestingly, multiple reasons were given
that support the idea that a more transparent interaction
favors the collaboration between peers. Most of the com-
ments suggested a reduced cognitive load as the reason
for such preference. A non-exhaustive list is the following:
i) there is no need to exactly remember the steps needed
to complete the task, or to review such steps in the web
interface; ii) there is less time ‘wasted’ in taking decisions
(i.e. the system ‘helps’ the user gain time); iii) the web
interface is simpler and less cluttered, and the interaction
with it is less frequent—as a matter of fact, the number of
buttons was reduced from 8 to 3. These comments are of
particular interest if put in perspective: as detailed above, we
considered a simple assembly task with a limited number of

https://youtu.be/l6alHuMqx6Y


steps; we foresee that the impact of the proposed system will
be even more substantial in real-world assembly tasks, when
the number of steps is considerably higher.

VI. DISCUSSION AND CONCLUSIONS

In this work, we demonstrate how high level task models
can be combined with adaptive planning under uncertainty,
as modeled by POMDPs. We propose a framework able to
autonomously reason about the problem of allocating specific
subtasks to either the robot or its human peer. That is, the
robot intercedes for the human during the decision making
step. Importantly, the system is completely transparent to the
user, who is in full control of both the decisions made by the
robot, and its operations during execution. We present a pilot
experiment where such system is shown to be significantly
more efficient than a comparable scenario where the decision
making role is allotted to the human.

It is worth noting that in all the conditions the user was
provided with minimal information regarding the capabilities
of the framework. Indeed, the ability of the proposed system
to intuitively interact with the human partner is considered
an important asset of the proposed approach.

A technical limitation of the system is arguably the fact
that the decay model for the completion of human actions
might not be suited for all kinds of human actions. Indeed
modeling long actions with predictable durations would
require some memory of the remaining time to completion.
However evaluating which actions deviate from the model,
how this may affect the computed robot behavior, and how
modifying the model could alleviate such issues, is a matter
for future work.

Further work has to formally demonstrate the full scalabil-
ity of the proposed work to more complex tasks, involving
more complex actions. In particular, efficient solvers might
have to be developed to alleviate the exponential growth
of the problem size, by e.g. leveraging the relative sparsity
and block structure of the transition matrix. Additionally,
extensions of the current model to multi-agent planning and
parallel execution of human and robot actions may turn
essential for real-life efficient applications. Similarly, more
in-depth user studies will be able to evaluate the diversity
and quality of the behaviors generated by the system in
more complex scenario. The influence of the many system
parameters on real user experience is still unknown. Other
aspects such as finer modeling of the influence between the
human and robot on decisions could improve the framework.
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