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Robot tool use: A survey

Meiying Qin*, Jake Brawer and Brian Scassellati

Yale Social Robotics Lab, Department of Computer Science, Yale University, New Haven, CT, United States

Using human tools can significantly benefit robots in many application domains.
Such ability would allow robots to solve problems that they were unable to without
tools. However, robot tool use is a challenging task. Tool usewas initially considered
to be the ability that distinguishes human beings from other animals. We identify
three skills required for robot tool use: perception, manipulation, and high-level
cognition skills. While both general manipulation tasks and tool use tasks require
the same level of perception accuracy, there are uniquemanipulation and cognition
challenges in robot tool use. In this survey, we first define robot tool use. The
definition highlighted the skills required for robot tool use. The skills coincide with
an affordance model which defined a three-way relation between actions, objects,
and effects.We also compile a taxonomy of robot tool usewith insights from animal
tool use literature. Our definition and taxonomy lay a theoretical foundation for
future robot tool use studies and also serve as practical guidelines for robot tool
use applications. We first categorize tool use based on the context of the task. The
contexts are highly similar for the same task (e.g., cutting) in non-causal tool use,
while the contexts for causal tool use are diverse. We further categorize causal tool
use based on the task complexity suggested in animal tool use studies into single-
manipulation tool use and multiple-manipulation tool use. Single-manipulation
tool use are sub-categorized based on tool features and prior experiences of tool
use. This type of tool may be considered as building blocks of causal tool use.
Multiple-manipulation tool use combines these building blocks in different ways.
The different combinations categorize multiple-manipulation tool use. Moreover,
we identify different skills required in each sub-type in the taxonomy. We then
review previous studies on robot tool use based on the taxonomy and describe
how the relations are learned in these studies. We conclude with a discussion of
the current applications of robot tool use and open questions to address future
robot tool use.
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1 Introduction

Many robots are designed to interact with objects in the environment. Recent advances
grant robots the ability to perform various tasks ranging from everyday tasks, such as swiping a
card (Sukhoy et al., 2012), to professional tasks that require high precision, such as robot surgery
(Sarikaya et al., 2017).

Among these tasks, robot tool use is gaining increasing attention. Being able to use
human tools such as screwdrivers and scissors can greatly expand the applicability of a
robot. Household robots will be able to assist humans better by performing a wider range
of tasks with everyday tools; robots in chemistry labs will be able to run more experiments
by leveraging the lab tools; manufacturing robots will be able to complete more tasks by
utilizing construction tools without the need for specialized grippers. In this survey, a
tool refers to the object attached to a robot. A manipulandum refers to the object being
manipulated by the tool. An object is an umbrella term to include both tools and manipulanda.
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Robot tool use requires three skills. The first skill is perception.
A robot should identify and localize tools and manipulanda from
the environment. For example, to drive a slotted screw, the robot
needs to align the slotted screwdriver with the screw. Inaccurate pose
perception of the screw will lead to misalignment, resulting in the
failure of the tool use action. To successfully drive a screw, position
knowledge alone is insufficient. In the above example, the tip of the
screwdriver should both be at the position of the top of the screw, and
oriented in a way that the flat tip of the screwdriver is aligned with
the slot of the screw. Though challenging, the perception requirement
is not unique to tool use. General robot manipulation also requires
similar perceptual capabilities (Li et al., 2022).

The second skill of robot tool use is manipulation. Manipulation
skills focus on how to realize the required kinematics and dynamics
of tool use actions. The actions include two components as defined
in Qin et al. (2021) and demonstrated in Figure 1: the contact poses
and the course of the action. The contact poses include tool-
manipulandum contact poses and gripper-tool contact poses (i.e.,
grasping). These poses consider both the translational (e.g., the tip
of the pen should contact a point on the paper) and the rotational
(e.g., the pen should contact the paper close to perpendicular to the
plane of the paper, rather than parallel to it) relations of the tool
and the manipulanda, or the tools and the gripper. Manipulation
also encompasses both the tool trajectory (i.e., a time series of poses
of a tool) and dynamics (i.e., the forces required for successful tool
use). Though the manipulation skills required in tool use tasks may
share similarity with general manipulation tasks, tool use additionally
requires that a robot should update its body schemawhen a tool is held
(Stoytchev, 2003). For example, general manipulation tasks consider
exerting certain forces at the end-effector, while tool use tasks concern
how the forces be generated at the tool rather than at the end-effector.

The third skill of robot tool use is high-level cognition. This
includes reasoning and planning tool use actions given the tasks
and available tools. For example, a robot may need to reason about
how to grasp the tool to facilitate tool use, and determine the tool-
manipulanda contact pose, the trajectory, and the force needed to use
tools successfully.The robot also reasons about using a novel tool when
learned tools are unavailable. Moreover, the robot should plan to use
multiple tools to achieve a goal. Neurological evidence also supports
that different cognitive processes were involved when a human uses a
tool compared with separate hand and tool actions (Cabrera-Álvarez
and Clayton, 2020).

The unique skills required by tool use distinguish tool use from
general manipulation tasks (for a review on robot manipulation, see
Mason, 2018; Kroemer et al., 2021). In the following sections, we start

FIGURE 1
Components of an action. The diagram is adapted from Qin et al. (2021),
CC BY.

with the discussion of what is tool use in robotics. Defining robot tool
use is not a trivial task and we gain insights in animal studies which
has a long history of studying tool use, especially how they distinguish
tool use fromgeneralmanipulations in animal behaviors. In Section 2,
we present key results in animal studies and describe our definition
of robot tool use. The definition not only sets a boundary for tool
use, but also illuminates important skills of robot tool use. Moreover,
researchers in animal studies also categorized different types of tool
use and summarized the different skills required in each type of tool
use.With this knowledge, we compile a tool use taxonomy in Section 3
and describe the skills required by different sub-types of tool use tasks
in Section 4.The definition and taxonomy set a theoretical foundation
for robot tool use, which is currently lacking in robotics research and
acts. They also serve as a practical guideline for future applications. In
Section 5, we organize robot tool use studies based on our taxonomy
and focus on 1) the unique challenges of tool use tasks compared
with general manipulation tasks in learning the required skills and
2) current advancements in how the skills are learned. We conclude
this survey by discussing current applications of robot tool use and
identifying the open challenges remaining in robot tool use.

2 Definition of robot tool use

Defining robot tool use is necessary to understand the uniqueness
of tool use as described in Section 1. Although the concept of robot
tool use is intuitive, it is challenging to provide a precise definition to
show clear distinctions from general manipulations. For example, one
may consider robot tool use as robots using objects in the environment
to achieve a goal. Under this definition, robots using refrigerators to
store food should count as robot tool use. Along this line of logic,
robots using the floor to support themselves should also be considered
as robot tool use, which is counter-intuitive.

Researchers in animal tool use also encountered similar
challenges. Tool use was initially considered a unique behavior only
shown in humans (Oakley, 1944). With observations of tool use in
animals, researchers debated which instances are genuinely tool use.
For example, some may argue that a chimpanzee using a rock to crack
a nut is tool use but cracking a nut against an anvil is not, while others
may consider both cases are tool use. The debate urged a precise
definition of animal tool use. In this section, we present key results
in animal studies, gain insights from their argument, describe our
definition of robot tool use, and explore the necessary aspects of tool
use based on our definition. We focus on the implications of these
animal studies for robot tool use, rather than on the implications for
animal cognition. Therefore, the review of animal tool use studies is
not meant to be comprehensive.

Van Lawick-Goodall (1970, p. 195) defined tool use as “the use of
an external object as a functional extension of mouth or beak, hand or
claw, in the attainment of an immediate goal,” emphasizing the goal-
oriented and functional character of tool-use. Alcock (1972, p. 464)
revised the definition by specifying the kind of objects that can be used
as tools and identifying the scope of the goals: “Tool-using involves
themanipulation of an inanimate object, not internally manufactured,
with the effect of improving the animal’s efficiency in altering the form
or position of some separate object.”

Beck (1980) identified a number of shortcomings with these
definitions. First, only objects that are portable and manipulable
should be considered as tools. Under this definition, dropping a
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stone on an egg would be considered an example of tool use, but
pounding a fruit on a tree would not be. The latter case is considered
proto-tool-use (Parker and Gibson, 1977). Second, an agent should
understand the connection between the goal and the tool. Otherwise,
the conditioned behavior of a rat pressing a lever in a Skinner box
would be considered tool use, and Beck considered this inappropriate.
Third, the tool need not be externally manufactured to the agent using
it nor inanimate. Researchers observed that captive apes threw feces
toward human intruders, and a chimpanzee utilized the dead body
of a colobus monkey to hit a conspecific, suggesting that a live ape
could be utilized in a similar way. Beck argued that these behaviors
should be considered tool use. Fourth, the goal of tool use can be
extended beyond feeding or drinking to other goals such as self-
maintenance. As a result, Beck (1980, p. 10) re-defined tool use as
“the external employment of an unattached environmental object to
altermore efficiently the form, position, or condition of another object,
another organism, or the user itself, when the user holds or carries the
tool during or just prior to use and is responsible for the proper and
effective orientation of the tool.”

For decades, Beck’s definition has been accepted widely in the
field of animal cognition and was even adopted in early robot
tool use studies (e.g., Stoytchev, 2007). Two observations motivated
St. Amant and Horton (2008) to propose a new definition of tool use.
Krützen et al. (2005) reported that dolphins hold marine sponges in
their rostrum in order to prevent potential injuries when probing for
food. Breuer et al. (2005) observed that a wild gorilla tested the depth
of waterwith a stickwhile it walked across a pond.These two behaviors
fall outside of Beck’s definition of tool use since they do not involve
altering the state of another object. St. Amant and Horton were also
concerned about Beck’s definition that it over-emphasized peripheral
aspects of tool use, such as the unattached property; an animal can
use a stick that is still attached to a tree as a tool. Moreover, they
argued that Beck’s definition is vague to determine whether a goal
was achieved accidentally. They observed that purposeful behaviors
require a continuum of control. Therefore, St. Amant and Horton
(2008, p. 1203) re-defined tool use as “the exertion of control over
a freely manipulable external object (the tool) with the goal of 1)
altering the physical properties of another object, substance, surface or
medium (the target, which may be the tool user or another organism)
via a dynamic mechanical interaction, or 2) mediating the flow of
information between the tool user and the environment or other
organisms in the environment.” They elaborated that the interactions
between tools and manipulanda should be dynamic. Under this
definition, stacking boxes to reach bananas is not tool use since the
interactions between boxes remains fixed once they have been stacked,
while cracking a nut with rock is tool use because the interactions
between the nut and the rock is constantly changing.

Shumaker and Walkup joined Beck to revise the Beck’s widely
accepted definition and incorporated St. Amant and Horton’s
argument: “the external employment of an unattached or manipulable
attached environmental object to alter more efficiently the form,
position, or condition of another object, another organism, or the user
itself, when the user holds and directly manipulates the tool during or
prior to use and is responsible for the proper and effective orientation
of the tool.” (Shumaker et al., 2011, p. 36) We based our definition of
robot tool use on this revised definition.

Other definitions of tool use in animal studies exist. Some
may simply be shorter versions of these definitions (e.g., Chevalier-
Skolnikoff, 1989; Matsuzawa, 1999). Others may disagree with the

scope of tool use. For example, Asano (1994) did not restrict the tools
to be something being held. This might result in the scope of tool use
being overly broad since any behavior may eventually count as tool
use, such as walking, which utilizes the ground as the “tool”. Lestel
and Grundmann (1999) expands the scope of tool use even more by
including abstract concepts such as culture as potential tools. These
discussions may be too philosophical and lack operational details for
robotics research.

We identify three essential points in these definitions. First,
tool use must have a goal, despite a lack of consensus regarding a
goal’s scope. Second, instead of achieving a goal through random
exploration, an agent utilizing a tool should understand the
connection between the goal and the behavior. Third, the tool should
satisfy specific physical criteria, such as being freely manipulable.
Based on these points, we define robot tool use as:

A robot attaches or secures to its end-effector an external,
unanimated, freely available object or an object attached to
another object, in order to achieve a goal of altering the
state of another object, updating its own state, or other goals,
through purposeful manipulations.

Our definition adopts Shumaker et al.‘s definition with minor
modifications. First, we restrict the tools to be externallymanufactured
and unanimated. Unlike living creatures, a robot typically does not
produce materials (e.g., feces, spider webs) from its body. We require
the tools to be unanimated because an animated object that a robot
would most likely manipulate is another robot. We consider this a
better fit to the area of multi-agent systems rather than tool use
since it involves synchronization and communication between robots.
Second, we relax the interactions between the tool and object to be
manipulated to be dynamic or static. Therefore, using a container
to relocate other objects would count as tool use. Third, we relax
the goal of tool use. The scope of the goals in animal tool use was
summarized based on animal behavioral observations. Given that tool
use in animals is structurally simple even in non-human primates
(Fragaszy and Eshchar, 2017), the goals in the above definitions are
restricted to altering the state of another object and updating one’s
knowledge about the environment. In contrast, as robots often utilize
human tools, robot tool use is motivated by the same goals for which
these tools were designed, goals that can far exceed in scope and
complexity those observed in animal studies. On the contrary, robots
are required to utilize human tools. The design of human tools is more
complex than those used by animals so that human tools may serve
purposes beyond the goals identified in animal studies. Therefore, we
prefer not to restrict the scope of the goal of robot tool use.

3 A taxonomy of robot tool use

Researchers of animal tool use recognizes that there are different
types of tool use. For example, antlions mechanically throwing sand
to capture preys in the same manner across all contexts is notably
different from chimpanzees carefully adjusting sticks to fish termites
even in the same context. Similarly, robot tool use also has many
different types. A robot being pre-programmed to cut pizza with a
particular knife is very different from it learning to adjust the gestures
when presented with different knifes. In this section, we overview
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taxonomies proposed in animal and robotics studies, and present a
taxonomy on robot tool use.

3.1 Taxonomy of animal tool use

Alcock (1972) proposed a dichotomy of tool use in animals:
stereotyped tool use is seen mostly in invertebrates and fish and flexible
tool use is typically seen in birds and mammals. Hunt et al. (2013)
considered this dichotomy an accurate description of two fundamental
types of tool use with different underlying processes, despite being
oversimplified. Stereotyped tool use is inherited and animals only
utilize tools in default ways in particular contexts. Examples of
stereotyped tool use include antlions throwing sand to capture preys
(Alcock, 1972). The species of antlions developed this behavior from
the pre-existing non-tool use behavior of random sand flicking in
order tomaintain their pits.The tool use behavior of antlions throwing
sand evolves as a phenotypic change in this species. As a result, these
behaviors are widespread across the species of antlions and rarely vary
within and across individuals.

In contrast, flexible tool use, which is also referred to as creative
tool use, is learning-based that animals explicitly reasoning about the
usages based on the context. It is this type of tool use that some believe
signals intelligence (Call, 2013) and interests researchers in animal
cognition. Chimpanzees’ cracking nuts with rocks and fishing termites
with sticks are examples of flexible tool use (Biro et al., 2003; Lonsdorf,
2006), as a juvenile chimpanzee acquires such skills by observing its
parent(s).Therefore, the learning happens at the level of the individual,
rather than at the level of genus. Indeed, each instance of nut cracking
or fishing termites can be differentiated even within the same context
by the same chimpanzee. Unlike stereotyped tool use, flexible tool use
does not share context-dependency and thus can occur across different
contexts.We summarized the differences between stereotyped tool use
and flexible tool use suggested by Hunt et al. in Table 1.

Call (2013) further identified different types of flexible tool use
from the perspective of problem-solving in terms of creativity and
adaptivity.

• Solving novel problems with old solutions;
• Solving old problems with novel solutions;
• Solving novel problems with novel solutions.

Solutions may include utilizing one tool, selecting a tool from
available options, manufacturing a novel tool, or using multiple tools
sequentially.

In contrast to the above taxonomies, Wimpenny et al. (2009)
categorized tool use based on the number of tools involved in a
problem but overlooked the complexity of the decision process.
Boesch (2013) categorized tool use based on four levels of increasing
complexity though in some sense reminiscent of Wimpenny et al.‘s
approach.

• Simple tool use: Using one tool, e.g., a chimpanzee uses a twig
for fishing termites (Goodall, 1964). The animal only needs to
understand the connection between itself and the reward via the
tool, which is a first-order problem (Visalberghi and Fragaszy,
2006);
• Combined tool use: Using two tools simultaneously, e.g., a

capuchin monkey uses a rock to pound a nut on a hard

surface (Spagnoletti et al., 2011). The animal needs to consider
both spatial relationships concurrently to connect itself with
the reward, which is a second-order problem (Visalberghi and
Fragaszy, 2006);
• Sequential tool use: Using multiple tools one after another,

including using a tool for manufacturing another tool, e.g., a
chimpanzee using multiple tools in sequence to break a bee
hive, open honey chambers, and extract the honey. This behavior
not only requires the animal to keep in mind multiple causal
relationships sequentially and choose the correct sequence, but
also imposes temporal delay for the reward;
• Composite tool use: Combining multiple tools to use as one tool,

a tool use behavior yet to be discovered in animals and currently
unique to humans.

3.2 Taxonomy of robot tool use

While the above taxonomies are based on animal studies, Tee et al.
(2018, 2022) proposed a categorization based on default usages of tools
in robotics, and identified three types of tools: category-I tools that
“help to amplify/augment certain kinematic or dynamic aspects of
functions that are already in an agents repertoire.” (p. 6439), category-
II tools that are similar to category-I tools but “require actions different
from what the agent would have performed, without the tool, to
achieve these functions.” (p. 6439), and category-III “provide new
functions that a human cannot perform without a tool.” (p. 6440)
As an example, they categorized a vacuum cleaner as a Category-III
tool because a robot cannot perform a cleaning task without this tool.
However, a vacuum cleaner can be used as a rake to reach objects
or as a hammer to hit objects in other contexts. In these contexts,
the vacuum cleaner should be classified as category-I tools. Given
that this categorization does not consider contexts of tool use, it will
be challenging for a system following this categorization to perform
flexible tool use, which is context-based.

Based on the taxonomies of animal tool use and the characteristics
of robot tool use, we devise a taxonomy as shown in Figure 2. We
categorize robot tool use into non-causal tool use and causal tool use,
which are similar to stereotyped tool use and flexible tool use in
animals, respectively. We changed the terminology for two reasons.
Frist, wewould like to emphasize the fundamental differences between
the two types of tool use behaviors in robots regarding whether robots
should understand required causal relations, which are elaborated in
Section 4. Second, though we consider it necessary for a robot to
understand required causal relations in order to achieve behaviors
similar to flexible tool use, there is a lack of evidence showing the
mechanism of flexible tool use in animals. Therefore, we would like
to avoid claiming that flexible tool use in animals is causal-based, and
such discussion is beyond the scope of this survey.

We further categorize causal tool use into single-manipulation tool
use and multiple-manipulation tool use based on Boesch’s taxonomy.
A single manipulation refers to being presented with a single tool and
using the tool to perform one action (e.g., pushing, scooping) in order
to achieve one goal, though a robot may observe the usage of multiple
tools to learn a task. Multiple manipulations may involve one or any
combinations of multiple tools, multiple actions, and goals consisting
of multiple sub-goals.

Inspired by Call’s taxonomy, we categorize single-manipulation
tool use into basic tool use, transferable tool use, improvisatory tool use,
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TABLE 1 Comparison of stereotyped tool use and flexible tool use based on Hunt et al. (2013)’s descriptions.

Stereotyped tool use Flexible tool use

Distribution genus level individual level

Development phenotypic changes stemed from pre-existing non-tool
use behaviors

observational learning

Variability almost no variations within and between individuals very different within and between individuals

FIGURE 2
Tool use taxonomy.

and deductive tool use. Basic tool use is the most basic form of tool
use. In basic tool use, a robot uses a learned tool to solve a learned
task, such as pushing a block, striking a xylophone, and cutting a cake.
Unlike non-causal tool use that exclusively focuses on the actions,
basic tool use focuses on the causal relations between actions and
effects. Transferable tool use is a more complicated form of tool use,
which aims to transfer learned tool use skills to other intra-category
objects that share common form factors (e.g., using mugs of different
shapes to pour liquid into different containers). Improvisatory tool
use adds further complexity by generalizing learned tool use skills to
novel inter-category objects. These objects are generally not designed
to perform these tasks, such as using the handle of a screwdriver in
place of a hammer to drive a nail. Deductive tool use concerns the
problem of using a novel tool to solve a novel task. A robot will not
be provided any prior knowledge about the tool or the task, nor given
opportunities to learn about them from demonstrations. Instead, the
robot should deduct the usage of a tool from its physical knowledge
about the world.

We categorize multiple-manipulation tool use into combined
tool use, sequential tool use, tool selection, and tool manufacturing.

Combined tool use and sequential tool use are similar to the
definitions as in Boesch’s taxonomy, though sequential tool use does
not include constructing a new tool in our definition as it requires
more sophisticated manipulation skills. Tool selection refers to the
process of choosing the most appropriate tool among many options in
order to complete a tool use task. Shumaker et al. (2011) defined tool
manufacturing as “simply any structural modification of an object or
an existing tool so that the object serves, or serves more effectively, as
a tool.” This definition only includes modifying an existing object. We
combine this definition with composite tool use in Boesch’s taxonomy,
and re-define tool manufacturing as the process of modifying or
combining objects or existing tools, with or without the usage of
other tools, to complete a tool use task, or to complete the taskmore
efficiently. Different from Shumaker et al. and Boesch’s definition, our
definition also explicitly includes the possibility of utilizing other tools
in the process of manufacturing.

We do not enforce a subdivision of multiple-manipulation
tool use by difficulty, unlike a comparable category in Boesch’s
taxonomy. Boesch was able to rank the categories in animal tool
use because the types of tools leveraged by non-human animals
are comparatively limited, and the manipulation skills in these
animals are usually relatively simple. In robot tool use, the difficulty
is dependent on the actual problem to solve, rather than the
category that the problem belongs. For example, utilizing two
tools in sequence may be simpler than creating a new tool that
requires sophisticated manipulation skills. However, a problem that
requires planning to use ten tools may be more challenging than
a problem that requires a robot to combine two parts as a new
tool.

As a summary, the criterion of the top-level classification is
whether the context exhibit much variations across instances of
tool use in the same task. As a result, robot tool use is classified
into non-causal tool use and causal tool use. Causal tool use is
further categorized into single-manipulation tool use and multiple-
manipulation tool use based on the complexity of the task, which
is quantified by the number of actions, goals, and tools. We
categorize single-manipulation tool use into four sub-types. Three
of the sub-types (i.e., basic tool use, transferable tool use, and
improvisatory tool use) rely on prior experiences of tool use and
the other (i.e., deductive tool use) only requires knowledge of
physical rules or experiences of general manipulation. The three
sub-types differ from each other in terms of object features.
Single-manipulation tool use can be considered as building blocks
of causal tool use, and multiple-manipulation tool use combines
the building blocks in different ways. The different combinations
form the sub-types of multiple-manipulation tool use, which are
combined tool use, sequential tool use, tool selection, and tool
manufacturing.
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FIGURE 3
The modified affordance model in Montesano et al. (2008) © 2008, IEEE
(reuse licence #5360371164789). Affordances as relations between
(A)ctions, (O)bjects, and (E)ffects that can be used to address different
purposes: predict the outcome of an action, plan actions to achieve a
goal, or recognize objects or actions. We update the colors of the model
and represent manipulation skills with brown, cognition skills with pink,
and perception skills with grey.

4 Required skills of robot tool use

Our definition of tool use has three important components:
objects, goals or desired effects, and manipulations or actions to
achieve the goals. These three components agree with the three
ingredients of the affordance model defined by Montesano et al.
(2008). The affordance model attempts to provide an operational
definition of the concept of affordances, whose precise definition is
still debatable (for a review, see Jamone et al., 2016; Zech et al., 2017).
The concept was first introduced by Gibson (1979, p. 127) as what the
environment “offers the animal, what it provides or furnishes, either
for good or ill”. Despite the lack of consensus around its definition,
the concept of affordances has facilitated much robotic research
(Stoytchev, 2005b; Cakmak et al., 2007; Moldovan et al., 2012; 2013;
Katz et al., 2014; Ruiz and Mayol-Cuevas, 2018; Lueddecke et al.,
2019).

The affordance model by Montesano et al. formulated affordance
as three-way relations between objects, actions, and effects. Figure 3
shows our modified version of this affordance model with coloring.
The coloring captures the three skills required for robot tool
use as described in Section 1. While generating actions requires
manipulation skills, perceiving the effects and the objects demands
perception skills. Understanding the connections between the nodes
in the model needs cognition skills. The key to robot tool use is to
understand tool affordances.

Each subtype of tool use in our taxonomy addresses different
aspects of affordances and requires different skills, as shown in
Figure 4. Non-causal tool use focuses on generating desired motions,
which correspond to the action node in the affordance model. While
the manipulation skills are similar to the ones in general manipulation
tasks, tool use tasks require additional manipulation skills, such as
updating a robot’s body schema when a tool is attached to its gripper.
This type of tool use requires a robot to focus on the actions, though
without the need to consider the objects, the effects, or the relations.

Causal tool use involves learning and applying tool affordances,
which focuses on cognition skills. Single-manipulation tool use learns
and reasons about affordances. Among the different types of single-
manipulation tool use, basic tool use learns how to achieve desired
effects with actions. With learned relations between actions and
effects, transferable tool use learns the relations between tools and
actions in order to adjust actions based on novel tools that share
similar form factors with the learned tools. In addition to these two
relations, improvisatory tool use requires a robot to understand what
specific tool features cause the effects so that it can generalize learned
skills to inter-category objects. As a result, improvisatory tool use
requires a robot to learn the entire affordance model. These tool use
tasks generalize tool use to novel objects by learning and inducing
affordance from observations. In contrast, deductive tool use requires
a robot to complete a tool use task without prior knowledge using
unlearned tools. As a result, the robot has no information to induce
affordances and should perform deductive reasoning from general
physical rules. In short, basic tool use, transferable tool use, and
improvisatory tool use requires the incremental learning of more
relations from tool use demonstrations, while deductive tool use
requires a robot to be able to infer rather than learn the relations
from demonstrations of general manipulation tasks or physical rules
provided directly.

The challenge for multiple-manipulation tool use is to apply
the affordances effectively rather than learning the affordances.
Tool manufacturing requires more sophisticated manipulation
skills; sequential tool use and tool selection require higher
cognition skills; tool manufacturing requires a high level of
manipulation and cognition skills. We summarize the additional
skills required in each sub-type in Table 2, and we elaborate more in
Section 5.3.

As a summary, while non-causal tool use focuses on characterizing
and replicating actions, causal tool use considers the relations between
actions and other skills in addition. Under causal tool use category,
single-manipulation tool use focuses on learning the skills and
the relations while multiple-manipulation applies this knowledge to
solve more complicated tasks and may require more sophisticated
skills.

5 Robot tool use literature

In the previous sections, we present our definition of robot tool use
drawing from the animal studies literature. Our definition highlights
the three important skills in tool use, echoing the three-way relations
between actions, objects, and effects in standard affordance models.
We also describe a taxonomy of tool use with each type of tool use
requiring different skills or relations.

In this section, we organize robot tool use literature based on
our taxonomy. As different levels of assumptions can be made, we
would like to point out that techniques that focus on the unique
challenge in a higher-level tool use may not necessarily allow a
robot to handle the challenges that belong to lower-level tool use.
In each section, we focus on the techniques that can solve the
unique challenge at each level of tool use. We would also like to
emphasize that the purpose of robot tool use is not to mimic or
model how animals use tools, but rather to allow robots to use
tools.
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TABLE 2 Additional skills required inmultiple-manipulation tool use beyond single-manipulation tool use.

Additional manipulation skills Additional cognition skills

Reasoning Planning

Combined Tool Use Coordinate the use of multiple tools Choose appropriate parameters for each
tool use

N/A

Sequential Tool Use N/A N/A Plan the order of using multiple tools

Tool Selection N/A Choose appropriate tools among many
available tools

N/A

Tool Manufacturing Perform the actions of assembling
different parts together as a tool, or
modify the current tool

Choose appropriate parts to be assembled
and decide where to attach each part, or
decide the desired state of the unmodified
tool

Planning the order of the manufacturing,
which may include sequential tool use

FIGURE 4
The different aspects of tool affordances need to be addressed in the subtype of tool use.

5.1 Non-causal tool use

Non-causal tool use is the ability to use learned tools to solve
learned tasks, without understanding the cause-and-effect relationship
between the actions and the goals. The purpose of non-causal tool
use is to duplicate or reproduce actions with limited variations.
It could be achieved by programming a wide variety of tool use
actions such as nut fastening in aircraft production that requires high
precision (Pfeiffer et al., 2017), stub grinding and deburring with force
control (Robertsson et al., 2006), handwriting that involves multi-
contact manipulation (Kim et al., 2014), furniture polishing that uses
an impedance model (Nagata et al., 2001), generating a collision-free
polishing path (Takeuchi et al., 1993), accurately drawing a circle with
a compass that involves complex contacts (Kutsuzawa et al., 2017),
unfastening screws in collaborative tasks (Li et al., 2020), and pouring
based on the volume of liquid (Rozo et al., 2013), or actions relevant to
tool use such as grasping a knife resting on a cutting board that requires
a high level of dexterity (Xue and Jia, 2020), or segmenting a surgical
tool from the background while using it (Garcia-Peraza-Herrera et al.,
2017; Su et al., 2018). The purpose of these approaches is to automate
one process to facilitate human work. Therefore, the implementations
are designed to be highly specific to the task.

However, given the wide range of tasks, it is impractical to
program all tool use tasks. Being able to learn these tasks is desired.
One approach is to treat tool use tasks the same way as general
manipulation tasks and learn the actions accordingly. One of the
classic algorithms of learning actions is dynamicmovement primitives
(DMP) (Schaal, 2006; Ijspeert et al., 2013). DMP leverages the concept
of attractors from dynamical systems, and actions are represented as

a set of linear differential equations. A more intuitive approach to
understandingDMP is to visualize the equations as vector fields, where
a trajectory is formed by following the vectors from a starting point
to an end point. Each dimension may need to be learned separately
and then coupled together. One advantage of DMP is that the shape
of the trajectory can be distorted based on the starting point and
the end point. DMP and its variations have been demonstrated with
tool use tasks such as swinging a tennis racket (Ijspeert et al., 2002;
Schaal, 2006), playing table tennis (Muelling et al., 2010), playing
ball-in-a-cup (Kober et al., 2008), pouring liquid (Pastor et al., 2009),
and whiteboard cleaning (Kormushev et al., 2011). Algorithms other
than DMP have also been employed to represent action primitives,
such as probabilistic movement primitives (Paraschos et al., 2013)
and Fourier movement primitives (Kulak et al., 2020). Actions were
also parameterized as minimal plans to facilitate action interpretation
(Guha et al., 2013). To handle tasks that require high manipulation
precision such as using chopsticks, model-free imitation learning
was chosen (Ke et al., 2021). For tasks that do not require high
precision of force or position control, indirect force controllers
(Lutscher and Cheng, 2013) or a unified algorithm for dynamic object
manipulation (Tsuji et al., 2015) can be considered. While these are
methods designed to learn actions, general learning methods such
as deep learning (Droniou et al., 2014; Byravan and Fox, 2017) and
reinforcement learning (Peters and Schaal, 2006) were also used.

While these studies focus on learning actions, others focus on
segmenting continuous actions into action primitives for tool use
(Ramirez-Amaro et al., 2014a; Lioutikov et al., 2017). A similar line of
research on general manipulation tasks is to recognize the tasks based
on the classification of actions (Ramirez-Amaro et al., 2014b; 2015;
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Hu et al., 2014;Wölfel andHenrich, 2018; Shao et al., 2021; Koch et al.,
2022). This approach attempts to ground action profiles to labels,
either primitive labels or task labels, and do not relate actions to the
effects on the objects being manipulated. For example, the whiteboard
swiping action will be characterized as the translational movement of
the eraser in this approach, rather than the words being erased, which
is the effect.While grounding action profiles to labels is useful in some
applications, it does not permit causal tool use.

The above studies treated tool use tasks in the same manner as
general manipulation tasks. As a result, they cannot adjust actions
based on how the tools are grasped since they do not have tool-
related knowledge. In order to accommodate the tools attached to
the end-effector, a robot needs to update its body schema to include
the tools, or in other words, to calibrate the tool in the gripper.
Prior studies focus on updating robot kinematics by considering the
tip of a tool [e.g., Kemp and Edsinger (2006)], which is considered
the primary contact point between the tool and the environment.
Among these studies, some manipulated the tool with kinematic
control (Stoytchev, 2003; Nabeshima et al., 2005), and others found
it necessary to perform dynamic control (Kemp and Edsinger, 2006;
Nabeshima et al., 2007; Jamone et al., 2013; Hoffmann et al., 2014;
Karayiannidis et al., 2014). Despite these studies’ success, considering
the tool’s tip only is insufficient for all tool use tasks. For example, it
is insufficient to know where the tip of a mug is when it is used to
pour liquid into another container. The mug needs to be tracked with
multiple markers attached to it (Lee et al., 2008). Another example
is joint tools such as a pair of scissors. In this scenario, a grounded
relational representation of the entire tool is needed (Katz et al., 2008).
Beyond tool calibration, other studies explored collision detection
(Colgate et al., 1995) and obstacle avoidance (Lee and Song, 2021)
with tools attached to the gripper, as well as robot motion planning to
complete tool use tasks (Kobayashi and Hosoe, 2009; Holladay et al.,
2019) or planning for the grasping of the tool (Lin and Sun, 2015;
Chen et al., 2019; Raessa et al., 2019) in robot motion generation.

5.2 Causal tool use—Single-manipulation
tool use

5.2.1 Basic tool use
Though both basic tool use and non-causal tool use leverage

learned tools to solve learned tasks, basic tool use can adjust actions
based on the desired effects while non-causal tool use cannot. In other
words, basic tool use requires robots to understand the causal relations
between actions and effects. For example, a robot performing basic
tool use is able to push an object further away given a target region
that is further away, while a robot performing non-causal tool use will
simply attempt to duplicate learned actions and does not adjust the
actions based on the target region that is further away.

Sinapov and Stoytchev (2008) conducted an early study to explore
the relation between actions and effects with motion babbling. They
utilized six different tools (T-stick, L-stick, straight stick, L-hook, Y-
hook, and an arrow-shaped tool) to relocate a puck with six pre-
defined exploratory behaviors (i.e., push, pull, slide-left, slide-right,
rotate-left, and rotate-right). For each tool, the robot learned the
distribution of movement trajectories of the puck relative to its
starting location. Forestier and Oudeyer (2016) employed an active
version of Model Babbling to explore the distribution of manipulanda
after tool use with two different sticks. These studies focus on the

potential distribution of the location of manipulanda, rather than the
one-to-one relationship between an action and its effect.Therefore, it is
challenging to utilize tools to achieve desired effects with this method.

Other studies learned the one-to-one relation of an action and its
effect, though in a quantitative manner. Okada et al. (2006) focused
on verifying the effects as success or failure of tool use tasks such as
pouring. Pastor et al. (2011) focused on predicting whether an object
has been successfully struck by a pool cue or flipped using chopsticks.
Studying the relation of an action and its effect in this manner is
suitable if the state of the effects is discrete, but may not fit tool use
tasks whose effects are continuous such as pushing an object 10 cm to
its right.

Studies that focus on learning the one-to-one relation of an action
and its effect in a qualitative way generally employed tasks that result
in the relocation of manipulanda. Stoytchev (2005a, 2008) pre-defined
eight pulling actions and recorded the effects of these actions with
five different tools into an affordance table. As the actions were
discretized, the effects can also be categorized in discretized space. In
the evaluation, a robot needed to choose appropriate actions based
on the affordance table in order to pull the manipulanda into a goal
region, given one of the learned tools. Though Tikhanoff et al. (2013)
also leveraged pre-defined actions, they allowed the actions to be
parameterized with continuous variables, e.g., a randomly sampled
pushing direction. Rather than keeping an affordance table, they used
Least Square Support Vector Machines to regress the actions to the
effects. Elliott et al. (2016) considered more types of push and pull.
They also leveraged two regression techniques: linear regression and
Gaussian process regression. Other than pulling and pushing tasks,
Elliott and Cakmak (2018) explored cleaning tasks to relocate dirt.
As the manipulanda are clusters of rigid bodies rather than a single
rigid-body manipulandum, they represented the surface as a grid, and
trained a pixel-level classifier to predict whether each pixel contains
dirt after an action. The robots in the above studies explored tool use
by themselves, pre-defined actions are necessary. In contrast, Liu et al.
(2018) did not pre-define actions and took the method of imitation
learning and learned with deep reinforcement learning.

These studies focus on pushing and pulling tasks. A common
feature of these tasks is that the desired effect determines how a
tool should contact a manipulandum. Other tool use tasks may
permit multiple equally viable ways for a tool to make contact with a
manipulandum to achieve the same effect. For example, pouring liquid
from different orientations all result in the same effect of a container
being filled. Claassens and Demiris (2011) conducted preliminary
studies and termed such properties with affordance symmetries.
Affordance symmetries are important because a robot will be able to
generate different trajectories to complete a tool use task when the
learned contact results in collision.However, few studies have explored
this direction to our knowledge.

5.2.2 Transferable tool use
Transferable tool use describes the ability to take tool use skills

trained on an object to other intra-category objects defined by a
common form factor. Therefore, the key to transferable tool use is to
match the unlearned objects with learned objects.

We first present studies that concern specific types of tool use
tasks. Most of these focused on relocation tasks such as pulling and
pushing. Mar et al. (2017) and Nishide et al. (2011) leveraged self-
organized maps to extract tool features to avoid the need to pre-
defining the features. Takahashi et al. (2017) learned a model with a
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deep neural network that incorporated both grasping information and
tool functions. Vogel et al. (2017) searched for the “sweet spot” of a
novel baseball bat-like object when used to hit a baseball by sensing
the force at the end-effector. Other studies considered pouring tasks.
Kroemer et al. (2012) used a kernel-based approach to generalize
learned action skills to novel objects. Brandi et al. (2014) performed
warping to the point cloud of a learned container to match a novel
container. Dong et al. (2019) adjusted pouring behavior by estimating
the volume of liquid in the unknown containers. While these studies
attempted to transfer tool use skills to novel tools, other studies
explored how to act upon novel manipulanda. Gemici and Saxena
(2014) sought to transfer cutting skills to food of varying physical
properties such as hardness. Elliott et al. (2017) transferred learned
surface cleaning actions to different surfaces, including surfaces of
different sizes. Li et al. (2018) developed the Push-Net so that the
system can push novel objects for re-positioning and re-orientation.

Though these studies demonstrated promising results on specific
tool use tasks, it is unknown whether these algorithms could
generalize to other types of tool use tasks. Therefore, other researchers
investigated algorithms that transfer learned skills more broadly and
demonstrated with multiple tool use tasks. Tee et al. (2018, 2022)
matched the point cloud of unseen tools to the point cloud of the end-
effector and arms of the robot to obtain the usage of the tools. The
kPAM/kPAM 2.0 (Manuelli et al., 2019; Gao and Tedrake, 2021) used
keypoints on the tools to represent shared global shape of the category
of tools, and tool use skills were inferred from these keypoints. Stückler
and Behnke (2014b); Stückler et al. (2016, 2013); Stückler and Behnke
(2014a, 2015) considered the point cloud presentation of tools and
performed deformable registration with different levels of resolution
in order to match the overall shape of the tools.

The approach of these studies requires two steps: one to learn
tool use skills as basic tool use, and one to learn the transfer process.
Other studies merged the two steps and learned them in one step.
Sinapov and Stoytchev (2007) incorporated the shape of the tool when
learning tool use models for the pulling task. As a preliminary model,
transfer was only demonstrated with tools of the same shape but
different sizes. Gonçalves et al. (2014a,b) utilized a Bayesian network
to learn how the actions and tool shapes influence the effects. The
shape parameters include area, convexity, eccentricity, compactness,
circleness, and squareness. Due to the large size of the network, it
needed to be reduced to be able to train effectively. They validated
their technique with pulling and pushing tasks. Dehban et al. (2016)
took a similar approach but overcame the drawback of the need for a
discretization of data. To be able to handle grasping, Mar et al. (2015)
leveraged support vectormachines tomap geometric features between
learned and novel tools for pulling.

There are pros and cons of these two approaches. Training
everything in one step may be more convenient, but the feature space
can be quite large and requires more data. Training in a modular way
will make it easier to diagnose when the algorithm does not function
as intended. It will also make it easier to modify or incorporate new
features as the former requires the entire model to be retrained.

5.2.3 Improvisatory tool use
Improvisatory tool use describes the ability to use tools in a

creative way, which involves generalizing learned tool use skills
from objects designed for the tasks to inter-category objects. These
objects may not share common form factors with the canonical tools.

Therefore, local features of the tools that lead to the desired effects
should be identified.

While transferring tool use requires a robot to infer how actions
are affected by novel tools given the relation between actions and
effects, improvisatory tool use requires a robot to also understandwhat
features of the tools caused the effects, which is the relation between
tools and effects. In other words, improvisatory tool use calls for the
learning of the full affordance model (Montesano et al., 2007; 2008).

In order to identify local features in unlearned tools, the function
of a tool needs to be detected on a per-part basis. Insights can be gained
from a related line of research that explores task-oriented grasping
of novel objects. These studies made efforts to detect the functional
part of a tool in different tasks so that the system can generate
different grasping of the same object based on the task (Myers et al.,
2015; Song et al., 2010; 2011b; a; Ek et al., 2010; Madry et al., 2012;
Song et al., 2015; Murali et al., 2020; Kokic et al., 2017; Detry et al.,
2017). Similar to these studies, studies that focus on part detection
for tool use also leveraged geometric features. Schoeler and Wörgötter
(2015) segmented the tools and used graphs to represent the relations
between different tools parts. Nakamura and Nagai (2010) learned the
full affordance model. They provided human static demonstrations
without showing the course of actions, and detected local features with
the Scale Invariant Feature Transform.

Given the functions of each tool part alone, a robot cannot
realize improvisatory tool use since a robot have no knowledge about
how to orient a tool. The robot needs to combine the tool parts
information with tool use knowledge. Due to challenges in modeling
grasping, Fitzgerald et al. (2019) achieved the goalwith human-guided
adaptation that gained information on how to improvise each tool
from human demonstrators. To improvise tool use without the need
of human demonstrations for each tool, Agostini et al. (2015) learned
actions with a modified DMP and used a Repository of Objects and
Attributes with Roles to detect potential usages of a tool. This method
is based on matching the global shapes of tools. Though this method
can perform some improvisatory tool use (e.g., utilizing a knife
vertically for stirring in a way similar to using a spatula), the transfer
is limited. Other studies considered both global and local features.
Fang et al. (2020) and Xie et al. (2019) took 2D images as input and
trained neural networks for improvisatory tool use. While these
studies learned tool use skills and tool feature detection together, other
attempts learned them in a modular manner; Jain and Inamura (2013)
manually pre-defined local features, discretized actions for the pulling
and pushing tasks, and trained a robot with a T-shaped tool. They
claimed that the skills could be generalized to novel tools, though no
demonstration was provided. The Keto framework (Qin et al., 2020)
and the GIFT framework (Turpin et al., 2021) generated keypoints
on the tools, such as grasping points and function points, based on
local features. The robot then planned motion based on the keypoints.
However, the keypoint approach may have difficulty on tasks where
the tool contact point cannot be readily represented using only one
point on the surface, such as a pencil sharpener whose contact is
inside the object and the contact is more than a single point. Without
using keypoints, Abelha and Guerin (2017), Gajewski et al. (2019),
Abelha et al. (2016), and Guerin and Ferreira (2019) characterized
the point cloud of a tool by approximating each of its segments with
superquadrics and superparaboloids. They parametrized tool use with
so-called p-tools, and demonstrated their technique with a wide range
of tasks such as hammering and scooping in simulation or on a
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physical robot. Qin et al. (2021) developed an integrated system and
learns basic tool use, rather than pre-define the tool usages as in
other studies. The system can achieve both transferable tool use and
improvisatory tool use by considering both global and local geometric
features.While these studies utilized visual features to transfer tool use,
Zhu et al. (2015) included both geometric and physical features such
as mass.

5.2.4 Deductive tool use
In deductive tool use, a robot should be able to utilize a novel tool

to solve a task for which it has no prior knowledge. This is a very
challenging task, and no current studies can perform deductive tool
use to our knowledge.This type of tool use requires a robot to infer the
entire affordancemodel, which is the relations between actions, effects,
and tools, without tool use training samples as in improvisatory tool
use.

5.3 Causal tool use—Multiple-manipulation
tool use

Multiple-manipulation tool use involves many different types of
tool use.Unlike single-manipulation tool use, the subtypes ofmultiple-
manipulation tool use may not be interrelated. Compared with
single-manipulation tool use, they may require more sophisticated
manipulation skills and cognition skills such as planning, which are
generally not needed in single tool use where only one tool use task is
considered. In terms of tool knowledge, they usually require the full
model of tool affordance knowledge.

5.3.1 Combined tool use
Combined tool use refers to using multiple tools simultaneously,

such as using a fork and a knife to cut a steak. No prior studies have
demonstrated combined tool use to our knowledge. We identify two
main challenges of combined tool use. The first challenge is at the
cognition level. A robot should choose the appropriate parameters for
each tool use, such as where to cut with the knife and where to stab
the steak with the fork. The second challenge is at the manipulation
level, which is how to coordinate the actions of each tool. It involves
collision-free motion planning and adjusting the actions of one tool
based on the other tool. For example, the force exerted on the fork
to stabilize the steak is dependent on the course of the cutting action
with the knife.Though generating collision-free motion planningmay
share similar techniques in multi-agent systems [for a review, see
Rossi et al. (2018); Ismail et al. (2018); Rasheed et al. (2022)], how to
choose appropriate parameters and how to coordinate tools are issues
specific to tool use and may need to be handled differently from
general manipulation tasks.

5.3.2 Sequential tool use
Sequential tool use involves completing multiple tool use tasks in

order. Yamazaki et al. (2010) designed an integrated system of daily
assistive robots and applied it to the task of tidying and cleaning rooms.
This system focused on failure detection and recovery, and manually
defined the sequence of tasks to be completed. For a robot to be fully
autonomous, the robot should be able to arrange appropriate orders
and decide appropriate task parameters for each tool use task since
the end state of a task is the start state of the next task.

This requirement falls under the topic of task andmotion planning
(TAMP) [for a review, see Garrett et al. (2021)]. As its name suggests,
it integrates low-level motion planning which includes classic robotic
manipulation techniques and high-level task planning which belongs
to classic AI planning. Task planning aims to find an action skeleton
to achieve a goal (e.g., pick up a pencil, use it to write, and put the
pen down). Motion planning aims to find motion plans to execute in a
robot (e.g., the joint states for each action). TAMP aims to find action
parameters to connect task planning andmotion planning (e.g., where
to grasp the pencil to pick it up so the pencil can be used to write).
TAMP currently has two main approaches to find action parameters:
the sampling-based approach and the optimization-based approach.
The sampling-based approach, which is used in the majority of TAMP
studies, samples action parameters and tests the feasibility of the
sampled combinations. Therefore, this approach may have difficulty
when the solution space is relatively small since the probability of
being able to sample the correct solution is small. In contrast, the
optimization-based approach used optimization techniques such as
logic-geometric programming (Toussaint et al., 2018) or sequential
quadratic programming (Hadfield-Menell et al., 2016). It is able to
handle problems with a small solution space more efficiently if
the local optima can be handled properly. However, this approach
generally requires a longer running time for tasks with many objects
due to the increased dimension.

Sequential tool use has been demonstrated with optimization-
based TAMP. Toussaint et al. (2018) enabled a robot in simulation
to reach a tool that was initially out of reach with another tool in
order to grab the target object. While they can handle tasks in a static
environment, Migimatsu and Bohg (2020) improved the method with
an object-centric approach to adapt to situations where objects were
moved by other agents. Though this study was not demonstrated with
sequential tool use, it has the potential to be applied to sequential
tool use. Due to the current preliminary stage of tool use research,
sequential tool use has not been demonstrated with a sampling-based
approach to our knowledge.

In the above optimization-based TAMP approach, sequential
tool use is only included as a demonstration to validate TAMP
methods. Tool use, especially sequential tool use, usually includes
multiple objects, which makes it challenging for the optimization-
based approach. It is also challenging for the sampling-based approach
since tool use tasks generally have a smaller solution space due
to the additional constraints of tools. Therefore, alternative TAMP
algorithms designed for sequential tool use may be needed due to
the special requirements of tool use tasks compared with general
manipulation tasks.

5.3.3 Tool selection
Tool selection is the ability to choose the most appropriate

tool among many options. In order to select the most appropriate
object to be used as a ram to keep a door open, Levihn and
Stilman (2014) identified four properties of a ram. In order to
learn the properties, Wicaksono and Sammut (2016) demonstrated
a robot with an instance of the pulling task, and the robot then
performed experiments to generate hypotheses about what features
are important. As an example of the hypotheses, “the hook (of the
pulling tool, which is a tube) must be located on the same end of
tube as the cube (manipulandum).” The hypotheses are expressed
in Horn clauses so that the features are qualitative. To learn the
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features in a quantitative manner, Saito et al. (2018) and Brawer et al.
(2020) learned the full model of tool affordances and performed tool
selection.

5.3.4 Tool manufacturing
Tool manufacturing is the ability to complete a tool use task by

constructing a tool by combining availablematerials, modifying a tool,
or both. As this process may involve combining different pieces, the
manipulation skills required may be similar to the skills in robotic
assembly. The peg-in-hole task, which is to insert a peg in a hole, is a
standard task in robotic assembly. Researchers have exploredmethods
to improve a robot’s performance, such as working withmore complex
parts with force-guided assembly (Dietrich et al., 2010) and increasing
the speed of compliantmanipulators (Bös et al., 2017) (For a review on
robotic assembly with learning from demonstration, see Zhu and Hu,
2018). Beyond the peg-in-hole task, previous studies also considered
the slide-in-the-groove assembly task (Peternel et al., 2015), and robot
assembly that leveraged tool use such as hammering and wrenching
(Gu et al., 2014).

Nair et al. (2019a,b) studied tool manufacturing by combining
available parts. Their system was provided with examples of tool use,
and selected appropriate parts as the grasping parts and function
parts. The selection was made by comparing the similarity between
the available parts and segmented parts of the demonstrated examples.
The next step is to combine the parts selected with appropriate
orientations. The system then performed tool use tasks to validate
the assembled tool. Unlike robotic assembly, the manipulation skills
required in these studies are relatively simple. It pre-defined threeways
of attaching the different parts: pierce attachment, grasp attachment,
and magnetic attachment. Sammut et al. (2015) designed a robot
engineer to perform tool manufacturing. The robot engineer first
identified important features of a tool use task, and then constructed
the tool using 3D printing.

Tool manufacturing is a complicated task. The task settings
of current studies reduce the difficulty of both manipulation and
cognition skills. At the manipulation level, a robot may need to
combine different parts with simple manipulation skills or leverage
an external machine. While in animal or human tool use, the
manipulation skills required in tool manufacturing are sophisticated
and may even require using other tools. At the cognition level, the
choice of available parts discretizes the solution space compared with
the task whose solution space is continuous, such as a chimpanzee
needing to make a hook to retrieve food. Tool manufacturing also
requires tool affordance knowledge to identify important features
of a tool to be assembled and requires planning skills to arrange
the manipulation actions, especially when sequential tool use is
needed.

5.4 Summary

In this section, we reviewed previous studies in robot tool use
and summarized them in Supplementary Material. Many studies
treated tool use tasks as general manipulation tasks and focused
on programming or characterizing and duplicating the actions. The
learning in these non-causal tool use tasks did not consider the objects
nor the effects. As a result, robots learned tool use in thismanner share
similar characteristics as animals performing stereotyped tool use that

the tool use demonstrate limited variations and challenge to adapt to
different contexts.

As an emerging topic, relatively few studies have explored causal
tool use. Early studies investigated the action-effect relations. Some
studies focused ondescribing the effect space of an action or predicting
the success or failure of an action, while other studies focused on
learning how to adjust actions in order to achieve the desired effects.
The latter mostly leveraged the pulling and/or the pushing tasks. To
achieve transferable tool use, some studies focused on particular tasks
and very few studies explored generic frameworks that may work with
multiple tasks. Improvisatory tool use is even more challenging. To
realize this type of tool use, some studies attempted to identify the
functions of parts of a tool while others treated a tool in a holistic
manner and detected key characters to represent the tool including
the relations between different parts of tools. The former can generally
achieve amazing results in tool use tasks whose local features are
crucial to solve a task (e.g., the blade of a knife), and the latter enjoys
advantages for tasks whose tools share common factors (e.g., mugs in
different shapes). Though very few studies have attempted to handle
both tasks. Different from these sub-types of single-manipulation tool
use tasks, no previous studies have attempted deductive tool use.

Compared with single-manipulation tool use, fewer studies
have addressed multiple-manipulation tool use. No previous studies
reported that their systems can handle combined tool use; sequential
tool use was usually treated as a regular manipulation task in TAMP;
tool selection is most similar to single-manipulation tool use and
gained most attention among multiple-manipulation tool use; only
limited attempts have been made to address even simplified version
of tool manufacturing.

6 Discussions

We defined robot tool use, provided a taxonomy of robot use,
and identified the required skills in each category of tool use. As
a summary, non-causal tool use focuses on the manipulation skills
of using tools. Causal tool use focuses on learning or applying
affordances. The sub-categories of single-manipulation tool use learn
different parts of affordances. Basic tool use learns the actions-effects
relation. Transferable tool use focuses on the tools-actions relation
in addition to the actions-effects relation. Improvisatory tool use
requires the knowledge of the full model. Deductive tool use generates
affordances with general knowledge, rather than inducting the model
from experiences or demonstrations. While single tool use relies on
learning affordances,multiple-manipulation tool use leverages learned
affordances and requires more sophisticated manipulation and/or
higher-level cognition skills. In addition, we review literature on robot
tool use. In this section, we discuss current or near future applications
as well as future directions for robot tool use.

6.1 Current applications of robot tool use

The taxonomy can be used as a practical guideline for robot
engineers when developing tool use applications. Robot engineers
may start with the categorization criterion in the taxonomy since
these are important features of robot tool use. This process also
facilitates engineers to identify the sub-type of tool use involved in

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2022.1009488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Qin et al. 10.3389/frobt.2022.1009488

FIGURE 5
A cheat sheet for developing robot tool use applications.

the application. We include a convenient cheat sheet for engineers as
Figure 5. Upon the identification of the sub-type, our taxonomy also
provides information regarding which skills should be focused on as
summarized in Figure 4.

Wewould like to emphasize that the taxonomywas not designed to
decide which type of tool use is superior, but to show the differences
between the sub-types of tool use. For example, causal tool use may
look more appealing than non-causal tool use as the actions can be
generated more flexibly in different contexts. However, the former is
more challenging to learn and the performance is comprised due to
the limitations of current learning techniques. For industrial settings,
robots on the assembly line may be required to complete the same
task repeatedly. In this scenario, being more reliable may be more
important than being more flexible. Moreover, the environment is
designed for the robot and it is highly-controlled and being able to
adapt to diverse context is less of a concern. As a result, non-causal
tool use is sufficient. Conversely, household robots may face dynamic,
complex, and stochastic environments. Such environments necessitate
more flexible tool use skills. Therefore, causal tool use is required. In
a nutshell, what kind of tool use to implement in a certain application
is dependent on the need of the task and the limitations of current
techniques.

We would also like to point out that the characteristics to classify
the taxonomy may not be an exhaustive list for tool use in every
scenario. For example, our taxonomy is designed to consider a
robot solving a tool use task by itself. However, in practice, a robot
may be required to solve a task jointly with a human collaborator.
Considerations around safely handling tools, and doing so in a
way that fosters effective collaboration are important, but beyond
the scope of the taxonomy and this survey. Moreover, different
applications may have significantly different requirements making it
impractical to design a guideline that may apply to every conceivable
application. Our taxonomy provides a basic guideline to design a
robot to complete tool use tasks, and engineers should identify specific
requirements of particular applications. Not to mention that the real-
world environment is noisier which adds another layer of complexity.

6.2 Open challenges of future robot tool use

The study of tool use is still in the preliminary stages, and most
studies aim to solve non-causal tool use and basic tool use.We identify
the following open challenges in tool use.

1. How can a robot learn the relations between tool-manipulanda
contact poses and effects in transferable tool use? There is a lack of
studies on the relationship between tool-manipulanda contact poses
and tool use effects. Most studies focus on the relation between
trajectories and effects.

2. How can an integrative system for improvisatory tool use handle a
wide range of tasks? While it is challenging to improvise tool use
based on either local or global features, it is even more challenging
to develop a system that can solve a wide range of tool use tasks.
Such a system should decide whether local or global features should
be considered, or choose features beyond geometric ones.

3. How can a robot perform deductive tool use? The challenge for
deductive tool use is the lack of prior experiences. Current
techniques for other sub-types of single-manipulation tool
use performs inductive reasoning that learns affordances from
experiences, and cannot be applied to deductive tool use.

4. How can a robot perform multiple-manipulation tool use? Multiple-
manipulation tool use requires a robot to perform single-
manipulation tool use. In addition, each sub-type in multiple-
manipulation tool use requires more sophisticated manipulation
skills or higher level cognition skills. Moreover, the additional skills
differ among the sub-types of multiple-manipulation tool use.

5. How can a robot learn the dynamics in causal tool use? It is already
challenging for current studies to consider tasks that can be achieved
with only kinematic control. It will be even more challenging to
incorporate dynamics as it adds additional dimensions to consider.

6. Can we design a benchmark database for standard tool use
tasks? It is not trivial to design standard tool use tasks with a
benchmark database of object models to facilitate comparisons
between different algorithms. The requirements of the tasks should
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be detailed enough for precise replication. However, detailed
requirements may lead to algorithms tailored for these tasks, and
loss of generality. Moreover, it is challenging to select representative
tools for improvisatory tool use as tools are expected to be used in
creative manners. It is also impossible to include all possible tools
for a given task due to the almost endless choices of physical objects
that can be used as tools. It is also time-consuming to obtain the 3D
model of an object.

7. When and how can tool use knowledge be applied other areas in
robotics? Most studies that are relevant to tool use ignore the
affordance model. For example, when learning robot grasping or
robot handovers, a system typically observes how a human grasps
a tool or hands over a tool, rather than inferring how a tool should
be grasped or handed over based on the subsequent tasks. It is
important for a system to be equipped with affordance knowledge
since affordance causally determines how a tool should be grasped
or handed over for to perform subsequent tool use tasks (Qin et al.,
2022). However, not every study involving tool use requires a
robot to learn the full affordance model, and it is important to
identify which part of the model should be learned. Moreover, it
also requires effort to connect tool use learning module with other
modules, such as robot grasping and human-robot-collaboration
tasks.
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