
Belpaeme et al., Sci. Robot. 3, eaat5954 (2018)     15 August 2018

S C I E N C E  R O B O T I C S  |  R E V I E W

1 of 9

H U M A N - R O B O T  I N T E R A C T I O N

Social robots for education: A review
Tony Belpaeme1,2*, James Kennedy2, Aditi Ramachandran3, Brian Scassellati3, Fumihide Tanaka4

Social robots can be used in education as tutors or peer learners. They have been shown to be effective at increasing 
cognitive and affective outcomes and have achieved outcomes similar to those of human tutoring on restricted 
tasks. This is largely because of their physical presence, which traditional learning technologies lack. We review the 
potential of social robots in education, discuss the technical challenges, and consider how the robot’s appearance 
and behavior affect learning outcomes.

INTRODUCTION
Virtual pedagogical agents and intelligent tutoring systems (ITSs) 
have been used for many years to deliver education, with compre-
hensive reviews available for each field (1, 2). The use of social 
robots has recently been explored in the educational domain, with 
the expectation of similarly positive benefits for learners (3–5). A 
recent survey of long-term human-robot interaction (HRI) high-
lighted the increasing popularity of using social robots in educa-
tional environments (6), and restricted surveys have previously been 
conducted in this domain (7, 8).

In this paper, we present a review of social robots used in educa-
tion. The scope was limited to robots that were intended to deliver 
the learning experience through social interaction with learners, as 
opposed to robots that were used as pedagogical tools for science, 
technology, engineering, and math (STEM) education. We identi-
fied three key research questions: How effective are robot tutors at 
achieving learning outcomes? What is the contribution made by the 
robot’s appearance and behavior? And what are the potential roles 
of a robot in an educational setting? We support our review with 
data gleaned from a statistical meta-analysis of published literature. 
We aim to provide a platform for researchers to build on by high-
lighting the expected outcomes of using robots to deliver education 
and by suggesting directions for future research.

Benefits of social robots as tutoring agents
The need for technological support in education is driven by demo-
graphic and economic factors. Shrinking school budgets, growing 
numbers of students per classroom, and the demand for greater 
personalization of curricula for children with diverse needs are 
fueling research into technology-based support that augments the 
efforts of parents and teachers. Most commonly, these systems take 
the form of a software system that provides one-on-one tutoring 
support. Social interaction enhances learning between humans, in 
terms of both cognitive and affective outcomes (9, 10). Research has 
suggested that some of these behavioral influences also translate to 
interactions between robots and humans (3, 11). Although robots 
that do not exhibit social behavior can be used as educational tools 
to teach students about technology [such as in (12)], we limited our 
review to robots designed specifically to support education through 
social interactions.

Because virtual agents (presented on laptops, tablets, or phones) 
can offer some of the same capabilities but without the expense of 

additional hardware, the need for maintenance, and the challenges 
of distribution and installation, the use of a robot in an educational 
setting must be explicitly justified. Compared with virtual agents, 
physically embodied robots offer three advantages: (i) they can be 
used for curricula or populations that require engagement with the 
physical world, (ii) users show more social behaviors that are bene-
ficial for learning when engaging with a physically embodied system, 
and (iii) users show increased learning gains when interacting with 
physically embodied systems over virtual agents.

Robots are a natural choice when the material to be taught 
requires direct physical manipulation of the world. For example, 
tutoring physical skills, such as handwriting (13) or basketball 
free throws (14), may be more challenging with a virtual agent, 
and this approach is also taken in many rehabilitation- or therapy-
focused applications (15). In addition, certain populations may 
require a physically embodied system. Robots have already been 
proposed to aid individuals with visual impairments (16) and for 
typically developing children under the age of two (17) who show 
only minimal learning gains when provided with educational con-
tent via screens (18).

In addition, often there is an expectation for robot tutors to be 
able to move through dynamic and populated spaces and manipu-
late the physical environment. Although not always needed in the 
context of education, there are some scenarios where the learning 
experience benefits from the robot being able to manipulate objects 
and move autonomously, such as when supporting physical experi-
mentation (19) or moving to the learner rather than the learner 
moving to the robot. These challenges are not exclusive to social 
robotics and robot tutors, but the added elements of having the robot 
operate near and with (young) learners add complexities that are 
often disregarded in navigation and manipulation.

Physical robots are also more likely to elicit from users social 
behaviors that are beneficial to learning (20). Robots can be more 
engaging and enjoyable than a virtual agent in cooperative tasks 
(21–23) and are often perceived more positively (22, 24, 25). Im-
portantly for tutoring systems, physically present robots yield sig-
nificantly more compliance to its requests, even when those requests 
are challenging, than a video representation of the same robot (26).

Last, physical robots have enhanced learning and affected later 
behavioral choice more substantially than virtual agents. Compared 
with instructions from virtual characters, videos of robots, or audio-
only lessons, robots have produced more rapid learning in cognitive 
puzzles (27). Similar results have been demonstrated when coaching 
users to select healthier snacks (24) and when helping users continue 
a 6-week weight-loss program (28). A comprehensive review (25) con-
cluded that the physical presence of a robot led to positive perceptions 
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and increased task performance when compared with virtual agents 
or robots displayed on screens.

Technical challenges of building robot tutors
There are a number of challenges in using technology to support 
education. Using a social robot adds to this set of challenges because 
of the robot’s presence in the social and physical environment and 
because of the expectations the robot creates in the user. The social 
element of the interaction is especially difficult to automate: Although 
robot tutors can operate autonomously in restricted contexts, fully 
autonomous social tutoring behavior in unconstrained environments 
remains elusive.

Perceiving the social world is a first step toward being able to act 
appropriately. Robot tutors should be able to not only correctly in-
terpret the user’s responses to the educational content offered but 
also interpret the rapid and nuanced social cues that indicate task 
engagement, confusion, and attention. Although automatic speech 
recognition and social signal processing have improved in recent 
years, sufficient progress has not been made for all populations. 
Speech recognition for younger users, for example, is still insuffi-
ciently robust for most interactions (29). Instead, alternative input 
technologies, such as a touch-screen tablets or wearable sensors, are 
used to read responses from the learner and can be used as a proxy 
to detect engagement and to track the performance of the student 
(30–32). Robots can also use explicit models of disengagement in a 
given context (33) and strategies, such as activity switching, to sus-
tain engagement over the interaction (34). Computational vision has 
made great strides in recent years but is still limited when dealing 
with the range of environments and social expressions typically found 
in educational and domestic settings. Although advanced sensing 
technologies for reading gesture, posture, and gaze (35) have found 
their way into tutoring robots, most social robot tutors continue to 
be limited by the degree to which they can accurately interpret the 
learner’s social behavior.

Armed with whatever social signals can be read from the student, 
the robot must choose an action that advances the long-term goals 
of the educational program. However, this can often be a difficult 
choice, even for experienced human instructors. Should the instructor 
press on and attempt another problem, advance to a more challenging 
problem, review how to solve the current problem, offer a hint, or 
even offer a brief break from instruction? There are often conflicting 
educational theories in human-based instruction, and whether or not 
these same theories hold when considering robot instructors is an 
open question. These choices are also present in ITSs, but the explicit 
agentic nature of robots often introduces additional options and, at 
times, complications. Choosing an appropriate emotional support 
strategy based on the affective state of the child (36), assisting with 
a meta-cognitive learning strategy (37), deciding when to take a break 
(31), and encouraging appropriate help-seeking behavior (4) have 
all been shown to increase student learning gains. Combining these 
actions with appropriate gestures (38), appropriate and congruent 
gaze behavior (39), expressive behaviors and attention-guiding 
behaviors (11), and timely nonverbal behaviors (3) also positively 
affects student recall and learning. However, merely increasing the 
amount of social behavior for a robot does not lead to increased 
learning gains: Certain studies have found that social behavior may 
be distracting (40, 41). Instead, the social behavior of the robot must 
be carefully designed in conjunction with the interaction context 
and task at hand to enhance the educational interaction.

Last, substantial research has focused on personalizing interac-
tions to the specific user. Within the ITS community, computational 
techniques such as dynamic Bayesian networks, fuzzy decision trees, 
and hidden Markov models are used to model student knowledge 
and learning. Similar to on-screen tutoring systems, robot tutors use 
these same techniques to help tailor the complexity of problems to 
the capabilities of the student, providing more complex problems 
only when easier problems have been mastered (42–44). In addition 
to the selection of personalized content, robotic tutoring systems 
often provide additional personalization to support individual learn-
ing styles and interaction preferences. Even straightforward forms 
of personalization, such as using a child’s name or referencing per-
sonal details within an educational setting, can enhance user percep-
tion of the interaction and are important factors in maintaining 
engagement within learning interactions (45, 46). Other affective 
personalization strategies have been explored to maintain engage-
ment during a learning interaction by using reinforcement learning 
to select the robot’s affective responses to the behavior of children 
(47). A field study showed that students who interacted with a robot 
that simultaneously demonstrated three types of personalization 
(nonverbal behavior, verbal behavior, and adaptive content pro-
gression) showed increased learning gains and sustained engagement 
when compared with students interacting with a nonpersonalized 
robot (48) Although progress has been made in constituent tech-
nologies of robot tutors—from perception to action selection and 
production of behaviors that promote learning—the integration of 
these technologies and balancing their use to elicit prosocial behavior 
and consistent learning still remain open challenges.

REVIEW
To support our review, we used a meta-analysis of the literature 
on robots for education. In this, three key questions framed the 
meta-analysis and dictated which information was extracted:

1. Efficacy. What are the cognitive and affective outcomes when 
robots are used in education?

2. Embodiment. What is the impact of using a physically em-
bodied robot when compared with alternative technologies?

3. Interaction role. What are the different roles the robot can 
take in an educational context?

For the meta-analysis, we used published studies extracted from 
the Google Scholar, Microsoft Academic Search, and CiteSeerX 
databases by using the following search terms: robot tutor, robot 
tutors, socially assistive robotics (with manual filtering of those 
relevant to education), robot teacher, robot assisted language 
learning, and robot assisted learning. The earliest published work 
appeared in 1992, and the survey cutoff date was May 2017. In 
addition, proceedings of prominent social HRI journals and con-
ferences were manually searched for relevant material: Interna-
tional Conference on Human-Robot Interaction, International 
Journal of Social Robotics, Journal of Human-Robot Interaction, 
International Conference on Social Robotics, and the Interna-
tional Symposium on Robot and Human Interactive Communica-
tion (RO-MAN).

The selection of papers was based on four additional criteria:
1) Novel experimental evaluations or analyses should be presented.
2) The robot should be used as the teacher (i.e., the robot is an 

agent in the interaction) rather than the robot being used as an ed-
ucational prop or a learner with no intention to educate [e.g., (49)].
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3) The work must have included a physical robot, with an educa-
tive intent. For example, studies considering “coaches” that sought 
to improve motivation and compliance, but did not engage in edu-
cation [e.g., (50)], were not included, whereas those that provided 
tutoring and feedback were included [e.g., (15)].

4) Only full papers were included. Extended abstracts were omit-
ted because these often contained preliminary findings, rather than 
complete results and full analyses.

We withheld 101 papers for analysis and excluded 12 papers for 
various reasons (e.g., the paper repeated results from an earlier pub-
lication). The analyzed papers together contain 309 study results (51).

To compare outcomes of the different studies, we first divided 
the outcomes of an intervention into either affective or cognitive. 
Cognitive outcomes focus on one or more of the following compe-
tencies: knowledge, comprehension, application, analysis, synthesis, 
and evaluation (52–54). Affective outcomes refer to qualities that are 
not learning outcomes per se, for example, the learner being atten-
tive, receptive, responsive, reflective, or inquisitive (53). The meta-
analysis contained 99 (33.6%) data points on cognitive learning 
outcomes and 196 (66.4%) data points on affective learning out-
comes; 14 study results did not contain a comparative experiment 
on learning outcomes.

Cognitive outcomes are typically measured through pre- and 
posttests of student knowledge, whereas affective outcomes are 
more varied and can include self-reported measures and observa-
tions by the experimenters. Table 1 contains the most common 
methods for measuring cognitive and affective outcomes reported 
in the literature.

Most studies focused on children (179 data points; 58% of the 
sample; mean age, 8.2 years; SD, 3.56), whereas adults (≥18 years 
old) were a lesser focus of research in robot tutoring (98 data points; 
32% of the sample; mean age, 30.5; SD, 17.5). For 29 studies (9%), 

both children and adults were used, or the age of the participants was 
not specified.

If the results reported an effect size expressed as Cohen’s d, then 
this was used unaltered. In cases where the effect size was not reported 
or if it was expressed in a measure other than Cohen’s d, then an 
online calculator (55) [see also (56)] was used if enough statistical 
information was present in the paper (typically participant numbers, 
means, and SDs are sufficient).

We captured the following data gleaned from the publications: 
the study design, the number of conditions, the number of partici-
pants per condition, whether participants were children or adults, 
participant ages (mean and SD), the robot used, the country in which 
the study was run, whether the study used a within or between design, 
the reported outcomes (affective or cognitive, with details on what 
was measured exactly), the descriptive statistics (where available 
mean, SD, t, and F values), the effect size as Cohen’s d, whether the 
study involved one robot teaching one person or one robot teaching 
many, the role of the robot (presenter, teaching assistant, teacher, 
peer, or tutor), and the topic under study (embodiment of the robot, 
social character of the robot, the role of the robot, or other).

The studies in our sample reported more on affective outcomes 
than cognitive outcomes (Fig. 1A). This is due to the relative ease 
with which a range of affective outcomes can be assessed by using 
questionnaires and observational studies, whereas cognitive outcomes 
require administering a controlled knowledge assessment before and 
after the interaction with the robot, of which typically only one is 
reported per study.

Figure 2B shows the countries where studies were run. Robots for 
learning research, perhaps unsurprisingly, happen predominantly 
in East Asia (Japan, South Korea, and Taiwan), Europe, and the 
United States. An exception is the research in Iran on the use of 
robots to teach English in class settings.

Table 1. Common measures for determining cognitive and affective outcomes in robots for learning.  

Cognitive Learning gain, measured as difference between pre- and posttest score

Administer posttest either immediately after exposure to robot or with delay

Correct for varying initial knowledge, e.g., using normalized learning gain (77)

Difference in completion time of test

Number of attempts needed for correct response

Affective Persistence, measured as number of attempts made or time spent with robot

Number of interactions with the system, such as utterances or responses

Coding emotional expressions of the learner, can be automated using face analysis software (47)

Godspeed questionnaire, measuring the user’s perception of robots (78)

Tripod survey, measuring the learner’s perspective on teaching, environment, and engagement (79)

Immediacy, measuring psychological availability of the robot teacher (3, 10)

Evolution of time between answers, e.g., to indicate fatigue (31)

Coding of video recordings of participants responses

Coding or automated recording of eye gaze behavior (to code attention, for example)

Subjective rating of the robot’s teaching and the learning experience (15)

Foreign language anxiety questionnaire (80)

KindSAR interactivity index, quantitative measure of children’s interactions with a robot (81)

Basic empathy scale, self-report of empathy (82)

Free-form feedback or interviews
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Extracting meaningful statistical data from the published studies 
is not straightforward. Of the 309 results reported in 101 pub-
lished studies, only 81 results contained enough data to calculate 
an effect size, highlighting the need for more rigorous reporting of 
data in HRI.

Efficacy of robots in education
The efficacy of robots in education is of primary interest, and here, 
we discuss the outcomes that might be expected when using a robot 
in education. The aim is to provide a high-level overview of the 
effect size that might be expected when comparing robots with a 
variety of control conditions, grouping a range of educational 
scenarios with many varying factors between studies (see Fig. 3). 
More specific analyses split by individual factors will be explored 
in subsequent sections.

Learning effects are divided into cognitive and affective out-
comes. Across all studies included in the meta-review, we have 
37 results that compared the robot with an alternative, such as 
an ITS, an on-screen avatar, or human tutoring. Of these, the aggre-
gated mean cognitive outcome effect size (Cohen’s d weighted by N) 
of robot tutoring is 0.70 [95% confidence interval (CI), 0.66 to 0.75] 
from 18 data points, with a mean of N = 16.9 participants per data 
point. The aggregated mean affective outcome effect size (Cohen’s d 
weighted by N) is 0.59 (95% CI, 0.51 to 0.66) from 19 data points, 
with a mean of N = 24.4 students per data point. Many studies using 
robots do not consider learning in comparison with an alternative, 
such as computer-based or human tutoring, but instead against 
other versions of the same robot with different behaviors. The 

limited number of studies that did compare a robot against an alter-
native offers a positive picture of the contribution to learning made 
by social robots, with a medium effect size for affective and cogni-
tive outcomes. Furthermore, positive affective outcomes did not 
imply positive cognitive outcomes, or vice versa. In some studies, 
introducing a robot improved affective outcomes while not nec-
essarily leading to significant cognitive gains [e.g. (57)].

Human tutors provide a gold standard benchmark for tutor-
ing interactions. Trained tutors are able to adapt to learner needs 
and modify strategies to maximize learning (58). Previous work 
(59) has suggested that human tutors produce a mean cognitive 
outcome effect size (Cohen’s d) of 0.79, so the results observed 
when using a robot are in a similar region. However, social robots 
are typically deployed in restricted scenarios: short, well-defined 
lessons delivered with limited adaptation to individual learners or 
flexibility in curriculum. There is no suggestion yet that robots 
have the capability to tutor in a general sense as well as a human 
can. Comparisons between robots and humans are rare in the liter-
ature, so no meta-analysis data were available to compare the 
cognitive learning effect size.
Robot appearance
Because the positive learning outcomes are driven by the physical 
presence of the robot, the question remains of what exactly it is 
about the robot’s appearance that promotes learning. A wide range 
of robots have been used in the surveyed studies, from small toy-
like robots to full-sized android robots. Figure 2A shows the most 
used robots in the published studies.

The most popular robot in the studies we analyzed is the Nao 
robot, a 54-cm-tall humanoid by Softbank Robotics Europe available 
as having 14, 21, or 25 degrees of freedom (see Fig. 4B). The two 
latter versions of Nao have arms, legs, a torso, and a head. They can 
walk, gesture, and pan and tilt their head. Nao has a rich sensor suite 
and an on-board computational core, allowing the robot to be fully 
autonomous. The dominance of Nao for HRI can be attributed to its 
wide availability, appealing appearance, accessible price point, tech-
nical robustness, and ease of programming. Hence, Nao has become 
an almost de facto platform for many studies in robots for learning. 
Another robot popular as a tutor is the Keepon robot, a consumer-
grade version of the Keepon Pro research robot. Keepon is a 25-cm-tall 
snowman-shaped robot with a yellow foam exterior without arms 
and legs (see Fig. 4C). It has four degrees of freedom to make it pan, 
roll, tilt, and bop. Originally sold as a novelty for children, it can be 
used as a research platform after some modification. Nao and Keepon 
offer two extremes in the design space of social robots, and hence, it 
is interesting to compare learning outcomes for both.

Comparing Keepon with Nao, the respective cognitive learning 
gain is d = 0.56 (N = 10; 95% CI, 0.532 to 0.58) and d = 0.76 (N = 8; 
95% CI, 0.52 to 1.01); therefore, both show a medium-sized effect. 
However, we note that direct comparisons between different robots 
are difficult with the available data, because no studies used the same 
experimental design, the same curriculum, and the same student 
population with multiple robots. Furthermore, different robots have 
tended to be used at different times, becoming popular in studies 
when that particular hardware model was first made available and 
decreasing in usage over time. Because the complexity of the exper-
imental protocols has tended to increase, direct comparison is not 
possible at this point in time.

What is clear from surveying the different robot types is that all 
robots have a distinctly social character [except for the Heathkit 
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HERO robot used in (60)]. All robots have humanoid features—such 
as a head, eyes, a mouth, arms, or legs—setting the expectation that the 
robot has the ability to engage on a social level. Although there are no 
data on whether the social appearance of the robot is a requirement 
for effective tutoring, there is evidence that the social and agentic 
nature of the robots promotes secondary responses conducive to 
learning (61, 62). The choice of robot very often depends on practical 
considerations and whether the learners feel comfortable around the 
robot. The weighted average height of the robots is 62 cm; the shortest 
robot in use is the Keepon at 25 cm, and the tallest is the RoboThespian 
humanoid at 175 cm. Shorter robots are often preferred when teach-
ing young children.
Robot behavior
To be effective educational agents, the behavior of social robots must 
be tailored to support various aspects of learning across different 
learners and diverse educational contexts. Several studies focused on 
understanding critical aspects of educational interactions to which 
robots should respond, as well as determining both what behaviors 
social robots can use and when to deliver these behaviors to affect 
learning outcomes.

Our meta-review shows that almost any strategy or social behavior 
of the robot aimed at increasing learning outcomes has a positive 
effect. We identified the influence of robot behaviors on cognitive 
outcomes (d = 0.69; N = 12; 95% CI, 0.56 to 0.83) and affective out-
comes (d = 0.70; N = 32; 95% CI, 0.62 to 0.77).

Similar to findings in the ITS community, robots that personalize 
what content to provide based on user performance during an inter-
action can increase cognitive learning gains (43, 44). In addition to 
the adaptive delivery of learning material, social robots can offer 
socially supportive behaviors and personalized support for learners 
within an educational context. Personalized social support, such as 
using a child’s name or referring to previous interactions (45, 46), is 
the low-hanging fruit of social interaction. More complex prosocial 
behavior, such as attention-guiding (11), displaying congruent gaze 
behavior (39), nonverbal immediacy (3), or showing empathy with 
the learner (36), not only has a positive impact on affective outcomes 
but also results in increased learning.

However, just as human tutors must at times sit quietly and allow 
students the opportunity to concentrate on problem solving, robot 
tutors must also limit their social behavior at appropriate times based 
on the cognitive load and engagement of the student (40). The social 
behavior of the robot must be carefully designed in conjunction with 
the interaction context and task at hand to enhance the educational 
interaction and avoid student distraction.

It is possible that the positive cognitive and affective learning out-
comes of robot tutors are not directly caused by the robot having a 
physical presence, but rather the physical presence of the robot pro-
motes social behaviors in the learner that, in turn, foster learning and 
create a positive learning experience. Robots have been shown to have 
a positive impact on compliance (26), engagement (21–23), and con-
formity (20), which, in turn, are conducive to achieving learning gains. 
Hence, a perhaps valuable research direction is to explore what it is 
about social robots that affects the first-order outcomes of engage-
ment, persuasion, and compliance.

Robot role
Social robots for education include a variety of robots having differ-
ent roles. Beyond the typical role of a teacher or a tutor, robots can 
also support learning through peer-to-peer relationships and can 
support skill consolidation and mastery by acting as a novice. In this 
section, we provide an overview of the different roles a robot can 
adopt and what their educational benefits are.
Robot as tutor or teacher
As a tutor or teacher, robots provide direct curriculum support 
through hints, tutorials, and supervision. These types of educational 
robots, including teaching assistant robots (63), have the longest 
history of research and development, often targeting curricular 
domains for young children. Early field studies placed robots into 
classrooms to observe whether they would have any qualitative 
impact on the learners’ attitude and progress, but current research 
tends toward controlled experimental trials in both laboratory 
settings and classrooms (64).
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A commercial tutor robot called IROBI (Yujin Robotics) was 
released in the early 2000s. Designed to teach English, IROBI was 
shown to enhance both concentration on learning activities and 
academic performance compared with other teaching technology, 
such as audio material and a web-based application (65).

The focus on younger children links robot education research with 
other scientific areas, such as language development and develop-
mental psychology (66). On the basis of the earlier work that studied 
socialization between toddlers and robots in a nursery school (67), 
a fully autonomous robot was deployed in classrooms. It was shown 
that the vocabulary skills of 18- to 24-month-old toddlers improved 
significantly (68). Much of the work in which the robot is used as a 
tutor focuses on one-to-one interactions, because these offer the 
greatest potential for personalized education.

In some cases, the robot is used as a novel channel through 
which a lecture is delivered. In these cases, the robot is not so much 
interacting with the learners but acts as a teacher or an assistant for 
the teacher (69). The value of the robot in this case lies in improving 
attention and motivation in the learners, while the delivery and 
assessment is done by the human teacher. Here, the delivery is often 
one to many, with the robot addressing an entire group of learners 
(33, 63, 69).
Robot as peer
Robots can also be peers or learning companions for humans. Not 
only does a peer have the potential of being less intimidating than a 
tutor or teacher, peer-to-peer interactions can have significant 
advantages over tutor-to-student interactions. Robovie was the first 
fully autonomous robot to be introduced into an elementary school 
(70). It was an English-speaking robot targeting two grades (first 
and sixth) of Japanese children. Through field trials conducted over 
2 weeks, improvements in English language skills were observed in 
some children. In one case, longer periods of attention on learning 
tasks, faster responses, and more accurate responses were shown with 
a peer robot compared with an identical-looking tutor robot (19). A 
long-term primary school study showed that a peer-like humanoid 
robot able to personalize the interaction could increase child learn-

ing of novel subjects (48). Often, the robot is presented as a more 
knowledgeable peer, guiding the student along a learning trajectory 
that is neither too easy nor too challenging. However, the role of 
those robots sometimes becomes ambiguous (tutor versus peer), and 
it is difficult to place one above the other in general. Learning com-
panions (71), which offer motivational support but otherwise are 
not tutoring, are also successful cases of a peer-like robot.
Robot as novice
Considerable educational benefits can also be obtained from a robot 
that takes the role of a novice, allowing the student to take on the 
role of an instructor that typically improves confidence while, at the 
same time, establishing learning outcomes. This is an instance of 
learning by teaching, which is widely known in human education, 
also referred to as the protégé effect (72). This process involves the 
learner making an effort to teach the robot, which has a direct 
impact on their own learning outcomes.

The care-receiving robot (CRR) was the first robot designed 
with the concept of a teachable robot for education (73). A small 
humanoid robot introduced into English classes improved the 
vocabulary learning of 3- to 6-year-old Japanese children (5). The 
robot was designed to make deliberate errors in English vocabulary 
but could be corrected through instruction by the children. In addi-
tion, CRR was shown to engage children more than alternative tech-
nology, which eventually led to the release of a commercial product 
based on the principle of a robot as a novice (74).

This novice role can also be used to teach motor skills. The CoWriter 
project explored the use of a teachable robot to help children improve 
their handwriting skills (13). A small humanoid robot in conjunction 
with a touch tablet helped children who struggled with handwriting 
to improve their fine motor skills. Here, the children taught the robot, 
who initially had very poor handwriting, and in the process of doing 
so, the children reflected on their own writing and showed im-
proved motor skills (13). This suggests that presenting robots as 
novices has potential to develop meta-cognitive skills in learners, 
because the learners are committing to instructing the learning ma-
terial, requiring a higher level of understanding of the material and an 
understanding of the internal representations of their robot partner.

In our meta-analysis, the robot was predominantly used as a 
tutor (48%), followed by a role as teacher (38%). In only 9% of 
studies was the robot presented as a peer or novice (Fig. 1B). 
The robot was often used to offer one-to-one interactions (65%), 
with the robot used in a one-to-many teaching scenario in only 30% 
of the studies (Fig. 1C). In 5%, the robot had mixed interactions, 
whereby, for example, it first taught more than one student and 
then had one-on-one interactions during a quiz.

DISCUSSION
Although an increasing number of studies confirm the promise of 
social robots for education and tutoring, this Review also lays bare a 
number of challenges for the field. Robots for learning, and social 
robotics in general, require a tightly integrated endeavor. Introducing 
these technologies into educational practice involves solving tech-
nical challenges and changing educational practice.

With regard to the technical challenges, building a fluent and 
contingent interaction between social robots and learners requires 
the seamless integration of a range of processes in artificial intelli-
gence and robotics. Starting with the input to the system, the robot 
needs a sufficiently correct interpretation of the social environment 

 B A

 D C

Fig. 4. Illustrative examples of social robots for learning. (A) iCat robot teach-
ing young children to play chess (76). (B) Nao robot supporting a child to improve 
her handwriting (13). (C) Keepon robot tutoring an adult in a puzzle game (27). 
(D) Pepper robot providing motivation during English classes for Japanese 
children (74).
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for it to respond appropriately. This requires significant progress in 
constituent technical fields, such as speech recognition and visual 
social signal processing, before the robot can access the social envi-
ronment. Speech recognition, for example, is still insufficiently 
robust to allow the robot to understand spoken utterances from 
young children. Although these shortcomings can be resolved by 
using alternative input media, such as touch screens, this does place 
a considerable constraint on the natural flow of the interaction. For 
robots to be autonomous, they must make decisions about which 
actions to take to scaffold learning. Action selection is a challenging 
domain at best and becomes more difficult when dealing with a 
pedagogical environment, because the robot must have an under-
standing of the learner’s ability and progress to allow it to choose 
appropriate actions. Finally, the generation of verbal and nonverbal 
output remains a challenge, with the orchestrated timing of verbal 
and nonverbal actions a prime example. In summary, social interac-
tion requires the seamless functioning of a wide range of cognitive 
mechanisms. Building artificial social interaction requires the artifi-
cial equivalent of these cognitive mechanisms and their interfaces, 
which is why artificial social interaction is perhaps one of the most 
formidable challenges in artificial intelligence and robotics.

Introducing social robots in the school curriculum also poses a 
logistical challenge. The generation of content for social robots for 
learning is nontrivial, requiring tailor-made material that is likely to 
be resource-intensive to produce. Currently, the value of the robot 
lies in tutoring very specific skills, such as mathematics or hand-
writing, and it is unlikely that robots can take up the wide range of 
roles a teacher has, such as pedagogical and carer roles. For the time 
being, robots are mainly deployed in elementary school settings. Al-
though some studies have shown the efficacy of tutoring adolescents 
and adults, it is unclear whether the approaches that work well 
for younger children transfer to tutoring older learners.

Introducing robots might also carry risks. For example, studies 
of ITS have shown that children often do not make the best use of 
on-demand support and either rely too much on the help function or 
avoid using help altogether, both resulting in suboptimal learning. 
Although strategies have been explored to mitigate this particular 
problem in robots (4), there might be other problems specific to 
social robots that still need to be identified and for which solutions 
will be needed.

Social robots have, in the broadest sense, the potential to become 
part of the educational infrastructure, just as paper, white boards, and 
computer tablets have. Next to the functional dimension, robots 
also offer unique personal and social dimensions. A social robot has 
the potential to deliver a learning experience tailored to the learner, 
supporting and challenging students in ways unavailable in current 
resource-limited educational environments. Robots can free up pre-
cious time for human teachers, allowing the teacher to focus on 
what people still do best: providing a comprehensive, empathic, and 
rewarding educational experience.

Next to the practical considerations of introducing robots in edu-
cation, there are also ethical issues. How far do we want the educa-
tion of our children to be delegated to machines, and social robots 
in particular? Overall, learners are positive about their experience with 
robots for learning, but parents and teaching staff adopt a more 
cautious attitude (75). There is much to gain from using robots, but 
what do we stand to lose? Might robots lead to an impoverished 
learning experience where what is technologically possible is prior-
itized over what is actually needed by the learner?

Notwithstanding, robots show great promise when teaching 
restricted topics, with effect sizes on cognitive outcomes almost 
matching those of human tutoring. This is remarkable, because our 
meta-analysis gathered results from a wide range of countries using 
different robot types, teaching approaches, and deployment contexts. 
Although the use of robots in educational settings is limited by tech-
nical and logistical challenges for now, the benefits of physical 
embodiment may lift robots above competing learning technolo-
gies, and classrooms of the future will likely feature robots that 
assist a human teacher.
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